Whole genome sequencing revealed genetic diversity, population structure, and selective signature of Panou Tibetan sheep

The detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also provide new insights into phenotypic variation in new varieties and the search for genes associated with important traits. Panou sheep is a cultivated bree...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 24; no. 1; pp. 50 - 15
Main Authors Shi, Huibin, Li, Taotao, Su, Manchun, Wang, Huihui, Li, Qiao, Lang, Xia, Ma, Youji
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 28.01.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also provide new insights into phenotypic variation in new varieties and the search for genes associated with important traits. Panou sheep is a cultivated breed of Tibetan sheep in China with stable genetic performance, consistent appearance and fast growth and development after decades of artificial selection and cultivation. Due to long-term adaptation to the high altitude, cold and hypoxic environment in the plateau area, they may have formed a unique gene pool that is different from other Tibetan sheep breeds. To explore the genetic resources of Panou sheep, we used next-generation sequencing technology for the first time to investigate the genome-wide population structure, genetic diversity, and candidate signatures of positive selection in Panou sheep. Comparative genomic analysis with the closely related species Oula sheep (a native breed of Tibetan sheep in China) was used to screen the population selection signal of Panou sheep. Principal component analysis and neighbor joining tree showed that Panou sheep and Oula sheep had differences in population differentiation. Furthermore, analyses of population structure, they came from the same ancestor, and when K = 2, the two populations could be distinguished. Panou sheep exhibit genetic diversity comparable to Oula sheep, as shown by observed heterozygosity, expected heterozygosity and runs of homozygosity. Genome-wide scanning using the Fst and π ratio methods revealed a list of potentially selected related genes in Panou sheep compared to Oula sheep, including histone deacetylase 9 (HDAC9), protein tyrosine kinase 2 (PTK2), microphthalmia-related transcription factor (MITF), vesicular amine transporter 1 (VAT1), trichohyalin-like 1 (TCHHL1), amine oxidase, copper containing 3 (AOC3), interferon-inducible protein 35 (IFI35). The results suggest that traits related to growth and development and plateau adaptation may be selection targets for the domestication and breeding improvement of Tibetan sheep. This study provides the fundamental footprints for Panou sheep breeding and management.
AbstractList The detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also provide new insights into phenotypic variation in new varieties and the search for genes associated with important traits. Panou sheep is a cultivated breed of Tibetan sheep in China with stable genetic performance, consistent appearance and fast growth and development after decades of artificial selection and cultivation. Due to long-term adaptation to the high altitude, cold and hypoxic environment in the plateau area, they may have formed a unique gene pool that is different from other Tibetan sheep breeds. To explore the genetic resources of Panou sheep, we used next-generation sequencing technology for the first time to investigate the genome-wide population structure, genetic diversity, and candidate signatures of positive selection in Panou sheep. Comparative genomic analysis with the closely related species Oula sheep (a native breed of Tibetan sheep in China) was used to screen the population selection signal of Panou sheep. Principal component analysis and neighbor joining tree showed that Panou sheep and Oula sheep had differences in population differentiation. Furthermore, analyses of population structure, they came from the same ancestor, and when K = 2, the two populations could be distinguished. Panou sheep exhibit genetic diversity comparable to Oula sheep, as shown by observed heterozygosity, expected heterozygosity and runs of homozygosity. Genome-wide scanning using the Fst and Ï ratio methods revealed a list of potentially selected related genes in Panou sheep compared to Oula sheep, including histone deacetylase 9 (HDAC9), protein tyrosine kinase 2 (PTK2), microphthalmia-related transcription factor (MITF), vesicular amine transporter 1 (VAT1), trichohyalin-like 1 (TCHHL1), amine oxidase, copper containing 3 (AOC3), interferon-inducible protein 35 (IFI35). The results suggest that traits related to growth and development and plateau adaptation may be selection targets for the domestication and breeding improvement of Tibetan sheep. This study provides the fundamental footprints for Panou sheep breeding and management.
Abstract Background The detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also provide new insights into phenotypic variation in new varieties and the search for genes associated with important traits. Panou sheep is a cultivated breed of Tibetan sheep in China with stable genetic performance, consistent appearance and fast growth and development after decades of artificial selection and cultivation. Due to long-term adaptation to the high altitude, cold and hypoxic environment in the plateau area, they may have formed a unique gene pool that is different from other Tibetan sheep breeds. To explore the genetic resources of Panou sheep, we used next-generation sequencing technology for the first time to investigate the genome-wide population structure, genetic diversity, and candidate signatures of positive selection in Panou sheep. Results Comparative genomic analysis with the closely related species Oula sheep (a native breed of Tibetan sheep in China) was used to screen the population selection signal of Panou sheep. Principal component analysis and neighbor joining tree showed that Panou sheep and Oula sheep had differences in population differentiation. Furthermore, analyses of population structure, they came from the same ancestor, and when K = 2, the two populations could be distinguished. Panou sheep exhibit genetic diversity comparable to Oula sheep, as shown by observed heterozygosity, expected heterozygosity and runs of homozygosity. Genome-wide scanning using the Fst and π ratio methods revealed a list of potentially selected related genes in Panou sheep compared to Oula sheep, including histone deacetylase 9 (HDAC9), protein tyrosine kinase 2 (PTK2), microphthalmia-related transcription factor (MITF), vesicular amine transporter 1 (VAT1), trichohyalin-like 1 (TCHHL1), amine oxidase, copper containing 3 (AOC3), interferon-inducible protein 35 (IFI35). Conclusions The results suggest that traits related to growth and development and plateau adaptation may be selection targets for the domestication and breeding improvement of Tibetan sheep. This study provides the fundamental footprints for Panou sheep breeding and management.
The detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also provide new insights into phenotypic variation in new varieties and the search for genes associated with important traits. Panou sheep is a cultivated breed of Tibetan sheep in China with stable genetic performance, consistent appearance and fast growth and development after decades of artificial selection and cultivation. Due to long-term adaptation to the high altitude, cold and hypoxic environment in the plateau area, they may have formed a unique gene pool that is different from other Tibetan sheep breeds. To explore the genetic resources of Panou sheep, we used next-generation sequencing technology for the first time to investigate the genome-wide population structure, genetic diversity, and candidate signatures of positive selection in Panou sheep. Comparative genomic analysis with the closely related species Oula sheep (a native breed of Tibetan sheep in China) was used to screen the population selection signal of Panou sheep. Principal component analysis and neighbor joining tree showed that Panou sheep and Oula sheep had differences in population differentiation. Furthermore, analyses of population structure, they came from the same ancestor, and when K = 2, the two populations could be distinguished. Panou sheep exhibit genetic diversity comparable to Oula sheep, as shown by observed heterozygosity, expected heterozygosity and runs of homozygosity. Genome-wide scanning using the Fst and π ratio methods revealed a list of potentially selected related genes in Panou sheep compared to Oula sheep, including histone deacetylase 9 (HDAC9), protein tyrosine kinase 2 (PTK2), microphthalmia-related transcription factor (MITF), vesicular amine transporter 1 (VAT1), trichohyalin-like 1 (TCHHL1), amine oxidase, copper containing 3 (AOC3), interferon-inducible protein 35 (IFI35). The results suggest that traits related to growth and development and plateau adaptation may be selection targets for the domestication and breeding improvement of Tibetan sheep. This study provides the fundamental footprints for Panou sheep breeding and management.
Background The detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also provide new insights into phenotypic variation in new varieties and the search for genes associated with important traits. Panou sheep is a cultivated breed of Tibetan sheep in China with stable genetic performance, consistent appearance and fast growth and development after decades of artificial selection and cultivation. Due to long-term adaptation to the high altitude, cold and hypoxic environment in the plateau area, they may have formed a unique gene pool that is different from other Tibetan sheep breeds. To explore the genetic resources of Panou sheep, we used next-generation sequencing technology for the first time to investigate the genome-wide population structure, genetic diversity, and candidate signatures of positive selection in Panou sheep. Results Comparative genomic analysis with the closely related species Oula sheep (a native breed of Tibetan sheep in China) was used to screen the population selection signal of Panou sheep. Principal component analysis and neighbor joining tree showed that Panou sheep and Oula sheep had differences in population differentiation. Furthermore, analyses of population structure, they came from the same ancestor, and when K = 2, the two populations could be distinguished. Panou sheep exhibit genetic diversity comparable to Oula sheep, as shown by observed heterozygosity, expected heterozygosity and runs of homozygosity. Genome-wide scanning using the Fst and Ï ratio methods revealed a list of potentially selected related genes in Panou sheep compared to Oula sheep, including histone deacetylase 9 (HDAC9), protein tyrosine kinase 2 (PTK2), microphthalmia-related transcription factor (MITF), vesicular amine transporter 1 (VAT1), trichohyalin-like 1 (TCHHL1), amine oxidase, copper containing 3 (AOC3), interferon-inducible protein 35 (IFI35). Conclusions The results suggest that traits related to growth and development and plateau adaptation may be selection targets for the domestication and breeding improvement of Tibetan sheep. This study provides the fundamental footprints for Panou sheep breeding and management. Keywords: Panou Tibetan sheep, Population structure, Positive selection, Fst and Ï ratio
The detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also provide new insights into phenotypic variation in new varieties and the search for genes associated with important traits. Panou sheep is a cultivated breed of Tibetan sheep in China with stable genetic performance, consistent appearance and fast growth and development after decades of artificial selection and cultivation. Due to long-term adaptation to the high altitude, cold and hypoxic environment in the plateau area, they may have formed a unique gene pool that is different from other Tibetan sheep breeds. To explore the genetic resources of Panou sheep, we used next-generation sequencing technology for the first time to investigate the genome-wide population structure, genetic diversity, and candidate signatures of positive selection in Panou sheep.BACKGROUNDThe detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also provide new insights into phenotypic variation in new varieties and the search for genes associated with important traits. Panou sheep is a cultivated breed of Tibetan sheep in China with stable genetic performance, consistent appearance and fast growth and development after decades of artificial selection and cultivation. Due to long-term adaptation to the high altitude, cold and hypoxic environment in the plateau area, they may have formed a unique gene pool that is different from other Tibetan sheep breeds. To explore the genetic resources of Panou sheep, we used next-generation sequencing technology for the first time to investigate the genome-wide population structure, genetic diversity, and candidate signatures of positive selection in Panou sheep.Comparative genomic analysis with the closely related species Oula sheep (a native breed of Tibetan sheep in China) was used to screen the population selection signal of Panou sheep. Principal component analysis and neighbor joining tree showed that Panou sheep and Oula sheep had differences in population differentiation. Furthermore, analyses of population structure, they came from the same ancestor, and when K = 2, the two populations could be distinguished. Panou sheep exhibit genetic diversity comparable to Oula sheep, as shown by observed heterozygosity, expected heterozygosity and runs of homozygosity. Genome-wide scanning using the Fst and π ratio methods revealed a list of potentially selected related genes in Panou sheep compared to Oula sheep, including histone deacetylase 9 (HDAC9), protein tyrosine kinase 2 (PTK2), microphthalmia-related transcription factor (MITF), vesicular amine transporter 1 (VAT1), trichohyalin-like 1 (TCHHL1), amine oxidase, copper containing 3 (AOC3), interferon-inducible protein 35 (IFI35).RESULTSComparative genomic analysis with the closely related species Oula sheep (a native breed of Tibetan sheep in China) was used to screen the population selection signal of Panou sheep. Principal component analysis and neighbor joining tree showed that Panou sheep and Oula sheep had differences in population differentiation. Furthermore, analyses of population structure, they came from the same ancestor, and when K = 2, the two populations could be distinguished. Panou sheep exhibit genetic diversity comparable to Oula sheep, as shown by observed heterozygosity, expected heterozygosity and runs of homozygosity. Genome-wide scanning using the Fst and π ratio methods revealed a list of potentially selected related genes in Panou sheep compared to Oula sheep, including histone deacetylase 9 (HDAC9), protein tyrosine kinase 2 (PTK2), microphthalmia-related transcription factor (MITF), vesicular amine transporter 1 (VAT1), trichohyalin-like 1 (TCHHL1), amine oxidase, copper containing 3 (AOC3), interferon-inducible protein 35 (IFI35).The results suggest that traits related to growth and development and plateau adaptation may be selection targets for the domestication and breeding improvement of Tibetan sheep. This study provides the fundamental footprints for Panou sheep breeding and management.CONCLUSIONSThe results suggest that traits related to growth and development and plateau adaptation may be selection targets for the domestication and breeding improvement of Tibetan sheep. This study provides the fundamental footprints for Panou sheep breeding and management.
BackgroundThe detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also provide new insights into phenotypic variation in new varieties and the search for genes associated with important traits. Panou sheep is a cultivated breed of Tibetan sheep in China with stable genetic performance, consistent appearance and fast growth and development after decades of artificial selection and cultivation. Due to long-term adaptation to the high altitude, cold and hypoxic environment in the plateau area, they may have formed a unique gene pool that is different from other Tibetan sheep breeds. To explore the genetic resources of Panou sheep, we used next-generation sequencing technology for the first time to investigate the genome-wide population structure, genetic diversity, and candidate signatures of positive selection in Panou sheep.ResultsComparative genomic analysis with the closely related species Oula sheep (a native breed of Tibetan sheep in China) was used to screen the population selection signal of Panou sheep. Principal component analysis and neighbor joining tree showed that Panou sheep and Oula sheep had differences in population differentiation. Furthermore, analyses of population structure, they came from the same ancestor, and when K = 2, the two populations could be distinguished. Panou sheep exhibit genetic diversity comparable to Oula sheep, as shown by observed heterozygosity, expected heterozygosity and runs of homozygosity. Genome-wide scanning using the Fst and π ratio methods revealed a list of potentially selected related genes in Panou sheep compared to Oula sheep, including histone deacetylase 9 (HDAC9), protein tyrosine kinase 2 (PTK2), microphthalmia-related transcription factor (MITF), vesicular amine transporter 1 (VAT1), trichohyalin-like 1 (TCHHL1), amine oxidase, copper containing 3 (AOC3), interferon-inducible protein 35 (IFI35).ConclusionsThe results suggest that traits related to growth and development and plateau adaptation may be selection targets for the domestication and breeding improvement of Tibetan sheep. This study provides the fundamental footprints for Panou sheep breeding and management.
ArticleNumber 50
Audience Academic
Author Li, Qiao
Lang, Xia
Su, Manchun
Shi, Huibin
Ma, Youji
Li, Taotao
Wang, Huihui
Author_xml – sequence: 1
  givenname: Huibin
  surname: Shi
  fullname: Shi, Huibin
– sequence: 2
  givenname: Taotao
  surname: Li
  fullname: Li, Taotao
– sequence: 3
  givenname: Manchun
  surname: Su
  fullname: Su, Manchun
– sequence: 4
  givenname: Huihui
  surname: Wang
  fullname: Wang, Huihui
– sequence: 5
  givenname: Qiao
  surname: Li
  fullname: Li, Qiao
– sequence: 6
  givenname: Xia
  surname: Lang
  fullname: Lang, Xia
– sequence: 7
  givenname: Youji
  surname: Ma
  fullname: Ma, Youji
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36707771$$D View this record in MEDLINE/PubMed
BookMark eNp9kl2L1DAUhousuB_6B7yQgjcK2zVJ0ya9EZbFj4EFRVe8DKfpaSdLJxmTdNj996Yzu7qziPSiJXneJ-3pe5wdWGcxy15SckaprN8FymTNC8LKgjSU1wV7kh1RLmjBaM0PHjwfZschXBNChWTVs-ywrAURQtCj7Obn0o2YD2jdCvOAvya02tgh97hBGLGbtzAanXdmgz6YeHuar916GiEaZ_MQ_aTj5PE0B9slwYg6JjIPZrAwb-Suz7-CdVN-ZVqMkDJLxPXz7GkPY8AXd_eT7MfHD1cXn4vLL58WF-eXha6YiIUExnrNCZRCl43kTVkS2vQdQNX2INoOuraqeCIk04RByRlQwbtK9prWRJcn2WLn7Rxcq7U3K_C3yoFR2wXnBwU-fd-ICgBkKwGTinIJVQOkrVlZM2h111ciud7vXOupXWGn0UYP4550f8eapRrcRjVSlo2okuDNncC7NOkQ1coEjeMIFt0UFBOCcNEwNp_1-hF67SZv06hmSoi6loL8pYb0r5SxvUvn6lmqzkXJGy6bqk7U2T-odHW4MjqVqjdpfS_wdi-QmIg3cYApBLX4_m2fffVwKH-mcd-xBMgdoL0LwWOvtInb9qS3MKOiRM11Vrs6q1Rnta2zYinKHkXv7f8J_Qbki_eF
CitedBy_id crossref_primary_10_1016_j_animal_2024_101147
crossref_primary_10_1016_j_gene_2024_148757
crossref_primary_10_1186_s12864_023_09672_z
crossref_primary_10_1016_j_smallrumres_2024_107284
crossref_primary_10_1016_j_smallrumres_2024_107285
crossref_primary_10_3390_ani14020307
crossref_primary_10_3390_life15030444
crossref_primary_10_1016_j_ijbiomac_2024_139192
crossref_primary_10_3389_fgene_2024_1302222
crossref_primary_10_3390_ani14223212
crossref_primary_10_3390_ani15020158
crossref_primary_10_1080_10495398_2023_2298406
crossref_primary_10_1111_mec_17611
crossref_primary_10_1007_s13353_025_00941_z
crossref_primary_10_1016_j_smallrumres_2023_107028
crossref_primary_10_1016_j_foodchem_2025_143977
crossref_primary_10_1186_s40104_024_01125_1
crossref_primary_10_3390_ani14081246
crossref_primary_10_1016_j_jgg_2024_03_015
crossref_primary_10_3389_fvets_2024_1420164
crossref_primary_10_3390_ijms252212083
crossref_primary_10_1371_journal_pone_0313297
crossref_primary_10_1016_j_heliyon_2024_e31455
Cites_doi 10.1093/molbev/msw129
10.1101/gr.107524.110
10.1111/age.13038
10.1101/gr.631202
10.1186/s12864-015-1384-9
10.1038/s41467-017-02809-1
10.1086/519795
10.15252/embr.201745664
10.1093/bioinformatics/btr330
10.1152/ajplung.90329.2008
10.1007/s00018-008-8281-1
10.1210/endo.137.4.8625923
10.1371/journal.pone.0159308
10.3390/genes11121480
10.1038/ng.3748
10.1016/j.livsci.2014.10.015
10.1073/pnas.131198498
10.1016/j.bbrc.2012.05.026
10.1128/MCB.01415-06
10.1371/journal.pone.0065942
10.1007/s11250-013-0420-5
10.1093/bioinformatics/btp324
10.3390/genes12070958
10.1126/science.1170587
10.1016/j.jid.2017.07.446
10.1007/s00262-021-02865-z
10.1038/srep26770
10.1093/molbev/msu136
10.1038/ng.3117
10.1111/age.12634
10.1111/rda.13368
10.1186/1471-2156-13-70
10.1038/onc.2011.425
10.1002/eji.201444563
10.1101/gr.133967.111
10.3168/jds.2012-6435
10.1016/j.livsci.2019.103899
10.1038/s41467-020-16485-1
10.3389/fgene.2019.01025
10.1186/s12864-020-06925-z
10.1016/j.smallrumres.2014.10.003
10.1093/gigascience/giy019
10.1093/molbev/msaa236
10.1017/S1751731118000629
10.1093/molbev/msv071
10.1038/s41598-021-85245-y
10.1093/molbev/msy208
10.1038/s41598-021-81932-y
10.1038/s42003-021-02817-4
10.1073/pnas.76.10.5269
10.3390/genes10080616
10.1093/bioinformatics/btg412
10.1002/gepi.20064
10.1186/s12863-014-0108-5
10.1210/endo.135.5.7525255
10.1093/bioinformatics/bth457
10.1038/s41420-020-00344-5
10.1186/1471-2164-15-834
10.1080/08916934.2020.1864730
10.1101/gad.1338705
10.1016/j.gene.2014.09.031
10.1007/s00441-011-1307-2
10.1111/j.1755-148X.2009.00551.x
10.3389/fgene.2019.00609
10.1186/s12711-020-00546-6
10.1093/genetics/132.2.583
10.1016/j.acthis.2016.01.002
10.1016/j.livsci.2016.04.006
10.1021/bi900675v
10.1186/s12711-018-0421-y
10.1093/genetics/123.3.585
10.1093/molbev/msab353
10.1016/j.cell.2016.08.020
ContentType Journal Article
Copyright 2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12864-023-09146-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 15
ExternalDocumentID oai_doaj_org_article_aaa8b8ae082148a59a0b62362abcdf57
PMC9883975
A734948956
36707771
10_1186_s12864_023_09146_2
Genre Journal Article
GeographicLocations Tibet
China
Gansu China
United States--US
GeographicLocations_xml – name: Tibet
– name: China
– name: Gansu China
– name: United States--US
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c527t-8a22fc40a37c3984933019fdaa5bfa7bdadb554c4082c02a342a174d58fc160c3
IEDL.DBID M48
ISSN 1471-2164
IngestDate Wed Aug 27 01:26:02 EDT 2025
Thu Aug 21 18:38:34 EDT 2025
Fri Jul 11 12:37:31 EDT 2025
Sat Aug 23 12:44:02 EDT 2025
Tue Jun 17 21:37:38 EDT 2025
Tue Jun 10 20:32:50 EDT 2025
Fri Jun 27 05:53:36 EDT 2025
Mon Jul 21 05:42:33 EDT 2025
Thu Apr 24 22:53:48 EDT 2025
Tue Jul 01 00:39:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fst and π ratio
Population structure
Panou Tibetan sheep
Positive selection
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-8a22fc40a37c3984933019fdaa5bfa7bdadb554c4082c02a342a174d58fc160c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-023-09146-2
PMID 36707771
PQID 2777766870
PQPubID 44682
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_aaa8b8ae082148a59a0b62362abcdf57
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9883975
proquest_miscellaneous_2770479227
proquest_journals_2777766870
gale_infotracmisc_A734948956
gale_infotracacademiconefile_A734948956
gale_incontextgauss_ISR_A734948956
pubmed_primary_36707771
crossref_citationtrail_10_1186_s12864_023_09146_2
crossref_primary_10_1186_s12864_023_09146_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-28
PublicationDateYYYYMMDD 2023-01-28
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 9146_CR39
A Abied (9146_CR57) 2020; 11
9146_CR38
JL Han (9146_CR67) 2015; 7
9146_CR31
SY Chun (9146_CR72) 1994; 5
9146_CR32
9146_CR76
9146_CR73
9146_CR35
9146_CR36
9146_CR33
J Cheng (9146_CR75) 2020; 21
9146_CR77
9146_CR78
9146_CR8
M Naval-Sanchez (9146_CR59) 2018; 9
9146_CR5
9146_CR71
C Wei (9146_CR50) 2015; 16
9146_CR6
W Lim (9146_CR46) 2012; 422
S Mastrangelo (9146_CR56) 2014; 15
9146_CR48
9146_CR43
9146_CR40
9146_CR41
9146_CR44
T Getachew (9146_CR49) 2019; 232
9146_CR45
Y La (9146_CR47) 2019; 10
P Boruah (9146_CR74) 2021; 11
D Purfield (9146_CR55) 2012; 13
Z Chen (9146_CR14) 2021; 4
A Alshawi (9146_CR15) 2019; 10
XJ Hu (9146_CR4) 2019; 36
9146_CR10
9146_CR54
M Naval-Sánchez (9146_CR18) 2020; 52
Y Zhang (9146_CR9) 2021; 11
9146_CR13
L Zhang (9146_CR12) 2013; 8
W Kai (9146_CR29) 2010; 16
9146_CR58
9146_CR11
DM Bickhart (9146_CR16) 2012; 22
B Gallone (9146_CR37) 2016; 166
C Wei (9146_CR21) 2016; 6
9146_CR28
9146_CR26
9146_CR27
L-X Du (9146_CR70) 2011
9146_CR1
9146_CR20
9146_CR64
F Bertolini (9146_CR22) 2018; 50
H Tang (9146_CR34) 2005; 28
Z Pan (9146_CR52) 2018; 7
9146_CR65
9146_CR3
9146_CR62
9146_CR63
9146_CR24
9146_CR25
I Andolfo (9146_CR42) 2021; 12
9146_CR66
9146_CR23
P Zhangyuan (9146_CR17) 2016; 38
X Li (9146_CR7) 2020; 11
9146_CR60
F Lv (9146_CR51) 2022; 39
9146_CR61
S Mastrangelo (9146_CR30) 2018; 49
H Ai (9146_CR19) 2014; 15
T Makino (9146_CR68) 2017; 137
T Makino (9146_CR69) 2020; 6
DW Bjelland (9146_CR53) 2013; 96
J Liu (9146_CR2) 2016; 11
References_xml – ident: 9146_CR5
  doi: 10.1093/molbev/msw129
– ident: 9146_CR26
  doi: 10.1101/gr.107524.110
– ident: 9146_CR45
  doi: 10.1111/age.13038
– ident: 9146_CR13
  doi: 10.1101/gr.631202
– volume: 16
  start-page: 194
  year: 2015
  ident: 9146_CR50
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1384-9
– volume: 9
  start-page: 859
  issue: 1
  year: 2018
  ident: 9146_CR59
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02809-1
– ident: 9146_CR28
  doi: 10.1086/519795
– ident: 9146_CR60
  doi: 10.15252/embr.201745664
– ident: 9146_CR27
  doi: 10.1093/bioinformatics/btr330
– ident: 9146_CR44
  doi: 10.1152/ajplung.90329.2008
– ident: 9146_CR48
  doi: 10.1007/s00018-008-8281-1
– ident: 9146_CR71
  doi: 10.1210/endo.137.4.8625923
– volume: 11
  start-page: e0159308
  issue: 7
  year: 2016
  ident: 9146_CR2
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0159308
– volume: 11
  start-page: 1480
  issue: 12
  year: 2020
  ident: 9146_CR57
  publication-title: Genes
  doi: 10.3390/genes11121480
– ident: 9146_CR32
  doi: 10.1038/ng.3748
– ident: 9146_CR58
  doi: 10.1016/j.livsci.2014.10.015
– ident: 9146_CR11
– ident: 9146_CR76
  doi: 10.1073/pnas.131198498
– volume: 422
  start-page: 494
  issue: 3
  year: 2012
  ident: 9146_CR46
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2012.05.026
– volume: 7
  start-page: 8
  year: 2015
  ident: 9146_CR67
  publication-title: Agric Sci China
– ident: 9146_CR77
  doi: 10.1128/MCB.01415-06
– volume: 8
  start-page: e65942
  issue: 6
  year: 2013
  ident: 9146_CR12
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0065942
– volume: 38
  start-page: 1069
  issue: 12
  year: 2016
  ident: 9146_CR17
  publication-title: Hereditas
– ident: 9146_CR1
  doi: 10.1007/s11250-013-0420-5
– ident: 9146_CR25
  doi: 10.1093/bioinformatics/btp324
– volume: 12
  start-page: 958
  issue: 7
  year: 2021
  ident: 9146_CR42
  publication-title: Genes
  doi: 10.3390/genes12070958
– ident: 9146_CR3
  doi: 10.1126/science.1170587
– volume: 137
  start-page: S216
  issue: 10
  year: 2017
  ident: 9146_CR68
  publication-title: J Investig Dermatol
  doi: 10.1016/j.jid.2017.07.446
– ident: 9146_CR61
  doi: 10.1007/s00262-021-02865-z
– volume: 6
  start-page: 26770
  year: 2016
  ident: 9146_CR21
  publication-title: Sci Rep
  doi: 10.1038/srep26770
– ident: 9146_CR36
  doi: 10.1093/molbev/msu136
– ident: 9146_CR41
  doi: 10.1038/ng.3117
– volume: 49
  start-page: 71
  issue: 1
  year: 2018
  ident: 9146_CR30
  publication-title: Anim Genet
  doi: 10.1111/age.12634
– ident: 9146_CR6
  doi: 10.1111/rda.13368
– volume: 13
  start-page: 70
  year: 2012
  ident: 9146_CR55
  publication-title: BMC Genet
  doi: 10.1186/1471-2156-13-70
– ident: 9146_CR65
  doi: 10.1038/onc.2011.425
– ident: 9146_CR63
  doi: 10.1002/eji.201444563
– volume: 22
  start-page: 778
  issue: 4
  year: 2012
  ident: 9146_CR16
  publication-title: Genome Res
  doi: 10.1101/gr.133967.111
– volume: 96
  start-page: 4697
  issue: 7
  year: 2013
  ident: 9146_CR53
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2012-6435
– volume: 232
  start-page: 103899
  year: 2019
  ident: 9146_CR49
  publication-title: Livest Sci
  doi: 10.1016/j.livsci.2019.103899
– volume: 11
  start-page: 2815
  issue: 1
  year: 2020
  ident: 9146_CR7
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16485-1
– ident: 9146_CR24
  doi: 10.3389/fgene.2019.01025
– volume: 21
  start-page: 520
  year: 2020
  ident: 9146_CR75
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-06925-z
– ident: 9146_CR10
  doi: 10.1016/j.smallrumres.2014.10.003
– volume: 7
  start-page: 1
  issue: 4
  year: 2018
  ident: 9146_CR52
  publication-title: GigaScience
  doi: 10.1093/gigascience/giy019
– ident: 9146_CR8
  doi: 10.1093/molbev/msaa236
– ident: 9146_CR31
  doi: 10.1017/S1751731118000629
– ident: 9146_CR20
  doi: 10.1093/molbev/msv071
– volume: 11
  start-page: 5865
  issue: 1
  year: 2021
  ident: 9146_CR74
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-85245-y
– volume: 36
  start-page: 283
  issue: 2
  year: 2019
  ident: 9146_CR4
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msy208
– volume: 11
  start-page: 2466
  issue: 1
  year: 2021
  ident: 9146_CR9
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-81932-y
– volume: 4
  start-page: 1307
  issue: 1
  year: 2021
  ident: 9146_CR14
  publication-title: Commun Biol
  doi: 10.1038/s42003-021-02817-4
– ident: 9146_CR39
  doi: 10.1073/pnas.76.10.5269
– volume: 10
  start-page: 616
  issue: 8
  year: 2019
  ident: 9146_CR47
  publication-title: Genes
  doi: 10.3390/genes10080616
– ident: 9146_CR35
  doi: 10.1093/bioinformatics/btg412
– volume: 28
  start-page: 289
  issue: 4
  year: 2005
  ident: 9146_CR34
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20064
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  ident: 9146_CR56
  publication-title: BMC Genet
  doi: 10.1186/s12863-014-0108-5
– volume: 5
  start-page: 1845
  year: 1994
  ident: 9146_CR72
  publication-title: Endocrinology
  doi: 10.1210/endo.135.5.7525255
– ident: 9146_CR33
  doi: 10.1093/bioinformatics/bth457
– volume: 6
  start-page: 109
  issue: 1
  year: 2020
  ident: 9146_CR69
  publication-title: Cell Death Dis
  doi: 10.1038/s41420-020-00344-5
– volume: 15
  start-page: 834
  year: 2014
  ident: 9146_CR19
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-834
– ident: 9146_CR62
  doi: 10.1080/08916934.2020.1864730
– ident: 9146_CR78
  doi: 10.1101/gad.1338705
– ident: 9146_CR64
  doi: 10.1016/j.gene.2014.09.031
– volume-title: Animal genetic resources in China
  year: 2011
  ident: 9146_CR70
– ident: 9146_CR73
  doi: 10.1007/s00441-011-1307-2
– ident: 9146_CR23
  doi: 10.1111/j.1755-148X.2009.00551.x
– volume: 10
  start-page: 609
  year: 2019
  ident: 9146_CR15
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00609
– volume: 16
  start-page: e164
  year: 2010
  ident: 9146_CR29
  publication-title: Nucleic Acids Res
– volume: 52
  start-page: 27
  issue: 1
  year: 2020
  ident: 9146_CR18
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-020-00546-6
– ident: 9146_CR38
  doi: 10.1093/genetics/132.2.583
– ident: 9146_CR66
  doi: 10.1016/j.acthis.2016.01.002
– ident: 9146_CR54
  doi: 10.1016/j.livsci.2016.04.006
– ident: 9146_CR43
  doi: 10.1021/bi900675v
– volume: 50
  start-page: 57
  issue: 1
  year: 2018
  ident: 9146_CR22
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-018-0421-y
– ident: 9146_CR40
  doi: 10.1093/genetics/123.3.585
– volume: 39
  start-page: 353
  issue: 2
  year: 2022
  ident: 9146_CR51
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msab353
– volume: 166
  start-page: 1397
  issue: 6
  year: 2016
  ident: 9146_CR37
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.020
SSID ssj0017825
Score 2.510264
Snippet The detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also provide new...
Background The detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also...
BackgroundThe detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but also...
Abstract Background The detection of selective traits in different populations can not only reveal current mechanisms of artificial selection for breeding, but...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 50
SubjectTerms Adaptation
Animal husbandry
Animals
Biological diversity
Breeding
Distribution
DNA sequencing
Domestic animals
Domestication
Fst and π ratio
Gene pool
Gene sequencing
Genes
Genetic aspects
Genetic diversity
Genetic resources
Genetic Variation
Genome
Genomes
Genomic analysis
Genomics
Heterozygosity
High altitude
Histone deacetylase
Homozygosity
Hypoxia
Indigenous species
Interferon-inducible protein
Kinases
Livestock
New varieties
Next-generation sequencing
Nucleotide sequencing
Panou Tibetan sheep
Phenotypic variations
Plant breeding
Polymorphism, Single Nucleotide
Population biology
Population differentiation
Population genetics
Population structure
Populations
Positive selection
Principal components analysis
Protein-tyrosine kinase
Proteins
Selection, Genetic
Sheep
Sheep - genetics
Sheep breeds
Software
Tibet
Tyrosine
Vesicular monoamine transporter
Whole Genome Sequencing
Zoological research
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwR6-dqlSiCDzY0m80m2ccqlioooi32LUy-2oLuHd0e6H_vJLt33CLoi_t4mb3Nzkwyk7uZ34-Ql6YTKWjTseAbxaQ2nBkXNYtNarjj0nVt7nf--Ekdn8oPZ-3ZFtVXrgkb4YFHxR0AgHEGIoYqzNyh7YA7DNlKgPMhtaWPHGPe-jA1_X-Aca9dt8gYdTDgLqwkw_jEUFYqJmZhqKD1_7knbwWlecHkVgQ6ukNuT6kjPRynvEtuxP4uuTmSSf66R35-y1S3NIOu_oh0KpHGwEQzSBM-MuSh3LJIw7oWY58uN_xddESSXV3FfQp9oEMhyEFJmks8CvwnXST6GfrFip5cuohZJR0uYlzeJ6dH707eHrOJV4H5VuhrZkCI5CWHRvumMzL_plF3KQC0LoF2AYLDLMNnLmrPBTRSAB5cQmuSrxX3zQOy0y_6-IhQXkfhMGPAPE1KHjxwnzTE0IFqJE-uIvVazdZPoOOZ--K7LYcPo-xoGoumscU0VlTk9eae5Qi58VfpN9l6G8kMl10-QCeykxPZfzlRRV5k29sMiNHniptzWA2Dff_1iz3UGcDH4DGyIq8mobTAd_AwNTCgJjKG1kxybyaJK9bPh9cuZqcdY7BC46UUbp8Veb4ZznfmKrg-LlZFJjMCCIETfjh65Oa9MxAffkNdET3z1Zli5iP95UXBE-8MZsm6ffw_NPmE3BJlmdVMmD2yg64bn2Ladu2elRX6G67gQLI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA86EXwRv1edEkXwwYWl6UfSJ5nimIIiuuF9C_ncBtpe113Q_95z2rSuCLuPzWlvk3OSc0568vsR8lI1InqpGuZdUbNSKs6UDZKFIhbc8tI2FZ53_vS5PjwuP66qVdpw61NZ5bQmDgu17xzuke8JCb-6BvN6s_7FkDUKv64mCo3r5AZCl6FVy9WccOXg_arpoIyq93pYi-uSgZdi4CXLmomFMxow-_9fmS-5pmXZ5CU_dHCH3E4BJN0fNX6XXAvtPXJzpJT8c5_8_o6EtxShV38GmgqlwT1RhGqCv_TYhAcXqZ8qMnbpembxoiOe7OY87FLTetoPNDkgSbHQYwABpV2kX0zbbejRmQ0QW9L-NIT1A3J88P7o3SFL7ArMVUJeMGWEiK7kppCuaFSJOxt5E70xlY1GWm-8hVjDISO148IUpTCQvvhKRZfX3BUPyVbbtWGbUJ4HYSFugGitLLl3hrsoTfCNqYuSR5uRfBpm7RL0ODJg_NBDCqJqPapGg2r0oBotMvJ6vmc9Am9cKf0WtTdLImj2cKE7P9FpDmpjjLLKBOgQJIGmagy3EP3VwljnYyUz8gJ1rxEWo8W6mxOz6Xv94dtXvS8RxkdBMpmRV0kodtAHZ9IxBhgJRNJaSO4sJGHeumXzZGI6rRu9_mflGXk-N-OdWAvXhm4zyCAvgBDwwo9Gi5z7jXB88IQ8I3Jhq4uBWba0Z6cDqnijIFaW1eOrX-sJuSWGCZQzoXbIFhhleAph2YV9Nsy9vyZkN5o
  priority: 102
  providerName: ProQuest
Title Whole genome sequencing revealed genetic diversity, population structure, and selective signature of Panou Tibetan sheep
URI https://www.ncbi.nlm.nih.gov/pubmed/36707771
https://www.proquest.com/docview/2777766870
https://www.proquest.com/docview/2770479227
https://pubmed.ncbi.nlm.nih.gov/PMC9883975
https://doaj.org/article/aaa8b8ae082148a59a0b62362abcdf57
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9RAEN8gRMOL8dsqXlZj4oNU2-22u30wBgwETSAEucjbZr8KJNieVy6B_96ZbXvSiL7ezt7d7szszLSzvx8hb2XJKidkGTubFTEXMoml8SL2WZUlJuGmzPG-8_5BsTfl307ykxUy0B31G9jeWtohn9R0fvHh6tf1Z3D4T8HhZfGxhTO24DFEnxiiHy9iOJLXIDIJZDTY53_eKkA0zIeLM7fOWyf3ENBMCJGO4lSA8__70L4RtcYdlTdC1O4Dcr_PLelWZwwPyYqvH5G7Hdvk9WNy9QO5cCmisv70tO-hhshFEcUJftLhEN5ppG5o1tiksyXBF-2gZhdzv0l17WgbGHRAkmIPSMAHpU1FD3XdLOjxufGQdtL2zPvZEzLd3Tn-shf3xAuxzZm4jKVmrLI80ZmwWSk5PvRIy8ppnZtKC-O0M5CGWCSrtgnTGWcaKhuXy8qmRWKzp2S1bmr_nNAk9cxASgGJHOeJszqxldDelbrIeFKZiKTDNivbo5IjOcaFCtWJLFSnJQVaUkFLikXk_XLOrMPk-K_0NmpvKYl42uGDZn6qevdUWmtppPawIKgPdV7qxEBiWDBtrKtyEZE3qHuFiBk1tuSc6kXbqq_fj9SWQIQfCXVmRN71QlUDa7C6v-EAO4EgWyPJjZEkuLQdDw8mpgaPUAysUhQFnK8Reb0cxpnYJlf7ZhFkkDKAMfjDzzqLXK57MOyIiJGtjjZmPFKfnwXA8VJCGi3yF__8zpdknQU3SmMmN8gq2KN_BcnapZmQO-JETMja9s7B4dEkPPKYBK_8Df5FPfs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEYIXxE2ggEEgHmhUxznsPCBUjmqXHkKwFftmfKWtBMnSdAX9U_xGZnLRCKlv3cf1JBt7Zjwz2fH3EfJc5rxwQuahs3EWJkKyUBovQh8XMTMsMXmK551397LJfvJxns5XyJ_-LAy2VfZ7YrNRu8riO_INLuCTZWBebxY_Q2SNwn9XewqN1iy2_ekvKNnq19P3oN8XnG99mL2bhB2rQGhTLk5CqTkvbMJ0LGycywQr-igvnNapKbQwTjsDMdYiE7NlXMcJ15C2u1QWNsqYjeG-l8hlCLwMiz0xHwq8CKJt2h_MkdlGDXt_loQQFUOIykkW8lHwazgC_o8EZ0LhuE3zTNzbukGudwkr3Wwt7CZZ8eUtcqWlsDy9TX5_RYJdilCvPzztGrMhHFKEhoKfdDiEByWp6ztA1uliYA2jLX7t8tivU106Wje0PCBJsbGkAR2lVUE_6bJa0tmR8ZDL0vrQ-8Udsn8h636XrJZV6e8TyiLPDeQpkB0mCXNWM1sI7V2uszhhhQlI1C-zsh3UOTJufFdNySMz1apGgWpUoxrFA_JquGbRAn2cK_0WtTdIIkh380V1fKA6n1daa2mk9jAhKDp1mmtmINvMuDbWFakIyDPUvUIYjhL7fA70sq7V9MtntSkQNkhC8RqQl51QUcEcrO6OTcBKIHLXSHJtJAn7hB0P9yamun2qVv-8KiBPh2G8EnvvSl8tGxnkIeAcHvhea5HDvBH-D-4QBUSMbHW0MOOR8uiwQTHPJeTmIn1w_mM9IVcns90dtTPd235IrvHGmaKQyzWyCgbqH0FKeGIeN35IybeLdvy_aQF0Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole+genome+sequencing+revealed+genetic+diversity%2C+population+structure%2C+and+selective+signature+of+Panou+Tibetan+sheep&rft.jtitle=BMC+genomics&rft.au=Shi%2C+Huibin&rft.au=Li%2C+Taotao&rft.au=Su%2C+Manchun&rft.au=Wang%2C+Huihui&rft.date=2023-01-28&rft.eissn=1471-2164&rft.volume=24&rft.issue=1&rft.spage=50&rft_id=info:doi/10.1186%2Fs12864-023-09146-2&rft_id=info%3Apmid%2F36707771&rft.externalDocID=36707771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon