Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis

Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar sho...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 68; pp. 206 - 216
Main Authors Hu, Xin, Ding, Zhuhong, Zimmerman, Andrew R., Wang, Shengsen, Gao, Bin
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g−1) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe2p, As3d, O1s and C1s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L−1 NaHCO3 solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions. [Display omitted] •A facile method was developed to prepare Fe-impregnated biochar.•Both batch and column were used to evaluate As sorption onto the Fe-biochar.•Spent Fe-biochar can be regenerated by NaHCO3 solution.•Sorption of As onto the Fe-biochar is mainly through chemisorption.
AbstractList Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g⁻¹) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe₂p, As₃d, O₁s and C₁s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L⁻¹ NaHCO₃ solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions.
Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g−1) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe2p, As3d, O1s and C1s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L−1 NaHCO3 solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions. [Display omitted] •A facile method was developed to prepare Fe-impregnated biochar.•Both batch and column were used to evaluate As sorption onto the Fe-biochar.•Spent Fe-biochar can be regenerated by NaHCO3 solution.•Sorption of As onto the Fe-biochar is mainly through chemisorption.
Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g⁻¹) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe₂p, As₃d, O₁s and C₁s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L⁻¹ NaHCO₃ solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions.Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g⁻¹) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe₂p, As₃d, O₁s and C₁s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L⁻¹ NaHCO₃ solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions.
Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g-1) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe2p, As3d, O1s and C1s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L-1 NaHCO3 solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions.
Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g−1) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe2p, As3d, O1s and C1s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L−1 NaHCO3 solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions.
Author Zimmerman, Andrew R.
Ding, Zhuhong
Gao, Bin
Wang, Shengsen
Hu, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Hu
  fullname: Hu, Xin
  organization: State Key Laboratory of Analytical Chemistry for Life Science, Center of Material Analysis and School of Chemistry and Chemical Engineering, 20 Hankou Road, Nanjing University, Nanjing 210093, PR China
– sequence: 2
  givenname: Zhuhong
  surname: Ding
  fullname: Ding, Zhuhong
  organization: School of Environment, Nanjing University of Technology, 30 Puzhu Southern Road, Nanjing 211816, PR China
– sequence: 3
  givenname: Andrew R.
  surname: Zimmerman
  fullname: Zimmerman, Andrew R.
  organization: Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
– sequence: 4
  givenname: Shengsen
  surname: Wang
  fullname: Wang, Shengsen
  organization: Department of Soil and Water Science, University of Florida, Gainesville, FL 32611, USA
– sequence: 5
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
  email: bg55@ufl.edu
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25462729$$D View this record in MEDLINE/PubMed
BookMark eNqNks9rFDEcxYNU7Lb6H4jk6GXW_M7Eg6DFVqHgRc8hk2Q6WWaSNcko619vlm0vHmxPX3h83oMv712As5iiB-A1RluMsHi32_42NfuyJQizJm0RUs_ABvdSdYSx_gxsEGK0w5Szc3BRyg4hRAhVL8A54UwQSdQGmE-m2gma6KBN87pEWFLe15AiTCM0ufgYLEyxJhhyil1Y9tnfRVO9g0NIdjIZlkOsky_hT9PqlNN6N8Hp4HKaDyWUl-D5aObiX93fS_Dj-vP3qy_d7bebr1cfbzvLiaxdP_TeMMcwHno-Sj5aZgQaemcUUdILpwTlxjlnJcPDQJzCSgySSqs4NRTTS_D2lLvP6efqS9VLKNbPs4k-rUWT9j5GvOf0URQLQRjpCeVPQRESvUTkCSiTrThORUPf3KPrsHin9zksJh_0Qy8NeH8CbE6lZD9qG6o51lKzCbPGSB9HoHf6NAJ9HMFRbSNoZvaP-SH_EduHk823ln4Fn3WxwUfrXcjeVu1S-H_AX2sDzc0
CitedBy_id crossref_primary_10_1016_j_scitotenv_2017_03_087
crossref_primary_10_1016_j_biortech_2020_122978
crossref_primary_10_3390_polym14142889
crossref_primary_10_1016_j_envpol_2023_121383
crossref_primary_10_1039_D0RA09324F
crossref_primary_10_1021_acsomega_1c02126
crossref_primary_10_1061__ASCE_EE_1943_7870_0001420
crossref_primary_10_1007_s11356_020_10558_w
crossref_primary_10_1016_j_chemosphere_2017_02_061
crossref_primary_10_1016_j_seppur_2024_126401
crossref_primary_10_1007_s10653_020_00739_4
crossref_primary_10_1016_j_rser_2017_05_057
crossref_primary_10_3846_16486897_2017_1346513
crossref_primary_10_1080_09506608_2018_1473096
crossref_primary_10_1016_j_jclepro_2020_122462
crossref_primary_10_1016_j_cej_2016_09_122
crossref_primary_10_1016_j_jenvman_2019_06_008
crossref_primary_10_1016_j_scitotenv_2017_09_016
crossref_primary_10_1016_j_colsurfa_2024_133942
crossref_primary_10_1007_s42398_020_00142_w
crossref_primary_10_1007_s11356_019_05185_z
crossref_primary_10_1016_j_envpol_2017_09_051
crossref_primary_10_1016_j_chemosphere_2018_11_050
crossref_primary_10_1016_j_jhazmat_2019_121670
crossref_primary_10_1016_j_jclepro_2018_02_161
crossref_primary_10_1016_j_envres_2023_117922
crossref_primary_10_1007_s11270_021_05343_5
crossref_primary_10_1007_s13399_022_02307_5
crossref_primary_10_1186_s40538_020_00204_5
crossref_primary_10_1016_j_cej_2023_143745
crossref_primary_10_1016_j_mineng_2019_105885
crossref_primary_10_1080_09593330_2019_1694081
crossref_primary_10_1016_j_envpol_2021_117661
crossref_primary_10_1016_j_envres_2021_111988
crossref_primary_10_1016_j_geoderma_2018_04_025
crossref_primary_10_5155_eurjchem_13_1_78_90_2189
crossref_primary_10_1016_j_biortech_2015_05_052
crossref_primary_10_1016_j_jfluchem_2017_01_003
crossref_primary_10_1016_j_jlumin_2024_120950
crossref_primary_10_3390_agronomy10010010
crossref_primary_10_1007_s10311_016_0590_2
crossref_primary_10_1016_j_jaap_2023_106237
crossref_primary_10_1016_j_scitotenv_2019_05_480
crossref_primary_10_1016_j_ese_2024_100417
crossref_primary_10_4236_msa_2020_116026
crossref_primary_10_1007_s11356_019_06300_w
crossref_primary_10_1061__ASCE_EE_1943_7870_0001503
crossref_primary_10_1016_j_eti_2021_101961
crossref_primary_10_1016_j_jclepro_2020_121350
crossref_primary_10_1016_j_cej_2022_136740
crossref_primary_10_1016_j_envpol_2024_124835
crossref_primary_10_1016_j_jwpe_2023_104636
crossref_primary_10_1007_s10653_019_00431_2
crossref_primary_10_1016_j_cej_2022_138921
crossref_primary_10_1016_j_envpol_2017_09_076
crossref_primary_10_1080_15320383_2021_1999206
crossref_primary_10_1016_j_envres_2021_111758
crossref_primary_10_1007_s10653_024_01865_z
crossref_primary_10_1016_j_chemosphere_2022_134286
crossref_primary_10_1016_j_carbon_2017_12_070
crossref_primary_10_1002_aoc_7316
crossref_primary_10_1080_26395940_2024_2311675
crossref_primary_10_1016_j_envpol_2022_118858
crossref_primary_10_1016_j_jenvman_2017_12_034
crossref_primary_10_2139_ssrn_3981647
crossref_primary_10_3390_nano9010100
crossref_primary_10_1016_j_arabjc_2022_103817
crossref_primary_10_1007_s00128_021_03455_6
crossref_primary_10_1007_s10098_016_1218_8
crossref_primary_10_1007_s00289_019_02677_3
crossref_primary_10_1016_j_scitotenv_2024_175052
crossref_primary_10_1016_j_jwpe_2022_103277
crossref_primary_10_1007_s11356_018_2268_8
crossref_primary_10_1016_j_jwpe_2020_101888
crossref_primary_10_1016_j_scitotenv_2022_158201
crossref_primary_10_3390_molecules26010103
crossref_primary_10_1007_s11356_018_1728_5
crossref_primary_10_1016_j_jiec_2021_03_026
crossref_primary_10_54097_hset_v69i_12213
crossref_primary_10_1007_s11270_019_4146_5
crossref_primary_10_1016_j_chemosphere_2016_01_043
crossref_primary_10_1016_j_apsusc_2020_147813
crossref_primary_10_1016_j_chemosphere_2018_04_057
crossref_primary_10_1016_j_jclepro_2019_01_202
crossref_primary_10_1016_j_scitotenv_2017_10_063
crossref_primary_10_1016_j_envpol_2022_118831
crossref_primary_10_1016_j_scitotenv_2016_07_079
crossref_primary_10_1016_j_cej_2017_10_130
crossref_primary_10_1016_j_jenvman_2021_112397
crossref_primary_10_1021_acsomega_4c06022
crossref_primary_10_1007_s12583_023_1928_8
crossref_primary_10_1021_acsomega_2c02909
crossref_primary_10_1007_s10450_015_9743_z
crossref_primary_10_1007_s11356_022_20009_3
crossref_primary_10_1016_j_cej_2020_125195
crossref_primary_10_1002_slct_202000548
crossref_primary_10_3390_ijerph18157949
crossref_primary_10_1016_j_jhazmat_2016_01_007
crossref_primary_10_1080_15226514_2021_1951656
crossref_primary_10_4491_eer_2020_438
crossref_primary_10_1016_j_jwpe_2022_103291
crossref_primary_10_1016_j_jenvman_2023_119381
crossref_primary_10_1016_j_envres_2020_110283
crossref_primary_10_1080_19443994_2016_1188732
crossref_primary_10_1016_j_scitotenv_2019_05_326
crossref_primary_10_1016_j_scitotenv_2019_135122
crossref_primary_10_1155_2019_5295610
crossref_primary_10_1007_s13762_020_02999_0
crossref_primary_10_1016_j_fuel_2022_125110
crossref_primary_10_1016_j_envpol_2023_122166
crossref_primary_10_1016_j_powtec_2019_01_022
crossref_primary_10_1016_j_envpol_2022_118965
crossref_primary_10_1016_j_jenvman_2025_125059
crossref_primary_10_1016_j_jwpe_2024_104979
crossref_primary_10_1016_j_watres_2020_116676
crossref_primary_10_1016_j_jclepro_2017_08_026
crossref_primary_10_1016_j_biortech_2019_122030
crossref_primary_10_1016_j_biortech_2024_131452
crossref_primary_10_1016_j_jwpe_2021_101929
crossref_primary_10_1021_acs_est_2c09874
crossref_primary_10_1007_s11356_017_0921_2
crossref_primary_10_1039_D1RA04235A
crossref_primary_10_1016_j_jhazmat_2021_125822
crossref_primary_10_1002_vjch_202200116
crossref_primary_10_2134_jeq2014_11_0477
crossref_primary_10_1007_s11356_025_35896_5
crossref_primary_10_1016_j_chemosphere_2018_01_022
crossref_primary_10_1016_j_jiec_2015_10_007
crossref_primary_10_1016_j_jenvman_2021_112898
crossref_primary_10_1007_s42773_019_00002_9
crossref_primary_10_1002_slct_202200504
crossref_primary_10_1021_acs_jced_0c00250
crossref_primary_10_1016_j_jcis_2020_11_036
crossref_primary_10_1016_j_enmm_2018_01_002
crossref_primary_10_1016_j_scitotenv_2021_148551
crossref_primary_10_1016_j_scitotenv_2021_150994
crossref_primary_10_1016_j_envint_2018_12_049
crossref_primary_10_1016_j_envint_2022_107558
crossref_primary_10_1080_02757540_2019_1699537
crossref_primary_10_1002_tqem_21831
crossref_primary_10_1016_j_scitotenv_2022_160951
crossref_primary_10_1016_j_jece_2021_106343
crossref_primary_10_1016_j_jhazmat_2019_03_080
crossref_primary_10_1016_j_envpol_2021_118241
crossref_primary_10_1039_C5RA17490B
crossref_primary_10_1007_s11356_016_7820_9
crossref_primary_10_1088_1755_1315_1371_8_082029
crossref_primary_10_1016_j_jhazmat_2019_121033
crossref_primary_10_1007_s11356_018_3942_6
crossref_primary_10_1016_j_chemosphere_2016_08_036
crossref_primary_10_1007_s11356_018_2188_7
crossref_primary_10_1021_acsami_4c00035
crossref_primary_10_1021_acs_est_7b00724
crossref_primary_10_1016_j_jclepro_2020_123009
crossref_primary_10_1016_j_jenvman_2023_119513
crossref_primary_10_1039_C7RA01425B
crossref_primary_10_1007_s10653_022_01462_y
crossref_primary_10_1016_j_scitotenv_2022_155571
crossref_primary_10_1515_ract_2024_0273
crossref_primary_10_1016_j_cej_2021_130061
crossref_primary_10_1007_s11356_024_33359_x
crossref_primary_10_1016_j_jhazmat_2019_01_021
crossref_primary_10_1007_s11356_020_10082_x
crossref_primary_10_1016_j_cej_2016_01_097
crossref_primary_10_1016_j_chemosphere_2022_133583
crossref_primary_10_1016_j_watres_2018_03_021
crossref_primary_10_1039_C7RA00324B
crossref_primary_10_1016_j_envpol_2024_123593
crossref_primary_10_1016_j_chemosphere_2020_127566
crossref_primary_10_1016_j_matchemphys_2022_126035
crossref_primary_10_1039_D2EN01027E
crossref_primary_10_1016_j_scitotenv_2019_03_011
crossref_primary_10_1039_C8EW00163D
crossref_primary_10_1080_10643389_2019_1629803
crossref_primary_10_1007_s11356_015_5451_1
crossref_primary_10_1016_j_jclepro_2019_119523
crossref_primary_10_1016_j_micromeso_2021_111499
crossref_primary_10_1016_j_chemosphere_2021_130606
crossref_primary_10_1016_j_chemosphere_2024_141584
crossref_primary_10_1016_j_envpol_2024_124452
crossref_primary_10_1016_j_envpol_2017_10_037
crossref_primary_10_2166_wst_2016_297
crossref_primary_10_1016_j_eti_2021_102200
crossref_primary_10_1016_j_jwpe_2020_101484
crossref_primary_10_1016_j_enconman_2023_117924
crossref_primary_10_1016_j_scitotenv_2020_139750
crossref_primary_10_1021_acsami_5b01624
crossref_primary_10_1016_j_jhazmat_2021_127084
crossref_primary_10_1016_j_watres_2024_123072
crossref_primary_10_3390_nano11112818
crossref_primary_10_1016_j_cej_2023_142589
crossref_primary_10_1016_j_jhazmat_2020_122762
crossref_primary_10_1016_j_ecoenv_2023_115216
crossref_primary_10_1007_s11356_018_3789_x
crossref_primary_10_1016_j_mssp_2020_105533
crossref_primary_10_1016_j_cherd_2022_07_003
crossref_primary_10_1016_j_jwpe_2020_101495
crossref_primary_10_1016_j_mtsust_2024_100833
crossref_primary_10_1016_j_jwpe_2021_101993
crossref_primary_10_1016_j_chemosphere_2017_09_021
crossref_primary_10_1016_j_carbpol_2020_116129
crossref_primary_10_1016_j_envres_2021_110848
crossref_primary_10_1016_j_scitotenv_2020_139869
crossref_primary_10_1016_j_envpol_2020_115910
crossref_primary_10_1007_s11356_019_04863_2
crossref_primary_10_1016_j_cej_2021_132294
crossref_primary_10_1186_s11671_017_2201_y
crossref_primary_10_1016_j_envres_2020_109695
crossref_primary_10_1016_j_jenvman_2021_112678
crossref_primary_10_1080_01932691_2019_1647228
crossref_primary_10_1016_j_jece_2019_103507
crossref_primary_10_1007_s11356_016_8342_1
crossref_primary_10_1016_j_jenvman_2015_08_020
crossref_primary_10_1016_j_jtice_2016_09_012
crossref_primary_10_1007_s11356_019_04315_x
crossref_primary_10_1016_j_mssp_2019_104585
crossref_primary_10_1016_j_chemosphere_2020_127124
crossref_primary_10_1016_j_jece_2022_108765
crossref_primary_10_1007_s11783_021_1456_9
crossref_primary_10_1038_s41598_019_48233_x
crossref_primary_10_1007_s00128_019_02778_9
crossref_primary_10_1007_s11356_021_15362_8
crossref_primary_10_1016_j_cherd_2022_08_058
crossref_primary_10_1007_s00344_017_9760_0
crossref_primary_10_1016_j_biortech_2017_06_084
crossref_primary_10_1002_ep_12583
crossref_primary_10_3389_fchem_2021_840446
crossref_primary_10_1016_j_jhazmat_2020_123889
crossref_primary_10_1016_j_envpol_2022_120696
crossref_primary_10_1016_j_biortech_2015_08_132
crossref_primary_10_1016_j_fuel_2022_126930
crossref_primary_10_1080_01932691_2016_1203333
crossref_primary_10_1016_j_scitotenv_2017_05_126
crossref_primary_10_1016_j_jhazmat_2016_05_008
crossref_primary_10_1016_j_cej_2021_132754
crossref_primary_10_1007_s11814_018_0057_1
crossref_primary_10_1007_s13399_021_01997_7
crossref_primary_10_1007_s11356_018_3247_9
crossref_primary_10_1080_09506608_2021_1922047
crossref_primary_10_1016_j_chemosphere_2022_134736
crossref_primary_10_1016_j_scitotenv_2019_01_005
crossref_primary_10_1016_j_envpol_2019_01_044
crossref_primary_10_1016_j_gsd_2022_100740
crossref_primary_10_5004_dwt_2019_23487
crossref_primary_10_1007_s00128_021_03374_6
crossref_primary_10_1016_j_envint_2019_03_012
crossref_primary_10_3390_app15063093
crossref_primary_10_1016_j_envres_2022_114947
crossref_primary_10_1016_j_chemosphere_2020_127853
crossref_primary_10_1007_s13762_021_03156_x
crossref_primary_10_1080_09542299_2018_1487775
crossref_primary_10_1016_j_heliyon_2024_e36288
crossref_primary_10_1007_s11356_020_10476_x
crossref_primary_10_1016_j_chemosphere_2020_126403
crossref_primary_10_1016_j_seppur_2020_117233
crossref_primary_10_1039_C9RA01271K
crossref_primary_10_1016_j_jece_2022_108292
crossref_primary_10_1016_j_cej_2022_137024
crossref_primary_10_1016_j_jscs_2021_101302
crossref_primary_10_2166_wst_2024_384
crossref_primary_10_1021_acsomega_0c05203
crossref_primary_10_1016_j_jwpe_2024_106444
crossref_primary_10_1016_j_biortech_2023_129680
crossref_primary_10_1016_j_jhazmat_2021_127136
crossref_primary_10_1016_j_jwpe_2024_105591
crossref_primary_10_1016_j_watres_2019_115107
crossref_primary_10_1080_10643389_2020_1752611
crossref_primary_10_1016_j_nanoso_2024_101220
crossref_primary_10_1016_j_earscirev_2022_104215
crossref_primary_10_3390_w14111691
crossref_primary_10_3390_agronomy10040567
crossref_primary_10_1016_j_jenvman_2020_111472
crossref_primary_10_1021_acs_jafc_7b01300
crossref_primary_10_1016_j_jes_2018_06_002
crossref_primary_10_1016_j_indcrop_2021_114476
crossref_primary_10_1007_s11356_022_22445_7
crossref_primary_10_1016_j_jenvman_2016_05_055
crossref_primary_10_1007_s11356_017_9465_8
crossref_primary_10_5004_dwt_2017_20721
crossref_primary_10_1080_15226514_2019_1658710
crossref_primary_10_2166_wst_2024_051
crossref_primary_10_1016_j_jece_2023_111840
crossref_primary_10_1016_j_cej_2016_12_113
crossref_primary_10_1007_s11356_022_21625_9
crossref_primary_10_1002_slct_202303300
crossref_primary_10_1007_s10653_017_9984_8
crossref_primary_10_1016_j_scitotenv_2019_134847
crossref_primary_10_1007_s42773_022_00181_y
crossref_primary_10_1016_j_scitotenv_2020_137972
crossref_primary_10_1016_j_psep_2018_10_003
crossref_primary_10_1007_s13201_020_01217_z
crossref_primary_10_3390_w12102720
crossref_primary_10_1016_j_ese_2021_100078
crossref_primary_10_3390_w12102847
crossref_primary_10_1021_acsomega_0c01268
crossref_primary_10_1016_j_cej_2023_147633
crossref_primary_10_1016_j_chemosphere_2021_129904
crossref_primary_10_1016_j_jece_2025_115530
crossref_primary_10_1155_2019_4506314
crossref_primary_10_1016_j_seppur_2022_123046
crossref_primary_10_1016_j_jhazmat_2022_128500
crossref_primary_10_1016_j_chemosphere_2016_11_126
crossref_primary_10_1016_j_ces_2025_121410
crossref_primary_10_1016_j_jhazmat_2020_123338
crossref_primary_10_1039_C8EN01257A
crossref_primary_10_1016_j_scitotenv_2019_135943
crossref_primary_10_1007_s11356_023_30469_w
crossref_primary_10_1007_s11270_017_3513_3
crossref_primary_10_1007_s11356_023_29499_1
crossref_primary_10_1016_j_eehl_2024_02_006
crossref_primary_10_1016_j_biortech_2015_01_044
crossref_primary_10_1016_j_biortech_2016_04_093
crossref_primary_10_1016_j_seppur_2024_126384
crossref_primary_10_1016_j_jhazmat_2019_03_070
crossref_primary_10_1039_C8RA08512A
crossref_primary_10_1016_j_inoche_2024_112312
crossref_primary_10_1016_j_jclepro_2019_119579
crossref_primary_10_1016_j_scitotenv_2024_170269
crossref_primary_10_1016_j_cej_2021_131489
crossref_primary_10_3390_w14244085
crossref_primary_10_1016_j_jclepro_2021_126466
crossref_primary_10_1016_j_chemosphere_2019_125701
crossref_primary_10_4236_ajac_2017_88037
crossref_primary_10_1016_j_mineng_2020_106310
crossref_primary_10_3390_polym15092215
crossref_primary_10_1016_j_chemosphere_2022_133672
crossref_primary_10_1080_10643389_2017_1418580
crossref_primary_10_1016_j_surfin_2022_101806
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000581
crossref_primary_10_1016_j_cej_2019_02_119
crossref_primary_10_1016_j_envpol_2022_120115
crossref_primary_10_1007_s13399_022_03262_x
crossref_primary_10_1016_j_jiec_2020_05_017
crossref_primary_10_1088_1361_6528_aaaa2f
crossref_primary_10_1016_j_jhazmat_2018_03_001
crossref_primary_10_1016_j_envres_2019_108898
crossref_primary_10_1016_j_envint_2019_01_004
crossref_primary_10_1016_j_envpol_2023_121662
crossref_primary_10_1080_03067319_2022_2145196
crossref_primary_10_1039_C5RA12137J
crossref_primary_10_1007_s11270_015_2463_x
crossref_primary_10_1016_j_rser_2016_09_057
crossref_primary_10_1016_j_psep_2022_02_069
crossref_primary_10_1016_j_colsurfa_2019_05_066
crossref_primary_10_1016_j_envres_2020_109195
crossref_primary_10_1007_s11356_023_25475_x
crossref_primary_10_1016_j_chemosphere_2017_02_100
crossref_primary_10_1016_j_envpol_2021_117600
crossref_primary_10_1016_j_watres_2022_118804
crossref_primary_10_3390_coatings11111407
crossref_primary_10_1016_j_jece_2022_107825
crossref_primary_10_1016_j_jenvman_2024_121526
crossref_primary_10_1016_j_jhazmat_2020_124464
crossref_primary_10_1016_j_chemosphere_2019_125609
crossref_primary_10_1016_j_scitotenv_2019_134893
crossref_primary_10_1021_acs_est_9b03607
crossref_primary_10_1080_01932691_2024_2369881
crossref_primary_10_1007_s11356_022_21616_w
crossref_primary_10_1016_j_jtice_2017_12_031
crossref_primary_10_1038_s41598_024_69117_9
crossref_primary_10_1007_s42773_020_00040_8
crossref_primary_10_1016_j_chemosphere_2017_12_193
crossref_primary_10_1016_j_scitotenv_2023_163923
crossref_primary_10_1039_C8TA10394A
crossref_primary_10_1016_j_seppur_2024_131028
crossref_primary_10_1021_acs_cgd_4c00586
crossref_primary_10_1080_09593330_2019_1575479
crossref_primary_10_1016_j_cej_2022_137417
crossref_primary_10_1016_j_ceja_2024_100602
crossref_primary_10_1021_acs_iecr_9b04468
crossref_primary_10_1016_j_envint_2019_105374
crossref_primary_10_1016_j_jhazmat_2021_126457
crossref_primary_10_1039_D1EW00385B
crossref_primary_10_1016_j_jhazmat_2021_127428
crossref_primary_10_1016_j_fuel_2021_120243
crossref_primary_10_3390_su142114523
crossref_primary_10_3390_w14040563
crossref_primary_10_1021_acsomega_1c04129
crossref_primary_10_1016_j_jhazmat_2018_04_027
crossref_primary_10_3390_toxics10090534
crossref_primary_10_1007_s40899_023_00999_9
crossref_primary_10_1016_j_chemosphere_2023_139760
crossref_primary_10_1021_acsearthspacechem_8b00058
crossref_primary_10_1080_09542299_2016_1142833
crossref_primary_10_1080_01496395_2017_1345944
crossref_primary_10_1007_s11356_016_6621_5
crossref_primary_10_1016_j_envpol_2023_121431
crossref_primary_10_1039_C6EN00191B
crossref_primary_10_1016_j_cej_2023_145073
crossref_primary_10_1016_j_ecoenv_2017_08_033
crossref_primary_10_1016_j_psep_2017_08_009
crossref_primary_10_1007_s44246_023_00063_3
crossref_primary_10_1016_j_jhazmat_2016_01_052
crossref_primary_10_1016_j_chemosphere_2023_138665
crossref_primary_10_1016_j_jece_2021_105714
crossref_primary_10_1016_j_scitotenv_2022_156924
crossref_primary_10_1007_s11270_020_04588_w
crossref_primary_10_3390_su13031186
crossref_primary_10_1016_j_jhazmat_2019_121920
crossref_primary_10_1007_s42773_024_00397_0
crossref_primary_10_1021_acsomega_9b02842
crossref_primary_10_1007_s13738_016_1000_1
crossref_primary_10_1016_j_jece_2020_104112
crossref_primary_10_1016_j_cej_2019_01_036
crossref_primary_10_1016_j_watres_2022_118965
crossref_primary_10_1021_acs_iecr_9b06670
crossref_primary_10_1016_j_cep_2022_109016
crossref_primary_10_1016_j_biortech_2017_07_082
crossref_primary_10_1007_s13399_022_03056_1
crossref_primary_10_1016_j_jiec_2019_07_026
crossref_primary_10_1016_j_carbon_2016_11_032
crossref_primary_10_1016_j_chemosphere_2023_140643
crossref_primary_10_1016_j_biortech_2017_08_061
crossref_primary_10_1007_s12583_022_1698_x
crossref_primary_10_1016_j_gexplo_2019_04_004
crossref_primary_10_1016_j_chemosphere_2018_06_050
crossref_primary_10_1080_09593330_2016_1255664
crossref_primary_10_3390_w13070915
crossref_primary_10_1016_j_desal_2024_117699
crossref_primary_10_1016_j_jenvman_2020_111814
crossref_primary_10_1016_j_jhazmat_2020_123067
crossref_primary_10_1007_s40710_019_00397_4
crossref_primary_10_1016_j_jiec_2019_06_008
crossref_primary_10_5004_dwt_2023_29907
crossref_primary_10_1016_j_biortech_2016_05_057
crossref_primary_10_1039_C6RA27341F
crossref_primary_10_1016_j_cej_2019_122667
crossref_primary_10_1017_S1755691022000019
crossref_primary_10_1071_CH19164
crossref_primary_10_1007_s11356_018_1460_1
crossref_primary_10_1016_j_scitotenv_2024_171753
crossref_primary_10_1080_10643389_2019_1618691
crossref_primary_10_1007_s11270_016_3066_x
crossref_primary_10_1007_s13399_024_05735_7
crossref_primary_10_1016_j_jiec_2018_11_026
crossref_primary_10_3390_environments4040070
crossref_primary_10_1016_j_chemosphere_2017_10_134
crossref_primary_10_1016_j_jece_2021_105751
crossref_primary_10_1016_j_jclepro_2022_131832
crossref_primary_10_1016_j_chemosphere_2023_139793
crossref_primary_10_1016_j_enconman_2017_04_095
crossref_primary_10_1016_j_envpol_2020_115256
Cites_doi 10.1002/jat.1649
10.1016/j.watres.2012.03.026
10.1002/aic.690200204
10.1016/j.geoderma.2011.04.021
10.1016/j.jconhyd.2011.06.002
10.1016/S0375-6742(02)00273-X
10.1016/j.chemosphere.2012.06.002
10.1016/j.fuproc.2012.09.021
10.1016/j.cej.2014.03.096
10.1016/j.biortech.2012.11.132
10.1039/C1CE05724C
10.1016/j.jenvman.2012.10.004
10.1111/j.1365-2389.1984.tb00294.x
10.1080/09593330.2011.651162
10.1021/ja02268a002
10.1016/j.scitotenv.2007.02.037
10.1016/j.biortech.2014.01.120
10.1016/j.watres.2004.12.022
10.1016/j.gca.2006.12.021
10.1016/j.carbon.2008.02.012
10.1016/j.gexplo.2012.09.001
10.1007/BF03326230
10.1016/j.colsurfa.2005.06.001
10.1016/j.cej.2013.02.096
10.1016/j.jhazmat.2010.08.066
10.1016/j.chemosphere.2013.10.071
10.1088/0022-3719/8/8/032
10.1166/jnn.2014.9053
10.1002/adma.200803003
10.1088/0022-3727/44/7/075003
10.1016/j.materresbull.2013.09.015
10.1016/j.envint.2008.10.004
10.1016/j.jenvman.2013.08.061
10.1016/j.jhazmat.2010.07.036
10.1016/j.jhazmat.2011.03.083
10.1016/j.soilbio.2011.02.005
10.1080/10643380902945771
10.1016/j.jhazmat.2009.05.103
10.1016/j.cej.2013.04.077
10.1016/j.jhazmat.2007.01.006
10.1039/c3ta10329c
10.1016/j.arabjc.2013.05.032
10.1007/s11164-012-1000-4
10.1002/jctb.3938
10.1016/j.cej.2013.03.114
10.1016/j.cej.2012.01.061
10.1016/j.apsusc.2013.06.154
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7UA
C1K
F1W
H96
H97
L.G
SOI
7SU
8FD
FR3
KR7
7X8
7S9
L.6
DOI 10.1016/j.watres.2014.10.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Environmental Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environmental Engineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 216
ExternalDocumentID 25462729
10_1016_j_watres_2014_10_009
S0043135414007040
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7UA
C1K
F1W
H96
H97
L.G
SOI
7SU
8FD
FR3
KR7
7X8
7S9
L.6
ID FETCH-LOGICAL-c527t-8b8ea4d411b85f75fc4a60b8da9297e6d9635adddc741bb2d9196b737c953a313
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Fri Jul 11 11:37:43 EDT 2025
Fri Jul 11 01:30:17 EDT 2025
Fri Jul 11 16:28:36 EDT 2025
Fri Jul 11 01:08:00 EDT 2025
Thu Apr 03 07:01:00 EDT 2025
Tue Jul 01 01:20:40 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Fri Feb 23 02:26:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Characterization
Arsenic speciation
Regeneration
Low-cost sorbents
Adsorption mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-8b8ea4d411b85f75fc4a60b8da9297e6d9635adddc741bb2d9196b737c953a313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25462729
PQID 1647016536
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_2000105853
proquest_miscellaneous_1662428235
proquest_miscellaneous_1660068702
proquest_miscellaneous_1647016536
pubmed_primary_25462729
crossref_citationtrail_10_1016_j_watres_2014_10_009
crossref_primary_10_1016_j_watres_2014_10_009
elsevier_sciencedirect_doi_10_1016_j_watres_2014_10_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
2015-01-00
2015-Jan-01
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Langmuir (bib23) 1916; 38
Jia, Xu, Wang, Demopoulos (bib20) 2007; 71
Deliyanni, Bandosz, Matis (bib16) 2013; 88
Zhang, Gao, Varnoosfaderani, Hebard, Yao, Inyang (bib51) 2013; 130
Mohan, Sarswat, Ok, Pittman (bib30) 2014; 160
Ma, Zhu, Chen, Yang, Zhou, Li, Yu, Chen (bib27) 2013; 1
Gao, Su, Wang, Hu (bib18) 2013; 135
Sheng, Baig, Hu, Xue, Xu (bib40) 2014; 7
Maji, Kao, Liao, Lin, Liu (bib28) 2013; 284
Mohan, Pittman (bib29) 2007; 142
Cooper, Hristovski, Moller, Westerhoff, Sylvester (bib13) 2010; 183
Bang, Johnson, Korfiatis, Meng (bib6) 2005; 39
Anawar, Akai, Komaki, Terao, Yoshioka, Ishizuka, Safiullah, Kato (bib3) 2003; 77
Tuna, Ozdemir, Simsek, Beker (bib41) 2013; 223
Vitela-Rodriguez, Rangel-Mendez (bib43) 2013; 114
Yao, Gao, Zhang, Inyang, Zimmerman (bib49) 2012; 89
Barinov, Gregoratti, Dudin, Rosa, Kiskinova (bib7) 2009; 21
Akter, Ali (bib2) 2011; 8
Khan, Ho (bib22) 2011; 23
Dorraji, Mirmohseni, Tasselli, Criscuoli, Carraro, Gross, Figoli (bib17) 2014; 21
Lumsdon, Fraser, Russell, Livesey (bib26) 1984; 35
Tuutijarvi, Vahala, Sillanpaa, Chen (bib42) 2012; 33
Wu, Gao, Zhou, Zhang, Guo (bib46) 2012; 14
Chen, Gao, Li, Ma (bib12) 2011; 126
Nieto-Delgado, Rangel-Mendez (bib33) 2012; 46
Yadanaparthi, Graybill, von Wandruszka (bib47) 2009; 171
Badruddoza, Shawon, Rahman, Hao, Hidajat, Uddin (bib5) 2013; 225
Basu, Saha, Saha, Ghosh, Saha (bib8) 2014; 40
Arcibar-Orozco, Josue, Rios-Hurtado, Rangel-Mendez (bib4) 2014; 249
Bhattacharya, Welch, Stollenwerk, McLaughlin, Bundschuh, Panaullah (bib9) 2007; 379
Ozcan, Erdem, Ozcan (bib34) 2005; 266
Weber, Chakravorti (bib45) 1974; 20
Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Vithanage, Lee, Ok (bib1) 2014; 99
Cope, Webster, Sabatini (bib14) 2014; 488
Mudhoo, Sharma, Garg, Tseng (bib31) 2011; 41
Pehlivan, Tran, Ouedraogo, Schmidt, Zachmann, Bahadir (bib35) 2013; 106
Li, Jiang, Bai (bib24) 2011; 44
Li, Li, Gao, Shang (bib25) 2012; 185
Datsyuk, Kalyva, Papagelis, Parthenios, Tasis, Siokou, Kallitsis, Galiotis (bib15) 2008; 46
Wagner, Riggs, Davis, Moulder, Muilenberg (bib44) 1979
Brammer, Ravenscroft (bib10) 2009; 35
Zhang, Gao (bib50) 2013; 226
Roberts, Weightman, Johnson (bib37) 1975; 8
Zimmerman, Gao, Ahn (bib52) 2011; 43
Raul, Devi, Umlong, Thakur, Banerjee, Veer (bib36) 2014; 49
Hjaila, Baccar, Sarra, Gasol, Blanquez (bib19) 2013; 130
Mukherjee, Zimmerman, Harris (bib32) 2011; 163
Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (bib48) 2011; 190
Saharan, Chaudhary, Mehta, Umar (bib38) 2014; 14
Jomova, Jenisova, Feszterova, Baros, Liska, Hudecova, Rhodes, Valko (bib21) 2011; 31
Chang, Lin, Ying (bib11) 2010; 184
Samarghandi, Hadi, Moayedi, Askari (bib39) 2009; 6
Raul (10.1016/j.watres.2014.10.009_bib36) 2014; 49
Zhang (10.1016/j.watres.2014.10.009_bib50) 2013; 226
Bhattacharya (10.1016/j.watres.2014.10.009_bib9) 2007; 379
Bang (10.1016/j.watres.2014.10.009_bib6) 2005; 39
Zhang (10.1016/j.watres.2014.10.009_bib51) 2013; 130
Maji (10.1016/j.watres.2014.10.009_bib28) 2013; 284
Samarghandi (10.1016/j.watres.2014.10.009_bib39) 2009; 6
Badruddoza (10.1016/j.watres.2014.10.009_bib5) 2013; 225
Brammer (10.1016/j.watres.2014.10.009_bib10) 2009; 35
Barinov (10.1016/j.watres.2014.10.009_bib7) 2009; 21
Yao (10.1016/j.watres.2014.10.009_bib48) 2011; 190
Cope (10.1016/j.watres.2014.10.009_bib14) 2014; 488
Anawar (10.1016/j.watres.2014.10.009_bib3) 2003; 77
Lumsdon (10.1016/j.watres.2014.10.009_bib26) 1984; 35
Yadanaparthi (10.1016/j.watres.2014.10.009_bib47) 2009; 171
Zimmerman (10.1016/j.watres.2014.10.009_bib52) 2011; 43
Dorraji (10.1016/j.watres.2014.10.009_bib17) 2014; 21
Wagner (10.1016/j.watres.2014.10.009_bib44) 1979
Cooper (10.1016/j.watres.2014.10.009_bib13) 2010; 183
Pehlivan (10.1016/j.watres.2014.10.009_bib35) 2013; 106
Mudhoo (10.1016/j.watres.2014.10.009_bib31) 2011; 41
Datsyuk (10.1016/j.watres.2014.10.009_bib15) 2008; 46
Arcibar-Orozco (10.1016/j.watres.2014.10.009_bib4) 2014; 249
Vitela-Rodriguez (10.1016/j.watres.2014.10.009_bib43) 2013; 114
Saharan (10.1016/j.watres.2014.10.009_bib38) 2014; 14
Ahmad (10.1016/j.watres.2014.10.009_bib1) 2014; 99
Deliyanni (10.1016/j.watres.2014.10.009_bib16) 2013; 88
Basu (10.1016/j.watres.2014.10.009_bib8) 2014; 40
Mohan (10.1016/j.watres.2014.10.009_bib29) 2007; 142
Yao (10.1016/j.watres.2014.10.009_bib49) 2012; 89
Wu (10.1016/j.watres.2014.10.009_bib46) 2012; 14
Sheng (10.1016/j.watres.2014.10.009_bib40) 2014; 7
Tuutijarvi (10.1016/j.watres.2014.10.009_bib42) 2012; 33
Gao (10.1016/j.watres.2014.10.009_bib18) 2013; 135
Chang (10.1016/j.watres.2014.10.009_bib11) 2010; 184
Mukherjee (10.1016/j.watres.2014.10.009_bib32) 2011; 163
Li (10.1016/j.watres.2014.10.009_bib24) 2011; 44
Jomova (10.1016/j.watres.2014.10.009_bib21) 2011; 31
Langmuir (10.1016/j.watres.2014.10.009_bib23) 1916; 38
Li (10.1016/j.watres.2014.10.009_bib25) 2012; 185
Nieto-Delgado (10.1016/j.watres.2014.10.009_bib33) 2012; 46
Jia (10.1016/j.watres.2014.10.009_bib20) 2007; 71
Weber (10.1016/j.watres.2014.10.009_bib45) 1974; 20
Tuna (10.1016/j.watres.2014.10.009_bib41) 2013; 223
Hjaila (10.1016/j.watres.2014.10.009_bib19) 2013; 130
Ma (10.1016/j.watres.2014.10.009_bib27) 2013; 1
Roberts (10.1016/j.watres.2014.10.009_bib37) 1975; 8
Akter (10.1016/j.watres.2014.10.009_bib2) 2011; 8
Chen (10.1016/j.watres.2014.10.009_bib12) 2011; 126
Mohan (10.1016/j.watres.2014.10.009_bib30) 2014; 160
Ozcan (10.1016/j.watres.2014.10.009_bib34) 2005; 266
Khan (10.1016/j.watres.2014.10.009_bib22) 2011; 23
References_xml – volume: 38
  start-page: 2221
  year: 1916
  end-page: 2295
  ident: bib23
  article-title: The constitution and fundamental properties of solids and liquids Part I Solids
  publication-title: J. of Am. Chem. Soc.
– volume: 1
  start-page: 4662
  year: 2013
  end-page: 4666
  ident: bib27
  article-title: One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal
  publication-title: J. Mater. Chem. A
– volume: 130
  start-page: 242
  year: 2013
  end-page: 247
  ident: bib19
  article-title: Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment
  publication-title: J. of Environ. Manag.
– volume: 33
  start-page: 1927
  year: 2012
  end-page: 1936
  ident: bib42
  article-title: Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery
  publication-title: Environ. Technol.
– volume: 40
  start-page: 447
  year: 2014
  end-page: 485
  ident: bib8
  article-title: A review on sources, toxicity and remediation technologies for removing arsenic from drinking water
  publication-title: Res. Chem. Intermed.
– volume: 39
  start-page: 763
  year: 2005
  end-page: 770
  ident: bib6
  article-title: Chemical reactions between arsenic and zero-valent iron in water
  publication-title: Water Res.
– volume: 89
  start-page: 1467
  year: 2012
  end-page: 1471
  ident: bib49
  article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil
  publication-title: Chemosphere
– volume: 142
  start-page: 1
  year: 2007
  end-page: 53
  ident: bib29
  article-title: Arsenic removal from water/wastewater using adsorbents – a critical review
  publication-title: J. of Hazard. Mater.
– volume: 44
  start-page: 075003
  year: 2011
  ident: bib24
  article-title: Fabrication of ultrathin epitaxial γ-Fe
  publication-title: J. Phys. D: Appl. Phys.
– year: 1979
  ident: bib44
  article-title: Handbook of X-ray Photoelectron Spectroscopy
– volume: 43
  start-page: 1169
  year: 2011
  end-page: 1179
  ident: bib52
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
  publication-title: Soil Biol. Biochem.
– volume: 8
  start-page: 1301
  year: 1975
  end-page: 1309
  ident: bib37
  article-title: Photoelectron and L
  publication-title: J. Phys. C-Solid State Phys.
– volume: 223
  start-page: 116
  year: 2013
  end-page: 128
  ident: bib41
  article-title: Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents: Impact of experimental conditions
  publication-title: Chem. Eng. J.
– volume: 21
  start-page: 1916
  year: 2009
  end-page: 1920
  ident: bib7
  article-title: Imaging and spectroscopy of multiwalled carbon nanotubes during oxidation: defects and oxygen bonding
  publication-title: Adv. Mater.
– volume: 14
  start-page: 627
  year: 2014
  end-page: 643
  ident: bib38
  article-title: Removal of water contaminants by iron oxide nanomaterials
  publication-title: J. Nanosci. Nanotechnol.
– volume: 106
  start-page: 511
  year: 2013
  end-page: 517
  ident: bib35
  article-title: Removal of As(V) from aqueous solutions by iron coated rice husk
  publication-title: Fuel Process. Technol.
– volume: 190
  start-page: 501
  year: 2011
  end-page: 507
  ident: bib48
  article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings
  publication-title: J. of Hazard. Mater.
– volume: 226
  start-page: 286
  year: 2013
  end-page: 292
  ident: bib50
  article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite
  publication-title: Chem. Eng. J.
– volume: 88
  start-page: 1058
  year: 2013
  end-page: 1066
  ident: bib16
  article-title: Impregnation of activated carbon by iron oxyhydroxide and its effect on arsenate removal
  publication-title: J. of Chem. Technol. and Biotechnol.
– volume: 249
  start-page: 201
  year: 2014
  end-page: 209
  ident: bib4
  article-title: Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons
  publication-title: Chem. Eng. J.
– volume: 31
  start-page: 95
  year: 2011
  end-page: 107
  ident: bib21
  article-title: Arsenic: toxicity, oxidative stress and human disease
  publication-title: J. of Appl. Toxicol.
– volume: 266
  start-page: 73
  year: 2005
  end-page: 81
  ident: bib34
  article-title: Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite
  publication-title: Colloids Surf. A-physicochemical Eng. Aspects
– volume: 171
  start-page: 1
  year: 2009
  end-page: 15
  ident: bib47
  article-title: Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters
  publication-title: J. of Hazard. Mater.
– volume: 163
  start-page: 247
  year: 2011
  end-page: 255
  ident: bib32
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
– volume: 77
  start-page: 109
  year: 2003
  end-page: 131
  ident: bib3
  article-title: Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes
  publication-title: J. of Geochem. Explor.
– volume: 35
  start-page: 647
  year: 2009
  end-page: 654
  ident: bib10
  article-title: Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia
  publication-title: Environ. Int.
– volume: 23
  start-page: 1889
  year: 2011
  end-page: 1901
  ident: bib22
  article-title: Arsenic in drinking water: a review on toxicological effects, mechanism of accumulation and remediation
  publication-title: Asian J. of Chem.
– volume: 185
  start-page: 127
  year: 2012
  end-page: 135
  ident: bib25
  article-title: Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: Part A. Adsorption capacity and mechanism
  publication-title: Chem. Eng. J.
– volume: 135
  start-page: 93
  year: 2013
  end-page: 103
  ident: bib18
  article-title: Mobility of arsenic in aquifer sediments at Datong Basin, northern China: effect of bicarbonate and phosphate
  publication-title: J. of Geochem. Explor.
– volume: 46
  start-page: 833
  year: 2008
  end-page: 840
  ident: bib15
  article-title: Chemical oxidation of multiwalled carbon nanotubes
  publication-title: Carbon
– volume: 14
  start-page: 499
  year: 2012
  end-page: 504
  ident: bib46
  article-title: Control on the formation of Fe
  publication-title: Crystengcomm
– volume: 6
  start-page: 285
  year: 2009
  end-page: 294
  ident: bib39
  article-title: Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon
  publication-title: Iran. J. Environ. Health Sci. Eng.
– volume: 7
  start-page: 27
  year: 2014
  end-page: 36
  ident: bib40
  article-title: Development, characterization and evaluation of iron-coated honeycomb briquette cinders for the removal of As(V) from aqueous solutions
  publication-title: Arabian J. Chem.
– volume: 379
  start-page: 109
  year: 2007
  end-page: 120
  ident: bib9
  article-title: Arsenic in the environment: biology and chemistry
  publication-title: Sci. of Total Environ.
– volume: 488
  start-page: 558
  year: 2014
  end-page: 565
  ident: bib14
  article-title: Arsenate adsorption onto iron oxide amended rice husk char
  publication-title: Sci. Total Environ.
– volume: 46
  start-page: 2973
  year: 2012
  end-page: 2982
  ident: bib33
  article-title: Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water
  publication-title: Water Res.
– volume: 184
  start-page: 515
  year: 2010
  end-page: 522
  ident: bib11
  article-title: Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water
  publication-title: J. of Hazard. Mater.
– volume: 130
  start-page: 457
  year: 2013
  end-page: 462
  ident: bib51
  article-title: Preparation and characterization of a novel magnetic biochar for arsenic removal
  publication-title: Bioresour. Technol.
– volume: 284
  start-page: 40
  year: 2013
  end-page: 48
  ident: bib28
  article-title: Implementation of the adsorbent iron-oxide-coated natural rock (IOCNR) on synthetic As(III) and on real arsenic-bearing sample with filter
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 433
  year: 2011
  end-page: 443
  ident: bib2
  article-title: Arsenic contamination in groundwater and its proposed remedial measures
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 183
  start-page: 381
  year: 2010
  end-page: 388
  ident: bib13
  article-title: The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons
  publication-title: J. of Hazard. Mater.
– volume: 20
  start-page: 228
  year: 1974
  end-page: 238
  ident: bib45
  article-title: Pore and solid diffusion models for fixed-bed adsorbers
  publication-title: Aiche J.
– volume: 35
  start-page: 381
  year: 1984
  end-page: 386
  ident: bib26
  article-title: New infrared band assignments for the arsenate ion adsorbed on synthetic goethite (Alpha-Feooh)
  publication-title: J. Soil Sci.
– volume: 160
  start-page: 191
  year: 2014
  end-page: 202
  ident: bib30
  article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review
  publication-title: Bioresour. Technol.
– volume: 126
  start-page: 29
  year: 2011
  end-page: 36
  ident: bib12
  article-title: Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media
  publication-title: J. of Contam. Hydrol.
– volume: 99
  start-page: 19
  year: 2014
  end-page: 33
  ident: bib1
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
– volume: 114
  start-page: 225
  year: 2013
  end-page: 231
  ident: bib43
  article-title: Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles
  publication-title: J. Environ. Manag.
– volume: 21
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib17
  article-title: Preparation, characterization and application of iron (III)-loaded chitosan hollow fiber membranes as a new bio-based As (V) sorbent
  publication-title: J. Polym. Res.
– volume: 225
  start-page: 607
  year: 2013
  end-page: 615
  ident: bib5
  article-title: Ionically modified magnetic nanomaterials for arsenic and chromium removal from water
  publication-title: Chem. Eng. J.
– volume: 49
  start-page: 360
  year: 2014
  end-page: 368
  ident: bib36
  article-title: Iron oxide hydroxide nanoflower assisted removal of arsenic from water
  publication-title: Mater. Res. Bull.
– volume: 71
  start-page: 1643
  year: 2007
  end-page: 1654
  ident: bib20
  article-title: Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite
  publication-title: Geochimica Cosmochim. Acta
– volume: 41
  start-page: 435
  year: 2011
  end-page: 519
  ident: bib31
  article-title: Arsenic: an overview of applications, health, and environmental concerns and removal processes
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 31
  start-page: 95
  issue: 2
  year: 2011
  ident: 10.1016/j.watres.2014.10.009_bib21
  article-title: Arsenic: toxicity, oxidative stress and human disease
  publication-title: J. of Appl. Toxicol.
  doi: 10.1002/jat.1649
– volume: 46
  start-page: 2973
  issue: 9
  year: 2012
  ident: 10.1016/j.watres.2014.10.009_bib33
  article-title: Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.03.026
– volume: 20
  start-page: 228
  issue: 2
  year: 1974
  ident: 10.1016/j.watres.2014.10.009_bib45
  article-title: Pore and solid diffusion models for fixed-bed adsorbers
  publication-title: Aiche J.
  doi: 10.1002/aic.690200204
– volume: 163
  start-page: 247
  issue: 3–4
  year: 2011
  ident: 10.1016/j.watres.2014.10.009_bib32
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.04.021
– volume: 126
  start-page: 29
  issue: 1–2
  year: 2011
  ident: 10.1016/j.watres.2014.10.009_bib12
  article-title: Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media
  publication-title: J. of Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2011.06.002
– volume: 77
  start-page: 109
  issue: 2–3
  year: 2003
  ident: 10.1016/j.watres.2014.10.009_bib3
  article-title: Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes
  publication-title: J. of Geochem. Explor.
  doi: 10.1016/S0375-6742(02)00273-X
– volume: 89
  start-page: 1467
  issue: 11
  year: 2012
  ident: 10.1016/j.watres.2014.10.009_bib49
  article-title: Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.06.002
– volume: 106
  start-page: 511
  year: 2013
  ident: 10.1016/j.watres.2014.10.009_bib35
  article-title: Removal of As(V) from aqueous solutions by iron coated rice husk
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2012.09.021
– volume: 249
  start-page: 201
  year: 2014
  ident: 10.1016/j.watres.2014.10.009_bib4
  article-title: Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.03.096
– year: 1979
  ident: 10.1016/j.watres.2014.10.009_bib44
– volume: 130
  start-page: 457
  year: 2013
  ident: 10.1016/j.watres.2014.10.009_bib51
  article-title: Preparation and characterization of a novel magnetic biochar for arsenic removal
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.11.132
– volume: 14
  start-page: 499
  issue: 2
  year: 2012
  ident: 10.1016/j.watres.2014.10.009_bib46
  article-title: Control on the formation of Fe3O4 nanoparticles on chemically reduced graphene oxide surfaces
  publication-title: Crystengcomm
  doi: 10.1039/C1CE05724C
– volume: 114
  start-page: 225
  year: 2013
  ident: 10.1016/j.watres.2014.10.009_bib43
  article-title: Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2012.10.004
– volume: 35
  start-page: 381
  issue: 3
  year: 1984
  ident: 10.1016/j.watres.2014.10.009_bib26
  article-title: New infrared band assignments for the arsenate ion adsorbed on synthetic goethite (Alpha-Feooh)
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1984.tb00294.x
– volume: 33
  start-page: 1927
  issue: 16
  year: 2012
  ident: 10.1016/j.watres.2014.10.009_bib42
  article-title: Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2011.651162
– volume: 38
  start-page: 2221
  year: 1916
  ident: 10.1016/j.watres.2014.10.009_bib23
  article-title: The constitution and fundamental properties of solids and liquids Part I Solids
  publication-title: J. of Am. Chem. Soc.
  doi: 10.1021/ja02268a002
– volume: 379
  start-page: 109
  issue: 2–3
  year: 2007
  ident: 10.1016/j.watres.2014.10.009_bib9
  article-title: Arsenic in the environment: biology and chemistry
  publication-title: Sci. of Total Environ.
  doi: 10.1016/j.scitotenv.2007.02.037
– volume: 160
  start-page: 191
  year: 2014
  ident: 10.1016/j.watres.2014.10.009_bib30
  article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.01.120
– volume: 39
  start-page: 763
  issue: 5
  year: 2005
  ident: 10.1016/j.watres.2014.10.009_bib6
  article-title: Chemical reactions between arsenic and zero-valent iron in water
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.12.022
– volume: 21
  start-page: 1
  issue: 4
  year: 2014
  ident: 10.1016/j.watres.2014.10.009_bib17
  article-title: Preparation, characterization and application of iron (III)-loaded chitosan hollow fiber membranes as a new bio-based As (V) sorbent
  publication-title: J. Polym. Res.
– volume: 71
  start-page: 1643
  issue: 7
  year: 2007
  ident: 10.1016/j.watres.2014.10.009_bib20
  article-title: Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite
  publication-title: Geochimica Cosmochim. Acta
  doi: 10.1016/j.gca.2006.12.021
– volume: 46
  start-page: 833
  issue: 6
  year: 2008
  ident: 10.1016/j.watres.2014.10.009_bib15
  article-title: Chemical oxidation of multiwalled carbon nanotubes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2008.02.012
– volume: 135
  start-page: 93
  year: 2013
  ident: 10.1016/j.watres.2014.10.009_bib18
  article-title: Mobility of arsenic in aquifer sediments at Datong Basin, northern China: effect of bicarbonate and phosphate
  publication-title: J. of Geochem. Explor.
  doi: 10.1016/j.gexplo.2012.09.001
– volume: 8
  start-page: 433
  issue: 2
  year: 2011
  ident: 10.1016/j.watres.2014.10.009_bib2
  article-title: Arsenic contamination in groundwater and its proposed remedial measures
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/BF03326230
– volume: 266
  start-page: 73
  issue: 1–3
  year: 2005
  ident: 10.1016/j.watres.2014.10.009_bib34
  article-title: Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite
  publication-title: Colloids Surf. A-physicochemical Eng. Aspects
  doi: 10.1016/j.colsurfa.2005.06.001
– volume: 223
  start-page: 116
  year: 2013
  ident: 10.1016/j.watres.2014.10.009_bib41
  article-title: Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents: Impact of experimental conditions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.02.096
– volume: 184
  start-page: 515
  issue: 1–3
  year: 2010
  ident: 10.1016/j.watres.2014.10.009_bib11
  article-title: Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water
  publication-title: J. of Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.08.066
– volume: 99
  start-page: 19
  year: 2014
  ident: 10.1016/j.watres.2014.10.009_bib1
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
– volume: 8
  start-page: 1301
  issue: 8
  year: 1975
  ident: 10.1016/j.watres.2014.10.009_bib37
  article-title: Photoelectron and L2,3 MM Auger-electron energies for arsenic
  publication-title: J. Phys. C-Solid State Phys.
  doi: 10.1088/0022-3719/8/8/032
– volume: 6
  start-page: 285
  issue: 4
  year: 2009
  ident: 10.1016/j.watres.2014.10.009_bib39
  article-title: Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon
  publication-title: Iran. J. Environ. Health Sci. Eng.
– volume: 14
  start-page: 627
  issue: 1
  year: 2014
  ident: 10.1016/j.watres.2014.10.009_bib38
  article-title: Removal of water contaminants by iron oxide nanomaterials
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2014.9053
– volume: 21
  start-page: 1916
  year: 2009
  ident: 10.1016/j.watres.2014.10.009_bib7
  article-title: Imaging and spectroscopy of multiwalled carbon nanotubes during oxidation: defects and oxygen bonding
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803003
– volume: 44
  start-page: 075003
  issue: 7
  year: 2011
  ident: 10.1016/j.watres.2014.10.009_bib24
  article-title: Fabrication of ultrathin epitaxial γ-Fe2O3 films by reactive sputtering
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/44/7/075003
– volume: 49
  start-page: 360
  year: 2014
  ident: 10.1016/j.watres.2014.10.009_bib36
  article-title: Iron oxide hydroxide nanoflower assisted removal of arsenic from water
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2013.09.015
– volume: 35
  start-page: 647
  issue: 3
  year: 2009
  ident: 10.1016/j.watres.2014.10.009_bib10
  article-title: Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2008.10.004
– volume: 130
  start-page: 242
  year: 2013
  ident: 10.1016/j.watres.2014.10.009_bib19
  article-title: Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment
  publication-title: J. of Environ. Manag.
  doi: 10.1016/j.jenvman.2013.08.061
– volume: 183
  start-page: 381
  issue: 1–3
  year: 2010
  ident: 10.1016/j.watres.2014.10.009_bib13
  article-title: The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons
  publication-title: J. of Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.07.036
– volume: 190
  start-page: 501
  issue: 1–3
  year: 2011
  ident: 10.1016/j.watres.2014.10.009_bib48
  article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings
  publication-title: J. of Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.03.083
– volume: 43
  start-page: 1169
  issue: 6
  year: 2011
  ident: 10.1016/j.watres.2014.10.009_bib52
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.02.005
– volume: 41
  start-page: 435
  issue: 5
  year: 2011
  ident: 10.1016/j.watres.2014.10.009_bib31
  article-title: Arsenic: an overview of applications, health, and environmental concerns and removal processes
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380902945771
– volume: 171
  start-page: 1
  issue: 1–3
  year: 2009
  ident: 10.1016/j.watres.2014.10.009_bib47
  article-title: Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters
  publication-title: J. of Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.05.103
– volume: 226
  start-page: 286
  year: 2013
  ident: 10.1016/j.watres.2014.10.009_bib50
  article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.04.077
– volume: 488
  start-page: 558
  year: 2014
  ident: 10.1016/j.watres.2014.10.009_bib14
  article-title: Arsenate adsorption onto iron oxide amended rice husk char
  publication-title: Sci. Total Environ.
– volume: 142
  start-page: 1
  issue: 1–2
  year: 2007
  ident: 10.1016/j.watres.2014.10.009_bib29
  article-title: Arsenic removal from water/wastewater using adsorbents – a critical review
  publication-title: J. of Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.01.006
– volume: 23
  start-page: 1889
  issue: 5
  year: 2011
  ident: 10.1016/j.watres.2014.10.009_bib22
  article-title: Arsenic in drinking water: a review on toxicological effects, mechanism of accumulation and remediation
  publication-title: Asian J. of Chem.
– volume: 1
  start-page: 4662
  issue: 15
  year: 2013
  ident: 10.1016/j.watres.2014.10.009_bib27
  article-title: One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10329c
– volume: 7
  start-page: 27
  issue: 1
  year: 2014
  ident: 10.1016/j.watres.2014.10.009_bib40
  article-title: Development, characterization and evaluation of iron-coated honeycomb briquette cinders for the removal of As(V) from aqueous solutions
  publication-title: Arabian J. Chem.
  doi: 10.1016/j.arabjc.2013.05.032
– volume: 40
  start-page: 447
  issue: 2
  year: 2014
  ident: 10.1016/j.watres.2014.10.009_bib8
  article-title: A review on sources, toxicity and remediation technologies for removing arsenic from drinking water
  publication-title: Res. Chem. Intermed.
  doi: 10.1007/s11164-012-1000-4
– volume: 88
  start-page: 1058
  issue: 6
  year: 2013
  ident: 10.1016/j.watres.2014.10.009_bib16
  article-title: Impregnation of activated carbon by iron oxyhydroxide and its effect on arsenate removal
  publication-title: J. of Chem. Technol. and Biotechnol.
  doi: 10.1002/jctb.3938
– volume: 225
  start-page: 607
  year: 2013
  ident: 10.1016/j.watres.2014.10.009_bib5
  article-title: Ionically modified magnetic nanomaterials for arsenic and chromium removal from water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.03.114
– volume: 185
  start-page: 127
  year: 2012
  ident: 10.1016/j.watres.2014.10.009_bib25
  article-title: Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: Part A. Adsorption capacity and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.01.061
– volume: 284
  start-page: 40
  year: 2013
  ident: 10.1016/j.watres.2014.10.009_bib28
  article-title: Implementation of the adsorbent iron-oxide-coated natural rock (IOCNR) on synthetic As(III) and on real arsenic-bearing sample with filter
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.06.154
SSID ssj0002239
Score 2.6174653
Snippet Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 206
SubjectTerms Adsorption
Adsorption mechanism
aqueous solutions
Arsenic
Arsenic - chemistry
Arsenic speciation
biochar
Carya
Characterization
Charcoal - chemistry
chemical speciation
Chemisorption
energy
energy-dispersive X-ray analysis
Filtration - methods
Hydrolysis
Hydroxides
Iron
Iron - chemistry
Low-cost sorbents
Regeneration
scanning electron microscopes
Scanning electron microscopy
Sorption
Specific surface
Spectrometers
Water Pollutants, Chemical - chemistry
Water Purification - methods
X-ray diffraction
Title Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis
URI https://dx.doi.org/10.1016/j.watres.2014.10.009
https://www.ncbi.nlm.nih.gov/pubmed/25462729
https://www.proquest.com/docview/1647016536
https://www.proquest.com/docview/1660068702
https://www.proquest.com/docview/1662428235
https://www.proquest.com/docview/2000105853
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQucABsVOWykhc0yVx4vgIiKqAxAmk3iI7dmgQOFXSCsGBb2cmC8uhVOIYaxwlE8-b53gWQs4GCtya0bA3kaLvAEomjkrCgeMKZkSo8CCsDJC9C0YP7Gbsj1fIZZMLg2GVNfZXmF6idT3Sq7XZm6Yp5viC8_OwjTXWrGG4b2eM4yrvfnyHeYD7E80pM0o36XNljNerxIQMDPBi3TLGSyxyT4voZ-mGhptko-aP9Lx6xC2yYuw2Wf9RVXCHyAuA1wmVVtMYscfSIstLZKBZQmEja2waU6xbQDHHzUlfprl5tEA6NVVphnlYtHizwAyL9B3G6lY-dPKm86ysYLJLHoZX95cjp-6k4MS-y2dOqEIjmWaDgQr9hPtJzGTQV6GWwI64CTSYoQ9Ip2MgGEq5WoBhKu7xWPieBC3vkZbNrDkgVIIRhyYJGJa45sIIkwAuKA339VTSZ23iNQqM4rrMOHa7eI6aeLKnqFJ7hGrHUVB7mzhfs6ZVmY0l8rz5NtGv5RKBJ1gy87T5lBFYEh6PSGuyeRFhZTVM7vKCv2QCTKrhffdPGeA9oev5i2UwQQqYLXClNtmv1tPXe2OHAhf2PIf_fscjsgZXfvWn6Ji0ZvncnAB3mqlOaRwdsnp-fTu6-wRp2xnP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcKuiLLY-6UnsMZBPn4QMHnloK5QQSN9eOnRJEndVmEdoe-FP8QWbyoOWwICFx9Tqvsf3N5_V8MwDf-hrdmjW4N1HC9xAlc0_nad8LBLci1XQQVgfIHseDU_7jLDqbgdtOC0NhlS32N5heo3XbstFac2NYFKTxRecXUhlrylnD_Tay8tBOrnHfVm0e7OIgfw-C_b2TnYHXlhbwsihIxl6qU6u44f2-TqM8ifKMq9jXqVFIFxIbG5yXES59k6HH1TowAmeqTsIkE1Go8LF431cwxxEuqGzC-s2_uBL0t6I71qbX6_R6dVDZtSIFCEWU8fU6qExM84fT-G7t9_YX4G1LWNlWY5NFmLHuHcz_l8bwPahtxPNzppxhGYGdY1U5qqGIlTnDnbN1RcYoUQIjUZ1X_BmO7G-HLNcwXZQk_GLVxCEVrYq_2NbWDmLnEzMq65QpH-D0Rez7EWZd6ewSMIWokdo85pRTOxFW2ByBSBu8b6hzn_cg7AwoszavOZXXuJRdANuFbMwuyezUimbvgXd_1bDJ6_FE_6QbG_lgfkp0PU9c-bUbSolLl85jlLPlVSUplRupycL4sT4xqXgSP3i0DxKtNAij6X1IkYVUGslZDz418-n-u6kkQoCbrM_P_sYv8Hpw8vNIHh0cHy7DG_wlav6mWoHZ8ejKriJxG-u1eqEw-PXSK_MOen9Vuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Batch+and+column+sorption+of+arsenic+onto+iron-impregnated+biochar+synthesized+through+hydrolysis&rft.jtitle=Water+research+%28Oxford%29&rft.au=Hu%2C+Xin&rft.au=Ding%2C+Zhuhong&rft.au=Zimmerman%2C+Andrew+R&rft.au=Wang%2C+Shengsen&rft.date=2015-01-01&rft.eissn=1879-2448&rft.volume=68&rft.spage=206&rft_id=info:doi/10.1016%2Fj.watres.2014.10.009&rft_id=info%3Apmid%2F25462729&rft.externalDocID=25462729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon