STGIC: A graph and image convolution-based method for spatial transcriptomic clustering

Spatial transcriptomic (ST) clustering employs spatial and transcription information to group spots spatially coherent and transcriptionally similar together into the same spatial domain. Graph convolution network (GCN) and graph attention network (GAT), fed with spatial coordinates derived adjacenc...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 20; no. 2; p. e1011935
Main Authors Zhang, Chen, Gao, Junhui, Chen, Hong-Yu, Kong, Lingxin, Cao, Guangshuo, Guo, Xiangyu, Liu, Wei, Ren, Bin, Wei, Dong-Qing
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.02.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatial transcriptomic (ST) clustering employs spatial and transcription information to group spots spatially coherent and transcriptionally similar together into the same spatial domain. Graph convolution network (GCN) and graph attention network (GAT), fed with spatial coordinates derived adjacency and transcription profile derived feature matrix are often used to solve the problem. Our proposed method STGIC ( s patial t ranscriptomic clustering with g raph and i mage c onvolution) is designed for techniques with regular lattices on chips. It utilizes an adaptive graph convolution (AGC) to get high quality pseudo-labels and then resorts to dilated convolution framework (DCF) for virtual image converted from gene expression information and spatial coordinates of spots. The dilation rates and kernel sizes are set appropriately and updating of weight values in the kernels is made to be subject to the spatial distance from the position of corresponding elements to kernel centers so that feature extraction of each spot is better guided by spatial distance to neighbor spots. Self-supervision realized by Kullback–Leibler (KL) divergence, spatial continuity loss and cross entropy calculated among spots with high confidence pseudo-labels make up the training objective of DCF. STGIC attains state-of-the-art (SOTA) clustering performance on the benchmark dataset of 10x Visium human dorsolateral prefrontal cortex (DLPFC). Besides, it’s capable of depicting fine structures of other tissues from other species as well as guiding the identification of marker genes. Also, STGIC is expandable to Stereo-seq data with high spatial resolution.
AbstractList Spatial transcriptomic (ST) clustering employs spatial and transcription information to group spots spatially coherent and transcriptionally similar together into the same spatial domain. Graph convolution network (GCN) and graph attention network (GAT), fed with spatial coordinates derived adjacency and transcription profile derived feature matrix are often used to solve the problem. Our proposed method STGIC (spatial transcriptomic clustering with graph and image convolution) is designed for techniques with regular lattices on chips. It utilizes an adaptive graph convolution (AGC) to get high quality pseudo-labels and then resorts to dilated convolution framework (DCF) for virtual image converted from gene expression information and spatial coordinates of spots. The dilation rates and kernel sizes are set appropriately and updating of weight values in the kernels is made to be subject to the spatial distance from the position of corresponding elements to kernel centers so that feature extraction of each spot is better guided by spatial distance to neighbor spots. Self-supervision realized by Kullback-Leibler (KL) divergence, spatial continuity loss and cross entropy calculated among spots with high confidence pseudo-labels make up the training objective of DCF. STGIC attains state-of-the-art (SOTA) clustering performance on the benchmark dataset of 10x Visium human dorsolateral prefrontal cortex (DLPFC). Besides, it's capable of depicting fine structures of other tissues from other species as well as guiding the identification of marker genes. Also, STGIC is expandable to Stereo-seq data with high spatial resolution.
Spatial transcriptomic (ST) clustering employs spatial and transcription information to group spots spatially coherent and transcriptionally similar together into the same spatial domain. Graph convolution network (GCN) and graph attention network (GAT), fed with spatial coordinates derived adjacency and transcription profile derived feature matrix are often used to solve the problem. Our proposed method STGIC (spatial transcriptomic clustering with graph and image convolution) is designed for techniques with regular lattices on chips. It utilizes an adaptive graph convolution (AGC) to get high quality pseudo-labels and then resorts to dilated convolution framework (DCF) for virtual image converted from gene expression information and spatial coordinates of spots. The dilation rates and kernel sizes are set appropriately and updating of weight values in the kernels is made to be subject to the spatial distance from the position of corresponding elements to kernel centers so that feature extraction of each spot is better guided by spatial distance to neighbor spots. Self-supervision realized by Kullback-Leibler (KL) divergence, spatial continuity loss and cross entropy calculated among spots with high confidence pseudo-labels make up the training objective of DCF. STGIC attains state-of-the-art (SOTA) clustering performance on the benchmark dataset of 10x Visium human dorsolateral prefrontal cortex (DLPFC). Besides, it's capable of depicting fine structures of other tissues from other species as well as guiding the identification of marker genes. Also, STGIC is expandable to Stereo-seq data with high spatial resolution.Spatial transcriptomic (ST) clustering employs spatial and transcription information to group spots spatially coherent and transcriptionally similar together into the same spatial domain. Graph convolution network (GCN) and graph attention network (GAT), fed with spatial coordinates derived adjacency and transcription profile derived feature matrix are often used to solve the problem. Our proposed method STGIC (spatial transcriptomic clustering with graph and image convolution) is designed for techniques with regular lattices on chips. It utilizes an adaptive graph convolution (AGC) to get high quality pseudo-labels and then resorts to dilated convolution framework (DCF) for virtual image converted from gene expression information and spatial coordinates of spots. The dilation rates and kernel sizes are set appropriately and updating of weight values in the kernels is made to be subject to the spatial distance from the position of corresponding elements to kernel centers so that feature extraction of each spot is better guided by spatial distance to neighbor spots. Self-supervision realized by Kullback-Leibler (KL) divergence, spatial continuity loss and cross entropy calculated among spots with high confidence pseudo-labels make up the training objective of DCF. STGIC attains state-of-the-art (SOTA) clustering performance on the benchmark dataset of 10x Visium human dorsolateral prefrontal cortex (DLPFC). Besides, it's capable of depicting fine structures of other tissues from other species as well as guiding the identification of marker genes. Also, STGIC is expandable to Stereo-seq data with high spatial resolution.
Spatial transcriptomic (ST) clustering employs spatial and transcription information to group spots spatially coherent and transcriptionally similar together into the same spatial domain. Graph convolution network (GCN) and graph attention network (GAT), fed with spatial coordinates derived adjacency and transcription profile derived feature matrix are often used to solve the problem. Our proposed method STGIC ( s patial t ranscriptomic clustering with g raph and i mage c onvolution) is designed for techniques with regular lattices on chips. It utilizes an adaptive graph convolution (AGC) to get high quality pseudo-labels and then resorts to dilated convolution framework (DCF) for virtual image converted from gene expression information and spatial coordinates of spots. The dilation rates and kernel sizes are set appropriately and updating of weight values in the kernels is made to be subject to the spatial distance from the position of corresponding elements to kernel centers so that feature extraction of each spot is better guided by spatial distance to neighbor spots. Self-supervision realized by Kullback–Leibler (KL) divergence, spatial continuity loss and cross entropy calculated among spots with high confidence pseudo-labels make up the training objective of DCF. STGIC attains state-of-the-art (SOTA) clustering performance on the benchmark dataset of 10x Visium human dorsolateral prefrontal cortex (DLPFC). Besides, it’s capable of depicting fine structures of other tissues from other species as well as guiding the identification of marker genes. Also, STGIC is expandable to Stereo-seq data with high spatial resolution.
Spatial transcriptomic (ST) clustering employs spatial and transcription information to group spots spatially coherent and transcriptionally similar together into the same spatial domain. Graph convolution network (GCN) and graph attention network (GAT), fed with spatial coordinates derived adjacency and transcription profile derived feature matrix are often used to solve the problem. Our proposed method STGIC ( s patial t ranscriptomic clustering with g raph and i mage c onvolution) is designed for techniques with regular lattices on chips. It utilizes an adaptive graph convolution (AGC) to get high quality pseudo-labels and then resorts to dilated convolution framework (DCF) for virtual image converted from gene expression information and spatial coordinates of spots. The dilation rates and kernel sizes are set appropriately and updating of weight values in the kernels is made to be subject to the spatial distance from the position of corresponding elements to kernel centers so that feature extraction of each spot is better guided by spatial distance to neighbor spots. Self-supervision realized by Kullback–Leibler (KL) divergence, spatial continuity loss and cross entropy calculated among spots with high confidence pseudo-labels make up the training objective of DCF. STGIC attains state-of-the-art (SOTA) clustering performance on the benchmark dataset of 10x Visium human dorsolateral prefrontal cortex (DLPFC). Besides, it’s capable of depicting fine structures of other tissues from other species as well as guiding the identification of marker genes. Also, STGIC is expandable to Stereo-seq data with high spatial resolution. Spatial transcriptomics detect gene transcription profile with high spatial resolution even to sub-cellular level, which is very helpful to characterize organization and architecture of tissues and find marker genes corresponding to sub-structures. Therefore, it is much more informative than traditional transcriptomics for interpreting the biological processes underlying tissue development and disease progression. Clustering to clarify each spatial domain of tissues in which cells present similar transcription profile and histology is a primary task for analyzing spatial transcriptomics data. To solve the important problem, we propose the method STGIC combining deep learning skills in both graph and image, since we notice that image methods tend to display good performances on some samples in benchmark datasets which existing graph methods are not good at, and vice versa. Besides, we substitute the vanilla form of graph convolution frequently used in this field with the one which can find the optimal order of neighbor involved in feature aggregation adaptively for different graphs. STGIC displays high clustering performance and identifies spatial domains which can be used to depict fine-grained structure and help ascertain marker genes of different tissues from different species sequenced with 10x Visum and Stereo-seq techniques.
Author Wei, Dong-Qing
Gao, Junhui
Liu, Wei
Guo, Xiangyu
Zhang, Chen
Chen, Hong-Yu
Cao, Guangshuo
Kong, Lingxin
Ren, Bin
AuthorAffiliation 1 School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
5 Smart-Health Initiative, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
3 College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
University of Pittsburgh, UNITED STATES
6 Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
2 Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
4 State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang
AuthorAffiliation_xml – name: University of Pittsburgh, UNITED STATES
– name: 2 Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– name: 4 State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang
– name: 5 Smart-Health Initiative, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
– name: 3 College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
– name: 6 Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
– name: 1 School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
Author_xml – sequence: 1
  givenname: Chen
  orcidid: 0009-0005-8396-9398
  surname: Zhang
  fullname: Zhang, Chen
– sequence: 2
  givenname: Junhui
  surname: Gao
  fullname: Gao, Junhui
– sequence: 3
  givenname: Hong-Yu
  surname: Chen
  fullname: Chen, Hong-Yu
– sequence: 4
  givenname: Lingxin
  surname: Kong
  fullname: Kong, Lingxin
– sequence: 5
  givenname: Guangshuo
  surname: Cao
  fullname: Cao, Guangshuo
– sequence: 6
  givenname: Xiangyu
  orcidid: 0000-0001-5835-490X
  surname: Guo
  fullname: Guo, Xiangyu
– sequence: 7
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
– sequence: 8
  givenname: Bin
  surname: Ren
  fullname: Ren, Bin
– sequence: 9
  givenname: Dong-Qing
  orcidid: 0000-0003-4200-7502
  surname: Wei
  fullname: Wei, Dong-Qing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38416785$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustq3DAUFSWlebR_UFpBN9l4almWJWUTQugjEOiiKV0KWQ-PBo3kSnagf19NxlOSULrSRffcc859nIKjEIMB4C2qVwhT9HET5xSkX42qdytUI8QxeQFOECG4opiwo0fxMTjNeVPXJeTdK3CMWYs6ysgJ-Pn97svN9QW8gkOS4xrKoKHbysFAFcN99PPkYqh6mY2GWzOto4Y2JphHOTnp4ZRkyCq5cYpbp6Dyc55McmF4DV5a6bN5s7xn4MfnT3fXX6vbb0Xv6rZSpKFTxQy1ymBKe9UUU7KRiGjOe61tw6TRvSGEtozSTjKLuxq3BFuNO0b6VjHO8Rl4v-cdfcximUkWuO44opwgWhA3e4SOciPGVLpLv0WUTjx8xDQImSanvBG6sT2VtqOcsdbSupdNESIN0YRZzurCdbmozf3WaGVCGYB_Qvo0E9xaDPFeoJo3FCFSGM4XhhR_zSZPYuuyMt7LYOKcRcMxbrsOk53Yh2fQf7f37rGlv14OKy6Aiz1ApZhzMlYoN8ndWotD54s1sbunA7nY3ZNY7qkUt8-KD_z_LfsDe6vSGg
CitedBy_id crossref_primary_10_1093_gigascience_giae103
Cites_doi 10.1038/s41587-021-00935-2
10.1145/3442381.3449802
10.1145/3394486.3403140
10.1038/s41593-020-00787-0
10.1038/s41419-019-1948-8
10.1007/s12035-015-9444-3
10.1371/journal.pcbi.1009600
10.1016/j.cell.2020.08.043
10.1038/s41592-020-01033-y
10.1074/jbc.M410370200
10.1038/s41368-021-00146-0
10.1126/science.aaw1219
10.3390/cancers11111740
10.1038/s41592-021-01255-8
10.1042/BJ20042102
10.1016/j.cels.2023.03.008
10.1088/1742-5468/2008/10/P10008
10.24963/ijcai.2019/601
10.1038/s41598-019-41695-z
10.1038/s41467-022-33182-3
10.1016/j.neures.2016.11.004
10.1186/s13059-017-1382-0
10.1038/s41587-020-0739-1
10.1093/bioinformatics/btad594
10.1126/science.abp9444
10.1016/j.gpb.2020.09.004
10.1145/3366423.3380214
10.1126/science.aaa1934
10.1093/nar/gkac901
10.1038/s41592-021-01358-2
10.1126/science.aan6827
10.1109/ICTAI50040.2020.00154
10.1038/nature13186
10.1093/brain/awv056
10.1038/s41586-019-1049-y
ContentType Journal Article
Copyright Copyright: © 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Zhang et al 2024 Zhang et al
2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Zhang et al 2024 Zhang et al
– notice: 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1011935
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef


Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate STGIC
EISSN 1553-7358
ExternalDocumentID 3069179517
oai_doaj_org_article_d2fb7af679884f70ba285b525d58f980
PMC10927115
38416785
10_1371_journal_pcbi_1011935
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 32070662, 61832019, 32030063
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
C1A
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
PUEGO
M~E
PGMZT
ID FETCH-LOGICAL-c527t-8e7fce377bc2384a2a15d99bddf28aedbe55748776a8f3603453fd3685b4c8993
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Thu Nov 28 02:59:38 EST 2024
Wed Aug 27 01:32:09 EDT 2025
Thu Aug 21 18:34:43 EDT 2025
Fri Jul 11 03:17:24 EDT 2025
Fri Jul 25 10:41:18 EDT 2025
Mon Jul 21 06:05:42 EDT 2025
Thu Apr 24 23:13:55 EDT 2025
Tue Jul 01 01:44:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright: © 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-8e7fce377bc2384a2a15d99bddf28aedbe55748776a8f3603453fd3685b4c8993
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
H-YC and LK also contributed equally to this work.
ORCID 0009-0005-8396-9398
0000-0003-4200-7502
0000-0001-5835-490X
OpenAccessLink https://doaj.org/article/d2fb7af679884f70ba285b525d58f980
PMID 38416785
PQID 3069179517
PQPubID 1436340
ParticipantIDs plos_journals_3069179517
doaj_primary_oai_doaj_org_article_d2fb7af679884f70ba285b525d58f980
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10927115
proquest_miscellaneous_2933466350
proquest_journals_3069179517
pubmed_primary_38416785
crossref_citationtrail_10_1371_journal_pcbi_1011935
crossref_primary_10_1371_journal_pcbi_1011935
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References E Lein (pcbi.1011935.ref014) 2017; 358
pcbi.1011935.ref019
G Palla (pcbi.1011935.ref045) 2022; 19
MN Rahman (pcbi.1011935.ref025) 2023; 39
FA Wolf (pcbi.1011935.ref044) 2018; 19
A Zeisel (pcbi.1011935.ref039) 2015; 347
K Dong (pcbi.1011935.ref018) 2022; 13
pcbi.1011935.ref030
X Wei (pcbi.1011935.ref011) 2022; 377
E Zhao (pcbi.1011935.ref026) 2021; 39
C Li (pcbi.1011935.ref034) 2019; 10
K. Matsuda (pcbi.1011935.ref038) 2017; 116
SM Sunkin (pcbi.1011935.ref041) 2013; 41
RR Stickels (pcbi.1011935.ref008) 2021; 39
J Hu (pcbi.1011935.ref016) 2021; 18
SW Oh (pcbi.1011935.ref013) 2014; 508
VA Traag (pcbi.1011935.ref003) 2019; 9
X Shi (pcbi.1011935.ref022) 2023; 24
KR Maynard (pcbi.1011935.ref015) 2021; 24
AL Ji (pcbi.1011935.ref007) 2020; 182
J Hu (pcbi.1011935.ref023) 2023; 14
pcbi.1011935.ref028
W Wang (pcbi.1011935.ref037) 2004; 279
pcbi.1011935.ref027
pcbi.1011935.ref029
K Zhang (pcbi.1011935.ref012) 2022; 13
W Kim (pcbi.1011935.ref024) 2020; 29
H Fu (pcbi.1011935.ref031) 2021
J Guan (pcbi.1011935.ref035) 2005; 392
Z Liang (pcbi.1011935.ref002) 2021; 19
CL Eng (pcbi.1011935.ref010) 2019; 568
pcbi.1011935.ref020
pcbi.1011935.ref042
C Xu (pcbi.1011935.ref021) 2022; 50
B Jiang (pcbi.1011935.ref017)
E Shimobayashi (pcbi.1011935.ref036) 2016; 53
pcbi.1011935.ref043
VD Blondel (pcbi.1011935.ref004) 2008; 2008
V Marx (pcbi.1011935.ref006) 2021; 18
JE Sepulveda-Diaz (pcbi.1011935.ref040) 2015; 138
L McInnes (pcbi.1011935.ref032) 2020
SG Rodriques (pcbi.1011935.ref009) 2019; 363
S Catalano (pcbi.1011935.ref033) 2019; 11
X Li (pcbi.1011935.ref005) 2021; 13
S Lall (pcbi.1011935.ref001) 2022; 18
References_xml – volume: 39
  start-page: 1375
  issue: 11
  year: 2021
  ident: pcbi.1011935.ref026
  article-title: Spatial transcriptomics at subspot resolution with BayesSpace
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-00935-2
– ident: pcbi.1011935.ref028
  doi: 10.1145/3442381.3449802
– ident: pcbi.1011935.ref042
  doi: 10.1145/3394486.3403140
– volume: 24
  issue: 5
  year: 2023
  ident: pcbi.1011935.ref022
  article-title: Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks
  publication-title: Brief Bioinform
– volume: 24
  start-page: 425
  issue: 3
  year: 2021
  ident: pcbi.1011935.ref015
  article-title: Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-020-00787-0
– volume: 10
  start-page: 717
  issue: 10
  year: 2019
  ident: pcbi.1011935.ref034
  article-title: Long non-coding RNA linc00645 promotes TGF-beta-induced epithelial-mesenchymal transition by regulating miR-205-3p-ZEB1 axis in glioma
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-019-1948-8
– ident: pcbi.1011935.ref020
– volume: 53
  start-page: 5149
  issue: 8
  year: 2016
  ident: pcbi.1011935.ref036
  article-title: Carbonic Anhydrase 8 Expression in Purkinje Cells Is Controlled by PKCgamma Activity and Regulates Purkinje Cell Dendritic Growth
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-015-9444-3
– volume: 18
  start-page: e1009600
  issue: 3
  year: 2022
  ident: pcbi.1011935.ref001
  article-title: A copula based topology preserving graph convolution network for clustering of single-cell RNA-seq data
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1009600
– volume: 182
  start-page: 1661
  issue: 6
  year: 2020
  ident: pcbi.1011935.ref007
  article-title: Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.043
– ident: pcbi.1011935.ref029
– volume: 18
  start-page: 1
  issue: 1
  year: 2021
  ident: pcbi.1011935.ref006
  article-title: Method of the Year 2020: spatially resolved transcriptomics
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01033-y
– volume: 279
  start-page: 53491
  issue: 51
  year: 2004
  ident: pcbi.1011935.ref037
  article-title: A role for nuclear factor I in the intrinsic control of cerebellar granule neuron gene expression
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M410370200
– year: 2021
  ident: pcbi.1011935.ref031
  article-title: Unsupervised Spatially Embedded Deep Representation of Spatial Transcriptomics
  publication-title: bioRxiv preprint
– volume: 13
  start-page: 36
  issue: 1
  year: 2021
  ident: pcbi.1011935.ref005
  article-title: From bulk, single-cell to spatial RNA sequencing
  publication-title: Int J Oral Sci
  doi: 10.1038/s41368-021-00146-0
– volume: 363
  start-page: 1463
  year: 2019
  ident: pcbi.1011935.ref009
  article-title: Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 11
  issue: 11
  year: 2019
  ident: pcbi.1011935.ref033
  article-title: Phosphodiesterase 5 (PDE5) Is Highly Expressed in Cancer-Associated Fibroblasts and Enhances Breast Tumor Progression
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers11111740
– volume: 18
  start-page: 1342
  issue: 11
  year: 2021
  ident: pcbi.1011935.ref016
  article-title: SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01255-8
– volume: 392
  start-page: 389
  issue: Pt 2
  year: 2005
  ident: pcbi.1011935.ref035
  article-title: Purkinje cell protein-2 (Pcp2) stimulates differentiation in PC12 cells by Gbetagamma-mediated activation of Ras and p38
  publication-title: MAPK. Biochem J
  doi: 10.1042/BJ20042102
– volume: 29
  year: 2020
  ident: pcbi.1011935.ref024
  article-title: Unsupervised learning of image segmentation based on differentiable feature clustering
  publication-title: IEEE Transactions on Image Processing
– volume: 14
  start-page: 404
  issue: 5
  year: 2023
  ident: pcbi.1011935.ref023
  article-title: Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2023.03.008
– ident: pcbi.1011935.ref017
  article-title: SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
  publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 2008
  issue: 10
  year: 2008
  ident: pcbi.1011935.ref004
  article-title: Fast unfolding of communities in large networks
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: pcbi.1011935.ref027
  doi: 10.24963/ijcai.2019/601
– volume: 9
  start-page: 5233
  issue: 1
  year: 2019
  ident: pcbi.1011935.ref003
  article-title: From Louvain to Leiden: guaranteeing well-connected communities
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-41695-z
– volume: 13
  start-page: 5488
  issue: 1
  year: 2022
  ident: pcbi.1011935.ref012
  article-title: Identification of spatially variable genes with graph cuts
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-33182-3
– volume: 116
  start-page: 46
  year: 2017
  ident: pcbi.1011935.ref038
  article-title: Synapse organization and modulation via C1q family proteins and their receptors in the central nervous system
  publication-title: Neurosci Res
  doi: 10.1016/j.neures.2016.11.004
– volume: 19
  start-page: 15
  issue: 1
  year: 2018
  ident: pcbi.1011935.ref044
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1382-0
– volume: 39
  start-page: 313
  issue: 3
  year: 2021
  ident: pcbi.1011935.ref008
  article-title: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0739-1
– volume: 39
  issue: 10
  year: 2023
  ident: pcbi.1011935.ref025
  article-title: ScribbleDom: using scribble-annotated histology images to identify domains in spatial transcriptomics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad594
– volume: 13
  issue: 1
  year: 2022
  ident: pcbi.1011935.ref018
  article-title: Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder
  publication-title: Nature Communications
– volume: 377
  start-page: eabp9444
  issue: 6610
  year: 2022
  ident: pcbi.1011935.ref011
  article-title: Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration
  publication-title: Science
  doi: 10.1126/science.abp9444
– volume: 19
  start-page: 282
  issue: 2
  year: 2021
  ident: pcbi.1011935.ref002
  article-title: SSRE: Cell Type Detection Based on Sparse Subspace Representation and Similarity Enhancement
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2020.09.004
– ident: pcbi.1011935.ref043
  doi: 10.1145/3366423.3380214
– volume: 347
  start-page: 1138
  issue: 6226
  year: 2015
  ident: pcbi.1011935.ref039
  article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 50
  start-page: e131
  issue: 22
  year: 2022
  ident: pcbi.1011935.ref021
  article-title: DeepST: identifying spatial domains in spatial transcriptomics by deep learning
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac901
– year: 2020
  ident: pcbi.1011935.ref032
  article-title: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
  publication-title: ArXiv preprint arXiv: 180203426v3
– volume: 19
  start-page: 171
  issue: 2
  year: 2022
  ident: pcbi.1011935.ref045
  article-title: Squidpy: a scalable framework for spatial omics analysis
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01358-2
– volume: 358
  start-page: 64
  issue: 6359
  year: 2017
  ident: pcbi.1011935.ref014
  article-title: The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing
  publication-title: Science
  doi: 10.1126/science.aan6827
– ident: pcbi.1011935.ref019
  doi: 10.1109/ICTAI50040.2020.00154
– volume: 508
  start-page: 207
  issue: 7495
  year: 2014
  ident: pcbi.1011935.ref013
  article-title: A mesoscale connectome of the mouse brain
  publication-title: Nature
  doi: 10.1038/nature13186
– volume: 138
  start-page: 1339
  issue: Pt 554
  year: 2015
  ident: pcbi.1011935.ref040
  article-title: HS3ST2 expression is critical for the abnormal phosphorylation of tau in Alzheimer’s disease-related tau pathology
  publication-title: Brain
  doi: 10.1093/brain/awv056
– volume: 41
  start-page: D996
  issue: Database issue
  year: 2013
  ident: pcbi.1011935.ref041
  article-title: Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system
  publication-title: Nucleic Acids Res
– ident: pcbi.1011935.ref030
– volume: 568
  start-page: 235
  issue: 7751
  year: 2019
  ident: pcbi.1011935.ref010
  article-title: Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH
  publication-title: Nature
  doi: 10.1038/s41586-019-1049-y
SSID ssj0035896
Score 2.4330215
Snippet Spatial transcriptomic (ST) clustering employs spatial and transcription information to group spots spatially coherent and transcriptionally similar together...
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1011935
SubjectTerms Biology and Life Sciences
Clustering
Convolution
Datasets
Deep learning
Efficiency
Feature extraction
Gene expression
Graphs
Labels
Medicine and Health Sciences
Neural networks
Physical Sciences
Prefrontal cortex
Research and Analysis Methods
Signal transduction
Spatial discrimination
Spatial resolution
Transcription
Transcriptomics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYqpEq9IKAFwkuu1Ksh8WPt7Y2iUlqpvRREbis_RaSwiUhy4N8zY28igpC4cF3vyzPjmW_k8TeEfKsCij4ZFqLwDByeZ26gAksQKwGvV4bnznN__1VXN_LPUA2ftfrCmrBCD1wEdxZ4ctom3CwwMum-s9wop7gKyqTa5GwdYt4ymSo-WCiTO3NhUxymhRx2h-aEHpx1OjqdejfC3BUQjFoLSpm7H7lOx5PZa7jzZfnks3h0uUU2OyBJz8sEtsmH2O6Qj6W15ONncvv_-tfvi-_0nGZKamrbQEf34Dwo1pl39sYwhgVaukhTgK90hgXW8No5hrDsUPDUMvXjBRIqQJj7Qm4uf15fXLGuiQLzius5M1EnH4XWzkN0lpZbUEVduxASNzYGF5XSkLXoypokqr6QSqSAtPROekjGxC7ZaCdt3CfUBalRhb4Pixg8nXW1cwIQnnSOe696RCyl2PiOYRwbXYybvG2mIdMosmlQ9k0n-x5hq6emhWHjjft_oIJW9yI_dr4AVtN0VtO8ZTU9so_qXX5g1kDmBIkrwE3dI0dLlb8-_HU1DCsRt1dsGyeLWQPASUgEcPD2vWIhq58UuLurDfy8WbOdtVmsj7Sju8z2PejXXANuP3iPeR-STxxQWSk7PyIb84dFPAZUNXcneQE9AdnZH0A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCIkLKs9uKchIXE2zfsQOl6qtKAUJLrRib5EfMay0JNtm98C_Z8bxhi6q4Brn4czYM99kJt8Q8qYMKPpoWGiEZ2DwPHNTFVgEXwl4vTQ8dZ77_KU8v5SfZmqWP7j1uaxyYxOToQ6dx2_khwBtIbIAPKCPllcMu0ZhdjW30LhL7iF1GZZ06dkYcAllUn8ubI3DtJCz_Ouc0NPDrKm3S-_mGMECjlFbrikx-CPj6aLrb0OffxdR3vBKZ7vkYYaT9HjQ_yNyp2kfk_tDg8lfT8i3rxcfPp6-o8c0EVNT2wY6_wkmhGK1eV51DD1ZoEMvaQoglvZYZg23XaEjS2YF_12mfrFGWgVwdk_J5dn7i9NzllspMK-4XjHT6OgbobXz4KOl5RYUUlUuhMiNbYJrlNIQu-jSmijKQkglYkByeic9hGTiGdlpu7bZI9QFqVGRvoCtDPbOuso5AThPOse9VxMiNlKsfeYZx3YXizolzzTEG4NsapR9nWU_IWy8ajnwbPzn_BNU0HgusmSnA9319zpvujrw6LSNmGgyMurCWQ4vpLgKysTKFBOyh-rdPKCv_yyyCTnYqPz24dfjMOxHTLLYtunWfQ3wSUiEcXD358MKGScpMMerDUzebK2drbfYHmnnPxLn97SouAb0vv_veb0gDzigrqGs_IDsrK7XzUtATSv3Km2N386LFuU
  priority: 102
  providerName: ProQuest
Title STGIC: A graph and image convolution-based method for spatial transcriptomic clustering
URI https://www.ncbi.nlm.nih.gov/pubmed/38416785
https://www.proquest.com/docview/3069179517
https://www.proquest.com/docview/2933466350
https://pubmed.ncbi.nlm.nih.gov/PMC10927115
https://doaj.org/article/d2fb7af679884f70ba285b525d58f980
http://dx.doi.org/10.1371/journal.pcbi.1011935
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBf9YLCXsu9m64IGe1VxJMuSB6MkXdNu0DK2huXNWJK1BVKnixNo__vdyR8sI2N7iYlly_adTvc7n3w_Qt4mDkXvNXOFsAwmPMvMQDrmwVcCXk80D8xzl1fJxST-NJXTHdJytjYCrLaGdsgnNVnOj-9-3p-Awb8PrA1q0J50fGvNDKNRwCRyl-yDb1Joqpdxl1cQUgfGLiTLYQr-NR_T_a2XDWcVavpjDdT5otqGR_9cVvmbnxo_IgcNwKTDekQ8JjtF-YQ8qCkn75-Sb1-vzz-evqNDGkpV07x0dHYDkwrF9efNOGTo2xyt2aUpwFpa4cJr6HaFri1MNPg1M7XzNRZaAPf3jEzGZ9enF6whV2BWcrViulDeFkIpY8FrxznPQUVpapzzXOeFM4WUCqIZleTaiyQSsRTeYbl6E1sI0sRzslcuyuKQUONihaq1ERg3zIC5SY0RgPxiY7i1skdEK8XMNpXHkQBjnoV0moIIpJZNhrLPGtn3COvOuq0rb_zj-BEqqDsW62aHHYvl96wxw8xxb1TuMfWkY68ik3N4IMmlk9qnOuqRQ1Rve4Eqg4gKAlqAoapHjlqVb29-0zWDhWLaJS-LxbrKAFCJGIEd9P6iHiHdTQrM-ioNN683xs7GU2y2lLMfoQr4IEq5Ajz_8j8u_Io85ADG6tXmR2RvtVwXrwFMrUyf7Kqpgl89Pu-T_eHow2gM29HZ1ecv_fCCoh8s6BejWyRJ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4t1AASPB0XRjr9deJITKo0rp40IqctuuXxApbEI3Eeqf4jcy431AUAWnXuON4x2PZ77JjOcj5HnmUPRBM-eFZWDwLDND6VgAXwl4PdM8Ms8dHWejk_TjRE42yM_uLgyWVXY2MRpqN7f4H_kOQFuILAAPqDeL7wxZozC72lFoNGpx4M9_QMhWv95_D_v7gvO9D-N3I9ayCjAruVoy7VWwXihlLLirtOQlrC3PjXOB69I746VUAONVVuogskSkUgSHfdpNaiE6ETDvFXIVHG-CJ0pN-gBPSB35wJCKhymRTtqrekINd1rNeLmwZooRM-AmueYKI2MAdlidzeuL0O7fRZt_eMG9W-RmC1_pbqNvt8mGr-6Qaw2h5fld8vnTGITwiu7S2AiblpWj029gsihWt7daztBzOtpwV1MAzbTGsm6YdomOM5oxvCtN7WyFbRzAud4jJ5ci5Ptks5pXfotQ41KFimMTMB1gX0uTGyMAV6bGcGvlgIhOioVt-5ojvcasiMk6BfFNI5sCZV-0sh8Q1n9r0fT1-M_zb3GD-mexK3f8YH72pWgPeeF4MKoMmNjSaVCJKTm8kOTSSR1ynQzIFm5v9wN18VupB2S72_KLh5_1w3D-MalTVn6-qguAayJF2AizP2g0pF-kwJyy0rB4vaY7a2-xPlJNv8Ye48Mk5wqihYf_XtdTcn00PjosDvePDx6RGxwQX1PSvk02l2cr_xgQ29I8iceEktPLPpe_ABVJU9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYgL4t1AASPB0WRjr2MvEkKFErUUKiRakdt2_YJIYTd0E6H-NX4dM94HBFVw6jXeON7xeOabzHg-Qp6OHYo-aOa8sAwMnmVmJB0L4CsBr481j8xzHw7He8fpu6mcbpCf3V0YLKvsbGI01K6y-B_5EKAtRBaAB9QwtGURH3cnrxbfGTJIYaa1o9NoVOTAn_2A8K1-ub8Le_2M88nbozd7rGUYYFZytWTaq2C9UMpYcF1pwQtYZ5YZ5wLXhXfGS6kA0qtxoYMYJyKVIjjs2W5SC5GKgHkvkctKyBGeMTXtgz0hdeQGQ1oepkQ6ba_tCTUatlryfGHNDKNnwFByzS1G9gDstjqv6vOQ798FnH94xMkNcr2FsnSn0b2bZMOXt8iVhtzy7Db5_OkIhPCC7tDYFJsWpaOzb2C-KFa6txrP0Is62vBYUwDQtMYSb5h2iU40mjS8N03tfIUtHcDR3iHHFyLku2SzrEq_RahxqUIlsgmYEbC1hcmMEYAxU2O4tXJARCfF3LY9zpFqY57HxJ2CWKeRTY6yz1vZDwjrv7Voenz85_nXuEH9s9ihO35QnX7J2wOfOx6MKgImuXQaVGIKDi8kuXRSh0wnA7KF29v9QJ3_VvAB2e62_PzhJ_0w2AJM8BSlr1Z1DtBNpAghYfZ7jYb0ixSYX1YaFq_XdGftLdZHytnX2G98lGRcQeRw_9_rekyuwonM3-8fHjwg1ziAv6a6fZtsLk9X_iGAt6V5FE8JJScXfSx_Add6WBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STGIC%3A+A+graph+and+image+convolution-based+method+for+spatial+transcriptomic+clustering&rft.jtitle=PLoS+computational+biology&rft.au=Zhang%2C+Chen&rft.au=Gao%2C+Junhui&rft.au=Chen%2C+Hong-Yu&rft.au=Kong%2C+Lingxin&rft.date=2024-02-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=20&rft.issue=2&rft.spage=e1011935&rft_id=info:doi/10.1371%2Fjournal.pcbi.1011935&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon