Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis
Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar sho...
Saved in:
Published in | Water research (Oxford) Vol. 68; pp. 206 - 216 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g−1) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe2p, As3d, O1s and C1s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L−1 NaHCO3 solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions.
[Display omitted]
•A facile method was developed to prepare Fe-impregnated biochar.•Both batch and column were used to evaluate As sorption onto the Fe-biochar.•Spent Fe-biochar can be regenerated by NaHCO3 solution.•Sorption of As onto the Fe-biochar is mainly through chemisorption. |
---|---|
AbstractList | Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g⁻¹) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe₂p, As₃d, O₁s and C₁s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L⁻¹ NaHCO₃ solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions. Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g−1) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe2p, As3d, O1s and C1s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L−1 NaHCO3 solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions. [Display omitted] •A facile method was developed to prepare Fe-impregnated biochar.•Both batch and column were used to evaluate As sorption onto the Fe-biochar.•Spent Fe-biochar can be regenerated by NaHCO3 solution.•Sorption of As onto the Fe-biochar is mainly through chemisorption. Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g⁻¹) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe₂p, As₃d, O₁s and C₁s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L⁻¹ NaHCO₃ solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions.Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g⁻¹) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe₂p, As₃d, O₁s and C₁s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L⁻¹ NaHCO₃ solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions. Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g-1) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe2p, As3d, O1s and C1s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L-1 NaHCO3 solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions. Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g−1) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe2p, As3d, O1s and C1s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L−1 NaHCO3 solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions. |
Author | Zimmerman, Andrew R. Ding, Zhuhong Gao, Bin Wang, Shengsen Hu, Xin |
Author_xml | – sequence: 1 givenname: Xin surname: Hu fullname: Hu, Xin organization: State Key Laboratory of Analytical Chemistry for Life Science, Center of Material Analysis and School of Chemistry and Chemical Engineering, 20 Hankou Road, Nanjing University, Nanjing 210093, PR China – sequence: 2 givenname: Zhuhong surname: Ding fullname: Ding, Zhuhong organization: School of Environment, Nanjing University of Technology, 30 Puzhu Southern Road, Nanjing 211816, PR China – sequence: 3 givenname: Andrew R. surname: Zimmerman fullname: Zimmerman, Andrew R. organization: Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA – sequence: 4 givenname: Shengsen surname: Wang fullname: Wang, Shengsen organization: Department of Soil and Water Science, University of Florida, Gainesville, FL 32611, USA – sequence: 5 givenname: Bin surname: Gao fullname: Gao, Bin email: bg55@ufl.edu organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25462729$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9rFDEcxYNU7Lb6H4jk6GXW_M7Eg6DFVqHgRc8hk2Q6WWaSNcko619vlm0vHmxPX3h83oMv712As5iiB-A1RluMsHi32_42NfuyJQizJm0RUs_ABvdSdYSx_gxsEGK0w5Szc3BRyg4hRAhVL8A54UwQSdQGmE-m2gma6KBN87pEWFLe15AiTCM0ufgYLEyxJhhyil1Y9tnfRVO9g0NIdjIZlkOsky_hT9PqlNN6N8Hp4HKaDyWUl-D5aObiX93fS_Dj-vP3qy_d7bebr1cfbzvLiaxdP_TeMMcwHno-Sj5aZgQaemcUUdILpwTlxjlnJcPDQJzCSgySSqs4NRTTS_D2lLvP6efqS9VLKNbPs4k-rUWT9j5GvOf0URQLQRjpCeVPQRESvUTkCSiTrThORUPf3KPrsHin9zksJh_0Qy8NeH8CbE6lZD9qG6o51lKzCbPGSB9HoHf6NAJ9HMFRbSNoZvaP-SH_EduHk823ln4Fn3WxwUfrXcjeVu1S-H_AX2sDzc0 |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2017_03_087 crossref_primary_10_1016_j_biortech_2020_122978 crossref_primary_10_3390_polym14142889 crossref_primary_10_1016_j_envpol_2023_121383 crossref_primary_10_1039_D0RA09324F crossref_primary_10_1021_acsomega_1c02126 crossref_primary_10_1061__ASCE_EE_1943_7870_0001420 crossref_primary_10_1007_s11356_020_10558_w crossref_primary_10_1016_j_chemosphere_2017_02_061 crossref_primary_10_1016_j_seppur_2024_126401 crossref_primary_10_1007_s10653_020_00739_4 crossref_primary_10_1016_j_rser_2017_05_057 crossref_primary_10_3846_16486897_2017_1346513 crossref_primary_10_1080_09506608_2018_1473096 crossref_primary_10_1016_j_jclepro_2020_122462 crossref_primary_10_1016_j_cej_2016_09_122 crossref_primary_10_1016_j_jenvman_2019_06_008 crossref_primary_10_1016_j_scitotenv_2017_09_016 crossref_primary_10_1016_j_colsurfa_2024_133942 crossref_primary_10_1007_s42398_020_00142_w crossref_primary_10_1007_s11356_019_05185_z crossref_primary_10_1016_j_envpol_2017_09_051 crossref_primary_10_1016_j_chemosphere_2018_11_050 crossref_primary_10_1016_j_jhazmat_2019_121670 crossref_primary_10_1016_j_jclepro_2018_02_161 crossref_primary_10_1016_j_envres_2023_117922 crossref_primary_10_1007_s11270_021_05343_5 crossref_primary_10_1007_s13399_022_02307_5 crossref_primary_10_1186_s40538_020_00204_5 crossref_primary_10_1016_j_cej_2023_143745 crossref_primary_10_1016_j_mineng_2019_105885 crossref_primary_10_1080_09593330_2019_1694081 crossref_primary_10_1016_j_envpol_2021_117661 crossref_primary_10_1016_j_envres_2021_111988 crossref_primary_10_1016_j_geoderma_2018_04_025 crossref_primary_10_5155_eurjchem_13_1_78_90_2189 crossref_primary_10_1016_j_biortech_2015_05_052 crossref_primary_10_1016_j_jfluchem_2017_01_003 crossref_primary_10_1016_j_jlumin_2024_120950 crossref_primary_10_3390_agronomy10010010 crossref_primary_10_1007_s10311_016_0590_2 crossref_primary_10_1016_j_jaap_2023_106237 crossref_primary_10_1016_j_scitotenv_2019_05_480 crossref_primary_10_1016_j_ese_2024_100417 crossref_primary_10_4236_msa_2020_116026 crossref_primary_10_1007_s11356_019_06300_w crossref_primary_10_1061__ASCE_EE_1943_7870_0001503 crossref_primary_10_1016_j_eti_2021_101961 crossref_primary_10_1016_j_jclepro_2020_121350 crossref_primary_10_1016_j_cej_2022_136740 crossref_primary_10_1016_j_envpol_2024_124835 crossref_primary_10_1016_j_jwpe_2023_104636 crossref_primary_10_1007_s10653_019_00431_2 crossref_primary_10_1016_j_cej_2022_138921 crossref_primary_10_1016_j_envpol_2017_09_076 crossref_primary_10_1080_15320383_2021_1999206 crossref_primary_10_1016_j_envres_2021_111758 crossref_primary_10_1007_s10653_024_01865_z crossref_primary_10_1016_j_chemosphere_2022_134286 crossref_primary_10_1016_j_carbon_2017_12_070 crossref_primary_10_1002_aoc_7316 crossref_primary_10_1080_26395940_2024_2311675 crossref_primary_10_1016_j_envpol_2022_118858 crossref_primary_10_1016_j_jenvman_2017_12_034 crossref_primary_10_2139_ssrn_3981647 crossref_primary_10_3390_nano9010100 crossref_primary_10_1016_j_arabjc_2022_103817 crossref_primary_10_1007_s00128_021_03455_6 crossref_primary_10_1007_s10098_016_1218_8 crossref_primary_10_1007_s00289_019_02677_3 crossref_primary_10_1016_j_scitotenv_2024_175052 crossref_primary_10_1016_j_jwpe_2022_103277 crossref_primary_10_1007_s11356_018_2268_8 crossref_primary_10_1016_j_jwpe_2020_101888 crossref_primary_10_1016_j_scitotenv_2022_158201 crossref_primary_10_3390_molecules26010103 crossref_primary_10_1007_s11356_018_1728_5 crossref_primary_10_1016_j_jiec_2021_03_026 crossref_primary_10_54097_hset_v69i_12213 crossref_primary_10_1007_s11270_019_4146_5 crossref_primary_10_1016_j_chemosphere_2016_01_043 crossref_primary_10_1016_j_apsusc_2020_147813 crossref_primary_10_1016_j_chemosphere_2018_04_057 crossref_primary_10_1016_j_jclepro_2019_01_202 crossref_primary_10_1016_j_scitotenv_2017_10_063 crossref_primary_10_1016_j_envpol_2022_118831 crossref_primary_10_1016_j_scitotenv_2016_07_079 crossref_primary_10_1016_j_cej_2017_10_130 crossref_primary_10_1016_j_jenvman_2021_112397 crossref_primary_10_1021_acsomega_4c06022 crossref_primary_10_1007_s12583_023_1928_8 crossref_primary_10_1021_acsomega_2c02909 crossref_primary_10_1007_s10450_015_9743_z crossref_primary_10_1007_s11356_022_20009_3 crossref_primary_10_1016_j_cej_2020_125195 crossref_primary_10_1002_slct_202000548 crossref_primary_10_3390_ijerph18157949 crossref_primary_10_1016_j_jhazmat_2016_01_007 crossref_primary_10_1080_15226514_2021_1951656 crossref_primary_10_4491_eer_2020_438 crossref_primary_10_1016_j_jwpe_2022_103291 crossref_primary_10_1016_j_jenvman_2023_119381 crossref_primary_10_1016_j_envres_2020_110283 crossref_primary_10_1080_19443994_2016_1188732 crossref_primary_10_1016_j_scitotenv_2019_05_326 crossref_primary_10_1016_j_scitotenv_2019_135122 crossref_primary_10_1155_2019_5295610 crossref_primary_10_1007_s13762_020_02999_0 crossref_primary_10_1016_j_fuel_2022_125110 crossref_primary_10_1016_j_envpol_2023_122166 crossref_primary_10_1016_j_powtec_2019_01_022 crossref_primary_10_1016_j_envpol_2022_118965 crossref_primary_10_1016_j_jenvman_2025_125059 crossref_primary_10_1016_j_jwpe_2024_104979 crossref_primary_10_1016_j_watres_2020_116676 crossref_primary_10_1016_j_jclepro_2017_08_026 crossref_primary_10_1016_j_biortech_2019_122030 crossref_primary_10_1016_j_biortech_2024_131452 crossref_primary_10_1016_j_jwpe_2021_101929 crossref_primary_10_1021_acs_est_2c09874 crossref_primary_10_1007_s11356_017_0921_2 crossref_primary_10_1039_D1RA04235A crossref_primary_10_1016_j_jhazmat_2021_125822 crossref_primary_10_1002_vjch_202200116 crossref_primary_10_2134_jeq2014_11_0477 crossref_primary_10_1007_s11356_025_35896_5 crossref_primary_10_1016_j_chemosphere_2018_01_022 crossref_primary_10_1016_j_jiec_2015_10_007 crossref_primary_10_1016_j_jenvman_2021_112898 crossref_primary_10_1007_s42773_019_00002_9 crossref_primary_10_1002_slct_202200504 crossref_primary_10_1021_acs_jced_0c00250 crossref_primary_10_1016_j_jcis_2020_11_036 crossref_primary_10_1016_j_enmm_2018_01_002 crossref_primary_10_1016_j_scitotenv_2021_148551 crossref_primary_10_1016_j_scitotenv_2021_150994 crossref_primary_10_1016_j_envint_2018_12_049 crossref_primary_10_1016_j_envint_2022_107558 crossref_primary_10_1080_02757540_2019_1699537 crossref_primary_10_1002_tqem_21831 crossref_primary_10_1016_j_scitotenv_2022_160951 crossref_primary_10_1016_j_jece_2021_106343 crossref_primary_10_1016_j_jhazmat_2019_03_080 crossref_primary_10_1016_j_envpol_2021_118241 crossref_primary_10_1039_C5RA17490B crossref_primary_10_1007_s11356_016_7820_9 crossref_primary_10_1088_1755_1315_1371_8_082029 crossref_primary_10_1016_j_jhazmat_2019_121033 crossref_primary_10_1007_s11356_018_3942_6 crossref_primary_10_1016_j_chemosphere_2016_08_036 crossref_primary_10_1007_s11356_018_2188_7 crossref_primary_10_1021_acsami_4c00035 crossref_primary_10_1021_acs_est_7b00724 crossref_primary_10_1016_j_jclepro_2020_123009 crossref_primary_10_1016_j_jenvman_2023_119513 crossref_primary_10_1039_C7RA01425B crossref_primary_10_1007_s10653_022_01462_y crossref_primary_10_1016_j_scitotenv_2022_155571 crossref_primary_10_1515_ract_2024_0273 crossref_primary_10_1016_j_cej_2021_130061 crossref_primary_10_1007_s11356_024_33359_x crossref_primary_10_1016_j_jhazmat_2019_01_021 crossref_primary_10_1007_s11356_020_10082_x crossref_primary_10_1016_j_cej_2016_01_097 crossref_primary_10_1016_j_chemosphere_2022_133583 crossref_primary_10_1016_j_watres_2018_03_021 crossref_primary_10_1039_C7RA00324B crossref_primary_10_1016_j_envpol_2024_123593 crossref_primary_10_1016_j_chemosphere_2020_127566 crossref_primary_10_1016_j_matchemphys_2022_126035 crossref_primary_10_1039_D2EN01027E crossref_primary_10_1016_j_scitotenv_2019_03_011 crossref_primary_10_1039_C8EW00163D crossref_primary_10_1080_10643389_2019_1629803 crossref_primary_10_1007_s11356_015_5451_1 crossref_primary_10_1016_j_jclepro_2019_119523 crossref_primary_10_1016_j_micromeso_2021_111499 crossref_primary_10_1016_j_chemosphere_2021_130606 crossref_primary_10_1016_j_chemosphere_2024_141584 crossref_primary_10_1016_j_envpol_2024_124452 crossref_primary_10_1016_j_envpol_2017_10_037 crossref_primary_10_2166_wst_2016_297 crossref_primary_10_1016_j_eti_2021_102200 crossref_primary_10_1016_j_jwpe_2020_101484 crossref_primary_10_1016_j_enconman_2023_117924 crossref_primary_10_1016_j_scitotenv_2020_139750 crossref_primary_10_1021_acsami_5b01624 crossref_primary_10_1016_j_jhazmat_2021_127084 crossref_primary_10_1016_j_watres_2024_123072 crossref_primary_10_3390_nano11112818 crossref_primary_10_1016_j_cej_2023_142589 crossref_primary_10_1016_j_jhazmat_2020_122762 crossref_primary_10_1016_j_ecoenv_2023_115216 crossref_primary_10_1007_s11356_018_3789_x crossref_primary_10_1016_j_mssp_2020_105533 crossref_primary_10_1016_j_cherd_2022_07_003 crossref_primary_10_1016_j_jwpe_2020_101495 crossref_primary_10_1016_j_mtsust_2024_100833 crossref_primary_10_1016_j_jwpe_2021_101993 crossref_primary_10_1016_j_chemosphere_2017_09_021 crossref_primary_10_1016_j_carbpol_2020_116129 crossref_primary_10_1016_j_envres_2021_110848 crossref_primary_10_1016_j_scitotenv_2020_139869 crossref_primary_10_1016_j_envpol_2020_115910 crossref_primary_10_1007_s11356_019_04863_2 crossref_primary_10_1016_j_cej_2021_132294 crossref_primary_10_1186_s11671_017_2201_y crossref_primary_10_1016_j_envres_2020_109695 crossref_primary_10_1016_j_jenvman_2021_112678 crossref_primary_10_1080_01932691_2019_1647228 crossref_primary_10_1016_j_jece_2019_103507 crossref_primary_10_1007_s11356_016_8342_1 crossref_primary_10_1016_j_jenvman_2015_08_020 crossref_primary_10_1016_j_jtice_2016_09_012 crossref_primary_10_1007_s11356_019_04315_x crossref_primary_10_1016_j_mssp_2019_104585 crossref_primary_10_1016_j_chemosphere_2020_127124 crossref_primary_10_1016_j_jece_2022_108765 crossref_primary_10_1007_s11783_021_1456_9 crossref_primary_10_1038_s41598_019_48233_x crossref_primary_10_1007_s00128_019_02778_9 crossref_primary_10_1007_s11356_021_15362_8 crossref_primary_10_1016_j_cherd_2022_08_058 crossref_primary_10_1007_s00344_017_9760_0 crossref_primary_10_1016_j_biortech_2017_06_084 crossref_primary_10_1002_ep_12583 crossref_primary_10_3389_fchem_2021_840446 crossref_primary_10_1016_j_jhazmat_2020_123889 crossref_primary_10_1016_j_envpol_2022_120696 crossref_primary_10_1016_j_biortech_2015_08_132 crossref_primary_10_1016_j_fuel_2022_126930 crossref_primary_10_1080_01932691_2016_1203333 crossref_primary_10_1016_j_scitotenv_2017_05_126 crossref_primary_10_1016_j_jhazmat_2016_05_008 crossref_primary_10_1016_j_cej_2021_132754 crossref_primary_10_1007_s11814_018_0057_1 crossref_primary_10_1007_s13399_021_01997_7 crossref_primary_10_1007_s11356_018_3247_9 crossref_primary_10_1080_09506608_2021_1922047 crossref_primary_10_1016_j_chemosphere_2022_134736 crossref_primary_10_1016_j_scitotenv_2019_01_005 crossref_primary_10_1016_j_envpol_2019_01_044 crossref_primary_10_1016_j_gsd_2022_100740 crossref_primary_10_5004_dwt_2019_23487 crossref_primary_10_1007_s00128_021_03374_6 crossref_primary_10_1016_j_envint_2019_03_012 crossref_primary_10_3390_app15063093 crossref_primary_10_1016_j_envres_2022_114947 crossref_primary_10_1016_j_chemosphere_2020_127853 crossref_primary_10_1007_s13762_021_03156_x crossref_primary_10_1080_09542299_2018_1487775 crossref_primary_10_1016_j_heliyon_2024_e36288 crossref_primary_10_1007_s11356_020_10476_x crossref_primary_10_1016_j_chemosphere_2020_126403 crossref_primary_10_1016_j_seppur_2020_117233 crossref_primary_10_1039_C9RA01271K crossref_primary_10_1016_j_jece_2022_108292 crossref_primary_10_1016_j_cej_2022_137024 crossref_primary_10_1016_j_jscs_2021_101302 crossref_primary_10_2166_wst_2024_384 crossref_primary_10_1021_acsomega_0c05203 crossref_primary_10_1016_j_jwpe_2024_106444 crossref_primary_10_1016_j_biortech_2023_129680 crossref_primary_10_1016_j_jhazmat_2021_127136 crossref_primary_10_1016_j_jwpe_2024_105591 crossref_primary_10_1016_j_watres_2019_115107 crossref_primary_10_1080_10643389_2020_1752611 crossref_primary_10_1016_j_nanoso_2024_101220 crossref_primary_10_1016_j_earscirev_2022_104215 crossref_primary_10_3390_w14111691 crossref_primary_10_3390_agronomy10040567 crossref_primary_10_1016_j_jenvman_2020_111472 crossref_primary_10_1021_acs_jafc_7b01300 crossref_primary_10_1016_j_jes_2018_06_002 crossref_primary_10_1016_j_indcrop_2021_114476 crossref_primary_10_1007_s11356_022_22445_7 crossref_primary_10_1016_j_jenvman_2016_05_055 crossref_primary_10_1007_s11356_017_9465_8 crossref_primary_10_5004_dwt_2017_20721 crossref_primary_10_1080_15226514_2019_1658710 crossref_primary_10_2166_wst_2024_051 crossref_primary_10_1016_j_jece_2023_111840 crossref_primary_10_1016_j_cej_2016_12_113 crossref_primary_10_1007_s11356_022_21625_9 crossref_primary_10_1002_slct_202303300 crossref_primary_10_1007_s10653_017_9984_8 crossref_primary_10_1016_j_scitotenv_2019_134847 crossref_primary_10_1007_s42773_022_00181_y crossref_primary_10_1016_j_scitotenv_2020_137972 crossref_primary_10_1016_j_psep_2018_10_003 crossref_primary_10_1007_s13201_020_01217_z crossref_primary_10_3390_w12102720 crossref_primary_10_1016_j_ese_2021_100078 crossref_primary_10_3390_w12102847 crossref_primary_10_1021_acsomega_0c01268 crossref_primary_10_1016_j_cej_2023_147633 crossref_primary_10_1016_j_chemosphere_2021_129904 crossref_primary_10_1016_j_jece_2025_115530 crossref_primary_10_1155_2019_4506314 crossref_primary_10_1016_j_seppur_2022_123046 crossref_primary_10_1016_j_jhazmat_2022_128500 crossref_primary_10_1016_j_chemosphere_2016_11_126 crossref_primary_10_1016_j_ces_2025_121410 crossref_primary_10_1016_j_jhazmat_2020_123338 crossref_primary_10_1039_C8EN01257A crossref_primary_10_1016_j_scitotenv_2019_135943 crossref_primary_10_1007_s11356_023_30469_w crossref_primary_10_1007_s11270_017_3513_3 crossref_primary_10_1007_s11356_023_29499_1 crossref_primary_10_1016_j_eehl_2024_02_006 crossref_primary_10_1016_j_biortech_2015_01_044 crossref_primary_10_1016_j_biortech_2016_04_093 crossref_primary_10_1016_j_seppur_2024_126384 crossref_primary_10_1016_j_jhazmat_2019_03_070 crossref_primary_10_1039_C8RA08512A crossref_primary_10_1016_j_inoche_2024_112312 crossref_primary_10_1016_j_jclepro_2019_119579 crossref_primary_10_1016_j_scitotenv_2024_170269 crossref_primary_10_1016_j_cej_2021_131489 crossref_primary_10_3390_w14244085 crossref_primary_10_1016_j_jclepro_2021_126466 crossref_primary_10_1016_j_chemosphere_2019_125701 crossref_primary_10_4236_ajac_2017_88037 crossref_primary_10_1016_j_mineng_2020_106310 crossref_primary_10_3390_polym15092215 crossref_primary_10_1016_j_chemosphere_2022_133672 crossref_primary_10_1080_10643389_2017_1418580 crossref_primary_10_1016_j_surfin_2022_101806 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000581 crossref_primary_10_1016_j_cej_2019_02_119 crossref_primary_10_1016_j_envpol_2022_120115 crossref_primary_10_1007_s13399_022_03262_x crossref_primary_10_1016_j_jiec_2020_05_017 crossref_primary_10_1088_1361_6528_aaaa2f crossref_primary_10_1016_j_jhazmat_2018_03_001 crossref_primary_10_1016_j_envres_2019_108898 crossref_primary_10_1016_j_envint_2019_01_004 crossref_primary_10_1016_j_envpol_2023_121662 crossref_primary_10_1080_03067319_2022_2145196 crossref_primary_10_1039_C5RA12137J crossref_primary_10_1007_s11270_015_2463_x crossref_primary_10_1016_j_rser_2016_09_057 crossref_primary_10_1016_j_psep_2022_02_069 crossref_primary_10_1016_j_colsurfa_2019_05_066 crossref_primary_10_1016_j_envres_2020_109195 crossref_primary_10_1007_s11356_023_25475_x crossref_primary_10_1016_j_chemosphere_2017_02_100 crossref_primary_10_1016_j_envpol_2021_117600 crossref_primary_10_1016_j_watres_2022_118804 crossref_primary_10_3390_coatings11111407 crossref_primary_10_1016_j_jece_2022_107825 crossref_primary_10_1016_j_jenvman_2024_121526 crossref_primary_10_1016_j_jhazmat_2020_124464 crossref_primary_10_1016_j_chemosphere_2019_125609 crossref_primary_10_1016_j_scitotenv_2019_134893 crossref_primary_10_1021_acs_est_9b03607 crossref_primary_10_1080_01932691_2024_2369881 crossref_primary_10_1007_s11356_022_21616_w crossref_primary_10_1016_j_jtice_2017_12_031 crossref_primary_10_1038_s41598_024_69117_9 crossref_primary_10_1007_s42773_020_00040_8 crossref_primary_10_1016_j_chemosphere_2017_12_193 crossref_primary_10_1016_j_scitotenv_2023_163923 crossref_primary_10_1039_C8TA10394A crossref_primary_10_1016_j_seppur_2024_131028 crossref_primary_10_1021_acs_cgd_4c00586 crossref_primary_10_1080_09593330_2019_1575479 crossref_primary_10_1016_j_cej_2022_137417 crossref_primary_10_1016_j_ceja_2024_100602 crossref_primary_10_1021_acs_iecr_9b04468 crossref_primary_10_1016_j_envint_2019_105374 crossref_primary_10_1016_j_jhazmat_2021_126457 crossref_primary_10_1039_D1EW00385B crossref_primary_10_1016_j_jhazmat_2021_127428 crossref_primary_10_1016_j_fuel_2021_120243 crossref_primary_10_3390_su142114523 crossref_primary_10_3390_w14040563 crossref_primary_10_1021_acsomega_1c04129 crossref_primary_10_1016_j_jhazmat_2018_04_027 crossref_primary_10_3390_toxics10090534 crossref_primary_10_1007_s40899_023_00999_9 crossref_primary_10_1016_j_chemosphere_2023_139760 crossref_primary_10_1021_acsearthspacechem_8b00058 crossref_primary_10_1080_09542299_2016_1142833 crossref_primary_10_1080_01496395_2017_1345944 crossref_primary_10_1007_s11356_016_6621_5 crossref_primary_10_1016_j_envpol_2023_121431 crossref_primary_10_1039_C6EN00191B crossref_primary_10_1016_j_cej_2023_145073 crossref_primary_10_1016_j_ecoenv_2017_08_033 crossref_primary_10_1016_j_psep_2017_08_009 crossref_primary_10_1007_s44246_023_00063_3 crossref_primary_10_1016_j_jhazmat_2016_01_052 crossref_primary_10_1016_j_chemosphere_2023_138665 crossref_primary_10_1016_j_jece_2021_105714 crossref_primary_10_1016_j_scitotenv_2022_156924 crossref_primary_10_1007_s11270_020_04588_w crossref_primary_10_3390_su13031186 crossref_primary_10_1016_j_jhazmat_2019_121920 crossref_primary_10_1007_s42773_024_00397_0 crossref_primary_10_1021_acsomega_9b02842 crossref_primary_10_1007_s13738_016_1000_1 crossref_primary_10_1016_j_jece_2020_104112 crossref_primary_10_1016_j_cej_2019_01_036 crossref_primary_10_1016_j_watres_2022_118965 crossref_primary_10_1021_acs_iecr_9b06670 crossref_primary_10_1016_j_cep_2022_109016 crossref_primary_10_1016_j_biortech_2017_07_082 crossref_primary_10_1007_s13399_022_03056_1 crossref_primary_10_1016_j_jiec_2019_07_026 crossref_primary_10_1016_j_carbon_2016_11_032 crossref_primary_10_1016_j_chemosphere_2023_140643 crossref_primary_10_1016_j_biortech_2017_08_061 crossref_primary_10_1007_s12583_022_1698_x crossref_primary_10_1016_j_gexplo_2019_04_004 crossref_primary_10_1016_j_chemosphere_2018_06_050 crossref_primary_10_1080_09593330_2016_1255664 crossref_primary_10_3390_w13070915 crossref_primary_10_1016_j_desal_2024_117699 crossref_primary_10_1016_j_jenvman_2020_111814 crossref_primary_10_1016_j_jhazmat_2020_123067 crossref_primary_10_1007_s40710_019_00397_4 crossref_primary_10_1016_j_jiec_2019_06_008 crossref_primary_10_5004_dwt_2023_29907 crossref_primary_10_1016_j_biortech_2016_05_057 crossref_primary_10_1039_C6RA27341F crossref_primary_10_1016_j_cej_2019_122667 crossref_primary_10_1017_S1755691022000019 crossref_primary_10_1071_CH19164 crossref_primary_10_1007_s11356_018_1460_1 crossref_primary_10_1016_j_scitotenv_2024_171753 crossref_primary_10_1080_10643389_2019_1618691 crossref_primary_10_1007_s11270_016_3066_x crossref_primary_10_1007_s13399_024_05735_7 crossref_primary_10_1016_j_jiec_2018_11_026 crossref_primary_10_3390_environments4040070 crossref_primary_10_1016_j_chemosphere_2017_10_134 crossref_primary_10_1016_j_jece_2021_105751 crossref_primary_10_1016_j_jclepro_2022_131832 crossref_primary_10_1016_j_chemosphere_2023_139793 crossref_primary_10_1016_j_enconman_2017_04_095 crossref_primary_10_1016_j_envpol_2020_115256 |
Cites_doi | 10.1002/jat.1649 10.1016/j.watres.2012.03.026 10.1002/aic.690200204 10.1016/j.geoderma.2011.04.021 10.1016/j.jconhyd.2011.06.002 10.1016/S0375-6742(02)00273-X 10.1016/j.chemosphere.2012.06.002 10.1016/j.fuproc.2012.09.021 10.1016/j.cej.2014.03.096 10.1016/j.biortech.2012.11.132 10.1039/C1CE05724C 10.1016/j.jenvman.2012.10.004 10.1111/j.1365-2389.1984.tb00294.x 10.1080/09593330.2011.651162 10.1021/ja02268a002 10.1016/j.scitotenv.2007.02.037 10.1016/j.biortech.2014.01.120 10.1016/j.watres.2004.12.022 10.1016/j.gca.2006.12.021 10.1016/j.carbon.2008.02.012 10.1016/j.gexplo.2012.09.001 10.1007/BF03326230 10.1016/j.colsurfa.2005.06.001 10.1016/j.cej.2013.02.096 10.1016/j.jhazmat.2010.08.066 10.1016/j.chemosphere.2013.10.071 10.1088/0022-3719/8/8/032 10.1166/jnn.2014.9053 10.1002/adma.200803003 10.1088/0022-3727/44/7/075003 10.1016/j.materresbull.2013.09.015 10.1016/j.envint.2008.10.004 10.1016/j.jenvman.2013.08.061 10.1016/j.jhazmat.2010.07.036 10.1016/j.jhazmat.2011.03.083 10.1016/j.soilbio.2011.02.005 10.1080/10643380902945771 10.1016/j.jhazmat.2009.05.103 10.1016/j.cej.2013.04.077 10.1016/j.jhazmat.2007.01.006 10.1039/c3ta10329c 10.1016/j.arabjc.2013.05.032 10.1007/s11164-012-1000-4 10.1002/jctb.3938 10.1016/j.cej.2013.03.114 10.1016/j.cej.2012.01.061 10.1016/j.apsusc.2013.06.154 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7ST 7UA C1K F1W H96 H97 L.G SOI 7SU 8FD FR3 KR7 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2014.10.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Environmental Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Engineering Research Database Technology Research Database Environmental Engineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
EndPage | 216 |
ExternalDocumentID | 25462729 10_1016_j_watres_2014_10_009 S0043135414007040 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QH 7ST 7UA C1K F1W H96 H97 L.G SOI 7SU 8FD FR3 KR7 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c527t-8b8ea4d411b85f75fc4a60b8da9297e6d9635adddc741bb2d9196b737c953a313 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Fri Jul 11 11:37:43 EDT 2025 Fri Jul 11 01:30:17 EDT 2025 Fri Jul 11 16:28:36 EDT 2025 Fri Jul 11 01:08:00 EDT 2025 Thu Apr 03 07:01:00 EDT 2025 Tue Jul 01 01:20:40 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Fri Feb 23 02:26:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Characterization Arsenic speciation Regeneration Low-cost sorbents Adsorption mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-8b8ea4d411b85f75fc4a60b8da9297e6d9635adddc741bb2d9196b737c953a313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25462729 |
PQID | 1647016536 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2000105853 proquest_miscellaneous_1662428235 proquest_miscellaneous_1660068702 proquest_miscellaneous_1647016536 pubmed_primary_25462729 crossref_citationtrail_10_1016_j_watres_2014_10_009 crossref_primary_10_1016_j_watres_2014_10_009 elsevier_sciencedirect_doi_10_1016_j_watres_2014_10_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 2015-01-00 2015-Jan-01 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Langmuir (bib23) 1916; 38 Jia, Xu, Wang, Demopoulos (bib20) 2007; 71 Deliyanni, Bandosz, Matis (bib16) 2013; 88 Zhang, Gao, Varnoosfaderani, Hebard, Yao, Inyang (bib51) 2013; 130 Mohan, Sarswat, Ok, Pittman (bib30) 2014; 160 Ma, Zhu, Chen, Yang, Zhou, Li, Yu, Chen (bib27) 2013; 1 Gao, Su, Wang, Hu (bib18) 2013; 135 Sheng, Baig, Hu, Xue, Xu (bib40) 2014; 7 Maji, Kao, Liao, Lin, Liu (bib28) 2013; 284 Mohan, Pittman (bib29) 2007; 142 Cooper, Hristovski, Moller, Westerhoff, Sylvester (bib13) 2010; 183 Bang, Johnson, Korfiatis, Meng (bib6) 2005; 39 Anawar, Akai, Komaki, Terao, Yoshioka, Ishizuka, Safiullah, Kato (bib3) 2003; 77 Tuna, Ozdemir, Simsek, Beker (bib41) 2013; 223 Vitela-Rodriguez, Rangel-Mendez (bib43) 2013; 114 Yao, Gao, Zhang, Inyang, Zimmerman (bib49) 2012; 89 Barinov, Gregoratti, Dudin, Rosa, Kiskinova (bib7) 2009; 21 Akter, Ali (bib2) 2011; 8 Khan, Ho (bib22) 2011; 23 Dorraji, Mirmohseni, Tasselli, Criscuoli, Carraro, Gross, Figoli (bib17) 2014; 21 Lumsdon, Fraser, Russell, Livesey (bib26) 1984; 35 Tuutijarvi, Vahala, Sillanpaa, Chen (bib42) 2012; 33 Wu, Gao, Zhou, Zhang, Guo (bib46) 2012; 14 Chen, Gao, Li, Ma (bib12) 2011; 126 Nieto-Delgado, Rangel-Mendez (bib33) 2012; 46 Yadanaparthi, Graybill, von Wandruszka (bib47) 2009; 171 Badruddoza, Shawon, Rahman, Hao, Hidajat, Uddin (bib5) 2013; 225 Basu, Saha, Saha, Ghosh, Saha (bib8) 2014; 40 Arcibar-Orozco, Josue, Rios-Hurtado, Rangel-Mendez (bib4) 2014; 249 Bhattacharya, Welch, Stollenwerk, McLaughlin, Bundschuh, Panaullah (bib9) 2007; 379 Ozcan, Erdem, Ozcan (bib34) 2005; 266 Weber, Chakravorti (bib45) 1974; 20 Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Vithanage, Lee, Ok (bib1) 2014; 99 Cope, Webster, Sabatini (bib14) 2014; 488 Mudhoo, Sharma, Garg, Tseng (bib31) 2011; 41 Pehlivan, Tran, Ouedraogo, Schmidt, Zachmann, Bahadir (bib35) 2013; 106 Li, Jiang, Bai (bib24) 2011; 44 Li, Li, Gao, Shang (bib25) 2012; 185 Datsyuk, Kalyva, Papagelis, Parthenios, Tasis, Siokou, Kallitsis, Galiotis (bib15) 2008; 46 Wagner, Riggs, Davis, Moulder, Muilenberg (bib44) 1979 Brammer, Ravenscroft (bib10) 2009; 35 Zhang, Gao (bib50) 2013; 226 Roberts, Weightman, Johnson (bib37) 1975; 8 Zimmerman, Gao, Ahn (bib52) 2011; 43 Raul, Devi, Umlong, Thakur, Banerjee, Veer (bib36) 2014; 49 Hjaila, Baccar, Sarra, Gasol, Blanquez (bib19) 2013; 130 Mukherjee, Zimmerman, Harris (bib32) 2011; 163 Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (bib48) 2011; 190 Saharan, Chaudhary, Mehta, Umar (bib38) 2014; 14 Jomova, Jenisova, Feszterova, Baros, Liska, Hudecova, Rhodes, Valko (bib21) 2011; 31 Chang, Lin, Ying (bib11) 2010; 184 Samarghandi, Hadi, Moayedi, Askari (bib39) 2009; 6 Raul (10.1016/j.watres.2014.10.009_bib36) 2014; 49 Zhang (10.1016/j.watres.2014.10.009_bib50) 2013; 226 Bhattacharya (10.1016/j.watres.2014.10.009_bib9) 2007; 379 Bang (10.1016/j.watres.2014.10.009_bib6) 2005; 39 Zhang (10.1016/j.watres.2014.10.009_bib51) 2013; 130 Maji (10.1016/j.watres.2014.10.009_bib28) 2013; 284 Samarghandi (10.1016/j.watres.2014.10.009_bib39) 2009; 6 Badruddoza (10.1016/j.watres.2014.10.009_bib5) 2013; 225 Brammer (10.1016/j.watres.2014.10.009_bib10) 2009; 35 Barinov (10.1016/j.watres.2014.10.009_bib7) 2009; 21 Yao (10.1016/j.watres.2014.10.009_bib48) 2011; 190 Cope (10.1016/j.watres.2014.10.009_bib14) 2014; 488 Anawar (10.1016/j.watres.2014.10.009_bib3) 2003; 77 Lumsdon (10.1016/j.watres.2014.10.009_bib26) 1984; 35 Yadanaparthi (10.1016/j.watres.2014.10.009_bib47) 2009; 171 Zimmerman (10.1016/j.watres.2014.10.009_bib52) 2011; 43 Dorraji (10.1016/j.watres.2014.10.009_bib17) 2014; 21 Wagner (10.1016/j.watres.2014.10.009_bib44) 1979 Cooper (10.1016/j.watres.2014.10.009_bib13) 2010; 183 Pehlivan (10.1016/j.watres.2014.10.009_bib35) 2013; 106 Mudhoo (10.1016/j.watres.2014.10.009_bib31) 2011; 41 Datsyuk (10.1016/j.watres.2014.10.009_bib15) 2008; 46 Arcibar-Orozco (10.1016/j.watres.2014.10.009_bib4) 2014; 249 Vitela-Rodriguez (10.1016/j.watres.2014.10.009_bib43) 2013; 114 Saharan (10.1016/j.watres.2014.10.009_bib38) 2014; 14 Ahmad (10.1016/j.watres.2014.10.009_bib1) 2014; 99 Deliyanni (10.1016/j.watres.2014.10.009_bib16) 2013; 88 Basu (10.1016/j.watres.2014.10.009_bib8) 2014; 40 Mohan (10.1016/j.watres.2014.10.009_bib29) 2007; 142 Yao (10.1016/j.watres.2014.10.009_bib49) 2012; 89 Wu (10.1016/j.watres.2014.10.009_bib46) 2012; 14 Sheng (10.1016/j.watres.2014.10.009_bib40) 2014; 7 Tuutijarvi (10.1016/j.watres.2014.10.009_bib42) 2012; 33 Gao (10.1016/j.watres.2014.10.009_bib18) 2013; 135 Chang (10.1016/j.watres.2014.10.009_bib11) 2010; 184 Mukherjee (10.1016/j.watres.2014.10.009_bib32) 2011; 163 Li (10.1016/j.watres.2014.10.009_bib24) 2011; 44 Jomova (10.1016/j.watres.2014.10.009_bib21) 2011; 31 Langmuir (10.1016/j.watres.2014.10.009_bib23) 1916; 38 Li (10.1016/j.watres.2014.10.009_bib25) 2012; 185 Nieto-Delgado (10.1016/j.watres.2014.10.009_bib33) 2012; 46 Jia (10.1016/j.watres.2014.10.009_bib20) 2007; 71 Weber (10.1016/j.watres.2014.10.009_bib45) 1974; 20 Tuna (10.1016/j.watres.2014.10.009_bib41) 2013; 223 Hjaila (10.1016/j.watres.2014.10.009_bib19) 2013; 130 Ma (10.1016/j.watres.2014.10.009_bib27) 2013; 1 Roberts (10.1016/j.watres.2014.10.009_bib37) 1975; 8 Akter (10.1016/j.watres.2014.10.009_bib2) 2011; 8 Chen (10.1016/j.watres.2014.10.009_bib12) 2011; 126 Mohan (10.1016/j.watres.2014.10.009_bib30) 2014; 160 Ozcan (10.1016/j.watres.2014.10.009_bib34) 2005; 266 Khan (10.1016/j.watres.2014.10.009_bib22) 2011; 23 |
References_xml | – volume: 38 start-page: 2221 year: 1916 end-page: 2295 ident: bib23 article-title: The constitution and fundamental properties of solids and liquids Part I Solids publication-title: J. of Am. Chem. Soc. – volume: 1 start-page: 4662 year: 2013 end-page: 4666 ident: bib27 article-title: One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal publication-title: J. Mater. Chem. A – volume: 130 start-page: 242 year: 2013 end-page: 247 ident: bib19 article-title: Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment publication-title: J. of Environ. Manag. – volume: 33 start-page: 1927 year: 2012 end-page: 1936 ident: bib42 article-title: Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery publication-title: Environ. Technol. – volume: 40 start-page: 447 year: 2014 end-page: 485 ident: bib8 article-title: A review on sources, toxicity and remediation technologies for removing arsenic from drinking water publication-title: Res. Chem. Intermed. – volume: 39 start-page: 763 year: 2005 end-page: 770 ident: bib6 article-title: Chemical reactions between arsenic and zero-valent iron in water publication-title: Water Res. – volume: 89 start-page: 1467 year: 2012 end-page: 1471 ident: bib49 article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil publication-title: Chemosphere – volume: 142 start-page: 1 year: 2007 end-page: 53 ident: bib29 article-title: Arsenic removal from water/wastewater using adsorbents – a critical review publication-title: J. of Hazard. Mater. – volume: 44 start-page: 075003 year: 2011 ident: bib24 article-title: Fabrication of ultrathin epitaxial γ-Fe publication-title: J. Phys. D: Appl. Phys. – year: 1979 ident: bib44 article-title: Handbook of X-ray Photoelectron Spectroscopy – volume: 43 start-page: 1169 year: 2011 end-page: 1179 ident: bib52 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. – volume: 8 start-page: 1301 year: 1975 end-page: 1309 ident: bib37 article-title: Photoelectron and L publication-title: J. Phys. C-Solid State Phys. – volume: 223 start-page: 116 year: 2013 end-page: 128 ident: bib41 article-title: Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents: Impact of experimental conditions publication-title: Chem. Eng. J. – volume: 21 start-page: 1916 year: 2009 end-page: 1920 ident: bib7 article-title: Imaging and spectroscopy of multiwalled carbon nanotubes during oxidation: defects and oxygen bonding publication-title: Adv. Mater. – volume: 14 start-page: 627 year: 2014 end-page: 643 ident: bib38 article-title: Removal of water contaminants by iron oxide nanomaterials publication-title: J. Nanosci. Nanotechnol. – volume: 106 start-page: 511 year: 2013 end-page: 517 ident: bib35 article-title: Removal of As(V) from aqueous solutions by iron coated rice husk publication-title: Fuel Process. Technol. – volume: 190 start-page: 501 year: 2011 end-page: 507 ident: bib48 article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings publication-title: J. of Hazard. Mater. – volume: 226 start-page: 286 year: 2013 end-page: 292 ident: bib50 article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite publication-title: Chem. Eng. J. – volume: 88 start-page: 1058 year: 2013 end-page: 1066 ident: bib16 article-title: Impregnation of activated carbon by iron oxyhydroxide and its effect on arsenate removal publication-title: J. of Chem. Technol. and Biotechnol. – volume: 249 start-page: 201 year: 2014 end-page: 209 ident: bib4 article-title: Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons publication-title: Chem. Eng. J. – volume: 31 start-page: 95 year: 2011 end-page: 107 ident: bib21 article-title: Arsenic: toxicity, oxidative stress and human disease publication-title: J. of Appl. Toxicol. – volume: 266 start-page: 73 year: 2005 end-page: 81 ident: bib34 article-title: Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite publication-title: Colloids Surf. A-physicochemical Eng. Aspects – volume: 171 start-page: 1 year: 2009 end-page: 15 ident: bib47 article-title: Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters publication-title: J. of Hazard. Mater. – volume: 163 start-page: 247 year: 2011 end-page: 255 ident: bib32 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma – volume: 77 start-page: 109 year: 2003 end-page: 131 ident: bib3 article-title: Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes publication-title: J. of Geochem. Explor. – volume: 35 start-page: 647 year: 2009 end-page: 654 ident: bib10 article-title: Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia publication-title: Environ. Int. – volume: 23 start-page: 1889 year: 2011 end-page: 1901 ident: bib22 article-title: Arsenic in drinking water: a review on toxicological effects, mechanism of accumulation and remediation publication-title: Asian J. of Chem. – volume: 185 start-page: 127 year: 2012 end-page: 135 ident: bib25 article-title: Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: Part A. Adsorption capacity and mechanism publication-title: Chem. Eng. J. – volume: 135 start-page: 93 year: 2013 end-page: 103 ident: bib18 article-title: Mobility of arsenic in aquifer sediments at Datong Basin, northern China: effect of bicarbonate and phosphate publication-title: J. of Geochem. Explor. – volume: 46 start-page: 833 year: 2008 end-page: 840 ident: bib15 article-title: Chemical oxidation of multiwalled carbon nanotubes publication-title: Carbon – volume: 14 start-page: 499 year: 2012 end-page: 504 ident: bib46 article-title: Control on the formation of Fe publication-title: Crystengcomm – volume: 6 start-page: 285 year: 2009 end-page: 294 ident: bib39 article-title: Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon publication-title: Iran. J. Environ. Health Sci. Eng. – volume: 7 start-page: 27 year: 2014 end-page: 36 ident: bib40 article-title: Development, characterization and evaluation of iron-coated honeycomb briquette cinders for the removal of As(V) from aqueous solutions publication-title: Arabian J. Chem. – volume: 379 start-page: 109 year: 2007 end-page: 120 ident: bib9 article-title: Arsenic in the environment: biology and chemistry publication-title: Sci. of Total Environ. – volume: 488 start-page: 558 year: 2014 end-page: 565 ident: bib14 article-title: Arsenate adsorption onto iron oxide amended rice husk char publication-title: Sci. Total Environ. – volume: 46 start-page: 2973 year: 2012 end-page: 2982 ident: bib33 article-title: Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water publication-title: Water Res. – volume: 184 start-page: 515 year: 2010 end-page: 522 ident: bib11 article-title: Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water publication-title: J. of Hazard. Mater. – volume: 130 start-page: 457 year: 2013 end-page: 462 ident: bib51 article-title: Preparation and characterization of a novel magnetic biochar for arsenic removal publication-title: Bioresour. Technol. – volume: 284 start-page: 40 year: 2013 end-page: 48 ident: bib28 article-title: Implementation of the adsorbent iron-oxide-coated natural rock (IOCNR) on synthetic As(III) and on real arsenic-bearing sample with filter publication-title: Appl. Surf. Sci. – volume: 8 start-page: 433 year: 2011 end-page: 443 ident: bib2 article-title: Arsenic contamination in groundwater and its proposed remedial measures publication-title: Int. J. Environ. Sci. Technol. – volume: 183 start-page: 381 year: 2010 end-page: 388 ident: bib13 article-title: The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons publication-title: J. of Hazard. Mater. – volume: 20 start-page: 228 year: 1974 end-page: 238 ident: bib45 article-title: Pore and solid diffusion models for fixed-bed adsorbers publication-title: Aiche J. – volume: 35 start-page: 381 year: 1984 end-page: 386 ident: bib26 article-title: New infrared band assignments for the arsenate ion adsorbed on synthetic goethite (Alpha-Feooh) publication-title: J. Soil Sci. – volume: 160 start-page: 191 year: 2014 end-page: 202 ident: bib30 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review publication-title: Bioresour. Technol. – volume: 126 start-page: 29 year: 2011 end-page: 36 ident: bib12 article-title: Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media publication-title: J. of Contam. Hydrol. – volume: 99 start-page: 19 year: 2014 end-page: 33 ident: bib1 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere – volume: 114 start-page: 225 year: 2013 end-page: 231 ident: bib43 article-title: Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles publication-title: J. Environ. Manag. – volume: 21 start-page: 1 year: 2014 end-page: 13 ident: bib17 article-title: Preparation, characterization and application of iron (III)-loaded chitosan hollow fiber membranes as a new bio-based As (V) sorbent publication-title: J. Polym. Res. – volume: 225 start-page: 607 year: 2013 end-page: 615 ident: bib5 article-title: Ionically modified magnetic nanomaterials for arsenic and chromium removal from water publication-title: Chem. Eng. J. – volume: 49 start-page: 360 year: 2014 end-page: 368 ident: bib36 article-title: Iron oxide hydroxide nanoflower assisted removal of arsenic from water publication-title: Mater. Res. Bull. – volume: 71 start-page: 1643 year: 2007 end-page: 1654 ident: bib20 article-title: Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite publication-title: Geochimica Cosmochim. Acta – volume: 41 start-page: 435 year: 2011 end-page: 519 ident: bib31 article-title: Arsenic: an overview of applications, health, and environmental concerns and removal processes publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 31 start-page: 95 issue: 2 year: 2011 ident: 10.1016/j.watres.2014.10.009_bib21 article-title: Arsenic: toxicity, oxidative stress and human disease publication-title: J. of Appl. Toxicol. doi: 10.1002/jat.1649 – volume: 46 start-page: 2973 issue: 9 year: 2012 ident: 10.1016/j.watres.2014.10.009_bib33 article-title: Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water publication-title: Water Res. doi: 10.1016/j.watres.2012.03.026 – volume: 20 start-page: 228 issue: 2 year: 1974 ident: 10.1016/j.watres.2014.10.009_bib45 article-title: Pore and solid diffusion models for fixed-bed adsorbers publication-title: Aiche J. doi: 10.1002/aic.690200204 – volume: 163 start-page: 247 issue: 3–4 year: 2011 ident: 10.1016/j.watres.2014.10.009_bib32 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma doi: 10.1016/j.geoderma.2011.04.021 – volume: 126 start-page: 29 issue: 1–2 year: 2011 ident: 10.1016/j.watres.2014.10.009_bib12 article-title: Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media publication-title: J. of Contam. Hydrol. doi: 10.1016/j.jconhyd.2011.06.002 – volume: 77 start-page: 109 issue: 2–3 year: 2003 ident: 10.1016/j.watres.2014.10.009_bib3 article-title: Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes publication-title: J. of Geochem. Explor. doi: 10.1016/S0375-6742(02)00273-X – volume: 89 start-page: 1467 issue: 11 year: 2012 ident: 10.1016/j.watres.2014.10.009_bib49 article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.06.002 – volume: 106 start-page: 511 year: 2013 ident: 10.1016/j.watres.2014.10.009_bib35 article-title: Removal of As(V) from aqueous solutions by iron coated rice husk publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2012.09.021 – volume: 249 start-page: 201 year: 2014 ident: 10.1016/j.watres.2014.10.009_bib4 article-title: Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.03.096 – year: 1979 ident: 10.1016/j.watres.2014.10.009_bib44 – volume: 130 start-page: 457 year: 2013 ident: 10.1016/j.watres.2014.10.009_bib51 article-title: Preparation and characterization of a novel magnetic biochar for arsenic removal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.11.132 – volume: 14 start-page: 499 issue: 2 year: 2012 ident: 10.1016/j.watres.2014.10.009_bib46 article-title: Control on the formation of Fe3O4 nanoparticles on chemically reduced graphene oxide surfaces publication-title: Crystengcomm doi: 10.1039/C1CE05724C – volume: 114 start-page: 225 year: 2013 ident: 10.1016/j.watres.2014.10.009_bib43 article-title: Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2012.10.004 – volume: 35 start-page: 381 issue: 3 year: 1984 ident: 10.1016/j.watres.2014.10.009_bib26 article-title: New infrared band assignments for the arsenate ion adsorbed on synthetic goethite (Alpha-Feooh) publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1984.tb00294.x – volume: 33 start-page: 1927 issue: 16 year: 2012 ident: 10.1016/j.watres.2014.10.009_bib42 article-title: Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery publication-title: Environ. Technol. doi: 10.1080/09593330.2011.651162 – volume: 38 start-page: 2221 year: 1916 ident: 10.1016/j.watres.2014.10.009_bib23 article-title: The constitution and fundamental properties of solids and liquids Part I Solids publication-title: J. of Am. Chem. Soc. doi: 10.1021/ja02268a002 – volume: 379 start-page: 109 issue: 2–3 year: 2007 ident: 10.1016/j.watres.2014.10.009_bib9 article-title: Arsenic in the environment: biology and chemistry publication-title: Sci. of Total Environ. doi: 10.1016/j.scitotenv.2007.02.037 – volume: 160 start-page: 191 year: 2014 ident: 10.1016/j.watres.2014.10.009_bib30 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.120 – volume: 39 start-page: 763 issue: 5 year: 2005 ident: 10.1016/j.watres.2014.10.009_bib6 article-title: Chemical reactions between arsenic and zero-valent iron in water publication-title: Water Res. doi: 10.1016/j.watres.2004.12.022 – volume: 21 start-page: 1 issue: 4 year: 2014 ident: 10.1016/j.watres.2014.10.009_bib17 article-title: Preparation, characterization and application of iron (III)-loaded chitosan hollow fiber membranes as a new bio-based As (V) sorbent publication-title: J. Polym. Res. – volume: 71 start-page: 1643 issue: 7 year: 2007 ident: 10.1016/j.watres.2014.10.009_bib20 article-title: Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite publication-title: Geochimica Cosmochim. Acta doi: 10.1016/j.gca.2006.12.021 – volume: 46 start-page: 833 issue: 6 year: 2008 ident: 10.1016/j.watres.2014.10.009_bib15 article-title: Chemical oxidation of multiwalled carbon nanotubes publication-title: Carbon doi: 10.1016/j.carbon.2008.02.012 – volume: 135 start-page: 93 year: 2013 ident: 10.1016/j.watres.2014.10.009_bib18 article-title: Mobility of arsenic in aquifer sediments at Datong Basin, northern China: effect of bicarbonate and phosphate publication-title: J. of Geochem. Explor. doi: 10.1016/j.gexplo.2012.09.001 – volume: 8 start-page: 433 issue: 2 year: 2011 ident: 10.1016/j.watres.2014.10.009_bib2 article-title: Arsenic contamination in groundwater and its proposed remedial measures publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/BF03326230 – volume: 266 start-page: 73 issue: 1–3 year: 2005 ident: 10.1016/j.watres.2014.10.009_bib34 article-title: Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite publication-title: Colloids Surf. A-physicochemical Eng. Aspects doi: 10.1016/j.colsurfa.2005.06.001 – volume: 223 start-page: 116 year: 2013 ident: 10.1016/j.watres.2014.10.009_bib41 article-title: Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents: Impact of experimental conditions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.02.096 – volume: 184 start-page: 515 issue: 1–3 year: 2010 ident: 10.1016/j.watres.2014.10.009_bib11 article-title: Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water publication-title: J. of Hazard. Mater. doi: 10.1016/j.jhazmat.2010.08.066 – volume: 99 start-page: 19 year: 2014 ident: 10.1016/j.watres.2014.10.009_bib1 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.071 – volume: 8 start-page: 1301 issue: 8 year: 1975 ident: 10.1016/j.watres.2014.10.009_bib37 article-title: Photoelectron and L2,3 MM Auger-electron energies for arsenic publication-title: J. Phys. C-Solid State Phys. doi: 10.1088/0022-3719/8/8/032 – volume: 6 start-page: 285 issue: 4 year: 2009 ident: 10.1016/j.watres.2014.10.009_bib39 article-title: Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon publication-title: Iran. J. Environ. Health Sci. Eng. – volume: 14 start-page: 627 issue: 1 year: 2014 ident: 10.1016/j.watres.2014.10.009_bib38 article-title: Removal of water contaminants by iron oxide nanomaterials publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2014.9053 – volume: 21 start-page: 1916 year: 2009 ident: 10.1016/j.watres.2014.10.009_bib7 article-title: Imaging and spectroscopy of multiwalled carbon nanotubes during oxidation: defects and oxygen bonding publication-title: Adv. Mater. doi: 10.1002/adma.200803003 – volume: 44 start-page: 075003 issue: 7 year: 2011 ident: 10.1016/j.watres.2014.10.009_bib24 article-title: Fabrication of ultrathin epitaxial γ-Fe2O3 films by reactive sputtering publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/44/7/075003 – volume: 49 start-page: 360 year: 2014 ident: 10.1016/j.watres.2014.10.009_bib36 article-title: Iron oxide hydroxide nanoflower assisted removal of arsenic from water publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2013.09.015 – volume: 35 start-page: 647 issue: 3 year: 2009 ident: 10.1016/j.watres.2014.10.009_bib10 article-title: Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia publication-title: Environ. Int. doi: 10.1016/j.envint.2008.10.004 – volume: 130 start-page: 242 year: 2013 ident: 10.1016/j.watres.2014.10.009_bib19 article-title: Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment publication-title: J. of Environ. Manag. doi: 10.1016/j.jenvman.2013.08.061 – volume: 183 start-page: 381 issue: 1–3 year: 2010 ident: 10.1016/j.watres.2014.10.009_bib13 article-title: The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons publication-title: J. of Hazard. Mater. doi: 10.1016/j.jhazmat.2010.07.036 – volume: 190 start-page: 501 issue: 1–3 year: 2011 ident: 10.1016/j.watres.2014.10.009_bib48 article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings publication-title: J. of Hazard. Mater. doi: 10.1016/j.jhazmat.2011.03.083 – volume: 43 start-page: 1169 issue: 6 year: 2011 ident: 10.1016/j.watres.2014.10.009_bib52 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.02.005 – volume: 41 start-page: 435 issue: 5 year: 2011 ident: 10.1016/j.watres.2014.10.009_bib31 article-title: Arsenic: an overview of applications, health, and environmental concerns and removal processes publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380902945771 – volume: 171 start-page: 1 issue: 1–3 year: 2009 ident: 10.1016/j.watres.2014.10.009_bib47 article-title: Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters publication-title: J. of Hazard. Mater. doi: 10.1016/j.jhazmat.2009.05.103 – volume: 226 start-page: 286 year: 2013 ident: 10.1016/j.watres.2014.10.009_bib50 article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.04.077 – volume: 488 start-page: 558 year: 2014 ident: 10.1016/j.watres.2014.10.009_bib14 article-title: Arsenate adsorption onto iron oxide amended rice husk char publication-title: Sci. Total Environ. – volume: 142 start-page: 1 issue: 1–2 year: 2007 ident: 10.1016/j.watres.2014.10.009_bib29 article-title: Arsenic removal from water/wastewater using adsorbents – a critical review publication-title: J. of Hazard. Mater. doi: 10.1016/j.jhazmat.2007.01.006 – volume: 23 start-page: 1889 issue: 5 year: 2011 ident: 10.1016/j.watres.2014.10.009_bib22 article-title: Arsenic in drinking water: a review on toxicological effects, mechanism of accumulation and remediation publication-title: Asian J. of Chem. – volume: 1 start-page: 4662 issue: 15 year: 2013 ident: 10.1016/j.watres.2014.10.009_bib27 article-title: One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10329c – volume: 7 start-page: 27 issue: 1 year: 2014 ident: 10.1016/j.watres.2014.10.009_bib40 article-title: Development, characterization and evaluation of iron-coated honeycomb briquette cinders for the removal of As(V) from aqueous solutions publication-title: Arabian J. Chem. doi: 10.1016/j.arabjc.2013.05.032 – volume: 40 start-page: 447 issue: 2 year: 2014 ident: 10.1016/j.watres.2014.10.009_bib8 article-title: A review on sources, toxicity and remediation technologies for removing arsenic from drinking water publication-title: Res. Chem. Intermed. doi: 10.1007/s11164-012-1000-4 – volume: 88 start-page: 1058 issue: 6 year: 2013 ident: 10.1016/j.watres.2014.10.009_bib16 article-title: Impregnation of activated carbon by iron oxyhydroxide and its effect on arsenate removal publication-title: J. of Chem. Technol. and Biotechnol. doi: 10.1002/jctb.3938 – volume: 225 start-page: 607 year: 2013 ident: 10.1016/j.watres.2014.10.009_bib5 article-title: Ionically modified magnetic nanomaterials for arsenic and chromium removal from water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.03.114 – volume: 185 start-page: 127 year: 2012 ident: 10.1016/j.watres.2014.10.009_bib25 article-title: Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: Part A. Adsorption capacity and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.01.061 – volume: 284 start-page: 40 year: 2013 ident: 10.1016/j.watres.2014.10.009_bib28 article-title: Implementation of the adsorbent iron-oxide-coated natural rock (IOCNR) on synthetic As(III) and on real arsenic-bearing sample with filter publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.06.154 |
SSID | ssj0002239 |
Score | 2.6174653 |
Snippet | Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 206 |
SubjectTerms | Adsorption Adsorption mechanism aqueous solutions Arsenic Arsenic - chemistry Arsenic speciation biochar Carya Characterization Charcoal - chemistry chemical speciation Chemisorption energy energy-dispersive X-ray analysis Filtration - methods Hydrolysis Hydroxides Iron Iron - chemistry Low-cost sorbents Regeneration scanning electron microscopes Scanning electron microscopy Sorption Specific surface Spectrometers Water Pollutants, Chemical - chemistry Water Purification - methods X-ray diffraction |
Title | Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis |
URI | https://dx.doi.org/10.1016/j.watres.2014.10.009 https://www.ncbi.nlm.nih.gov/pubmed/25462729 https://www.proquest.com/docview/1647016536 https://www.proquest.com/docview/1660068702 https://www.proquest.com/docview/1662428235 https://www.proquest.com/docview/2000105853 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQucABsVOWykhc0yVx4vgIiKqAxAmk3iI7dmgQOFXSCsGBb2cmC8uhVOIYaxwlE8-b53gWQs4GCtya0bA3kaLvAEomjkrCgeMKZkSo8CCsDJC9C0YP7Gbsj1fIZZMLg2GVNfZXmF6idT3Sq7XZm6Yp5viC8_OwjTXWrGG4b2eM4yrvfnyHeYD7E80pM0o36XNljNerxIQMDPBi3TLGSyxyT4voZ-mGhptko-aP9Lx6xC2yYuw2Wf9RVXCHyAuA1wmVVtMYscfSIstLZKBZQmEja2waU6xbQDHHzUlfprl5tEA6NVVphnlYtHizwAyL9B3G6lY-dPKm86ysYLJLHoZX95cjp-6k4MS-y2dOqEIjmWaDgQr9hPtJzGTQV6GWwI64CTSYoQ9Ip2MgGEq5WoBhKu7xWPieBC3vkZbNrDkgVIIRhyYJGJa45sIIkwAuKA339VTSZ23iNQqM4rrMOHa7eI6aeLKnqFJ7hGrHUVB7mzhfs6ZVmY0l8rz5NtGv5RKBJ1gy87T5lBFYEh6PSGuyeRFhZTVM7vKCv2QCTKrhffdPGeA9oev5i2UwQQqYLXClNtmv1tPXe2OHAhf2PIf_fscjsgZXfvWn6Ji0ZvncnAB3mqlOaRwdsnp-fTu6-wRp2xnP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcKuiLLY-6UnsMZBPn4QMHnloK5QQSN9eOnRJEndVmEdoe-FP8QWbyoOWwICFx9Tqvsf3N5_V8MwDf-hrdmjW4N1HC9xAlc0_nad8LBLci1XQQVgfIHseDU_7jLDqbgdtOC0NhlS32N5heo3XbstFac2NYFKTxRecXUhlrylnD_Tay8tBOrnHfVm0e7OIgfw-C_b2TnYHXlhbwsihIxl6qU6u44f2-TqM8ifKMq9jXqVFIFxIbG5yXES59k6HH1TowAmeqTsIkE1Go8LF431cwxxEuqGzC-s2_uBL0t6I71qbX6_R6dVDZtSIFCEWU8fU6qExM84fT-G7t9_YX4G1LWNlWY5NFmLHuHcz_l8bwPahtxPNzppxhGYGdY1U5qqGIlTnDnbN1RcYoUQIjUZ1X_BmO7G-HLNcwXZQk_GLVxCEVrYq_2NbWDmLnEzMq65QpH-D0Rez7EWZd6ewSMIWokdo85pRTOxFW2ByBSBu8b6hzn_cg7AwoszavOZXXuJRdANuFbMwuyezUimbvgXd_1bDJ6_FE_6QbG_lgfkp0PU9c-bUbSolLl85jlLPlVSUplRupycL4sT4xqXgSP3i0DxKtNAij6X1IkYVUGslZDz418-n-u6kkQoCbrM_P_sYv8Hpw8vNIHh0cHy7DG_wlav6mWoHZ8ejKriJxG-u1eqEw-PXSK_MOen9Vuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Batch+and+column+sorption+of+arsenic+onto+iron-impregnated+biochar+synthesized+through+hydrolysis&rft.jtitle=Water+research+%28Oxford%29&rft.au=Hu%2C+Xin&rft.au=Ding%2C+Zhuhong&rft.au=Zimmerman%2C+Andrew+R&rft.au=Wang%2C+Shengsen&rft.date=2015-01-01&rft.eissn=1879-2448&rft.volume=68&rft.spage=206&rft_id=info:doi/10.1016%2Fj.watres.2014.10.009&rft_id=info%3Apmid%2F25462729&rft.externalDocID=25462729 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |