Neuregulin-1 converts reactive astrocytes toward oligodendrocyte lineage cells via upregulating the PI3K-AKT-mTOR pathway to repair spinal cord injury

[Display omitted] •TNF-α treatment induces dedifferentiation of primary rat spinal cord astrocytes.•Nrg1 converts reactive astrocytes toward oligodendrocyte lineage cells in vitro and in vivo.•Nrg1 upregulates PI3K-AKT-mTOR signaling pathway in astrocytes.•Nrg1 repairs SCI by enhancing remyelination...

Full description

Saved in:
Bibliographic Details
Published inBiomedicine & pharmacotherapy Vol. 134; p. 111168
Main Authors Ding, Zhenfei, Dai, Ce, Zhong, Lin, Liu, Rui, Gao, Weilu, Zhang, Hui, Yin, Zongsheng
Format Journal Article
LanguageEnglish
Published France Elsevier Masson SAS 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •TNF-α treatment induces dedifferentiation of primary rat spinal cord astrocytes.•Nrg1 converts reactive astrocytes toward oligodendrocyte lineage cells in vitro and in vivo.•Nrg1 upregulates PI3K-AKT-mTOR signaling pathway in astrocytes.•Nrg1 repairs SCI by enhancing remyelination, axonal preservation, locomotor recovery and inhibiting astrogliosis. Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance for remyelination. Conversion of reactive astrocytes with stem cell potential to oligodendrocytes is proposed as an innovative strategy for SCI repair. Neuregulin-1 (Nrg1) plays an essential role in the differentiation of oligodendrocytes. Therefore, it's a potential treatment for demyelination in SCI that using Nrg1 to drive reactive astrocytes toward oligodendrocyte lineage cells. In this study, tumor necrosis factor-α (TNF-α) was used to induce dedifferentiation of primary rat spinal cord astrocytes into reactive astrocytes and Nrg1 was used to induce astrocytes in vitro and in vivo. The results showed that astrocytes treated with TNF-α expressed immaturity markers CD44 and Musashi1 at mRNA and protein levels, indicating that TNF-α induced the stem cell state of astrocytes. Nrg1 induced reactive astrocytes to express oligodendrocyte markers PDGFR-α and O4 at mRNA and protein levels, indicating that Nrg1 directly converts reactive astrocytes toward oligodendrocyte lineage cells. Moreover, upregulation of PI3K-AKT-mTOR signaling activation in response to Nrg1 was observed. In rats with SCI, intrathecal treatment with Nrg1 converted reactive astrocytes to oligodendrocyte lineage cells, inhibited astrogliosis, promoted remyelination, protected axons and eventually improved BBB score. All the biological effects of Nrg1 were significantly reversed by the co-administration of Nrg1 and ErbB inhibitor, suggesting that Nrg1 functioned through the receptor ErbB. Our findings indicate that Nrg1 is sufficient to trans-differentiate reactive astrocytes to oligodendrocytes via the PI3K-AKT-mTOR signaling pathway and repair SCI. Delivery of Nrg1 for the remyelination processes could be a promising strategy for spinal cord repair.
AbstractList [Display omitted] •TNF-α treatment induces dedifferentiation of primary rat spinal cord astrocytes.•Nrg1 converts reactive astrocytes toward oligodendrocyte lineage cells in vitro and in vivo.•Nrg1 upregulates PI3K-AKT-mTOR signaling pathway in astrocytes.•Nrg1 repairs SCI by enhancing remyelination, axonal preservation, locomotor recovery and inhibiting astrogliosis. Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance for remyelination. Conversion of reactive astrocytes with stem cell potential to oligodendrocytes is proposed as an innovative strategy for SCI repair. Neuregulin-1 (Nrg1) plays an essential role in the differentiation of oligodendrocytes. Therefore, it's a potential treatment for demyelination in SCI that using Nrg1 to drive reactive astrocytes toward oligodendrocyte lineage cells. In this study, tumor necrosis factor-α (TNF-α) was used to induce dedifferentiation of primary rat spinal cord astrocytes into reactive astrocytes and Nrg1 was used to induce astrocytes in vitro and in vivo. The results showed that astrocytes treated with TNF-α expressed immaturity markers CD44 and Musashi1 at mRNA and protein levels, indicating that TNF-α induced the stem cell state of astrocytes. Nrg1 induced reactive astrocytes to express oligodendrocyte markers PDGFR-α and O4 at mRNA and protein levels, indicating that Nrg1 directly converts reactive astrocytes toward oligodendrocyte lineage cells. Moreover, upregulation of PI3K-AKT-mTOR signaling activation in response to Nrg1 was observed. In rats with SCI, intrathecal treatment with Nrg1 converted reactive astrocytes to oligodendrocyte lineage cells, inhibited astrogliosis, promoted remyelination, protected axons and eventually improved BBB score. All the biological effects of Nrg1 were significantly reversed by the co-administration of Nrg1 and ErbB inhibitor, suggesting that Nrg1 functioned through the receptor ErbB. Our findings indicate that Nrg1 is sufficient to trans-differentiate reactive astrocytes to oligodendrocytes via the PI3K-AKT-mTOR signaling pathway and repair SCI. Delivery of Nrg1 for the remyelination processes could be a promising strategy for spinal cord repair.
Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance for remyelination. Conversion of reactive astrocytes with stem cell potential to oligodendrocytes is proposed as an innovative strategy for SCI repair. Neuregulin-1 (Nrg1) plays an essential role in the differentiation of oligodendrocytes. Therefore, it's a potential treatment for demyelination in SCI that using Nrg1 to drive reactive astrocytes toward oligodendrocyte lineage cells. In this study, tumor necrosis factor-α (TNF-α) was used to induce dedifferentiation of primary rat spinal cord astrocytes into reactive astrocytes and Nrg1 was used to induce astrocytes in vitro and in vivo. The results showed that astrocytes treated with TNF-α expressed immaturity markers CD44 and Musashi1 at mRNA and protein levels, indicating that TNF-α induced the stem cell state of astrocytes. Nrg1 induced reactive astrocytes to express oligodendrocyte markers PDGFR-α and O4 at mRNA and protein levels, indicating that Nrg1 directly converts reactive astrocytes toward oligodendrocyte lineage cells. Moreover, upregulation of PI3K-AKT-mTOR signaling activation in response to Nrg1 was observed. In rats with SCI, intrathecal treatment with Nrg1 converted reactive astrocytes to oligodendrocyte lineage cells, inhibited astrogliosis, promoted remyelination, protected axons and eventually improved BBB score. All the biological effects of Nrg1 were significantly reversed by the co-administration of Nrg1 and ErbB inhibitor, suggesting that Nrg1 functioned through the receptor ErbB. Our findings indicate that Nrg1 is sufficient to trans-differentiate reactive astrocytes to oligodendrocytes via the PI3K-AKT-mTOR signaling pathway and repair SCI. Delivery of Nrg1 for the remyelination processes could be a promising strategy for spinal cord repair.
Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance for remyelination. Conversion of reactive astrocytes with stem cell potential to oligodendrocytes is proposed as an innovative strategy for SCI repair. Neuregulin-1 (Nrg1) plays an essential role in the differentiation of oligodendrocytes. Therefore, it's a potential treatment for demyelination in SCI that using Nrg1 to drive reactive astrocytes toward oligodendrocyte lineage cells. In this study, tumor necrosis factor-α (TNF-α) was used to induce dedifferentiation of primary rat spinal cord astrocytes into reactive astrocytes and Nrg1 was used to induce astrocytes in vitro and in vivo. The results showed that astrocytes treated with TNF-α expressed immaturity markers CD44 and Musashi1 at mRNA and protein levels, indicating that TNF-α induced the stem cell state of astrocytes. Nrg1 induced reactive astrocytes to express oligodendrocyte markers PDGFR-α and O4 at mRNA and protein levels, indicating that Nrg1 directly converts reactive astrocytes toward oligodendrocyte lineage cells. Moreover, upregulation of PI3K-AKT-mTOR signaling activation in response to Nrg1 was observed. In rats with SCI, intrathecal treatment with Nrg1 converted reactive astrocytes to oligodendrocyte lineage cells, inhibited astrogliosis, promoted remyelination, protected axons and eventually improved BBB score. All the biological effects of Nrg1 were significantly reversed by the co-administration of Nrg1 and ErbB inhibitor, suggesting that Nrg1 functioned through the receptor ErbB. Our findings indicate that Nrg1 is sufficient to trans-differentiate reactive astrocytes to oligodendrocytes via the PI3K-AKT-mTOR signaling pathway and repair SCI. Delivery of Nrg1 for the remyelination processes could be a promising strategy for spinal cord repair.Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance for remyelination. Conversion of reactive astrocytes with stem cell potential to oligodendrocytes is proposed as an innovative strategy for SCI repair. Neuregulin-1 (Nrg1) plays an essential role in the differentiation of oligodendrocytes. Therefore, it's a potential treatment for demyelination in SCI that using Nrg1 to drive reactive astrocytes toward oligodendrocyte lineage cells. In this study, tumor necrosis factor-α (TNF-α) was used to induce dedifferentiation of primary rat spinal cord astrocytes into reactive astrocytes and Nrg1 was used to induce astrocytes in vitro and in vivo. The results showed that astrocytes treated with TNF-α expressed immaturity markers CD44 and Musashi1 at mRNA and protein levels, indicating that TNF-α induced the stem cell state of astrocytes. Nrg1 induced reactive astrocytes to express oligodendrocyte markers PDGFR-α and O4 at mRNA and protein levels, indicating that Nrg1 directly converts reactive astrocytes toward oligodendrocyte lineage cells. Moreover, upregulation of PI3K-AKT-mTOR signaling activation in response to Nrg1 was observed. In rats with SCI, intrathecal treatment with Nrg1 converted reactive astrocytes to oligodendrocyte lineage cells, inhibited astrogliosis, promoted remyelination, protected axons and eventually improved BBB score. All the biological effects of Nrg1 were significantly reversed by the co-administration of Nrg1 and ErbB inhibitor, suggesting that Nrg1 functioned through the receptor ErbB. Our findings indicate that Nrg1 is sufficient to trans-differentiate reactive astrocytes to oligodendrocytes via the PI3K-AKT-mTOR signaling pathway and repair SCI. Delivery of Nrg1 for the remyelination processes could be a promising strategy for spinal cord repair.
ArticleNumber 111168
Author Liu, Rui
Ding, Zhenfei
Zhang, Hui
Dai, Ce
Yin, Zongsheng
Zhong, Lin
Gao, Weilu
Author_xml – sequence: 1
  givenname: Zhenfei
  surname: Ding
  fullname: Ding, Zhenfei
– sequence: 2
  givenname: Ce
  surname: Dai
  fullname: Dai, Ce
– sequence: 3
  givenname: Lin
  surname: Zhong
  fullname: Zhong, Lin
– sequence: 4
  givenname: Rui
  surname: Liu
  fullname: Liu, Rui
– sequence: 5
  givenname: Weilu
  surname: Gao
  fullname: Gao, Weilu
– sequence: 6
  givenname: Hui
  surname: Zhang
  fullname: Zhang, Hui
– sequence: 7
  givenname: Zongsheng
  surname: Yin
  fullname: Yin, Zongsheng
  email: anhyzs@126.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33395598$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1qGzEUhUVJaZy0b1CKlt2MK41G81NKIYT-hISmFHctrjV3bLljaSJpHPwied7InWSTjbURXM75LvecM3JinUVC3nM254yXnzbzpXHDGuY5y9MovbJ-RWa8kSwrGatOyIxVUmRC5PkpOQthwxiTpajfkFMhRCNlU8_Iwy8cPa7G3tiMU-3sDn0M1CPoaHZIIUTv9D5ioNHdg2-p683KtWjbaU6TE2GFVGPfB7ozQMfhPxGisSsa10h_X4nr7OJ6kW0Xt3_oAHF9D_vES2sGMJ6GwVjo0_aEN3Yz-v1b8rqDPuC7p_-c_P3-bXH5M7u5_XF1eXGTaZlXMavz5nBRVehKdoVoWJ0jIpesq0vZatYVbQetBl4IANZJ4KxD6OQS6ornshbn5OPEHby7GzFEtTXhcAlYdGNQeZEibEpeVEn64Uk6LrfYqsGbLfi9es4yCT5PAu1dCB47pU1MITgbPZhecaYOxamNmopTh-LUVFwyFy_Mz_wjtq-TDVNIO4NeBW3QamyNRx1V68wxwJcXAJ0KNRr6f7g_bn8E3yXKrA
CitedBy_id crossref_primary_10_1016_j_bbih_2022_100556
crossref_primary_10_12677_ACM_2022_1291261
crossref_primary_10_1007_s12035_024_04425_9
crossref_primary_10_1186_s10020_022_00478_5
crossref_primary_10_3390_jcm11226685
crossref_primary_10_3389_fnins_2022_884667
crossref_primary_10_34133_bmr_0020
crossref_primary_10_1007_s00210_024_03496_8
crossref_primary_10_1007_s12035_024_03939_6
crossref_primary_10_1155_2021_9921534
crossref_primary_10_1016_j_neuropharm_2024_109929
crossref_primary_10_1016_j_expneurol_2022_114239
crossref_primary_10_3389_fphar_2022_934971
crossref_primary_10_1002_advs_202301352
crossref_primary_10_4103_NRR_NRR_D_24_00190
crossref_primary_10_3389_fphar_2022_945206
crossref_primary_10_12677_BP_2022_124023
crossref_primary_10_3390_ijms24108616
crossref_primary_10_1002_dneu_22863
crossref_primary_10_1021_acsabm_3c00876
crossref_primary_10_1002_fsn3_4296
crossref_primary_10_1248_bpb_b23_00603
crossref_primary_10_3389_fncel_2023_1237641
crossref_primary_10_4103_NRR_NRR_D_23_01756
crossref_primary_10_1007_s12010_024_05153_5
crossref_primary_10_1016_j_biopha_2023_114905
crossref_primary_10_4103_1673_5374_380893
crossref_primary_10_3389_fncel_2022_1005399
crossref_primary_10_1016_j_expneurol_2023_114323
crossref_primary_10_31083_j_jin2204096
crossref_primary_10_3390_cimb44050149
crossref_primary_10_3171_2022_1_SPINE211573
crossref_primary_10_3390_cells13121024
crossref_primary_10_3390_ijms25179712
Cites_doi 10.1038/nm.3664
10.1083/jcb.200104025
10.1038/nrn2978
10.1172/JCI94158
10.1016/j.ydbio.2004.08.018
10.1523/JNEUROSCI.5524-09.2011
10.1016/j.brainres.2012.05.044
10.1089/neu.2010.1597
10.1016/S0959-4388(00)00210-5
10.1159/000017435
10.1093/brain/awn080
10.1006/exnr.2001.7729
10.1089/0897715041651015
10.1016/j.pneurobio.2013.11.002
10.1002/glia.20753
10.1073/pnas.96.2.731
10.1038/nature09614
10.1016/j.schres.2011.04.021
10.1007/s12264-014-1517-1
10.1093/hmg/ddy420
10.1007/s00401-009-0619-8
10.1523/JNEUROSCI.3547-03.2004
10.1038/srep22490
10.1089/neu.1995.12.1
10.1007/s12035-012-8287-4
10.1097/00005072-199111000-00009
10.1097/00001756-199410000-00011
10.1007/s13311-011-0033-5
10.25259/SNI_568_2019
10.1007/s10571-008-9337-3
10.1016/j.neuroscience.2017.08.027
10.1038/nrneurol.2010.37
10.1016/j.brainresrev.2004.12.034
10.1016/j.jconrel.2017.06.030
10.1073/pnas.0709002105
10.1046/j.1471-4159.2003.01661.x
10.1186/s13287-020-01703-w
10.2147/NDT.S228417
10.1371/journal.pone.0053109
10.1007/s004010051077
10.1016/j.neures.2009.12.013
10.1016/j.expneurol.2006.04.030
10.1016/j.bcp.2009.09.014
10.1002/(SICI)1098-1136(20000115)29:2<104::AID-GLIA2>3.0.CO;2-2
10.1002/stem.3107
10.1007/s12035-015-9428-3
10.1002/glia.20480
10.1007/s12035-015-9296-x
10.1523/JNEUROSCI.0219-10.2010
10.1016/j.pneurobio.2014.02.006
10.1002/jcp.10295
10.1016/j.stem.2013.12.001
10.1016/j.neulet.2012.05.048
10.1242/dev.117.2.525
10.1074/jbc.M111.251538
10.1083/jcb.201307057
10.1111/ejn.12268
10.1089/wound.2019.1046
10.1016/j.expneurol.2004.05.038
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.biopha.2020.111168
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1950-6007
ExternalDocumentID 33395598
10_1016_j_biopha_2020_111168
S0753332220313615
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABMAC
ABMZM
ABWVN
ABXDB
ABZDS
ACDAQ
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OD~
OGGZJ
OK1
OO0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SDP
SEM
SES
SEW
SPT
SSH
SSP
SSZ
T5K
VH1
WUQ
Z5R
~02
~G-
0SF
6I.
AACTN
AAFTH
AAIAV
AATCM
ABLVK
ABYKQ
AFCTW
AFKWA
AFPKN
AJBFU
AJOXV
AMFUW
EFLBG
GROUPED_DOAJ
LCYCR
NCXOZ
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c527t-829563874c75f439082eee150f865dc0f4dfadca143aa0f5a10feaf5ba8712583
IEDL.DBID .~1
ISSN 0753-3322
1950-6007
IngestDate Tue Aug 05 11:15:05 EDT 2025
Thu Apr 03 07:06:49 EDT 2025
Tue Jul 01 04:12:53 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Fri Feb 23 02:43:24 EST 2024
Tue Aug 26 16:37:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords df
OPC
IHC
LFB
WB
Spinal cord injury
Neuregulin-1
PI3K
Oligodendrocyte
NF-H
mTOR
CCK-8
MBP
IF
Remyelination
PBS
EGF
qRT-PCR
DAPI
Nrg1
GFAP
TNF-α
SCI
ErbBI
GAPDH
Reactive astrocyte
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-829563874c75f439082eee150f865dc0f4dfadca143aa0f5a10feaf5ba8712583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0753332220313615
PMID 33395598
PQID 2475396147
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2475396147
pubmed_primary_33395598
crossref_citationtrail_10_1016_j_biopha_2020_111168
crossref_primary_10_1016_j_biopha_2020_111168
elsevier_sciencedirect_doi_10_1016_j_biopha_2020_111168
elsevier_clinicalkey_doi_10_1016_j_biopha_2020_111168
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
2021-Feb
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle Biomedicine & pharmacotherapy
PublicationTitleAlternate Biomed Pharmacother
PublicationYear 2021
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Plemel, Keough, Duncan, Sparling, Yong, Stys, Tetzlaff (bib0025) 2014; 117
Zhida, Yuan, Chen, Zhu, Qiu, Zhu, Huang, He (bib0170) 2011; 28
Oki, Kaneko, Kanki, Imai, Suzuki, Sawamoto, Okano (bib0225) 2010; 66
Almad, Sahinkaya, McTigue (bib0020) 2011; 8
Guo, Zhang, Wu, Chen, Wang, Chen (bib0100) 2014; 14
Matsumoto, Imagama, Hirano, Ohgomori, Natori, Kobayashi, Muramoto, Ishiguro, Kadomatsu (bib0235) 2012; 520
Forouzanfar, Lachinani, Dormiani, Nasr-Esfahani, Gure, Ghaedi (bib0220) 2020; 11
Girgrah, Letarte, Becker, Cruz, Theriault, Moscarello (bib0205) 1991; 50
Goebbels, Oltrogge, Kemper, Heilmann, Bormuth, Wolfer, Wichert, Mobius, Liu, Lappe-Siefke, Rossner, Groszer, Suter, Frahm, Boretius, Nave (bib0060) 2010; 30
Xiang, Wang, Xiong, Chen (bib0095) 2016; 6
Gauthier, Kosciuczyk, Tapley, Karimiabdolrezaee (bib0065) 2013; 38
Pringle, Richardson (bib0250) 1993; 117
Luyt, Varadi, Molnar (bib0135) 2003; 84
Zhou, Guan, Xu, Zhao, Zhang, Zhang, Mao, Cui (bib0010) 2019; 8
Naruse, Shibasaki, Yokoyama, Kurachi, Ishizaki (bib0195) 2013; 8
Kataria, Alizadeh, Shahriary, Saboktakin, Henrie, Santhosh, Thliveris, Karimi-Abdolrezaee (bib0040) 2017
Fledrich, Stassart, Klink, Rasch, Prukop, Haag, Czesnik, Kungl, Abdelaal, Keric, Stadelmann, Bruck, Nave, Sereda (bib0275) 2014; 20
Irvine, Blakemore (bib0295) 2008; 131
Hachem, Mothe, Tator (bib0145) 2020; 38
Buffo, Rolando, Ceruti (bib0180) 2010; 79
Sofroniew, Vinters (bib0070) 2010; 119
Taveggia, Feltri, Wrabetz (bib0260) 2010; 6
Heller, Ghidinelli, Voelkl, Einheber, Smith, Grund, Morahan, Chandler, Kalaydjieva, Giancotti, King, Fejes-Toth, Fejes-Toth, Feltri, Lang, Salzer (bib0265) 2014; 204
Li, Blakemore (bib0130) 2004; 21
Robel, Berninger, Gotz (bib0075) 2011; 12
Cassiani-Ingoni, Coksaygan, Xue, Reichert-Scrivner, Wiendl, Rao, Magnus (bib0185) 2006; 201
Santhosh, Alizadeh, Karimi-Abdolrezaee (bib0300) 2017; 261
Faulkner, Herrmann, Woo, Tansey, Doan, Sofroniew (bib0160) 2004; 24
Herrera, Yang, Zhang, Proschel, Tresco, Duncan, Luskin, Mayer-Proschel (bib0105) 2001; 171
Talbott, Loy, Liu, Qiu, Bunge, Rao, Whittemore (bib0155) 2005; 192
Gabel, Koncina, Dorban, Heurtaux, Birck, Glaab, Michelucci, Heuschling, Grandbarbe (bib0115) 2016; 53
Wang, Cheng, He, Zheng, Kim, Whittemore, Cao (bib0165) 2011; 31
Huang, Sheng (bib0175) 2015; 31
Xu, Lv, Zheng, Li, Gao, Sun (bib0270) 2012; 1467
Buffo, Rite, Tripathi, Lepier, Colak, Horn, Mori, Gotz (bib0085) 2008; 105
Basso, Beattie, Bresnahan (bib0120) 1995; 12
Liu, Han, Wu, Tuohy, Xue, Cai, Back, Sherman, Fischer, Rao (bib0200) 2004; 276
Belin, Ornaghi, Shackleford, Wang, Scapin, Lopez-Anido, Silvestri, Robertson, Williamson, Ishii, Taveggia, Svaren, Bansal, Schwab, Nave, Fratta, D’Antonio, Poitelon, Feltri, Wrabetz (bib0290) 2019; 28
De, Bribián (bib0015) 2005; 49
Adlkofer, Lai (bib0030) 2015; 29
Srivastava, Diba, Dean, Banine, Shaver, Hagen, Gong, Su, Emery, Marks, Harris, Baggenstoss, Weigel, Sherman, Back (bib0280) 2018; 128
Yang, Cheng, Li, Yao, Ju (bib0080) 2009; 29
Clarke, Shetty, Bradley, Turner (bib0090) 1994; 5
Katsel, Tan, Abazyan, Davis, Ross, Pletnikov, Haroutunian (bib0255) 2011; 130
Park, Miller, Krane, Vartanian (bib0035) 2001; 154
Karimi-Abdolrezaee, Billakanti (bib0150) 2012; 46
Birchmeier, Nave (bib0240) 2008; 56
Wang, Colognato, Ffrench-Constant (bib0045) 2007; 55
Buonanno, Fischbach (bib0125) 2001; 11
Nave (bib0050) 2010; 468
Luo, Prior, He, Hu, Tang, Shen, Yadav, Kiryu-Seo, Miller, Trapp, Yan (bib0055) 2011; 286
Botez, Probst, Ipsen, Tolnay (bib0210) 1999; 98
Speciale, Ruzzante, Calabrese, Saresella, Taramelli, Mariani, Bava, Longhi, Ferrante (bib0230) 2003; 196
Kaneko, Sakakibara, Imai, Suzuki, Nakamura, Sawamoto, Ogawa, Toyama, Miyata, Okano (bib0215) 2000; 22
Wang, Hua, Niu, Sun, Zhang, Li, Zhang, Li (bib0285) 2019; 15
Silva, Sousa, Reis, Salgado (bib0005) 2014; 114
Zhao, Wang, Zhou, Nan, Guo, Kou, Wang, Xia, Zhang (bib0190) 2017; 362
Shah, Peterson, Yilmaz, Halalmeh, Moisi (bib0140) 2020; 11
Michelucci, Bithell, Burney, Johnston, Wong, Teng, Desai, Gumbleton, Anderson, Stanton, Williams, Buckley (bib0110) 2016; 53
Vartanian, Fischbach, Miller (bib0245) 1999; 96
Oki (10.1016/j.biopha.2020.111168_bib0225) 2010; 66
Liu (10.1016/j.biopha.2020.111168_bib0200) 2004; 276
Faulkner (10.1016/j.biopha.2020.111168_bib0160) 2004; 24
De (10.1016/j.biopha.2020.111168_bib0015) 2005; 49
Goebbels (10.1016/j.biopha.2020.111168_bib0060) 2010; 30
Speciale (10.1016/j.biopha.2020.111168_bib0230) 2003; 196
Li (10.1016/j.biopha.2020.111168_bib0130) 2004; 21
Karimi-Abdolrezaee (10.1016/j.biopha.2020.111168_bib0150) 2012; 46
Birchmeier (10.1016/j.biopha.2020.111168_bib0240) 2008; 56
Cassiani-Ingoni (10.1016/j.biopha.2020.111168_bib0185) 2006; 201
Luo (10.1016/j.biopha.2020.111168_bib0055) 2011; 286
Srivastava (10.1016/j.biopha.2020.111168_bib0280) 2018; 128
Yang (10.1016/j.biopha.2020.111168_bib0080) 2009; 29
Buonanno (10.1016/j.biopha.2020.111168_bib0125) 2001; 11
Belin (10.1016/j.biopha.2020.111168_bib0290) 2019; 28
Almad (10.1016/j.biopha.2020.111168_bib0020) 2011; 8
Silva (10.1016/j.biopha.2020.111168_bib0005) 2014; 114
Basso (10.1016/j.biopha.2020.111168_bib0120) 1995; 12
Naruse (10.1016/j.biopha.2020.111168_bib0195) 2013; 8
Botez (10.1016/j.biopha.2020.111168_bib0210) 1999; 98
Santhosh (10.1016/j.biopha.2020.111168_bib0300) 2017; 261
Gabel (10.1016/j.biopha.2020.111168_bib0115) 2016; 53
Matsumoto (10.1016/j.biopha.2020.111168_bib0235) 2012; 520
Pringle (10.1016/j.biopha.2020.111168_bib0250) 1993; 117
Wang (10.1016/j.biopha.2020.111168_bib0285) 2019; 15
Forouzanfar (10.1016/j.biopha.2020.111168_bib0220) 2020; 11
Gauthier (10.1016/j.biopha.2020.111168_bib0065) 2013; 38
Kaneko (10.1016/j.biopha.2020.111168_bib0215) 2000; 22
Katsel (10.1016/j.biopha.2020.111168_bib0255) 2011; 130
Girgrah (10.1016/j.biopha.2020.111168_bib0205) 1991; 50
Taveggia (10.1016/j.biopha.2020.111168_bib0260) 2010; 6
Luyt (10.1016/j.biopha.2020.111168_bib0135) 2003; 84
Buffo (10.1016/j.biopha.2020.111168_bib0180) 2010; 79
Buffo (10.1016/j.biopha.2020.111168_bib0085) 2008; 105
Sofroniew (10.1016/j.biopha.2020.111168_bib0070) 2010; 119
Herrera (10.1016/j.biopha.2020.111168_bib0105) 2001; 171
Wang (10.1016/j.biopha.2020.111168_bib0165) 2011; 31
Fledrich (10.1016/j.biopha.2020.111168_bib0275) 2014; 20
Michelucci (10.1016/j.biopha.2020.111168_bib0110) 2016; 53
Kataria (10.1016/j.biopha.2020.111168_bib0040) 2017
Guo (10.1016/j.biopha.2020.111168_bib0100) 2014; 14
Vartanian (10.1016/j.biopha.2020.111168_bib0245) 1999; 96
Wang (10.1016/j.biopha.2020.111168_bib0045) 2007; 55
Xu (10.1016/j.biopha.2020.111168_bib0270) 2012; 1467
Clarke (10.1016/j.biopha.2020.111168_bib0090) 1994; 5
Adlkofer (10.1016/j.biopha.2020.111168_bib0030) 2015; 29
Zhou (10.1016/j.biopha.2020.111168_bib0010) 2019; 8
Shah (10.1016/j.biopha.2020.111168_bib0140) 2020; 11
Zhida (10.1016/j.biopha.2020.111168_bib0170) 2011; 28
Xiang (10.1016/j.biopha.2020.111168_bib0095) 2016; 6
Heller (10.1016/j.biopha.2020.111168_bib0265) 2014; 204
Plemel (10.1016/j.biopha.2020.111168_bib0025) 2014; 117
Park (10.1016/j.biopha.2020.111168_bib0035) 2001; 154
Robel (10.1016/j.biopha.2020.111168_bib0075) 2011; 12
Huang (10.1016/j.biopha.2020.111168_bib0175) 2015; 31
Zhao (10.1016/j.biopha.2020.111168_bib0190) 2017; 362
Talbott (10.1016/j.biopha.2020.111168_bib0155) 2005; 192
Irvine (10.1016/j.biopha.2020.111168_bib0295) 2008; 131
Hachem (10.1016/j.biopha.2020.111168_bib0145) 2020; 38
Nave (10.1016/j.biopha.2020.111168_bib0050) 2010; 468
References_xml – volume: 192
  start-page: 11
  year: 2005
  end-page: 24
  ident: bib0155
  article-title: Endogenous Nkx2.2+/Olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes
  publication-title: Exp. Neurol.
– year: 2017
  ident: bib0040
  article-title: Neuregulin-1 promotes remyelination and fosters a pro-regenerative inflammatory response in focal demyelinating lesions of the spinal cord
  publication-title: Glia
– volume: 46
  start-page: 251
  year: 2012
  end-page: 264
  ident: bib0150
  article-title: Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects
  publication-title: Mol. Neurobiol.
– volume: 15
  start-page: 3327
  year: 2019
  end-page: 3340
  ident: bib0285
  article-title: Cornel iridoid glycoside protects against white matter lesions induced by cerebral ischemia in rats via activation of the brain-derived neurotrophic factor/neuregulin-1 pathway
  publication-title: Neuropsychiatr. Dis. Treat.
– volume: 30
  start-page: 8953
  year: 2010
  end-page: 8964
  ident: bib0060
  article-title: Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination
  publication-title: J. Neurosci.
– volume: 261
  start-page: 147
  year: 2017
  end-page: 162
  ident: bib0300
  article-title: Design and optimization of PLGA microparticles for controlled and local delivery of Neuregulin-1 in traumatic spinal cord injury
  publication-title: J. Control. Release
– volume: 28
  start-page: 1089
  year: 2011
  ident: bib0170
  article-title: Reactive astrocytes inhibit the survival and differentiation of oligodendrocyte precursor cells by secreted TNF-α
  publication-title: J. Neurotrauma
– volume: 38
  start-page: 187
  year: 2020
  end-page: 194
  ident: bib0145
  article-title: Unlocking the paradoxical endogenous stem cell response after spinal cord injury
  publication-title: Stem Cells
– volume: 29
  start-page: 104
  year: 2015
  end-page: 111
  ident: bib0030
  article-title: Role of neuregulins in glial cell development
  publication-title: Glia
– volume: 98
  start-page: 251
  year: 1999
  end-page: 256
  ident: bib0210
  article-title: Astrocytes expressing hyperphosphorylated tau protein without glial fibrillary tangles in argyrophilic grain disease
  publication-title: Acta Neuropathol.
– volume: 12
  start-page: 1
  year: 1995
  end-page: 21
  ident: bib0120
  article-title: A sensitive and reliable locomotor rating scale for open field testing in rats
  publication-title: J. Neurotrauma
– volume: 31
  start-page: 6053
  year: 2011
  end-page: 6058
  ident: bib0165
  article-title: Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins
  publication-title: J. Neurosci.
– volume: 128
  start-page: 2025
  year: 2018
  end-page: 2041
  ident: bib0280
  article-title: A TLR/AKT/FoxO3 immune tolerance-like pathway disrupts the repair capacity of oligodendrocyte progenitors
  publication-title: J. Clin. Invest.
– volume: 14
  start-page: 188
  year: 2014
  end-page: 202
  ident: bib0100
  article-title: In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model
  publication-title: Cell Stem Cell
– volume: 31
  start-page: 357
  year: 2015
  end-page: 367
  ident: bib0175
  article-title: Direct lineage conversion of astrocytes to induced neural stem cells or neurons
  publication-title: Neurosci. Bull.
– volume: 11
  start-page: 287
  year: 2001
  end-page: 296
  ident: bib0125
  article-title: Neuregulin and ErbB receptor signaling pathways in the nervous system
  publication-title: Curr. Opin. Neurobiol.
– volume: 20
  start-page: 1055
  year: 2014
  end-page: 1061
  ident: bib0275
  article-title: Soluble neuregulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A
  publication-title: Nat. Med.
– volume: 11
  start-page: 2
  year: 2020
  ident: bib0140
  article-title: Current advancements in the management of spinal cord injury: a comprehensive review of literature
  publication-title: Surg. Neurol. Int.
– volume: 49
  start-page: 227
  year: 2005
  end-page: 241
  ident: bib0015
  article-title: The molecular orchestra of the migration of oligodendrocyte precursors during development
  publication-title: Brain Res. Brain Res. Rev.
– volume: 8
  start-page: 262
  year: 2011
  end-page: 273
  ident: bib0020
  article-title: Oligodendrocyte fate after spinal cord injury
  publication-title: Neurotherapeutics
– volume: 21
  start-page: 1044
  year: 2004
  end-page: 1049
  ident: bib0130
  article-title: The number of cells expressing the myelin-supporting oligodendrocyte marker PLP-exon 3b remains unchanged in Wallerian degeneration
  publication-title: J. Neurotrauma
– volume: 53
  start-page: 3724
  year: 2016
  end-page: 3739
  ident: bib0110
  article-title: The neurogenic potential of astrocytes is regulated by inflammatory signals
  publication-title: Mol. Neurobiol.
– volume: 1467
  start-page: 104
  year: 2012
  end-page: 112
  ident: bib0270
  article-title: Neuregulin1β1 protects oligodendrocyte progenitor cells from oxygen glucose deprivation injury induced apoptosis via ErbB4-dependent activation of PI3-kinase/Akt
  publication-title: Brain Res.
– volume: 6
  start-page: 22490
  year: 2016
  ident: bib0095
  article-title: In vivo reprogramming reactive glia into iPSCs to produce new neurons in the cortex following traumatic brain injury
  publication-title: Sci. Rep.
– volume: 22
  start-page: 139
  year: 2000
  end-page: 153
  ident: bib0215
  article-title: Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells
  publication-title: Dev. Neurosci.
– volume: 286
  start-page: 23967
  year: 2011
  end-page: 23974
  ident: bib0055
  article-title: Cleavage of neuregulin-1 by BACE1 or ADAM10 protein produces differential effects on myelination
  publication-title: J. Biol. Chem.
– volume: 119
  start-page: 7
  year: 2010
  end-page: 35
  ident: bib0070
  article-title: Astrocytes: biology and pathology
  publication-title: Acta Neuropathol.
– volume: 8
  year: 2013
  ident: bib0195
  article-title: Dynamic changes of CD44 expression from progenitors to subpopulations of astrocytes and neurons in developing cerebellum
  publication-title: PLoS One
– volume: 29
  start-page: 455
  year: 2009
  end-page: 473
  ident: bib0080
  article-title: De-differentiation response of cultured astrocytes to injury induced by scratch or conditioned culture medium of scratch-insulted astrocytes
  publication-title: Cell. Mol. Neurobiol.
– volume: 5
  start-page: 1885
  year: 1994
  end-page: 1888
  ident: bib0090
  article-title: Reactive astrocytes express the embryonic intermediate neurofilament nestin
  publication-title: Neuroreport
– volume: 12
  start-page: 88
  year: 2011
  end-page: 104
  ident: bib0075
  article-title: The stem cell potential of glia: lessons from reactive gliosis
  publication-title: Nat. Rev. Neurosci.
– volume: 468
  start-page: 244
  year: 2010
  end-page: 252
  ident: bib0050
  article-title: Myelination and support of axonal integrity by glia
  publication-title: Nature
– volume: 196
  start-page: 190
  year: 2003
  end-page: 195
  ident: bib0230
  article-title: 1-40 Beta-amyloid protein fragment modulates the expression of CD44 and CD71 on the astrocytoma cell line in the presence of IL1beta and TNFalpha
  publication-title: J. Cell. Physiol.
– volume: 171
  start-page: 11
  year: 2001
  end-page: 21
  ident: bib0105
  article-title: Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo
  publication-title: Exp. Neurol.
– volume: 117
  start-page: 525
  year: 1993
  end-page: 533
  ident: bib0250
  article-title: A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage
  publication-title: Development (Cambridge, England)
– volume: 105
  start-page: 3581
  year: 2008
  end-page: 3586
  ident: bib0085
  article-title: Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 53
  start-page: 5041
  year: 2016
  end-page: 5055
  ident: bib0115
  article-title: Inflammation promotes a conversion of astrocytes into neural progenitor cells via NF-kappaB activation
  publication-title: Mol. Neurobiol.
– volume: 11
  start-page: 193
  year: 2020
  ident: bib0220
  article-title: Intracellular functions of RNA-binding protein, Musashi1, in stem and cancer cells
  publication-title: Stem Cell Res. Ther.
– volume: 204
  start-page: 1219
  year: 2014
  end-page: 1236
  ident: bib0265
  article-title: Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system
  publication-title: J. Cell Biol.
– volume: 520
  start-page: 115
  year: 2012
  end-page: 120
  ident: bib0235
  article-title: CD44 expression in astrocytes and microglia is associated with ALS progression in a mouse model
  publication-title: Neurosci. Lett.
– volume: 55
  start-page: 537
  year: 2007
  end-page: 545
  ident: bib0045
  article-title: Contrasting effects of mitogenic growth factors on myelination in neuron-oligodendrocyte co-cultures
  publication-title: Glia
– volume: 114
  start-page: 25
  year: 2014
  end-page: 57
  ident: bib0005
  article-title: From basics to clinical: a comprehensive review on spinal cord injury
  publication-title: Prog. Neurobiol.
– volume: 130
  start-page: 238
  year: 2011
  end-page: 249
  ident: bib0255
  article-title: Expression of mutant human DISC1 in mice supports abnormalities in differentiation of oligodendrocytes
  publication-title: Schizophr. Res.
– volume: 8
  start-page: 585
  year: 2019
  end-page: 605
  ident: bib0010
  article-title: Cell therapeutic strategies for spinal cord injury
  publication-title: Adv. Wound Care
– volume: 96
  start-page: 731
  year: 1999
  end-page: 735
  ident: bib0245
  article-title: Failure of spinal cord oligodendrocyte development in mice lacking neuregulin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 154
  start-page: 1245
  year: 2001
  ident: bib0035
  article-title: The erbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes
  publication-title: J. Cell Biol.
– volume: 38
  start-page: 2693
  year: 2013
  end-page: 2715
  ident: bib0065
  article-title: Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury
  publication-title: Eur. J. Neurosci.
– volume: 56
  start-page: 1491
  year: 2008
  end-page: 1497
  ident: bib0240
  article-title: Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation
  publication-title: Glia
– volume: 24
  start-page: 2143
  year: 2004
  end-page: 2155
  ident: bib0160
  article-title: Reactive astrocytes protect tissue and preserve function after spinal cord injury
  publication-title: J. Neurosci.
– volume: 6
  start-page: 276
  year: 2010
  end-page: 287
  ident: bib0260
  article-title: Signals to promote myelin formation and repair
  publication-title: Nat. Rev. Neurol.
– volume: 28
  start-page: 1260
  year: 2019
  end-page: 1273
  ident: bib0290
  article-title: Neuregulin 1 type III improves peripheral nerve myelination in a mouse model of congenital hypomyelinating neuropathy
  publication-title: Hum. Mol. Genet.
– volume: 79
  start-page: 77
  year: 2010
  end-page: 89
  ident: bib0180
  article-title: Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential
  publication-title: Biochem. Pharmacol.
– volume: 201
  start-page: 349
  year: 2006
  end-page: 358
  ident: bib0185
  article-title: Cytoplasmic translocation of Olig2 in adult glial progenitors marks the generation of reactive astrocytes following autoimmune inflammation
  publication-title: Exp. Neurol.
– volume: 131
  start-page: 1464
  year: 2008
  end-page: 1477
  ident: bib0295
  article-title: Remyelination protects axons from demyelination-associated axon degeneration
  publication-title: Brain
– volume: 84
  start-page: 1452
  year: 2003
  end-page: 1464
  ident: bib0135
  article-title: Functional metabotropic glutamate receptors are expressed in oligodendrocyte progenitor cells
  publication-title: J. Neurochem.
– volume: 362
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib0190
  article-title: Expression of Ski and its role in astrocyte proliferation and migration
  publication-title: Neuroscience
– volume: 117
  start-page: 54
  year: 2014
  end-page: 72
  ident: bib0025
  article-title: Remyelination after spinal cord injury: is it a target for repair?
  publication-title: Prog. Neurobiol.
– volume: 66
  start-page: 390
  year: 2010
  end-page: 395
  ident: bib0225
  article-title: Musashi1 as a marker of reactive astrocytes after transient focal brain ischemia
  publication-title: Neurosci. Res.
– volume: 276
  start-page: 31
  year: 2004
  end-page: 46
  ident: bib0200
  article-title: CD44 expression identifies astrocyte-restricted precursor cells
  publication-title: Dev. Biol.
– volume: 50
  start-page: 779
  year: 1991
  end-page: 792
  ident: bib0205
  article-title: Localization of the CD44 glycoprotein to fibrous astrocytes in normal white matter and to reactive astrocytes in active lesions in multiple sclerosis
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 20
  start-page: 1055
  issue: 9
  year: 2014
  ident: 10.1016/j.biopha.2020.111168_bib0275
  article-title: Soluble neuregulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A
  publication-title: Nat. Med.
  doi: 10.1038/nm.3664
– volume: 154
  start-page: 1245
  issue: 6
  year: 2001
  ident: 10.1016/j.biopha.2020.111168_bib0035
  article-title: The erbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200104025
– volume: 12
  start-page: 88
  issue: 2
  year: 2011
  ident: 10.1016/j.biopha.2020.111168_bib0075
  article-title: The stem cell potential of glia: lessons from reactive gliosis
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2978
– volume: 128
  start-page: 2025
  issue: 5
  year: 2018
  ident: 10.1016/j.biopha.2020.111168_bib0280
  article-title: A TLR/AKT/FoxO3 immune tolerance-like pathway disrupts the repair capacity of oligodendrocyte progenitors
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI94158
– volume: 276
  start-page: 31
  issue: 1
  year: 2004
  ident: 10.1016/j.biopha.2020.111168_bib0200
  article-title: CD44 expression identifies astrocyte-restricted precursor cells
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2004.08.018
– volume: 31
  start-page: 6053
  issue: 16
  year: 2011
  ident: 10.1016/j.biopha.2020.111168_bib0165
  article-title: Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5524-09.2011
– volume: 1467
  start-page: 104
  year: 2012
  ident: 10.1016/j.biopha.2020.111168_bib0270
  article-title: Neuregulin1β1 protects oligodendrocyte progenitor cells from oxygen glucose deprivation injury induced apoptosis via ErbB4-dependent activation of PI3-kinase/Akt
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2012.05.044
– volume: 28
  start-page: 1089
  issue: 6
  year: 2011
  ident: 10.1016/j.biopha.2020.111168_bib0170
  article-title: Reactive astrocytes inhibit the survival and differentiation of oligodendrocyte precursor cells by secreted TNF-α
  publication-title: J. Neurotrauma
  doi: 10.1089/neu.2010.1597
– volume: 11
  start-page: 287
  issue: 3
  year: 2001
  ident: 10.1016/j.biopha.2020.111168_bib0125
  article-title: Neuregulin and ErbB receptor signaling pathways in the nervous system
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(00)00210-5
– volume: 22
  start-page: 139
  issue: 1–2
  year: 2000
  ident: 10.1016/j.biopha.2020.111168_bib0215
  article-title: Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells
  publication-title: Dev. Neurosci.
  doi: 10.1159/000017435
– volume: 131
  start-page: 1464
  issue: Pt 6
  year: 2008
  ident: 10.1016/j.biopha.2020.111168_bib0295
  article-title: Remyelination protects axons from demyelination-associated axon degeneration
  publication-title: Brain
  doi: 10.1093/brain/awn080
– volume: 171
  start-page: 11
  issue: 1
  year: 2001
  ident: 10.1016/j.biopha.2020.111168_bib0105
  article-title: Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.2001.7729
– volume: 21
  start-page: 1044
  issue: 8
  year: 2004
  ident: 10.1016/j.biopha.2020.111168_bib0130
  article-title: The number of cells expressing the myelin-supporting oligodendrocyte marker PLP-exon 3b remains unchanged in Wallerian degeneration
  publication-title: J. Neurotrauma
  doi: 10.1089/0897715041651015
– volume: 114
  start-page: 25
  issue: 1
  year: 2014
  ident: 10.1016/j.biopha.2020.111168_bib0005
  article-title: From basics to clinical: a comprehensive review on spinal cord injury
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2013.11.002
– volume: 56
  start-page: 1491
  issue: 14
  year: 2008
  ident: 10.1016/j.biopha.2020.111168_bib0240
  article-title: Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation
  publication-title: Glia
  doi: 10.1002/glia.20753
– volume: 96
  start-page: 731
  issue: 2
  year: 1999
  ident: 10.1016/j.biopha.2020.111168_bib0245
  article-title: Failure of spinal cord oligodendrocyte development in mice lacking neuregulin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.2.731
– volume: 468
  start-page: 244
  issue: 7321
  year: 2010
  ident: 10.1016/j.biopha.2020.111168_bib0050
  article-title: Myelination and support of axonal integrity by glia
  publication-title: Nature
  doi: 10.1038/nature09614
– volume: 130
  start-page: 238
  issue: 1–3
  year: 2011
  ident: 10.1016/j.biopha.2020.111168_bib0255
  article-title: Expression of mutant human DISC1 in mice supports abnormalities in differentiation of oligodendrocytes
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2011.04.021
– volume: 31
  start-page: 357
  issue: 3
  year: 2015
  ident: 10.1016/j.biopha.2020.111168_bib0175
  article-title: Direct lineage conversion of astrocytes to induced neural stem cells or neurons
  publication-title: Neurosci. Bull.
  doi: 10.1007/s12264-014-1517-1
– volume: 28
  start-page: 1260
  issue: 8
  year: 2019
  ident: 10.1016/j.biopha.2020.111168_bib0290
  article-title: Neuregulin 1 type III improves peripheral nerve myelination in a mouse model of congenital hypomyelinating neuropathy
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddy420
– volume: 119
  start-page: 7
  issue: 1
  year: 2010
  ident: 10.1016/j.biopha.2020.111168_bib0070
  article-title: Astrocytes: biology and pathology
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-009-0619-8
– volume: 24
  start-page: 2143
  issue: 9
  year: 2004
  ident: 10.1016/j.biopha.2020.111168_bib0160
  article-title: Reactive astrocytes protect tissue and preserve function after spinal cord injury
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3547-03.2004
– volume: 6
  start-page: 22490
  year: 2016
  ident: 10.1016/j.biopha.2020.111168_bib0095
  article-title: In vivo reprogramming reactive glia into iPSCs to produce new neurons in the cortex following traumatic brain injury
  publication-title: Sci. Rep.
  doi: 10.1038/srep22490
– volume: 12
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.biopha.2020.111168_bib0120
  article-title: A sensitive and reliable locomotor rating scale for open field testing in rats
  publication-title: J. Neurotrauma
  doi: 10.1089/neu.1995.12.1
– volume: 46
  start-page: 251
  issue: 2
  year: 2012
  ident: 10.1016/j.biopha.2020.111168_bib0150
  article-title: Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-012-8287-4
– volume: 50
  start-page: 779
  issue: 6
  year: 1991
  ident: 10.1016/j.biopha.2020.111168_bib0205
  article-title: Localization of the CD44 glycoprotein to fibrous astrocytes in normal white matter and to reactive astrocytes in active lesions in multiple sclerosis
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/00005072-199111000-00009
– volume: 5
  start-page: 1885
  issue: 15
  year: 1994
  ident: 10.1016/j.biopha.2020.111168_bib0090
  article-title: Reactive astrocytes express the embryonic intermediate neurofilament nestin
  publication-title: Neuroreport
  doi: 10.1097/00001756-199410000-00011
– volume: 8
  start-page: 262
  issue: 2
  year: 2011
  ident: 10.1016/j.biopha.2020.111168_bib0020
  article-title: Oligodendrocyte fate after spinal cord injury
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-011-0033-5
– volume: 11
  start-page: 2
  year: 2020
  ident: 10.1016/j.biopha.2020.111168_bib0140
  article-title: Current advancements in the management of spinal cord injury: a comprehensive review of literature
  publication-title: Surg. Neurol. Int.
  doi: 10.25259/SNI_568_2019
– volume: 29
  start-page: 455
  issue: 4
  year: 2009
  ident: 10.1016/j.biopha.2020.111168_bib0080
  article-title: De-differentiation response of cultured astrocytes to injury induced by scratch or conditioned culture medium of scratch-insulted astrocytes
  publication-title: Cell. Mol. Neurobiol.
  doi: 10.1007/s10571-008-9337-3
– volume: 362
  start-page: 1
  year: 2017
  ident: 10.1016/j.biopha.2020.111168_bib0190
  article-title: Expression of Ski and its role in astrocyte proliferation and migration
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2017.08.027
– volume: 6
  start-page: 276
  issue: 5
  year: 2010
  ident: 10.1016/j.biopha.2020.111168_bib0260
  article-title: Signals to promote myelin formation and repair
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2010.37
– volume: 49
  start-page: 227
  issue: 2
  year: 2005
  ident: 10.1016/j.biopha.2020.111168_bib0015
  article-title: The molecular orchestra of the migration of oligodendrocyte precursors during development
  publication-title: Brain Res. Brain Res. Rev.
  doi: 10.1016/j.brainresrev.2004.12.034
– volume: 261
  start-page: 147
  year: 2017
  ident: 10.1016/j.biopha.2020.111168_bib0300
  article-title: Design and optimization of PLGA microparticles for controlled and local delivery of Neuregulin-1 in traumatic spinal cord injury
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.06.030
– volume: 105
  start-page: 3581
  issue: 9
  year: 2008
  ident: 10.1016/j.biopha.2020.111168_bib0085
  article-title: Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0709002105
– issue: Pt 1
  year: 2017
  ident: 10.1016/j.biopha.2020.111168_bib0040
  article-title: Neuregulin-1 promotes remyelination and fosters a pro-regenerative inflammatory response in focal demyelinating lesions of the spinal cord
  publication-title: Glia
– volume: 84
  start-page: 1452
  issue: 6
  year: 2003
  ident: 10.1016/j.biopha.2020.111168_bib0135
  article-title: Functional metabotropic glutamate receptors are expressed in oligodendrocyte progenitor cells
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2003.01661.x
– volume: 11
  start-page: 193
  issue: 1
  year: 2020
  ident: 10.1016/j.biopha.2020.111168_bib0220
  article-title: Intracellular functions of RNA-binding protein, Musashi1, in stem and cancer cells
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-020-01703-w
– volume: 15
  start-page: 3327
  year: 2019
  ident: 10.1016/j.biopha.2020.111168_bib0285
  article-title: Cornel iridoid glycoside protects against white matter lesions induced by cerebral ischemia in rats via activation of the brain-derived neurotrophic factor/neuregulin-1 pathway
  publication-title: Neuropsychiatr. Dis. Treat.
  doi: 10.2147/NDT.S228417
– volume: 8
  issue: 1
  year: 2013
  ident: 10.1016/j.biopha.2020.111168_bib0195
  article-title: Dynamic changes of CD44 expression from progenitors to subpopulations of astrocytes and neurons in developing cerebellum
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0053109
– volume: 98
  start-page: 251
  issue: 3
  year: 1999
  ident: 10.1016/j.biopha.2020.111168_bib0210
  article-title: Astrocytes expressing hyperphosphorylated tau protein without glial fibrillary tangles in argyrophilic grain disease
  publication-title: Acta Neuropathol.
  doi: 10.1007/s004010051077
– volume: 66
  start-page: 390
  issue: 4
  year: 2010
  ident: 10.1016/j.biopha.2020.111168_bib0225
  article-title: Musashi1 as a marker of reactive astrocytes after transient focal brain ischemia
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2009.12.013
– volume: 201
  start-page: 349
  issue: 2
  year: 2006
  ident: 10.1016/j.biopha.2020.111168_bib0185
  article-title: Cytoplasmic translocation of Olig2 in adult glial progenitors marks the generation of reactive astrocytes following autoimmune inflammation
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2006.04.030
– volume: 79
  start-page: 77
  issue: 2
  year: 2010
  ident: 10.1016/j.biopha.2020.111168_bib0180
  article-title: Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2009.09.014
– volume: 29
  start-page: 104
  issue: 2
  year: 2015
  ident: 10.1016/j.biopha.2020.111168_bib0030
  article-title: Role of neuregulins in glial cell development
  publication-title: Glia
  doi: 10.1002/(SICI)1098-1136(20000115)29:2<104::AID-GLIA2>3.0.CO;2-2
– volume: 38
  start-page: 187
  issue: 2
  year: 2020
  ident: 10.1016/j.biopha.2020.111168_bib0145
  article-title: Unlocking the paradoxical endogenous stem cell response after spinal cord injury
  publication-title: Stem Cells
  doi: 10.1002/stem.3107
– volume: 53
  start-page: 5041
  issue: 8
  year: 2016
  ident: 10.1016/j.biopha.2020.111168_bib0115
  article-title: Inflammation promotes a conversion of astrocytes into neural progenitor cells via NF-kappaB activation
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-015-9428-3
– volume: 55
  start-page: 537
  issue: 5
  year: 2007
  ident: 10.1016/j.biopha.2020.111168_bib0045
  article-title: Contrasting effects of mitogenic growth factors on myelination in neuron-oligodendrocyte co-cultures
  publication-title: Glia
  doi: 10.1002/glia.20480
– volume: 53
  start-page: 3724
  issue: 6
  year: 2016
  ident: 10.1016/j.biopha.2020.111168_bib0110
  article-title: The neurogenic potential of astrocytes is regulated by inflammatory signals
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-015-9296-x
– volume: 30
  start-page: 8953
  issue: 26
  year: 2010
  ident: 10.1016/j.biopha.2020.111168_bib0060
  article-title: Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0219-10.2010
– volume: 117
  start-page: 54
  year: 2014
  ident: 10.1016/j.biopha.2020.111168_bib0025
  article-title: Remyelination after spinal cord injury: is it a target for repair?
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2014.02.006
– volume: 196
  start-page: 190
  issue: 1
  year: 2003
  ident: 10.1016/j.biopha.2020.111168_bib0230
  article-title: 1-40 Beta-amyloid protein fragment modulates the expression of CD44 and CD71 on the astrocytoma cell line in the presence of IL1beta and TNFalpha
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.10295
– volume: 14
  start-page: 188
  issue: 2
  year: 2014
  ident: 10.1016/j.biopha.2020.111168_bib0100
  article-title: In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.12.001
– volume: 520
  start-page: 115
  issue: 1
  year: 2012
  ident: 10.1016/j.biopha.2020.111168_bib0235
  article-title: CD44 expression in astrocytes and microglia is associated with ALS progression in a mouse model
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2012.05.048
– volume: 117
  start-page: 525
  issue: 2
  year: 1993
  ident: 10.1016/j.biopha.2020.111168_bib0250
  article-title: A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage
  publication-title: Development (Cambridge, England)
  doi: 10.1242/dev.117.2.525
– volume: 286
  start-page: 23967
  issue: 27
  year: 2011
  ident: 10.1016/j.biopha.2020.111168_bib0055
  article-title: Cleavage of neuregulin-1 by BACE1 or ADAM10 protein produces differential effects on myelination
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.251538
– volume: 204
  start-page: 1219
  issue: 7
  year: 2014
  ident: 10.1016/j.biopha.2020.111168_bib0265
  article-title: Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201307057
– volume: 38
  start-page: 2693
  issue: 5
  year: 2013
  ident: 10.1016/j.biopha.2020.111168_bib0065
  article-title: Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.12268
– volume: 8
  start-page: 585
  issue: 11
  year: 2019
  ident: 10.1016/j.biopha.2020.111168_bib0010
  article-title: Cell therapeutic strategies for spinal cord injury
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2019.1046
– volume: 192
  start-page: 11
  issue: 1
  year: 2005
  ident: 10.1016/j.biopha.2020.111168_bib0155
  article-title: Endogenous Nkx2.2+/Olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2004.05.038
SSID ssj0005638
Score 2.4535744
Snippet [Display omitted] •TNF-α treatment induces dedifferentiation of primary rat spinal cord astrocytes.•Nrg1 converts reactive astrocytes toward oligodendrocyte...
Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111168
SubjectTerms Animals
Astrocytes - drug effects
Astrocytes - enzymology
Astrocytes - pathology
Cell Lineage
Cell Transdifferentiation - drug effects
Cells, Cultured
Disease Models, Animal
ErbB Receptors - metabolism
Female
Myelin Sheath - metabolism
Neuregulin-1
Neuregulin-1 - pharmacology
Oligodendrocyte
Oligodendroglia - drug effects
Oligodendroglia - enzymology
Oligodendroglia - pathology
Phosphatidylinositol 3-Kinase - metabolism
Proto-Oncogene Proteins c-akt - metabolism
Rats
Rats, Sprague-Dawley
Reactive astrocyte
Remyelination
Signal Transduction
Spinal Cord - drug effects
Spinal Cord - enzymology
Spinal Cord - pathology
Spinal Cord Injuries - drug therapy
Spinal Cord Injuries - enzymology
Spinal Cord Injuries - pathology
Spinal cord injury
TOR Serine-Threonine Kinases - metabolism
Tumor Necrosis Factor-alpha - pharmacology
Title Neuregulin-1 converts reactive astrocytes toward oligodendrocyte lineage cells via upregulating the PI3K-AKT-mTOR pathway to repair spinal cord injury
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0753332220313615
https://dx.doi.org/10.1016/j.biopha.2020.111168
https://www.ncbi.nlm.nih.gov/pubmed/33395598
https://www.proquest.com/docview/2475396147
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalhbGXsXa_sq7lBqNP1eJYku08lrKSrrQLWwp9E7ItgUvrmNjpyMv-jP29vZPtdIONjr0KybJ1p7tP1t13jH3IrBJuLGM-ypOIyygKeJKGgie5Q4fn7EiklDt8fhFNLuXnK3W1wY77XBgKq-xsf2vTvbXuWobdag6rohh-Q2cnBF0UEP1g5BPNpYxJyz_--CXMI_LVrKkzp959-pyP8UqLOZEyhYiZvO0gwtU_u6e_wU_vhk6es2cdfoSj9hW32YYtd9iT8-6GfIcdTFsu6tUhzB5Sq-pDOIDpA0v16gX7SbQcVIi-KPkIfPD5oqkBMaS3gGDqBn3bCpEoND60FuY3BR5iLTEcUDsQQEVrBPTvv4a7wsCyWrSl7dEfAiJLmJ6KM44wkt_OvnwFqn783azweThNZYoF1BUV5QI6AUNRXqN8X7LLk0-z4wnvijTwTIVxw5NwTEscyyxWDtENQgprLcJMl0QqzwInc2fyzCAuMyZwyowCZ41TqcGjWqgS8YptlvPSvmFgg9SNM-mkMkI6a9MoD4xBExEZF8vADZjoZaOzjsGcCmnc6D5U7Vq3EtUkUd1KdMD4elTVMng80l_1Ytd9diraU40u5pFx8Xrcbxr8DyPf99qlcXOT1Exp58tahxLVdowIKh6w163arb8BdZ_YA5O3_z3vLnsaUoSOj0F_xzabxdLuIcRq0n2_h_bZ1tHp2eTiHvZ2KAk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQEvCMbHyvg4JLSnmaaxnaSPaGLq2Doq6KS9WU5iS5lGGjUpU1_4M_h7uXOSDiTQEK-WHSe-893P8d3vGHubWSXcWMZ8lCcRl1EU8CQNBU9yhw7P2ZFIKXd4ehZNzuXHC3WxxQ77XBgKq-xsf2vTvbXuWobdag6rohh-QWcnBF0UEP1gRInmdyRuXypj8O77L3EekS9nTb05de_z53yQV1osiJUpRNDkjQcxrv7ZP_0Nf3o_dPSQPegAJLxv3_ER27LlDrs77a7Id9j-rCWjXh_A_Ca3qj6AfZjd0FSvH7MfxMtBleiLko_AR58vmxoQRHoTCKZu0LmtEYpC42NrYXFV4CnWEsUBtQMhVDRHQD__a_hWGFhVy7a2PTpEQGgJs2NxwhFH8q_zT5-Byh9fmzU-D6epTLGEuqKqXEBHYCjKSxTwE3Z-9GF-OOFdlQaeqTBueBKOaYljmcXKIbxBTGGtRZzpkkjlWeBk7kyeGQRmxgROmVHgrHEqNXhWC1UinrLtclHaXQY2SN04k04qI6SzNo3ywBi0EZFxsQzcgIleNjrrKMypksaV7mPVLnUrUU0S1a1EB4xvRlUthcct_VUvdt2np6JB1ehjbhkXb8b9psL_MPJNr10adzdJzZR2sap1KFFtxwih4gF71qrd5htQ-Yk-MHn-3_O-Zvcm8-mpPj0-O9lj90MK1_EB6S_YdrNc2ZeIt5r0ld9PPwF3PimX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuregulin-1+converts+reactive+astrocytes+toward+oligodendrocyte+lineage+cells+via+upregulating+the+PI3K-AKT-mTOR+pathway+to+repair+spinal+cord+injury&rft.jtitle=Biomedicine+%26+pharmacotherapy&rft.au=Ding%2C+Zhenfei&rft.au=Dai%2C+Ce&rft.au=Zhong%2C+Lin&rft.au=Liu%2C+Rui&rft.date=2021-02-01&rft.pub=Elsevier+Masson+SAS&rft.issn=0753-3322&rft.volume=134&rft_id=info:doi/10.1016%2Fj.biopha.2020.111168&rft.externalDocID=S0753332220313615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0753-3322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0753-3322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0753-3322&client=summon