Rice stripe mosaic virus M protein antagonizes G-protein-induced antiviral autophagy in insect vectors

In the field, 80% of plant viruses are transmitted by insect vectors. When ingested by a sap-sucking insect such as Recilia dorsalis , persistently transmitted viruses such as rice stripe mosaic virus (RSMV) infect the gut epithelium and eventually pass to the salivary glands where they will be tran...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 21; no. 4; p. e1013070
Main Authors Zhang, Ruonan, Wang, Tengfei, Cheng, Yu, Qiu, Jiaxin, Jia, Dongsheng, Chen, Hongyan, Wei, Taiyun, Zhang, Xiao-Feng
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 29.04.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7374
1553-7366
1553-7374
DOI10.1371/journal.ppat.1013070

Cover

Loading…
Abstract In the field, 80% of plant viruses are transmitted by insect vectors. When ingested by a sap-sucking insect such as Recilia dorsalis , persistently transmitted viruses such as rice stripe mosaic virus (RSMV) infect the gut epithelium and eventually pass to the salivary glands where they will be transmitted to the next rice ( Oryza sativa ) plant. To efficiently exploit insect vectors for transmission, plant viruses must overcome various immune mechanisms within the vectors, including autophagy. However, understanding how plant viruses overcome insect autophagic defenses remains limited. In this study, we provide evidence that infection with RSMV triggers an autophagic antiviral response in leafhopper cells. In this response, the G protein of RSMV binds to a leafhopper AMP-activated protein kinase (AMPK), leading to enhanced phosphorylation of Beclin-1 (BECN1), thereby inducing autophagy. Knockdown of AMPK and genes encoding members of the phosphoinositide 3-kinase (PI3K) complex composed of the autophagy-related protein 14 (ATG14), BECN1, and vacuolar protein sorting 34 (VPS34) facilitated viral infection in leafhoppers. To suppress leafhopper-induced autophagy, RSMV M protein specifically interacts with ATG14, resulting in the disintegration of PI3K complexes. This leads to reduced phosphatidylinositol-3-phosphate content and thus inhibits the G-protein- induced autophagy. Our study sheds light on the mechanism by which this rice virus evades insect autophagy antiviral defenses.
AbstractList In the field, 80% of plant viruses are transmitted by insect vectors. When ingested by a sap-sucking insect such as Recilia dorsalis, persistently transmitted viruses such as rice stripe mosaic virus (RSMV) infect the gut epithelium and eventually pass to the salivary glands where they will be transmitted to the next rice (Oryza sativa) plant. To efficiently exploit insect vectors for transmission, plant viruses must overcome various immune mechanisms within the vectors, including autophagy. However, understanding how plant viruses overcome insect autophagic defenses remains limited. In this study, we provide evidence that infection with RSMV triggers an autophagic antiviral response in leafhopper cells. In this response, the G protein of RSMV binds to a leafhopper AMP-activated protein kinase (AMPK), leading to enhanced phosphorylation of Beclin-1 (BECN1), thereby inducing autophagy. Knockdown of AMPK and genes encoding members of the phosphoinositide 3-kinase (PI3K) complex composed of the autophagy-related protein 14 (ATG14), BECN1, and vacuolar protein sorting 34 (VPS34) facilitated viral infection in leafhoppers. To suppress leafhopper-induced autophagy, RSMV M protein specifically interacts with ATG14, resulting in the disintegration of PI3K complexes. This leads to reduced phosphatidylinositol-3-phosphate content and thus inhibits the G-protein- induced autophagy. Our study sheds light on the mechanism by which this rice virus evades insect autophagy antiviral defenses.
In the field, 80% of plant viruses are transmitted by insect vectors. When ingested by a sap-sucking insect such as Recilia dorsalis, persistently transmitted viruses such as rice stripe mosaic virus (RSMV) infect the gut epithelium and eventually pass to the salivary glands where they will be transmitted to the next rice (Oryza sativa) plant. To efficiently exploit insect vectors for transmission, plant viruses must overcome various immune mechanisms within the vectors, including autophagy. However, understanding how plant viruses overcome insect autophagic defenses remains limited. In this study, we provide evidence that infection with RSMV triggers an autophagic antiviral response in leafhopper cells. In this response, the G protein of RSMV binds to a leafhopper AMP-activated protein kinase (AMPK), leading to enhanced phosphorylation of Beclin-1 (BECN1), thereby inducing autophagy. Knockdown of AMPK and genes encoding members of the phosphoinositide 3-kinase (PI3K) complex composed of the autophagy-related protein 14 (ATG14), BECN1, and vacuolar protein sorting 34 (VPS34) facilitated viral infection in leafhoppers. To suppress leafhopper-induced autophagy, RSMV M protein specifically interacts with ATG14, resulting in the disintegration of PI3K complexes. This leads to reduced phosphatidylinositol-3-phosphate content and thus inhibits the G-protein- induced autophagy. Our study sheds light on the mechanism by which this rice virus evades insect autophagy antiviral defenses.In the field, 80% of plant viruses are transmitted by insect vectors. When ingested by a sap-sucking insect such as Recilia dorsalis, persistently transmitted viruses such as rice stripe mosaic virus (RSMV) infect the gut epithelium and eventually pass to the salivary glands where they will be transmitted to the next rice (Oryza sativa) plant. To efficiently exploit insect vectors for transmission, plant viruses must overcome various immune mechanisms within the vectors, including autophagy. However, understanding how plant viruses overcome insect autophagic defenses remains limited. In this study, we provide evidence that infection with RSMV triggers an autophagic antiviral response in leafhopper cells. In this response, the G protein of RSMV binds to a leafhopper AMP-activated protein kinase (AMPK), leading to enhanced phosphorylation of Beclin-1 (BECN1), thereby inducing autophagy. Knockdown of AMPK and genes encoding members of the phosphoinositide 3-kinase (PI3K) complex composed of the autophagy-related protein 14 (ATG14), BECN1, and vacuolar protein sorting 34 (VPS34) facilitated viral infection in leafhoppers. To suppress leafhopper-induced autophagy, RSMV M protein specifically interacts with ATG14, resulting in the disintegration of PI3K complexes. This leads to reduced phosphatidylinositol-3-phosphate content and thus inhibits the G-protein- induced autophagy. Our study sheds light on the mechanism by which this rice virus evades insect autophagy antiviral defenses.
In the field, 80% of plant viruses are transmitted by insect vectors. When ingested by a sap-sucking insect such as Recilia dorsalis , persistently transmitted viruses such as rice stripe mosaic virus (RSMV) infect the gut epithelium and eventually pass to the salivary glands where they will be transmitted to the next rice ( Oryza sativa ) plant. To efficiently exploit insect vectors for transmission, plant viruses must overcome various immune mechanisms within the vectors, including autophagy. However, understanding how plant viruses overcome insect autophagic defenses remains limited. In this study, we provide evidence that infection with RSMV triggers an autophagic antiviral response in leafhopper cells. In this response, the G protein of RSMV binds to a leafhopper AMP-activated protein kinase (AMPK), leading to enhanced phosphorylation of Beclin-1 (BECN1), thereby inducing autophagy. Knockdown of AMPK and genes encoding members of the phosphoinositide 3-kinase (PI3K) complex composed of the autophagy-related protein 14 (ATG14), BECN1, and vacuolar protein sorting 34 (VPS34) facilitated viral infection in leafhoppers. To suppress leafhopper-induced autophagy, RSMV M protein specifically interacts with ATG14, resulting in the disintegration of PI3K complexes. This leads to reduced phosphatidylinositol-3-phosphate content and thus inhibits the G-protein- induced autophagy. Our study sheds light on the mechanism by which this rice virus evades insect autophagy antiviral defenses. In the field, most plant viruses are transmitted by insects. For example, rice stripe mosaic virus (RSMV) is ingested by the sap-sucking insect Recilia dorsalis and eventually infects its salivary glands, enabling transmission to the next rice plant. To successfully use insect vectors for spreading, plant viruses must overcome various immune defenses within the insects, including autophagy. However, the specifics of how plant viruses bypass these defenses are not well understood. Our study reveals that RSMV infection triggers an autophagic antiviral response in the leafhopper, Recilia dorsalis . The viral G protein interacts with an insect protein, AMPK, leading to increased autophagy. Conversely, the virus’s M protein suppresses this response by disrupting key autophagy-related complexes. This research provides new insights into the strategies plant viruses use to evade insect immune defenses, enhancing our understanding of virus-vector interactions.
Audience Academic
Author Jia, Dongsheng
Cheng, Yu
Qiu, Jiaxin
Chen, Hongyan
Zhang, Ruonan
Wei, Taiyun
Wang, Tengfei
Zhang, Xiao-Feng
AuthorAffiliation 1 State Key Laboratory of Agriculture and Forestry Biosecurity, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
2 Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
University of California, Davis Genome Center, UNITED STATES OF AMERICA
AuthorAffiliation_xml – name: University of California, Davis Genome Center, UNITED STATES OF AMERICA
– name: 1 State Key Laboratory of Agriculture and Forestry Biosecurity, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
– name: 2 Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
Author_xml – sequence: 1
  givenname: Ruonan
  surname: Zhang
  fullname: Zhang, Ruonan
– sequence: 2
  givenname: Tengfei
  surname: Wang
  fullname: Wang, Tengfei
– sequence: 3
  givenname: Yu
  surname: Cheng
  fullname: Cheng, Yu
– sequence: 4
  givenname: Jiaxin
  surname: Qiu
  fullname: Qiu, Jiaxin
– sequence: 5
  givenname: Dongsheng
  surname: Jia
  fullname: Jia, Dongsheng
– sequence: 6
  givenname: Hongyan
  surname: Chen
  fullname: Chen, Hongyan
– sequence: 7
  givenname: Taiyun
  surname: Wei
  fullname: Wei, Taiyun
– sequence: 8
  givenname: Xiao-Feng
  orcidid: 0000-0002-1763-1154
  surname: Zhang
  fullname: Zhang, Xiao-Feng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40300033$$D View this record in MEDLINE/PubMed
BookMark eNptkltrFTEUhQep2Iv-A5GAL_VhjrnN7UlK0XqgIlR9DpnMzjSHOcmYZA7WX2_GM5YOSCAJO99a2RvWeXZinYUse03whrCKvN-5yVs5bMZRxg3BhOEKP8vOSFGwvGIVP3lyP83OQ9hhzAkj5YvslGOGMWbsLNN3RgEK0ZsR0N4FaRQ6GD8F9AWN3kUwFkkbZe-s-Q0B3eRLNTe2mxR086tJCjkgOUU33sv-ASWRsQFURIe0OR9eZs-1HAK8Ws6L7Menj9-vP-e3X2-211e3uSpoFfOq6HhdUga8hNRrU1ICpCE1MN0STgoFNSayLHXVgtQc64KTruSsgKalvOzYRbY9-nZO7sTozV76B-GkEX8LzvdC-mjUAEK3bcdbjSnlmNOibmihMNcll5JrYDR5fTh6jVO7h06BjWnKlen6xZp70buDIBRzTFmdHC4XB-9-ThCi2JugYBikBTcFwUhTlelvPqNvj2gvU2_Gapcs1YyLq5rVNauaCidq8x8qrQ72RqV8aJPqK8G7lSAxEX7FXk4hiO23uzX75um8j4P-C0sC-BFQ3oXgQT8iBIs5k2LJpJgzKZZMsj-x1tax
Cites_doi 10.1038/nature14147
10.3389/fmicb.2018.03068
10.1371/journal.ppat.1007510
10.1371/journal.ppat.1009347
10.1038/s41564-018-0214-7
10.3389/fmicb.2020.00736
10.1083/jcb.200911141
10.1080/15548627.2022.2091904
10.1016/j.cell.2012.12.016
10.3389/fimmu.2022.904244
10.1371/journal.ppat.1010506
10.1146/annurev-ento-020117-043119
10.1146/annurev.ento.51.110104.151039
10.1105/tpc.20.00285
10.1146/annurev-phyto-082712-102346
10.1080/15548627.2023.2252273
10.1146/annurev-phyto-080615-095900
10.1016/j.livres.2018.09.002
10.1016/bs.ircmb.2019.08.003
10.1016/j.ibmb.2011.04.006
10.1080/15548627.2022.2115830
10.1371/journal.ppat.1006727
10.1038/s41579-018-0003-6
10.1007/978-981-16-2830-6_15
10.59717/j.xinn-life.2023.100042
10.1016/j.jmb.2013.10.006
10.1146/annurev-virology-091919-100543
10.1002/1873-3468.14349
10.1186/s12985-022-01932-w
10.1016/j.cois.2015.04.007
10.1080/15548627.2022.2150001
10.1128/JVI.00409-13
10.1371/journal.ppat.1011134
10.3389/fmicb.2017.02457
10.3390/v11090827
10.1038/s41467-023-36993-0
10.1080/15548627.2021.1954773
10.1016/j.ceb.2009.12.009
10.1016/j.tim.2023.06.008
10.1016/j.pbi.2019.07.002
10.1146/annurev-arplant-042817-040606
10.1080/15548627.2016.1192749
10.3390/insects9030095
10.1016/j.cub.2011.11.034
10.15698/mic2016.12.546
10.1080/15548627.2022.2116676
10.1128/JVI.00537-06
10.1007/978-981-15-0602-4
10.1007/s11427-022-2228-y
10.1016/j.bulcan.2020.11.004
10.1016/j.virol.2018.09.020
10.1146/annurev.phyto.022508.092135
ContentType Journal Article
Copyright Copyright: © 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Zhang et al 2025 Zhang et al
Copyright_xml – notice: Copyright: © 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Zhang et al 2025 Zhang et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1371/journal.ppat.1013070
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Rice stripe mosaic virus manipulates autophagy to promote viral infection in leafhopper
EISSN 1553-7374
ExternalDocumentID oai_doaj_org_article_fbbd4bf022404258925c04f64aa4fe32
PMC12040238
A838837970
40300033
10_1371_journal_ppat_1013070
Genre Journal Article
GeographicLocations China
South Dakota
GeographicLocations_xml – name: China
– name: South Dakota
GrantInformation_xml – grantid: 2022J01578
– grantid: KFB23028
– grantid: 2023J06018
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
~8M
ADRAZ
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c527t-75d48623e46e4139621e1918e3fb1415ce801a66f7beaf40f541d6435e9b246d3
IEDL.DBID M48
ISSN 1553-7374
1553-7366
IngestDate Wed Aug 27 01:21:05 EDT 2025
Thu Aug 21 18:26:40 EDT 2025
Fri Jul 11 18:42:55 EDT 2025
Tue Jun 17 22:00:17 EDT 2025
Tue Jun 10 20:53:46 EDT 2025
Fri Jun 27 05:12:34 EDT 2025
Mon Jul 21 06:08:16 EDT 2025
Sun Jul 06 05:03:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright: © 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-75d48623e46e4139621e1918e3fb1415ce801a66f7beaf40f541d6435e9b246d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-1763-1154
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1013070
PMID 40300033
PQID 3197642548
PQPubID 23479
PageCount e1013070
ParticipantIDs doaj_primary_oai_doaj_org_article_fbbd4bf022404258925c04f64aa4fe32
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12040238
proquest_miscellaneous_3197642548
gale_infotracmisc_A838837970
gale_infotracacademiconefile_A838837970
gale_incontextgauss_ISR_A838837970
pubmed_primary_40300033
crossref_primary_10_1371_journal_ppat_1013070
PublicationCentury 2000
PublicationDate 20250429
PublicationDateYYYYMMDD 2025-04-29
PublicationDate_xml – month: 4
  year: 2025
  text: 20250429
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References E Ma (ppat.1013070.ref006) 2021; 8
P Zhao (ppat.1013070.ref010) 2011; 41
R Gohel (ppat.1013070.ref047) 2020; 354
WR Shaw (ppat.1013070.ref005) 2019; 4
Q Chen (ppat.1013070.ref020) 2023; 19
SD Eigenbrode (ppat.1013070.ref001) 2018; 63
D Jia (ppat.1013070.ref031) 2022; 18
X Huang (ppat.1013070.ref036) 2024; 20
Y Zhang (ppat.1013070.ref004) 2023; 1
J Kim (ppat.1013070.ref025) 2013; 152
Z-H Qin (ppat.1013070.ref038) 2019
X Yu (ppat.1013070.ref053) 2021; 17
RS Marshall (ppat.1013070.ref024) 2018; 69
AY Leary (ppat.1013070.ref040) 2019; 52
Y Choi (ppat.1013070.ref021) 2018; 16
Z Orlovskis (ppat.1013070.ref002) 2015; 9
T Wei (ppat.1013070.ref008) 2016; 54
W Cao (ppat.1013070.ref026) 2021; 108
X Yang (ppat.1013070.ref035) 2018; 9
SA Hogenhout (ppat.1013070.ref007) 2008; 46
Q Chen (ppat.1013070.ref018) 2023; 19
T Wei (ppat.1013070.ref052) 2006; 80
M Yang (ppat.1013070.ref041) 2022; 596
Q Mao (ppat.1013070.ref050) 2013; 87
DC Rubinsztein (ppat.1013070.ref023) 2012; 22
J Wan (ppat.1013070.ref012) 2023; 14
B Zhang (ppat.1013070.ref013) 2019; 11
R Zhang (ppat.1013070.ref017) 2022; 13
N Wu (ppat.1013070.ref045) 2022; 19
Q Wang (ppat.1013070.ref033) 2022; 18
D Jia (ppat.1013070.ref037) 2023; 66
Z Yin (ppat.1013070.ref022) 2016; 3
M Khan (ppat.1013070.ref043) 2018; 2
H Wang (ppat.1013070.ref034) 2023; 19
MB Kingsolver (ppat.1013070.ref015) 2013; 425
X Duan (ppat.1013070.ref049) 2021; 1208
L-L Wang (ppat.1013070.ref032) 2016; 12
W Liu (ppat.1013070.ref014) 2023; 31
Y Chen (ppat.1013070.ref030) 2017; 13
L Zhang (ppat.1013070.ref029) 2023; 19
J Diao (ppat.1013070.ref028) 2015; 520
F Liu (ppat.1013070.ref039) 2020; 32
X Huang (ppat.1013070.ref046) 2020; 11
X Yang (ppat.1013070.ref011) 2017; 8
Q Liang (ppat.1013070.ref019) 2023; 19
J Zhang (ppat.1013070.ref044) 2019; 526
V Deretic (ppat.1013070.ref042) 2010; 22
Q Chen (ppat.1013070.ref051) 2019; 15
C Bragard (ppat.1013070.ref009) 2013; 51
A Kumar (ppat.1013070.ref016) 2018; 9
K Matsunaga (ppat.1013070.ref027) 2010; 190
PG Weintraub (ppat.1013070.ref003) 2006; 51
SE Sinnett (ppat.1013070.ref048) 2016; 107
References_xml – volume: 520
  start-page: 563
  issue: 7548
  year: 2015
  ident: ppat.1013070.ref028
  article-title: ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
  publication-title: Nature
  doi: 10.1038/nature14147
– volume: 9
  start-page: 3068
  year: 2018
  ident: ppat.1013070.ref035
  article-title: Geographic Distribution and Genetic Diversity of Rice Stripe Mosaic Virus in Southern China
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.03068
– volume: 15
  start-page: e1007510
  issue: 1
  year: 2019
  ident: ppat.1013070.ref051
  article-title: Fibrillar structures induced by a plant reovirus target mitochondria to activate typical apoptotic response and promote viral infection in insect vectors
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1007510
– volume: 17
  start-page: e1009347
  issue: 3
  year: 2021
  ident: ppat.1013070.ref053
  article-title: A plant reovirus hijacks endoplasmic reticulum-associated degradation machinery to promote efficient viral transmission by its planthopper vector under high temperature conditions
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1009347
– volume: 4
  start-page: 20
  issue: 1
  year: 2019
  ident: ppat.1013070.ref005
  article-title: Vector biology meets disease control: using basic research to fight vector-borne diseases
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-018-0214-7
– volume: 11
  start-page: 736
  year: 2020
  ident: ppat.1013070.ref046
  article-title: Friend or Enemy: A Dual Role of Autophagy in Plant Virus Infection
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00736
– volume: 190
  start-page: 511
  issue: 4
  year: 2010
  ident: ppat.1013070.ref027
  article-title: Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200911141
– volume: 19
  start-page: 616
  issue: 2
  year: 2023
  ident: ppat.1013070.ref019
  article-title: A plant nonenveloped double-stranded RNA virus activates and co-opts BNIP3-mediated mitophagy to promote persistent infection in its insect vector
  publication-title: Autophagy
  doi: 10.1080/15548627.2022.2091904
– volume: 152
  start-page: 290
  issue: 1–2
  year: 2013
  ident: ppat.1013070.ref025
  article-title: Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
  publication-title: Cell
  doi: 10.1016/j.cell.2012.12.016
– volume: 13
  start-page: 904244
  year: 2022
  ident: ppat.1013070.ref017
  article-title: Nucleoprotein of a Rice Rhabdovirus Serves as the Effector to Attenuate Hemolymph Melanization and Facilitate Viral Persistent Propagation in its Leafhopper Vector
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.904244
– volume: 18
  start-page: e1010506
  issue: 5
  year: 2022
  ident: ppat.1013070.ref031
  article-title: A nonstructural protein encoded by a rice reovirus induces an incomplete autophagy to promote viral spread in insect vectors
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1010506
– volume: 63
  start-page: 169
  year: 2018
  ident: ppat.1013070.ref001
  article-title: Insect-Borne Plant Pathogens and Their Vectors: Ecology, Evolution, and Complex Interactions
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev-ento-020117-043119
– volume: 51
  start-page: 91
  year: 2006
  ident: ppat.1013070.ref003
  article-title: Insect vectors of phytoplasmas
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.ento.51.110104.151039
– volume: 32
  start-page: 3939
  issue: 12
  year: 2020
  ident: ppat.1013070.ref039
  article-title: AUTOPHAGY-RELATED14 and Its Associated Phosphatidylinositol 3-Kinase Complex Promote Autophagy in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.20.00285
– volume: 51
  start-page: 177
  year: 2013
  ident: ppat.1013070.ref009
  article-title: Status and prospects of plant virus control through interference with vector transmission
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev-phyto-082712-102346
– volume: 20
  start-page: 275
  issue: 2
  year: 2024
  ident: ppat.1013070.ref036
  article-title: Rhabdovirus encoded glycoprotein induces and harnesses host antiviral autophagy for maintaining its compatible infection
  publication-title: Autophagy
  doi: 10.1080/15548627.2023.2252273
– volume: 54
  start-page: 99
  year: 2016
  ident: ppat.1013070.ref008
  article-title: Rice Reoviruses in Insect Vectors
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev-phyto-080615-095900
– volume: 107
  start-page: 389
  year: 2016
  ident: ppat.1013070.ref048
  article-title: The Role of AMPK in Drosophila melanogaster
  publication-title: Exp Suppl
– volume: 2
  start-page: 146
  issue: 3
  year: 2018
  ident: ppat.1013070.ref043
  article-title: Subversion of cellular autophagy during virus infection: Insights from hepatitis B and hepatitis C viruses
  publication-title: Liver Res
  doi: 10.1016/j.livres.2018.09.002
– volume: 354
  start-page: 63
  year: 2020
  ident: ppat.1013070.ref047
  article-title: Molecular mechanisms of selective autophagy in Drosophila
  publication-title: Int Rev Cell Mol Biol
  doi: 10.1016/bs.ircmb.2019.08.003
– volume: 41
  start-page: 645
  issue: 9
  year: 2011
  ident: ppat.1013070.ref010
  article-title: Antiviral, anti-parasitic, and cytotoxic effects of 5,6-dihydroxyindole (DHI), a reactive compound generated by phenoloxidase during insect immune response
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/j.ibmb.2011.04.006
– volume: 19
  start-page: 1100
  issue: 4
  year: 2023
  ident: ppat.1013070.ref020
  article-title: GAPDH mediates plant reovirus-induced incomplete autophagy for persistent viral infection in leafhopper vector
  publication-title: Autophagy
  doi: 10.1080/15548627.2022.2115830
– volume: 13
  start-page: e1006727
  issue: 11
  year: 2017
  ident: ppat.1013070.ref030
  article-title: Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1006727
– volume: 16
  start-page: 341
  issue: 6
  year: 2018
  ident: ppat.1013070.ref021
  article-title: Autophagy during viral infection - a double-edged sword
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-018-0003-6
– volume: 1208
  start-page: 333
  year: 2021
  ident: ppat.1013070.ref049
  article-title: Autophagy in Drosophila and Zebrafish
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-981-16-2830-6_15
– volume: 1
  start-page: 100042
  issue: 3
  year: 2023
  ident: ppat.1013070.ref004
  article-title: Fighting caterpillar pests and managing agricultural insecticide resistance with Lepidoptera-associated Enterococcus casseliflavus
  publication-title: TIL
  doi: 10.59717/j.xinn-life.2023.100042
– volume: 425
  start-page: 4921
  issue: 24
  year: 2013
  ident: ppat.1013070.ref015
  article-title: Insect antiviral innate immunity: pathways, effectors, and connections
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2013.10.006
– volume: 8
  start-page: 115
  issue: 1
  year: 2021
  ident: ppat.1013070.ref006
  article-title: Interaction of Viruses with the Insect Intestine
  publication-title: Annu Rev Virol
  doi: 10.1146/annurev-virology-091919-100543
– volume: 596
  start-page: 2152
  issue: 17
  year: 2022
  ident: ppat.1013070.ref041
  article-title: Autophagy in plant viral infection
  publication-title: FEBS Lett
  doi: 10.1002/1873-3468.14349
– volume: 19
  start-page: 228
  issue: 1
  year: 2022
  ident: ppat.1013070.ref045
  article-title: Mechanism of autophagy induced by activation of the AMPK/ERK/mTOR signaling pathway after TRIM22-mediated DENV-2 infection of HUVECs
  publication-title: Virol J
  doi: 10.1186/s12985-022-01932-w
– volume: 9
  start-page: 16
  year: 2015
  ident: ppat.1013070.ref002
  article-title: Insect-borne plant pathogenic bacteria: getting a ride goes beyond physical contact
  publication-title: Curr Opin Insect Sci
  doi: 10.1016/j.cois.2015.04.007
– volume: 19
  start-page: 1678
  issue: 6
  year: 2023
  ident: ppat.1013070.ref018
  article-title: VDAC1 balances mitophagy and apoptosis in leafhopper upon arbovirus infection
  publication-title: Autophagy
  doi: 10.1080/15548627.2022.2150001
– volume: 87
  start-page: 6819
  issue: 12
  year: 2013
  ident: ppat.1013070.ref050
  article-title: New model for the genesis and maturation of viroplasms induced by fijiviruses in insect vector cells
  publication-title: J Virol
  doi: 10.1128/JVI.00409-13
– volume: 19
  start-page: e1011134
  issue: 1
  year: 2023
  ident: ppat.1013070.ref029
  article-title: Southern rice black-streaked dwarf virus induces incomplete autophagy for persistence in gut epithelial cells of its vector insect
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1011134
– volume: 8
  start-page: 2457
  year: 2017
  ident: ppat.1013070.ref011
  article-title: Transmission Biology of Rice Stripe Mosaic Virus by an Efficient Insect Vector Recilia dorsalis (Hemiptera: Cicadellidae)
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.02457
– volume: 11
  start-page: 827
  issue: 9
  year: 2019
  ident: ppat.1013070.ref013
  article-title: Roles of Small RNAs in Virus-Plant Interactions
  publication-title: Viruses
  doi: 10.3390/v11090827
– volume: 14
  start-page: 1289
  issue: 1
  year: 2023
  ident: ppat.1013070.ref012
  article-title: Arboviruses and symbiotic viruses cooperatively hijack insect sperm-specific proteins for paternal transmission
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-36993-0
– volume: 18
  start-page: 745
  issue: 4
  year: 2022
  ident: ppat.1013070.ref033
  article-title: Rice black-streaked dwarf virus P10 promotes phosphorylation of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) to induce autophagy in Laodelphax striatellus
  publication-title: Autophagy
  doi: 10.1080/15548627.2021.1954773
– volume: 22
  start-page: 252
  issue: 2
  year: 2010
  ident: ppat.1013070.ref042
  article-title: Autophagy in infection
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2009.12.009
– volume: 31
  start-page: 1251
  issue: 12
  year: 2023
  ident: ppat.1013070.ref014
  article-title: Plant reoviruses hijack autophagy in insect vectors
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2023.06.008
– volume: 52
  start-page: 46
  year: 2019
  ident: ppat.1013070.ref040
  article-title: Contrasting and emerging roles of autophagy in plant immunity
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2019.07.002
– volume: 69
  start-page: 173
  year: 2018
  ident: ppat.1013070.ref024
  article-title: Autophagy: The Master of Bulk and Selective Recycling
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-042817-040606
– volume: 12
  start-page: 1560
  issue: 9
  year: 2016
  ident: ppat.1013070.ref032
  article-title: The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1192749
– volume: 9
  start-page: 95
  issue: 3
  year: 2018
  ident: ppat.1013070.ref016
  article-title: Mosquito Innate Immunity
  publication-title: Insects
  doi: 10.3390/insects9030095
– volume: 22
  start-page: R29-34
  issue: 1
  year: 2012
  ident: ppat.1013070.ref023
  article-title: Mechanisms of autophagosome biogenesis
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2011.11.034
– volume: 3
  start-page: 588
  issue: 12
  year: 2016
  ident: ppat.1013070.ref022
  article-title: Autophagy: machinery and regulation
  publication-title: Microb Cell
  doi: 10.15698/mic2016.12.546
– volume: 19
  start-page: 1128
  issue: 4
  year: 2023
  ident: ppat.1013070.ref034
  article-title: A plant virus hijacks phosphatidylinositol-3,5-bisphosphate to escape autophagic degradation in its insect vector
  publication-title: Autophagy
  doi: 10.1080/15548627.2022.2116676
– volume: 80
  start-page: 8593
  issue: 17
  year: 2006
  ident: ppat.1013070.ref052
  article-title: The spread of Rice dwarf virus among cells of its insect vector exploits virus-induced tubular structures
  publication-title: J Virol
  doi: 10.1128/JVI.00537-06
– volume-title: Autophagy: biology and diseases
  year: 2019
  ident: ppat.1013070.ref038
  doi: 10.1007/978-981-15-0602-4
– volume: 66
  start-page: 1665
  issue: 7
  year: 2023
  ident: ppat.1013070.ref037
  article-title: Autophagy mediates a direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-022-2228-y
– volume: 108
  start-page: 304
  issue: 3
  year: 2021
  ident: ppat.1013070.ref026
  article-title: An overview of autophagy: Mechanism, regulation and research progress
  publication-title: Bull Cancer
  doi: 10.1016/j.bulcan.2020.11.004
– volume: 526
  start-page: 1
  year: 2019
  ident: ppat.1013070.ref044
  article-title: Role of c-Jun terminal kinase (JNK) activation in influenza A virus-induced autophagy and replication
  publication-title: Virology
  doi: 10.1016/j.virol.2018.09.020
– volume: 46
  start-page: 327
  year: 2008
  ident: ppat.1013070.ref007
  article-title: Insect vector interactions with persistently transmitted viruses
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev.phyto.022508.092135
SSID ssj0041316
Score 2.4639015
Snippet In the field, 80% of plant viruses are transmitted by insect vectors. When ingested by a sap-sucking insect such as Recilia dorsalis , persistently transmitted...
In the field, 80% of plant viruses are transmitted by insect vectors. When ingested by a sap-sucking insect such as Recilia dorsalis, persistently transmitted...
In the field, 80% of plant viruses are transmitted by insect vectors. When ingested by a sap-sucking insect such as Recilia dorsalis , persistently transmitted...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1013070
SubjectTerms Agricultural pests
Animals
Antiviral agents
Autophagy (Cytology)
Autophagy - immunology
Beclin-1
Biology and Life Sciences
Causes of
Diseases and pests
Genetic aspects
GTP-Binding Proteins - metabolism
Health aspects
Hemiptera - immunology
Hemiptera - virology
Immunity
Infection
Insect Proteins - metabolism
Insect Vectors - immunology
Insect Vectors - virology
Insects as carriers of disease
Medical research
Medicine and Health Sciences
Medicine, Experimental
Oryza - virology
Physiological aspects
Plant diseases
Plant Diseases - virology
Plant viruses
Research and Analysis Methods
Rice
Tenuivirus - immunology
Tenuivirus - metabolism
Tenuivirus - pathogenicity
Viral proteins
Virus diseases of plants
Virus research
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiG8CLTIIiZPpJnac5FgQpSDBoVCpN8t2xkukkl01m0rl13fG8VYbceDCNbYVeWb8ZiYZv2HsrfXgpbNKFIh8QoWghQUAYX3QjccAtrCx2uK7PjlTX8_L851WX1QTNtEDT4I7DM61yoXoetC-6qYo_UIFraxVAWREX_R522RqwmBE5tj0lJriiEpqnS7NySo_TDp6v17bSB9NRj9zSpG7_2-E3nFR8_LJHX90_IDdT4EkP5o28JDdgf4Ruzu1lrx-zMIpIgCnphxr4L9Xg-08v-oux4F_45Gboes5CtUu8Uz_gYF_FumpwCQd1d3SaEcVwBfcjsQ-YJfXHBd1_YAYya_i1_7hCTs7_vTz44lIPRWEL4tqI6qyVZjESFAaUEqNLnLAlK0GGVyOztwDuiyrdagc2KAWoVR5i1FLCY0rlG7lU7bXr3p4zrgKbUkBhkegUkq6uqlQ6Q5yi2tKm2dMbIVq1hN1hon_zypMOSYhGVKCSUrI2AeS_O1cIr6OD9AcTDIH8y9zyNgb0pshaoueameWdhwG8-XHqTmqZY3peENvepcmhRVq0Nt0FQH3RWxYs5n7s5l49vxs-PXWPAwNUcFaD6txMIhsFaZ2mA9m7NlkLrcbUwis1EMvY_XMkGY7n4_03a9I_Z0XCLoYZb34H7J6ye4V1M14gSe12Wd7m8sRDjDE2rhX8TTdANVuJRA
  priority: 102
  providerName: Directory of Open Access Journals
Title Rice stripe mosaic virus M protein antagonizes G-protein-induced antiviral autophagy in insect vectors
URI https://www.ncbi.nlm.nih.gov/pubmed/40300033
https://www.proquest.com/docview/3197642548
https://pubmed.ncbi.nlm.nih.gov/PMC12040238
https://doaj.org/article/fbbd4bf022404258925c04f64aa4fe32
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN9kG5VBSDx5ahInTh4Q2tDGQNqECpX6ZtmO3UUaSWmaifLXc-ek1SJA4jW2G_l897u7-nI_Qt4oY02sFWcRIB_jzqVMWWuZMi7NDQSwkfLVFlfpxZR_niWzHbLhbO0F2Pw1tUM-qeny5vjnj_V7MPh3nrVBhJtFx4uF8g2hUY13yT74JoGmesm39wqA2J4MFclymIgF7z-m-9evDJyV7-n_J3LfcV3Dsso7fur8IXnQB5j0pNOIR2THVo_JvY5ycv2EuAkgA0WyjoWl3-tGlYbelsu2oZfU92woKwrCVnOw9V-2oR9Z_5RB8g5qUOBoiZXBN1S12JVAzdcUFpVVA9hJb_0tQPOUTM_Pvn24YD3XAjNJJFZMJAWH5Ca2PLUgpTyNQgupXGZjp0Nw8saCK1Np6oS2yvGxS3hYQDST2FxHPC3iZ2Svqiv7glDuigQDDwMAxnmss1yAMmgbKliTqDAgbCNUuehaakh_ryYgFemEJPEQZH8IATlFyW_nYkNs_6BezmVvX9JpXXDtfIQCMJTlUWLG3KVcKe5sHAXkNZ6bxJYXFdbUzFXbNPLT14k8yeIM0vQc3_S2n-RqOEGj-k8UYF_YJWsw82gwE2zSDIZfbdRD4hAWslW2bhsJiCcg5YM8MSDPO3XZbowD4CK3XkCygSINdj4cqcpr3xI8jACMIfo6-I8XH5L7EZIYj8FA8yOyt1q29iVEVis9IrtiJkZk__Ts6stk5P-fGHkD-g2Umyfo
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rice+stripe+mosaic+virus+M+protein+antagonizes+G-protein-induced+antiviral+autophagy+in+insect+vectors&rft.jtitle=PLoS+pathogens&rft.au=Zhang%2C+Ruonan&rft.au=Wang%2C+Tengfei&rft.au=Cheng%2C+Yu&rft.au=Qiu%2C+Jiaxin&rft.date=2025-04-29&rft.issn=1553-7374&rft.eissn=1553-7374&rft.volume=21&rft.issue=4&rft.spage=e1013070&rft_id=info:doi/10.1371%2Fjournal.ppat.1013070&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon