Neuregulin-1 converts reactive astrocytes toward oligodendrocyte lineage cells via upregulating the PI3K-AKT-mTOR pathway to repair spinal cord injury
[Display omitted] •TNF-α treatment induces dedifferentiation of primary rat spinal cord astrocytes.•Nrg1 converts reactive astrocytes toward oligodendrocyte lineage cells in vitro and in vivo.•Nrg1 upregulates PI3K-AKT-mTOR signaling pathway in astrocytes.•Nrg1 repairs SCI by enhancing remyelination...
Saved in:
Published in | Biomedicine & pharmacotherapy Vol. 134; p. 111168 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
France
Elsevier Masson SAS
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•TNF-α treatment induces dedifferentiation of primary rat spinal cord astrocytes.•Nrg1 converts reactive astrocytes toward oligodendrocyte lineage cells in vitro and in vivo.•Nrg1 upregulates PI3K-AKT-mTOR signaling pathway in astrocytes.•Nrg1 repairs SCI by enhancing remyelination, axonal preservation, locomotor recovery and inhibiting astrogliosis.
Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance for remyelination. Conversion of reactive astrocytes with stem cell potential to oligodendrocytes is proposed as an innovative strategy for SCI repair. Neuregulin-1 (Nrg1) plays an essential role in the differentiation of oligodendrocytes. Therefore, it's a potential treatment for demyelination in SCI that using Nrg1 to drive reactive astrocytes toward oligodendrocyte lineage cells. In this study, tumor necrosis factor-α (TNF-α) was used to induce dedifferentiation of primary rat spinal cord astrocytes into reactive astrocytes and Nrg1 was used to induce astrocytes in vitro and in vivo. The results showed that astrocytes treated with TNF-α expressed immaturity markers CD44 and Musashi1 at mRNA and protein levels, indicating that TNF-α induced the stem cell state of astrocytes. Nrg1 induced reactive astrocytes to express oligodendrocyte markers PDGFR-α and O4 at mRNA and protein levels, indicating that Nrg1 directly converts reactive astrocytes toward oligodendrocyte lineage cells. Moreover, upregulation of PI3K-AKT-mTOR signaling activation in response to Nrg1 was observed. In rats with SCI, intrathecal treatment with Nrg1 converted reactive astrocytes to oligodendrocyte lineage cells, inhibited astrogliosis, promoted remyelination, protected axons and eventually improved BBB score. All the biological effects of Nrg1 were significantly reversed by the co-administration of Nrg1 and ErbB inhibitor, suggesting that Nrg1 functioned through the receptor ErbB. Our findings indicate that Nrg1 is sufficient to trans-differentiate reactive astrocytes to oligodendrocytes via the PI3K-AKT-mTOR signaling pathway and repair SCI. Delivery of Nrg1 for the remyelination processes could be a promising strategy for spinal cord repair. |
---|---|
AbstractList | [Display omitted]
•TNF-α treatment induces dedifferentiation of primary rat spinal cord astrocytes.•Nrg1 converts reactive astrocytes toward oligodendrocyte lineage cells in vitro and in vivo.•Nrg1 upregulates PI3K-AKT-mTOR signaling pathway in astrocytes.•Nrg1 repairs SCI by enhancing remyelination, axonal preservation, locomotor recovery and inhibiting astrogliosis.
Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance for remyelination. Conversion of reactive astrocytes with stem cell potential to oligodendrocytes is proposed as an innovative strategy for SCI repair. Neuregulin-1 (Nrg1) plays an essential role in the differentiation of oligodendrocytes. Therefore, it's a potential treatment for demyelination in SCI that using Nrg1 to drive reactive astrocytes toward oligodendrocyte lineage cells. In this study, tumor necrosis factor-α (TNF-α) was used to induce dedifferentiation of primary rat spinal cord astrocytes into reactive astrocytes and Nrg1 was used to induce astrocytes in vitro and in vivo. The results showed that astrocytes treated with TNF-α expressed immaturity markers CD44 and Musashi1 at mRNA and protein levels, indicating that TNF-α induced the stem cell state of astrocytes. Nrg1 induced reactive astrocytes to express oligodendrocyte markers PDGFR-α and O4 at mRNA and protein levels, indicating that Nrg1 directly converts reactive astrocytes toward oligodendrocyte lineage cells. Moreover, upregulation of PI3K-AKT-mTOR signaling activation in response to Nrg1 was observed. In rats with SCI, intrathecal treatment with Nrg1 converted reactive astrocytes to oligodendrocyte lineage cells, inhibited astrogliosis, promoted remyelination, protected axons and eventually improved BBB score. All the biological effects of Nrg1 were significantly reversed by the co-administration of Nrg1 and ErbB inhibitor, suggesting that Nrg1 functioned through the receptor ErbB. Our findings indicate that Nrg1 is sufficient to trans-differentiate reactive astrocytes to oligodendrocytes via the PI3K-AKT-mTOR signaling pathway and repair SCI. Delivery of Nrg1 for the remyelination processes could be a promising strategy for spinal cord repair. Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance for remyelination. Conversion of reactive astrocytes with stem cell potential to oligodendrocytes is proposed as an innovative strategy for SCI repair. Neuregulin-1 (Nrg1) plays an essential role in the differentiation of oligodendrocytes. Therefore, it's a potential treatment for demyelination in SCI that using Nrg1 to drive reactive astrocytes toward oligodendrocyte lineage cells. In this study, tumor necrosis factor-α (TNF-α) was used to induce dedifferentiation of primary rat spinal cord astrocytes into reactive astrocytes and Nrg1 was used to induce astrocytes in vitro and in vivo. The results showed that astrocytes treated with TNF-α expressed immaturity markers CD44 and Musashi1 at mRNA and protein levels, indicating that TNF-α induced the stem cell state of astrocytes. Nrg1 induced reactive astrocytes to express oligodendrocyte markers PDGFR-α and O4 at mRNA and protein levels, indicating that Nrg1 directly converts reactive astrocytes toward oligodendrocyte lineage cells. Moreover, upregulation of PI3K-AKT-mTOR signaling activation in response to Nrg1 was observed. In rats with SCI, intrathecal treatment with Nrg1 converted reactive astrocytes to oligodendrocyte lineage cells, inhibited astrogliosis, promoted remyelination, protected axons and eventually improved BBB score. All the biological effects of Nrg1 were significantly reversed by the co-administration of Nrg1 and ErbB inhibitor, suggesting that Nrg1 functioned through the receptor ErbB. Our findings indicate that Nrg1 is sufficient to trans-differentiate reactive astrocytes to oligodendrocytes via the PI3K-AKT-mTOR signaling pathway and repair SCI. Delivery of Nrg1 for the remyelination processes could be a promising strategy for spinal cord repair. Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance for remyelination. Conversion of reactive astrocytes with stem cell potential to oligodendrocytes is proposed as an innovative strategy for SCI repair. Neuregulin-1 (Nrg1) plays an essential role in the differentiation of oligodendrocytes. Therefore, it's a potential treatment for demyelination in SCI that using Nrg1 to drive reactive astrocytes toward oligodendrocyte lineage cells. In this study, tumor necrosis factor-α (TNF-α) was used to induce dedifferentiation of primary rat spinal cord astrocytes into reactive astrocytes and Nrg1 was used to induce astrocytes in vitro and in vivo. The results showed that astrocytes treated with TNF-α expressed immaturity markers CD44 and Musashi1 at mRNA and protein levels, indicating that TNF-α induced the stem cell state of astrocytes. Nrg1 induced reactive astrocytes to express oligodendrocyte markers PDGFR-α and O4 at mRNA and protein levels, indicating that Nrg1 directly converts reactive astrocytes toward oligodendrocyte lineage cells. Moreover, upregulation of PI3K-AKT-mTOR signaling activation in response to Nrg1 was observed. In rats with SCI, intrathecal treatment with Nrg1 converted reactive astrocytes to oligodendrocyte lineage cells, inhibited astrogliosis, promoted remyelination, protected axons and eventually improved BBB score. All the biological effects of Nrg1 were significantly reversed by the co-administration of Nrg1 and ErbB inhibitor, suggesting that Nrg1 functioned through the receptor ErbB. Our findings indicate that Nrg1 is sufficient to trans-differentiate reactive astrocytes to oligodendrocytes via the PI3K-AKT-mTOR signaling pathway and repair SCI. Delivery of Nrg1 for the remyelination processes could be a promising strategy for spinal cord repair.Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance for remyelination. Conversion of reactive astrocytes with stem cell potential to oligodendrocytes is proposed as an innovative strategy for SCI repair. Neuregulin-1 (Nrg1) plays an essential role in the differentiation of oligodendrocytes. Therefore, it's a potential treatment for demyelination in SCI that using Nrg1 to drive reactive astrocytes toward oligodendrocyte lineage cells. In this study, tumor necrosis factor-α (TNF-α) was used to induce dedifferentiation of primary rat spinal cord astrocytes into reactive astrocytes and Nrg1 was used to induce astrocytes in vitro and in vivo. The results showed that astrocytes treated with TNF-α expressed immaturity markers CD44 and Musashi1 at mRNA and protein levels, indicating that TNF-α induced the stem cell state of astrocytes. Nrg1 induced reactive astrocytes to express oligodendrocyte markers PDGFR-α and O4 at mRNA and protein levels, indicating that Nrg1 directly converts reactive astrocytes toward oligodendrocyte lineage cells. Moreover, upregulation of PI3K-AKT-mTOR signaling activation in response to Nrg1 was observed. In rats with SCI, intrathecal treatment with Nrg1 converted reactive astrocytes to oligodendrocyte lineage cells, inhibited astrogliosis, promoted remyelination, protected axons and eventually improved BBB score. All the biological effects of Nrg1 were significantly reversed by the co-administration of Nrg1 and ErbB inhibitor, suggesting that Nrg1 functioned through the receptor ErbB. Our findings indicate that Nrg1 is sufficient to trans-differentiate reactive astrocytes to oligodendrocytes via the PI3K-AKT-mTOR signaling pathway and repair SCI. Delivery of Nrg1 for the remyelination processes could be a promising strategy for spinal cord repair. |
ArticleNumber | 111168 |
Author | Liu, Rui Ding, Zhenfei Zhang, Hui Dai, Ce Yin, Zongsheng Zhong, Lin Gao, Weilu |
Author_xml | – sequence: 1 givenname: Zhenfei surname: Ding fullname: Ding, Zhenfei – sequence: 2 givenname: Ce surname: Dai fullname: Dai, Ce – sequence: 3 givenname: Lin surname: Zhong fullname: Zhong, Lin – sequence: 4 givenname: Rui surname: Liu fullname: Liu, Rui – sequence: 5 givenname: Weilu surname: Gao fullname: Gao, Weilu – sequence: 6 givenname: Hui surname: Zhang fullname: Zhang, Hui – sequence: 7 givenname: Zongsheng surname: Yin fullname: Yin, Zongsheng email: anhyzs@126.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33395598$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1qGzEUhUVJaZy0b1CKlt2MK41G81NKIYT-hISmFHctrjV3bLljaSJpHPwied7InWSTjbURXM75LvecM3JinUVC3nM254yXnzbzpXHDGuY5y9MovbJ-RWa8kSwrGatOyIxVUmRC5PkpOQthwxiTpajfkFMhRCNlU8_Iwy8cPa7G3tiMU-3sDn0M1CPoaHZIIUTv9D5ioNHdg2-p683KtWjbaU6TE2GFVGPfB7ozQMfhPxGisSsa10h_X4nr7OJ6kW0Xt3_oAHF9D_vES2sGMJ6GwVjo0_aEN3Yz-v1b8rqDPuC7p_-c_P3-bXH5M7u5_XF1eXGTaZlXMavz5nBRVehKdoVoWJ0jIpesq0vZatYVbQetBl4IANZJ4KxD6OQS6ornshbn5OPEHby7GzFEtTXhcAlYdGNQeZEibEpeVEn64Uk6LrfYqsGbLfi9es4yCT5PAu1dCB47pU1MITgbPZhecaYOxamNmopTh-LUVFwyFy_Mz_wjtq-TDVNIO4NeBW3QamyNRx1V68wxwJcXAJ0KNRr6f7g_bn8E3yXKrA |
CitedBy_id | crossref_primary_10_1016_j_bbih_2022_100556 crossref_primary_10_12677_ACM_2022_1291261 crossref_primary_10_1007_s12035_024_04425_9 crossref_primary_10_1186_s10020_022_00478_5 crossref_primary_10_3390_jcm11226685 crossref_primary_10_3389_fnins_2022_884667 crossref_primary_10_34133_bmr_0020 crossref_primary_10_1007_s00210_024_03496_8 crossref_primary_10_1007_s12035_024_03939_6 crossref_primary_10_1155_2021_9921534 crossref_primary_10_1016_j_neuropharm_2024_109929 crossref_primary_10_1016_j_expneurol_2022_114239 crossref_primary_10_3389_fphar_2022_934971 crossref_primary_10_1002_advs_202301352 crossref_primary_10_4103_NRR_NRR_D_24_00190 crossref_primary_10_3389_fphar_2022_945206 crossref_primary_10_12677_BP_2022_124023 crossref_primary_10_3390_ijms24108616 crossref_primary_10_1002_dneu_22863 crossref_primary_10_1021_acsabm_3c00876 crossref_primary_10_1002_fsn3_4296 crossref_primary_10_1248_bpb_b23_00603 crossref_primary_10_3389_fncel_2023_1237641 crossref_primary_10_4103_NRR_NRR_D_23_01756 crossref_primary_10_1007_s12010_024_05153_5 crossref_primary_10_1016_j_biopha_2023_114905 crossref_primary_10_4103_1673_5374_380893 crossref_primary_10_3389_fncel_2022_1005399 crossref_primary_10_1016_j_expneurol_2023_114323 crossref_primary_10_31083_j_jin2204096 crossref_primary_10_3390_cimb44050149 crossref_primary_10_3171_2022_1_SPINE211573 crossref_primary_10_3390_cells13121024 crossref_primary_10_3390_ijms25179712 |
Cites_doi | 10.1038/nm.3664 10.1083/jcb.200104025 10.1038/nrn2978 10.1172/JCI94158 10.1016/j.ydbio.2004.08.018 10.1523/JNEUROSCI.5524-09.2011 10.1016/j.brainres.2012.05.044 10.1089/neu.2010.1597 10.1016/S0959-4388(00)00210-5 10.1159/000017435 10.1093/brain/awn080 10.1006/exnr.2001.7729 10.1089/0897715041651015 10.1016/j.pneurobio.2013.11.002 10.1002/glia.20753 10.1073/pnas.96.2.731 10.1038/nature09614 10.1016/j.schres.2011.04.021 10.1007/s12264-014-1517-1 10.1093/hmg/ddy420 10.1007/s00401-009-0619-8 10.1523/JNEUROSCI.3547-03.2004 10.1038/srep22490 10.1089/neu.1995.12.1 10.1007/s12035-012-8287-4 10.1097/00005072-199111000-00009 10.1097/00001756-199410000-00011 10.1007/s13311-011-0033-5 10.25259/SNI_568_2019 10.1007/s10571-008-9337-3 10.1016/j.neuroscience.2017.08.027 10.1038/nrneurol.2010.37 10.1016/j.brainresrev.2004.12.034 10.1016/j.jconrel.2017.06.030 10.1073/pnas.0709002105 10.1046/j.1471-4159.2003.01661.x 10.1186/s13287-020-01703-w 10.2147/NDT.S228417 10.1371/journal.pone.0053109 10.1007/s004010051077 10.1016/j.neures.2009.12.013 10.1016/j.expneurol.2006.04.030 10.1016/j.bcp.2009.09.014 10.1002/(SICI)1098-1136(20000115)29:2<104::AID-GLIA2>3.0.CO;2-2 10.1002/stem.3107 10.1007/s12035-015-9428-3 10.1002/glia.20480 10.1007/s12035-015-9296-x 10.1523/JNEUROSCI.0219-10.2010 10.1016/j.pneurobio.2014.02.006 10.1002/jcp.10295 10.1016/j.stem.2013.12.001 10.1016/j.neulet.2012.05.048 10.1242/dev.117.2.525 10.1074/jbc.M111.251538 10.1083/jcb.201307057 10.1111/ejn.12268 10.1089/wound.2019.1046 10.1016/j.expneurol.2004.05.038 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier Masson SAS.. All rights reserved. |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier Masson SAS.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.biopha.2020.111168 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1950-6007 |
ExternalDocumentID | 33395598 10_1016_j_biopha_2020_111168 S0753332220313615 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABMAC ABMZM ABWVN ABXDB ABZDS ACDAQ ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OD~ OGGZJ OK1 OO0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SDP SEM SES SEW SPT SSH SSP SSZ T5K VH1 WUQ Z5R ~02 ~G- 0SF 6I. AACTN AAFTH AAIAV AATCM ABLVK ABYKQ AFCTW AFKWA AFPKN AJBFU AJOXV AMFUW EFLBG GROUPED_DOAJ LCYCR NCXOZ RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c527t-829563874c75f439082eee150f865dc0f4dfadca143aa0f5a10feaf5ba8712583 |
IEDL.DBID | .~1 |
ISSN | 0753-3322 1950-6007 |
IngestDate | Tue Aug 05 11:15:05 EDT 2025 Thu Apr 03 07:06:49 EDT 2025 Tue Jul 01 04:12:53 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Fri Feb 23 02:43:24 EST 2024 Tue Aug 26 16:37:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | df OPC IHC LFB WB Spinal cord injury Neuregulin-1 PI3K Oligodendrocyte NF-H mTOR CCK-8 MBP IF Remyelination PBS EGF qRT-PCR DAPI Nrg1 GFAP TNF-α SCI ErbBI GAPDH Reactive astrocyte |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Author(s). Published by Elsevier Masson SAS.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-829563874c75f439082eee150f865dc0f4dfadca143aa0f5a10feaf5ba8712583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0753332220313615 |
PMID | 33395598 |
PQID | 2475396147 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2475396147 pubmed_primary_33395598 crossref_citationtrail_10_1016_j_biopha_2020_111168 crossref_primary_10_1016_j_biopha_2020_111168 elsevier_sciencedirect_doi_10_1016_j_biopha_2020_111168 elsevier_clinicalkey_doi_10_1016_j_biopha_2020_111168 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 2021-Feb 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | France |
PublicationPlace_xml | – name: France |
PublicationTitle | Biomedicine & pharmacotherapy |
PublicationTitleAlternate | Biomed Pharmacother |
PublicationYear | 2021 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Plemel, Keough, Duncan, Sparling, Yong, Stys, Tetzlaff (bib0025) 2014; 117 Zhida, Yuan, Chen, Zhu, Qiu, Zhu, Huang, He (bib0170) 2011; 28 Oki, Kaneko, Kanki, Imai, Suzuki, Sawamoto, Okano (bib0225) 2010; 66 Almad, Sahinkaya, McTigue (bib0020) 2011; 8 Guo, Zhang, Wu, Chen, Wang, Chen (bib0100) 2014; 14 Matsumoto, Imagama, Hirano, Ohgomori, Natori, Kobayashi, Muramoto, Ishiguro, Kadomatsu (bib0235) 2012; 520 Forouzanfar, Lachinani, Dormiani, Nasr-Esfahani, Gure, Ghaedi (bib0220) 2020; 11 Girgrah, Letarte, Becker, Cruz, Theriault, Moscarello (bib0205) 1991; 50 Goebbels, Oltrogge, Kemper, Heilmann, Bormuth, Wolfer, Wichert, Mobius, Liu, Lappe-Siefke, Rossner, Groszer, Suter, Frahm, Boretius, Nave (bib0060) 2010; 30 Xiang, Wang, Xiong, Chen (bib0095) 2016; 6 Gauthier, Kosciuczyk, Tapley, Karimiabdolrezaee (bib0065) 2013; 38 Pringle, Richardson (bib0250) 1993; 117 Luyt, Varadi, Molnar (bib0135) 2003; 84 Zhou, Guan, Xu, Zhao, Zhang, Zhang, Mao, Cui (bib0010) 2019; 8 Naruse, Shibasaki, Yokoyama, Kurachi, Ishizaki (bib0195) 2013; 8 Kataria, Alizadeh, Shahriary, Saboktakin, Henrie, Santhosh, Thliveris, Karimi-Abdolrezaee (bib0040) 2017 Fledrich, Stassart, Klink, Rasch, Prukop, Haag, Czesnik, Kungl, Abdelaal, Keric, Stadelmann, Bruck, Nave, Sereda (bib0275) 2014; 20 Irvine, Blakemore (bib0295) 2008; 131 Hachem, Mothe, Tator (bib0145) 2020; 38 Buffo, Rolando, Ceruti (bib0180) 2010; 79 Sofroniew, Vinters (bib0070) 2010; 119 Taveggia, Feltri, Wrabetz (bib0260) 2010; 6 Heller, Ghidinelli, Voelkl, Einheber, Smith, Grund, Morahan, Chandler, Kalaydjieva, Giancotti, King, Fejes-Toth, Fejes-Toth, Feltri, Lang, Salzer (bib0265) 2014; 204 Li, Blakemore (bib0130) 2004; 21 Robel, Berninger, Gotz (bib0075) 2011; 12 Cassiani-Ingoni, Coksaygan, Xue, Reichert-Scrivner, Wiendl, Rao, Magnus (bib0185) 2006; 201 Santhosh, Alizadeh, Karimi-Abdolrezaee (bib0300) 2017; 261 Faulkner, Herrmann, Woo, Tansey, Doan, Sofroniew (bib0160) 2004; 24 Herrera, Yang, Zhang, Proschel, Tresco, Duncan, Luskin, Mayer-Proschel (bib0105) 2001; 171 Talbott, Loy, Liu, Qiu, Bunge, Rao, Whittemore (bib0155) 2005; 192 Gabel, Koncina, Dorban, Heurtaux, Birck, Glaab, Michelucci, Heuschling, Grandbarbe (bib0115) 2016; 53 Wang, Cheng, He, Zheng, Kim, Whittemore, Cao (bib0165) 2011; 31 Huang, Sheng (bib0175) 2015; 31 Xu, Lv, Zheng, Li, Gao, Sun (bib0270) 2012; 1467 Buffo, Rite, Tripathi, Lepier, Colak, Horn, Mori, Gotz (bib0085) 2008; 105 Basso, Beattie, Bresnahan (bib0120) 1995; 12 Liu, Han, Wu, Tuohy, Xue, Cai, Back, Sherman, Fischer, Rao (bib0200) 2004; 276 Belin, Ornaghi, Shackleford, Wang, Scapin, Lopez-Anido, Silvestri, Robertson, Williamson, Ishii, Taveggia, Svaren, Bansal, Schwab, Nave, Fratta, D’Antonio, Poitelon, Feltri, Wrabetz (bib0290) 2019; 28 De, Bribián (bib0015) 2005; 49 Adlkofer, Lai (bib0030) 2015; 29 Srivastava, Diba, Dean, Banine, Shaver, Hagen, Gong, Su, Emery, Marks, Harris, Baggenstoss, Weigel, Sherman, Back (bib0280) 2018; 128 Yang, Cheng, Li, Yao, Ju (bib0080) 2009; 29 Clarke, Shetty, Bradley, Turner (bib0090) 1994; 5 Katsel, Tan, Abazyan, Davis, Ross, Pletnikov, Haroutunian (bib0255) 2011; 130 Park, Miller, Krane, Vartanian (bib0035) 2001; 154 Karimi-Abdolrezaee, Billakanti (bib0150) 2012; 46 Birchmeier, Nave (bib0240) 2008; 56 Wang, Colognato, Ffrench-Constant (bib0045) 2007; 55 Buonanno, Fischbach (bib0125) 2001; 11 Nave (bib0050) 2010; 468 Luo, Prior, He, Hu, Tang, Shen, Yadav, Kiryu-Seo, Miller, Trapp, Yan (bib0055) 2011; 286 Botez, Probst, Ipsen, Tolnay (bib0210) 1999; 98 Speciale, Ruzzante, Calabrese, Saresella, Taramelli, Mariani, Bava, Longhi, Ferrante (bib0230) 2003; 196 Kaneko, Sakakibara, Imai, Suzuki, Nakamura, Sawamoto, Ogawa, Toyama, Miyata, Okano (bib0215) 2000; 22 Wang, Hua, Niu, Sun, Zhang, Li, Zhang, Li (bib0285) 2019; 15 Silva, Sousa, Reis, Salgado (bib0005) 2014; 114 Zhao, Wang, Zhou, Nan, Guo, Kou, Wang, Xia, Zhang (bib0190) 2017; 362 Shah, Peterson, Yilmaz, Halalmeh, Moisi (bib0140) 2020; 11 Michelucci, Bithell, Burney, Johnston, Wong, Teng, Desai, Gumbleton, Anderson, Stanton, Williams, Buckley (bib0110) 2016; 53 Vartanian, Fischbach, Miller (bib0245) 1999; 96 Oki (10.1016/j.biopha.2020.111168_bib0225) 2010; 66 Liu (10.1016/j.biopha.2020.111168_bib0200) 2004; 276 Faulkner (10.1016/j.biopha.2020.111168_bib0160) 2004; 24 De (10.1016/j.biopha.2020.111168_bib0015) 2005; 49 Goebbels (10.1016/j.biopha.2020.111168_bib0060) 2010; 30 Speciale (10.1016/j.biopha.2020.111168_bib0230) 2003; 196 Li (10.1016/j.biopha.2020.111168_bib0130) 2004; 21 Karimi-Abdolrezaee (10.1016/j.biopha.2020.111168_bib0150) 2012; 46 Birchmeier (10.1016/j.biopha.2020.111168_bib0240) 2008; 56 Cassiani-Ingoni (10.1016/j.biopha.2020.111168_bib0185) 2006; 201 Luo (10.1016/j.biopha.2020.111168_bib0055) 2011; 286 Srivastava (10.1016/j.biopha.2020.111168_bib0280) 2018; 128 Yang (10.1016/j.biopha.2020.111168_bib0080) 2009; 29 Buonanno (10.1016/j.biopha.2020.111168_bib0125) 2001; 11 Belin (10.1016/j.biopha.2020.111168_bib0290) 2019; 28 Almad (10.1016/j.biopha.2020.111168_bib0020) 2011; 8 Silva (10.1016/j.biopha.2020.111168_bib0005) 2014; 114 Basso (10.1016/j.biopha.2020.111168_bib0120) 1995; 12 Naruse (10.1016/j.biopha.2020.111168_bib0195) 2013; 8 Botez (10.1016/j.biopha.2020.111168_bib0210) 1999; 98 Santhosh (10.1016/j.biopha.2020.111168_bib0300) 2017; 261 Gabel (10.1016/j.biopha.2020.111168_bib0115) 2016; 53 Matsumoto (10.1016/j.biopha.2020.111168_bib0235) 2012; 520 Pringle (10.1016/j.biopha.2020.111168_bib0250) 1993; 117 Wang (10.1016/j.biopha.2020.111168_bib0285) 2019; 15 Forouzanfar (10.1016/j.biopha.2020.111168_bib0220) 2020; 11 Gauthier (10.1016/j.biopha.2020.111168_bib0065) 2013; 38 Kaneko (10.1016/j.biopha.2020.111168_bib0215) 2000; 22 Katsel (10.1016/j.biopha.2020.111168_bib0255) 2011; 130 Girgrah (10.1016/j.biopha.2020.111168_bib0205) 1991; 50 Taveggia (10.1016/j.biopha.2020.111168_bib0260) 2010; 6 Luyt (10.1016/j.biopha.2020.111168_bib0135) 2003; 84 Buffo (10.1016/j.biopha.2020.111168_bib0180) 2010; 79 Buffo (10.1016/j.biopha.2020.111168_bib0085) 2008; 105 Sofroniew (10.1016/j.biopha.2020.111168_bib0070) 2010; 119 Herrera (10.1016/j.biopha.2020.111168_bib0105) 2001; 171 Wang (10.1016/j.biopha.2020.111168_bib0165) 2011; 31 Fledrich (10.1016/j.biopha.2020.111168_bib0275) 2014; 20 Michelucci (10.1016/j.biopha.2020.111168_bib0110) 2016; 53 Kataria (10.1016/j.biopha.2020.111168_bib0040) 2017 Guo (10.1016/j.biopha.2020.111168_bib0100) 2014; 14 Vartanian (10.1016/j.biopha.2020.111168_bib0245) 1999; 96 Wang (10.1016/j.biopha.2020.111168_bib0045) 2007; 55 Xu (10.1016/j.biopha.2020.111168_bib0270) 2012; 1467 Clarke (10.1016/j.biopha.2020.111168_bib0090) 1994; 5 Adlkofer (10.1016/j.biopha.2020.111168_bib0030) 2015; 29 Zhou (10.1016/j.biopha.2020.111168_bib0010) 2019; 8 Shah (10.1016/j.biopha.2020.111168_bib0140) 2020; 11 Zhida (10.1016/j.biopha.2020.111168_bib0170) 2011; 28 Xiang (10.1016/j.biopha.2020.111168_bib0095) 2016; 6 Heller (10.1016/j.biopha.2020.111168_bib0265) 2014; 204 Plemel (10.1016/j.biopha.2020.111168_bib0025) 2014; 117 Park (10.1016/j.biopha.2020.111168_bib0035) 2001; 154 Robel (10.1016/j.biopha.2020.111168_bib0075) 2011; 12 Huang (10.1016/j.biopha.2020.111168_bib0175) 2015; 31 Zhao (10.1016/j.biopha.2020.111168_bib0190) 2017; 362 Talbott (10.1016/j.biopha.2020.111168_bib0155) 2005; 192 Irvine (10.1016/j.biopha.2020.111168_bib0295) 2008; 131 Hachem (10.1016/j.biopha.2020.111168_bib0145) 2020; 38 Nave (10.1016/j.biopha.2020.111168_bib0050) 2010; 468 |
References_xml | – volume: 192 start-page: 11 year: 2005 end-page: 24 ident: bib0155 article-title: Endogenous Nkx2.2+/Olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes publication-title: Exp. Neurol. – year: 2017 ident: bib0040 article-title: Neuregulin-1 promotes remyelination and fosters a pro-regenerative inflammatory response in focal demyelinating lesions of the spinal cord publication-title: Glia – volume: 46 start-page: 251 year: 2012 end-page: 264 ident: bib0150 article-title: Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects publication-title: Mol. Neurobiol. – volume: 15 start-page: 3327 year: 2019 end-page: 3340 ident: bib0285 article-title: Cornel iridoid glycoside protects against white matter lesions induced by cerebral ischemia in rats via activation of the brain-derived neurotrophic factor/neuregulin-1 pathway publication-title: Neuropsychiatr. Dis. Treat. – volume: 30 start-page: 8953 year: 2010 end-page: 8964 ident: bib0060 article-title: Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination publication-title: J. Neurosci. – volume: 261 start-page: 147 year: 2017 end-page: 162 ident: bib0300 article-title: Design and optimization of PLGA microparticles for controlled and local delivery of Neuregulin-1 in traumatic spinal cord injury publication-title: J. Control. Release – volume: 28 start-page: 1089 year: 2011 ident: bib0170 article-title: Reactive astrocytes inhibit the survival and differentiation of oligodendrocyte precursor cells by secreted TNF-α publication-title: J. Neurotrauma – volume: 38 start-page: 187 year: 2020 end-page: 194 ident: bib0145 article-title: Unlocking the paradoxical endogenous stem cell response after spinal cord injury publication-title: Stem Cells – volume: 29 start-page: 104 year: 2015 end-page: 111 ident: bib0030 article-title: Role of neuregulins in glial cell development publication-title: Glia – volume: 98 start-page: 251 year: 1999 end-page: 256 ident: bib0210 article-title: Astrocytes expressing hyperphosphorylated tau protein without glial fibrillary tangles in argyrophilic grain disease publication-title: Acta Neuropathol. – volume: 12 start-page: 1 year: 1995 end-page: 21 ident: bib0120 article-title: A sensitive and reliable locomotor rating scale for open field testing in rats publication-title: J. Neurotrauma – volume: 31 start-page: 6053 year: 2011 end-page: 6058 ident: bib0165 article-title: Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins publication-title: J. Neurosci. – volume: 128 start-page: 2025 year: 2018 end-page: 2041 ident: bib0280 article-title: A TLR/AKT/FoxO3 immune tolerance-like pathway disrupts the repair capacity of oligodendrocyte progenitors publication-title: J. Clin. Invest. – volume: 14 start-page: 188 year: 2014 end-page: 202 ident: bib0100 article-title: In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model publication-title: Cell Stem Cell – volume: 31 start-page: 357 year: 2015 end-page: 367 ident: bib0175 article-title: Direct lineage conversion of astrocytes to induced neural stem cells or neurons publication-title: Neurosci. Bull. – volume: 11 start-page: 287 year: 2001 end-page: 296 ident: bib0125 article-title: Neuregulin and ErbB receptor signaling pathways in the nervous system publication-title: Curr. Opin. Neurobiol. – volume: 20 start-page: 1055 year: 2014 end-page: 1061 ident: bib0275 article-title: Soluble neuregulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A publication-title: Nat. Med. – volume: 11 start-page: 2 year: 2020 ident: bib0140 article-title: Current advancements in the management of spinal cord injury: a comprehensive review of literature publication-title: Surg. Neurol. Int. – volume: 49 start-page: 227 year: 2005 end-page: 241 ident: bib0015 article-title: The molecular orchestra of the migration of oligodendrocyte precursors during development publication-title: Brain Res. Brain Res. Rev. – volume: 8 start-page: 262 year: 2011 end-page: 273 ident: bib0020 article-title: Oligodendrocyte fate after spinal cord injury publication-title: Neurotherapeutics – volume: 21 start-page: 1044 year: 2004 end-page: 1049 ident: bib0130 article-title: The number of cells expressing the myelin-supporting oligodendrocyte marker PLP-exon 3b remains unchanged in Wallerian degeneration publication-title: J. Neurotrauma – volume: 53 start-page: 3724 year: 2016 end-page: 3739 ident: bib0110 article-title: The neurogenic potential of astrocytes is regulated by inflammatory signals publication-title: Mol. Neurobiol. – volume: 1467 start-page: 104 year: 2012 end-page: 112 ident: bib0270 article-title: Neuregulin1β1 protects oligodendrocyte progenitor cells from oxygen glucose deprivation injury induced apoptosis via ErbB4-dependent activation of PI3-kinase/Akt publication-title: Brain Res. – volume: 6 start-page: 22490 year: 2016 ident: bib0095 article-title: In vivo reprogramming reactive glia into iPSCs to produce new neurons in the cortex following traumatic brain injury publication-title: Sci. Rep. – volume: 22 start-page: 139 year: 2000 end-page: 153 ident: bib0215 article-title: Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells publication-title: Dev. Neurosci. – volume: 286 start-page: 23967 year: 2011 end-page: 23974 ident: bib0055 article-title: Cleavage of neuregulin-1 by BACE1 or ADAM10 protein produces differential effects on myelination publication-title: J. Biol. Chem. – volume: 119 start-page: 7 year: 2010 end-page: 35 ident: bib0070 article-title: Astrocytes: biology and pathology publication-title: Acta Neuropathol. – volume: 8 year: 2013 ident: bib0195 article-title: Dynamic changes of CD44 expression from progenitors to subpopulations of astrocytes and neurons in developing cerebellum publication-title: PLoS One – volume: 29 start-page: 455 year: 2009 end-page: 473 ident: bib0080 article-title: De-differentiation response of cultured astrocytes to injury induced by scratch or conditioned culture medium of scratch-insulted astrocytes publication-title: Cell. Mol. Neurobiol. – volume: 5 start-page: 1885 year: 1994 end-page: 1888 ident: bib0090 article-title: Reactive astrocytes express the embryonic intermediate neurofilament nestin publication-title: Neuroreport – volume: 12 start-page: 88 year: 2011 end-page: 104 ident: bib0075 article-title: The stem cell potential of glia: lessons from reactive gliosis publication-title: Nat. Rev. Neurosci. – volume: 468 start-page: 244 year: 2010 end-page: 252 ident: bib0050 article-title: Myelination and support of axonal integrity by glia publication-title: Nature – volume: 196 start-page: 190 year: 2003 end-page: 195 ident: bib0230 article-title: 1-40 Beta-amyloid protein fragment modulates the expression of CD44 and CD71 on the astrocytoma cell line in the presence of IL1beta and TNFalpha publication-title: J. Cell. Physiol. – volume: 171 start-page: 11 year: 2001 end-page: 21 ident: bib0105 article-title: Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo publication-title: Exp. Neurol. – volume: 117 start-page: 525 year: 1993 end-page: 533 ident: bib0250 article-title: A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage publication-title: Development (Cambridge, England) – volume: 105 start-page: 3581 year: 2008 end-page: 3586 ident: bib0085 article-title: Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 53 start-page: 5041 year: 2016 end-page: 5055 ident: bib0115 article-title: Inflammation promotes a conversion of astrocytes into neural progenitor cells via NF-kappaB activation publication-title: Mol. Neurobiol. – volume: 11 start-page: 193 year: 2020 ident: bib0220 article-title: Intracellular functions of RNA-binding protein, Musashi1, in stem and cancer cells publication-title: Stem Cell Res. Ther. – volume: 204 start-page: 1219 year: 2014 end-page: 1236 ident: bib0265 article-title: Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system publication-title: J. Cell Biol. – volume: 520 start-page: 115 year: 2012 end-page: 120 ident: bib0235 article-title: CD44 expression in astrocytes and microglia is associated with ALS progression in a mouse model publication-title: Neurosci. Lett. – volume: 55 start-page: 537 year: 2007 end-page: 545 ident: bib0045 article-title: Contrasting effects of mitogenic growth factors on myelination in neuron-oligodendrocyte co-cultures publication-title: Glia – volume: 114 start-page: 25 year: 2014 end-page: 57 ident: bib0005 article-title: From basics to clinical: a comprehensive review on spinal cord injury publication-title: Prog. Neurobiol. – volume: 130 start-page: 238 year: 2011 end-page: 249 ident: bib0255 article-title: Expression of mutant human DISC1 in mice supports abnormalities in differentiation of oligodendrocytes publication-title: Schizophr. Res. – volume: 8 start-page: 585 year: 2019 end-page: 605 ident: bib0010 article-title: Cell therapeutic strategies for spinal cord injury publication-title: Adv. Wound Care – volume: 96 start-page: 731 year: 1999 end-page: 735 ident: bib0245 article-title: Failure of spinal cord oligodendrocyte development in mice lacking neuregulin publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 154 start-page: 1245 year: 2001 ident: bib0035 article-title: The erbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes publication-title: J. Cell Biol. – volume: 38 start-page: 2693 year: 2013 end-page: 2715 ident: bib0065 article-title: Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury publication-title: Eur. J. Neurosci. – volume: 56 start-page: 1491 year: 2008 end-page: 1497 ident: bib0240 article-title: Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation publication-title: Glia – volume: 24 start-page: 2143 year: 2004 end-page: 2155 ident: bib0160 article-title: Reactive astrocytes protect tissue and preserve function after spinal cord injury publication-title: J. Neurosci. – volume: 6 start-page: 276 year: 2010 end-page: 287 ident: bib0260 article-title: Signals to promote myelin formation and repair publication-title: Nat. Rev. Neurol. – volume: 28 start-page: 1260 year: 2019 end-page: 1273 ident: bib0290 article-title: Neuregulin 1 type III improves peripheral nerve myelination in a mouse model of congenital hypomyelinating neuropathy publication-title: Hum. Mol. Genet. – volume: 79 start-page: 77 year: 2010 end-page: 89 ident: bib0180 article-title: Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential publication-title: Biochem. Pharmacol. – volume: 201 start-page: 349 year: 2006 end-page: 358 ident: bib0185 article-title: Cytoplasmic translocation of Olig2 in adult glial progenitors marks the generation of reactive astrocytes following autoimmune inflammation publication-title: Exp. Neurol. – volume: 131 start-page: 1464 year: 2008 end-page: 1477 ident: bib0295 article-title: Remyelination protects axons from demyelination-associated axon degeneration publication-title: Brain – volume: 84 start-page: 1452 year: 2003 end-page: 1464 ident: bib0135 article-title: Functional metabotropic glutamate receptors are expressed in oligodendrocyte progenitor cells publication-title: J. Neurochem. – volume: 362 start-page: 1 year: 2017 end-page: 12 ident: bib0190 article-title: Expression of Ski and its role in astrocyte proliferation and migration publication-title: Neuroscience – volume: 117 start-page: 54 year: 2014 end-page: 72 ident: bib0025 article-title: Remyelination after spinal cord injury: is it a target for repair? publication-title: Prog. Neurobiol. – volume: 66 start-page: 390 year: 2010 end-page: 395 ident: bib0225 article-title: Musashi1 as a marker of reactive astrocytes after transient focal brain ischemia publication-title: Neurosci. Res. – volume: 276 start-page: 31 year: 2004 end-page: 46 ident: bib0200 article-title: CD44 expression identifies astrocyte-restricted precursor cells publication-title: Dev. Biol. – volume: 50 start-page: 779 year: 1991 end-page: 792 ident: bib0205 article-title: Localization of the CD44 glycoprotein to fibrous astrocytes in normal white matter and to reactive astrocytes in active lesions in multiple sclerosis publication-title: J. Neuropathol. Exp. Neurol. – volume: 20 start-page: 1055 issue: 9 year: 2014 ident: 10.1016/j.biopha.2020.111168_bib0275 article-title: Soluble neuregulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A publication-title: Nat. Med. doi: 10.1038/nm.3664 – volume: 154 start-page: 1245 issue: 6 year: 2001 ident: 10.1016/j.biopha.2020.111168_bib0035 article-title: The erbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes publication-title: J. Cell Biol. doi: 10.1083/jcb.200104025 – volume: 12 start-page: 88 issue: 2 year: 2011 ident: 10.1016/j.biopha.2020.111168_bib0075 article-title: The stem cell potential of glia: lessons from reactive gliosis publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2978 – volume: 128 start-page: 2025 issue: 5 year: 2018 ident: 10.1016/j.biopha.2020.111168_bib0280 article-title: A TLR/AKT/FoxO3 immune tolerance-like pathway disrupts the repair capacity of oligodendrocyte progenitors publication-title: J. Clin. Invest. doi: 10.1172/JCI94158 – volume: 276 start-page: 31 issue: 1 year: 2004 ident: 10.1016/j.biopha.2020.111168_bib0200 article-title: CD44 expression identifies astrocyte-restricted precursor cells publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2004.08.018 – volume: 31 start-page: 6053 issue: 16 year: 2011 ident: 10.1016/j.biopha.2020.111168_bib0165 article-title: Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5524-09.2011 – volume: 1467 start-page: 104 year: 2012 ident: 10.1016/j.biopha.2020.111168_bib0270 article-title: Neuregulin1β1 protects oligodendrocyte progenitor cells from oxygen glucose deprivation injury induced apoptosis via ErbB4-dependent activation of PI3-kinase/Akt publication-title: Brain Res. doi: 10.1016/j.brainres.2012.05.044 – volume: 28 start-page: 1089 issue: 6 year: 2011 ident: 10.1016/j.biopha.2020.111168_bib0170 article-title: Reactive astrocytes inhibit the survival and differentiation of oligodendrocyte precursor cells by secreted TNF-α publication-title: J. Neurotrauma doi: 10.1089/neu.2010.1597 – volume: 11 start-page: 287 issue: 3 year: 2001 ident: 10.1016/j.biopha.2020.111168_bib0125 article-title: Neuregulin and ErbB receptor signaling pathways in the nervous system publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(00)00210-5 – volume: 22 start-page: 139 issue: 1–2 year: 2000 ident: 10.1016/j.biopha.2020.111168_bib0215 article-title: Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells publication-title: Dev. Neurosci. doi: 10.1159/000017435 – volume: 131 start-page: 1464 issue: Pt 6 year: 2008 ident: 10.1016/j.biopha.2020.111168_bib0295 article-title: Remyelination protects axons from demyelination-associated axon degeneration publication-title: Brain doi: 10.1093/brain/awn080 – volume: 171 start-page: 11 issue: 1 year: 2001 ident: 10.1016/j.biopha.2020.111168_bib0105 article-title: Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo publication-title: Exp. Neurol. doi: 10.1006/exnr.2001.7729 – volume: 21 start-page: 1044 issue: 8 year: 2004 ident: 10.1016/j.biopha.2020.111168_bib0130 article-title: The number of cells expressing the myelin-supporting oligodendrocyte marker PLP-exon 3b remains unchanged in Wallerian degeneration publication-title: J. Neurotrauma doi: 10.1089/0897715041651015 – volume: 114 start-page: 25 issue: 1 year: 2014 ident: 10.1016/j.biopha.2020.111168_bib0005 article-title: From basics to clinical: a comprehensive review on spinal cord injury publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2013.11.002 – volume: 56 start-page: 1491 issue: 14 year: 2008 ident: 10.1016/j.biopha.2020.111168_bib0240 article-title: Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation publication-title: Glia doi: 10.1002/glia.20753 – volume: 96 start-page: 731 issue: 2 year: 1999 ident: 10.1016/j.biopha.2020.111168_bib0245 article-title: Failure of spinal cord oligodendrocyte development in mice lacking neuregulin publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.2.731 – volume: 468 start-page: 244 issue: 7321 year: 2010 ident: 10.1016/j.biopha.2020.111168_bib0050 article-title: Myelination and support of axonal integrity by glia publication-title: Nature doi: 10.1038/nature09614 – volume: 130 start-page: 238 issue: 1–3 year: 2011 ident: 10.1016/j.biopha.2020.111168_bib0255 article-title: Expression of mutant human DISC1 in mice supports abnormalities in differentiation of oligodendrocytes publication-title: Schizophr. Res. doi: 10.1016/j.schres.2011.04.021 – volume: 31 start-page: 357 issue: 3 year: 2015 ident: 10.1016/j.biopha.2020.111168_bib0175 article-title: Direct lineage conversion of astrocytes to induced neural stem cells or neurons publication-title: Neurosci. Bull. doi: 10.1007/s12264-014-1517-1 – volume: 28 start-page: 1260 issue: 8 year: 2019 ident: 10.1016/j.biopha.2020.111168_bib0290 article-title: Neuregulin 1 type III improves peripheral nerve myelination in a mouse model of congenital hypomyelinating neuropathy publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddy420 – volume: 119 start-page: 7 issue: 1 year: 2010 ident: 10.1016/j.biopha.2020.111168_bib0070 article-title: Astrocytes: biology and pathology publication-title: Acta Neuropathol. doi: 10.1007/s00401-009-0619-8 – volume: 24 start-page: 2143 issue: 9 year: 2004 ident: 10.1016/j.biopha.2020.111168_bib0160 article-title: Reactive astrocytes protect tissue and preserve function after spinal cord injury publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3547-03.2004 – volume: 6 start-page: 22490 year: 2016 ident: 10.1016/j.biopha.2020.111168_bib0095 article-title: In vivo reprogramming reactive glia into iPSCs to produce new neurons in the cortex following traumatic brain injury publication-title: Sci. Rep. doi: 10.1038/srep22490 – volume: 12 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.biopha.2020.111168_bib0120 article-title: A sensitive and reliable locomotor rating scale for open field testing in rats publication-title: J. Neurotrauma doi: 10.1089/neu.1995.12.1 – volume: 46 start-page: 251 issue: 2 year: 2012 ident: 10.1016/j.biopha.2020.111168_bib0150 article-title: Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects publication-title: Mol. Neurobiol. doi: 10.1007/s12035-012-8287-4 – volume: 50 start-page: 779 issue: 6 year: 1991 ident: 10.1016/j.biopha.2020.111168_bib0205 article-title: Localization of the CD44 glycoprotein to fibrous astrocytes in normal white matter and to reactive astrocytes in active lesions in multiple sclerosis publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/00005072-199111000-00009 – volume: 5 start-page: 1885 issue: 15 year: 1994 ident: 10.1016/j.biopha.2020.111168_bib0090 article-title: Reactive astrocytes express the embryonic intermediate neurofilament nestin publication-title: Neuroreport doi: 10.1097/00001756-199410000-00011 – volume: 8 start-page: 262 issue: 2 year: 2011 ident: 10.1016/j.biopha.2020.111168_bib0020 article-title: Oligodendrocyte fate after spinal cord injury publication-title: Neurotherapeutics doi: 10.1007/s13311-011-0033-5 – volume: 11 start-page: 2 year: 2020 ident: 10.1016/j.biopha.2020.111168_bib0140 article-title: Current advancements in the management of spinal cord injury: a comprehensive review of literature publication-title: Surg. Neurol. Int. doi: 10.25259/SNI_568_2019 – volume: 29 start-page: 455 issue: 4 year: 2009 ident: 10.1016/j.biopha.2020.111168_bib0080 article-title: De-differentiation response of cultured astrocytes to injury induced by scratch or conditioned culture medium of scratch-insulted astrocytes publication-title: Cell. Mol. Neurobiol. doi: 10.1007/s10571-008-9337-3 – volume: 362 start-page: 1 year: 2017 ident: 10.1016/j.biopha.2020.111168_bib0190 article-title: Expression of Ski and its role in astrocyte proliferation and migration publication-title: Neuroscience doi: 10.1016/j.neuroscience.2017.08.027 – volume: 6 start-page: 276 issue: 5 year: 2010 ident: 10.1016/j.biopha.2020.111168_bib0260 article-title: Signals to promote myelin formation and repair publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2010.37 – volume: 49 start-page: 227 issue: 2 year: 2005 ident: 10.1016/j.biopha.2020.111168_bib0015 article-title: The molecular orchestra of the migration of oligodendrocyte precursors during development publication-title: Brain Res. Brain Res. Rev. doi: 10.1016/j.brainresrev.2004.12.034 – volume: 261 start-page: 147 year: 2017 ident: 10.1016/j.biopha.2020.111168_bib0300 article-title: Design and optimization of PLGA microparticles for controlled and local delivery of Neuregulin-1 in traumatic spinal cord injury publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.06.030 – volume: 105 start-page: 3581 issue: 9 year: 2008 ident: 10.1016/j.biopha.2020.111168_bib0085 article-title: Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0709002105 – issue: Pt 1 year: 2017 ident: 10.1016/j.biopha.2020.111168_bib0040 article-title: Neuregulin-1 promotes remyelination and fosters a pro-regenerative inflammatory response in focal demyelinating lesions of the spinal cord publication-title: Glia – volume: 84 start-page: 1452 issue: 6 year: 2003 ident: 10.1016/j.biopha.2020.111168_bib0135 article-title: Functional metabotropic glutamate receptors are expressed in oligodendrocyte progenitor cells publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2003.01661.x – volume: 11 start-page: 193 issue: 1 year: 2020 ident: 10.1016/j.biopha.2020.111168_bib0220 article-title: Intracellular functions of RNA-binding protein, Musashi1, in stem and cancer cells publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-020-01703-w – volume: 15 start-page: 3327 year: 2019 ident: 10.1016/j.biopha.2020.111168_bib0285 article-title: Cornel iridoid glycoside protects against white matter lesions induced by cerebral ischemia in rats via activation of the brain-derived neurotrophic factor/neuregulin-1 pathway publication-title: Neuropsychiatr. Dis. Treat. doi: 10.2147/NDT.S228417 – volume: 8 issue: 1 year: 2013 ident: 10.1016/j.biopha.2020.111168_bib0195 article-title: Dynamic changes of CD44 expression from progenitors to subpopulations of astrocytes and neurons in developing cerebellum publication-title: PLoS One doi: 10.1371/journal.pone.0053109 – volume: 98 start-page: 251 issue: 3 year: 1999 ident: 10.1016/j.biopha.2020.111168_bib0210 article-title: Astrocytes expressing hyperphosphorylated tau protein without glial fibrillary tangles in argyrophilic grain disease publication-title: Acta Neuropathol. doi: 10.1007/s004010051077 – volume: 66 start-page: 390 issue: 4 year: 2010 ident: 10.1016/j.biopha.2020.111168_bib0225 article-title: Musashi1 as a marker of reactive astrocytes after transient focal brain ischemia publication-title: Neurosci. Res. doi: 10.1016/j.neures.2009.12.013 – volume: 201 start-page: 349 issue: 2 year: 2006 ident: 10.1016/j.biopha.2020.111168_bib0185 article-title: Cytoplasmic translocation of Olig2 in adult glial progenitors marks the generation of reactive astrocytes following autoimmune inflammation publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2006.04.030 – volume: 79 start-page: 77 issue: 2 year: 2010 ident: 10.1016/j.biopha.2020.111168_bib0180 article-title: Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2009.09.014 – volume: 29 start-page: 104 issue: 2 year: 2015 ident: 10.1016/j.biopha.2020.111168_bib0030 article-title: Role of neuregulins in glial cell development publication-title: Glia doi: 10.1002/(SICI)1098-1136(20000115)29:2<104::AID-GLIA2>3.0.CO;2-2 – volume: 38 start-page: 187 issue: 2 year: 2020 ident: 10.1016/j.biopha.2020.111168_bib0145 article-title: Unlocking the paradoxical endogenous stem cell response after spinal cord injury publication-title: Stem Cells doi: 10.1002/stem.3107 – volume: 53 start-page: 5041 issue: 8 year: 2016 ident: 10.1016/j.biopha.2020.111168_bib0115 article-title: Inflammation promotes a conversion of astrocytes into neural progenitor cells via NF-kappaB activation publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9428-3 – volume: 55 start-page: 537 issue: 5 year: 2007 ident: 10.1016/j.biopha.2020.111168_bib0045 article-title: Contrasting effects of mitogenic growth factors on myelination in neuron-oligodendrocyte co-cultures publication-title: Glia doi: 10.1002/glia.20480 – volume: 53 start-page: 3724 issue: 6 year: 2016 ident: 10.1016/j.biopha.2020.111168_bib0110 article-title: The neurogenic potential of astrocytes is regulated by inflammatory signals publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9296-x – volume: 30 start-page: 8953 issue: 26 year: 2010 ident: 10.1016/j.biopha.2020.111168_bib0060 article-title: Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0219-10.2010 – volume: 117 start-page: 54 year: 2014 ident: 10.1016/j.biopha.2020.111168_bib0025 article-title: Remyelination after spinal cord injury: is it a target for repair? publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2014.02.006 – volume: 196 start-page: 190 issue: 1 year: 2003 ident: 10.1016/j.biopha.2020.111168_bib0230 article-title: 1-40 Beta-amyloid protein fragment modulates the expression of CD44 and CD71 on the astrocytoma cell line in the presence of IL1beta and TNFalpha publication-title: J. Cell. Physiol. doi: 10.1002/jcp.10295 – volume: 14 start-page: 188 issue: 2 year: 2014 ident: 10.1016/j.biopha.2020.111168_bib0100 article-title: In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.12.001 – volume: 520 start-page: 115 issue: 1 year: 2012 ident: 10.1016/j.biopha.2020.111168_bib0235 article-title: CD44 expression in astrocytes and microglia is associated with ALS progression in a mouse model publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2012.05.048 – volume: 117 start-page: 525 issue: 2 year: 1993 ident: 10.1016/j.biopha.2020.111168_bib0250 article-title: A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage publication-title: Development (Cambridge, England) doi: 10.1242/dev.117.2.525 – volume: 286 start-page: 23967 issue: 27 year: 2011 ident: 10.1016/j.biopha.2020.111168_bib0055 article-title: Cleavage of neuregulin-1 by BACE1 or ADAM10 protein produces differential effects on myelination publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.251538 – volume: 204 start-page: 1219 issue: 7 year: 2014 ident: 10.1016/j.biopha.2020.111168_bib0265 article-title: Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system publication-title: J. Cell Biol. doi: 10.1083/jcb.201307057 – volume: 38 start-page: 2693 issue: 5 year: 2013 ident: 10.1016/j.biopha.2020.111168_bib0065 article-title: Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.12268 – volume: 8 start-page: 585 issue: 11 year: 2019 ident: 10.1016/j.biopha.2020.111168_bib0010 article-title: Cell therapeutic strategies for spinal cord injury publication-title: Adv. Wound Care doi: 10.1089/wound.2019.1046 – volume: 192 start-page: 11 issue: 1 year: 2005 ident: 10.1016/j.biopha.2020.111168_bib0155 article-title: Endogenous Nkx2.2+/Olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2004.05.038 |
SSID | ssj0005638 |
Score | 2.4535744 |
Snippet | [Display omitted]
•TNF-α treatment induces dedifferentiation of primary rat spinal cord astrocytes.•Nrg1 converts reactive astrocytes toward oligodendrocyte... Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111168 |
SubjectTerms | Animals Astrocytes - drug effects Astrocytes - enzymology Astrocytes - pathology Cell Lineage Cell Transdifferentiation - drug effects Cells, Cultured Disease Models, Animal ErbB Receptors - metabolism Female Myelin Sheath - metabolism Neuregulin-1 Neuregulin-1 - pharmacology Oligodendrocyte Oligodendroglia - drug effects Oligodendroglia - enzymology Oligodendroglia - pathology Phosphatidylinositol 3-Kinase - metabolism Proto-Oncogene Proteins c-akt - metabolism Rats Rats, Sprague-Dawley Reactive astrocyte Remyelination Signal Transduction Spinal Cord - drug effects Spinal Cord - enzymology Spinal Cord - pathology Spinal Cord Injuries - drug therapy Spinal Cord Injuries - enzymology Spinal Cord Injuries - pathology Spinal cord injury TOR Serine-Threonine Kinases - metabolism Tumor Necrosis Factor-alpha - pharmacology |
Title | Neuregulin-1 converts reactive astrocytes toward oligodendrocyte lineage cells via upregulating the PI3K-AKT-mTOR pathway to repair spinal cord injury |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0753332220313615 https://dx.doi.org/10.1016/j.biopha.2020.111168 https://www.ncbi.nlm.nih.gov/pubmed/33395598 https://www.proquest.com/docview/2475396147 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalhbGXsXa_sq7lBqNP1eJYku08lrKSrrQLWwp9E7ItgUvrmNjpyMv-jP29vZPtdIONjr0KybJ1p7tP1t13jH3IrBJuLGM-ypOIyygKeJKGgie5Q4fn7EiklDt8fhFNLuXnK3W1wY77XBgKq-xsf2vTvbXuWobdag6rohh-Q2cnBF0UEP1g5BPNpYxJyz_--CXMI_LVrKkzp959-pyP8UqLOZEyhYiZvO0gwtU_u6e_wU_vhk6es2cdfoSj9hW32YYtd9iT8-6GfIcdTFsu6tUhzB5Sq-pDOIDpA0v16gX7SbQcVIi-KPkIfPD5oqkBMaS3gGDqBn3bCpEoND60FuY3BR5iLTEcUDsQQEVrBPTvv4a7wsCyWrSl7dEfAiJLmJ6KM44wkt_OvnwFqn783azweThNZYoF1BUV5QI6AUNRXqN8X7LLk0-z4wnvijTwTIVxw5NwTEscyyxWDtENQgprLcJMl0QqzwInc2fyzCAuMyZwyowCZ41TqcGjWqgS8YptlvPSvmFgg9SNM-mkMkI6a9MoD4xBExEZF8vADZjoZaOzjsGcCmnc6D5U7Vq3EtUkUd1KdMD4elTVMng80l_1Ytd9diraU40u5pFx8Xrcbxr8DyPf99qlcXOT1Exp58tahxLVdowIKh6w163arb8BdZ_YA5O3_z3vLnsaUoSOj0F_xzabxdLuIcRq0n2_h_bZ1tHp2eTiHvZ2KAk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQEvCMbHyvg4JLSnmaaxnaSPaGLq2Doq6KS9WU5iS5lGGjUpU1_4M_h7uXOSDiTQEK-WHSe-893P8d3vGHubWSXcWMZ8lCcRl1EU8CQNBU9yhw7P2ZFIKXd4ehZNzuXHC3WxxQ77XBgKq-xsf2vTvbXuWobdag6rohh-QWcnBF0UEP1gRInmdyRuXypj8O77L3EekS9nTb05de_z53yQV1osiJUpRNDkjQcxrv7ZP_0Nf3o_dPSQPegAJLxv3_ER27LlDrs77a7Id9j-rCWjXh_A_Ca3qj6AfZjd0FSvH7MfxMtBleiLko_AR58vmxoQRHoTCKZu0LmtEYpC42NrYXFV4CnWEsUBtQMhVDRHQD__a_hWGFhVy7a2PTpEQGgJs2NxwhFH8q_zT5-Byh9fmzU-D6epTLGEuqKqXEBHYCjKSxTwE3Z-9GF-OOFdlQaeqTBueBKOaYljmcXKIbxBTGGtRZzpkkjlWeBk7kyeGQRmxgROmVHgrHEqNXhWC1UinrLtclHaXQY2SN04k04qI6SzNo3ywBi0EZFxsQzcgIleNjrrKMypksaV7mPVLnUrUU0S1a1EB4xvRlUthcct_VUvdt2np6JB1ehjbhkXb8b9psL_MPJNr10adzdJzZR2sap1KFFtxwih4gF71qrd5htQ-Yk-MHn-3_O-Zvcm8-mpPj0-O9lj90MK1_EB6S_YdrNc2ZeIt5r0ld9PPwF3PimX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuregulin-1+converts+reactive+astrocytes+toward+oligodendrocyte+lineage+cells+via+upregulating+the+PI3K-AKT-mTOR+pathway+to+repair+spinal+cord+injury&rft.jtitle=Biomedicine+%26+pharmacotherapy&rft.au=Ding%2C+Zhenfei&rft.au=Dai%2C+Ce&rft.au=Zhong%2C+Lin&rft.au=Liu%2C+Rui&rft.date=2021-02-01&rft.pub=Elsevier+Masson+SAS&rft.issn=0753-3322&rft.volume=134&rft_id=info:doi/10.1016%2Fj.biopha.2020.111168&rft.externalDocID=S0753332220313615 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0753-3322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0753-3322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0753-3322&client=summon |