X-Vectors: New Quantitative Biomarkers for Early Parkinson's Disease Detection From Speech
Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In this article, we have adapted the latest speaker recognition system, called x-vectors, in order to detect PD at an early stage using voice...
Saved in:
Published in | Frontiers in neuroinformatics Vol. 15; pp. 578369 - 578369:18 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
19.02.2021
Frontiers Media Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In this article, we have adapted the latest speaker recognition system, called x-vectors, in order to detect PD at an early stage using voice analysis. X-vectors are embeddings extracted from Deep Neural Networks (DNNs), which provide robust speaker representations and improve speaker recognition when large amounts of training data are used. Our goal was to assess whether, in the context of early PD detection, this technique would outperform the more standard classifier MFCC-GMM (Mel-Frequency Cepstral Coefficients—Gaussian Mixture Model) and, if so, under which conditions. We recorded 221 French speakers (recently diagnosed PD subjects and healthy controls) with a high-quality microphone and via the telephone network. Men and women were analyzed separately in order to have more precise models and to assess a possible gender effect. Several experimental and methodological aspects were tested in order to analyze their impacts on classification performance. We assessed the impact of the audio segment durations, data augmentation, type of dataset used for the neural network training, kind of speech tasks, and back-end analyses. X-vectors technique provided better classification performances than MFCC-GMM for the text-independent tasks, and seemed to be particularly suited for the early detection of PD in women (7–15% improvement). This result was observed for both recording types (high-quality microphone and telephone). |
---|---|
AbstractList | Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In this article, we have adapted the latest speaker recognition system, called x-vectors, in order to detect PD at an early stage using voice analysis. X-vectors are embeddings extracted from Deep Neural Networks (DNNs), which provide robust speaker representations and improve speaker recognition when large amounts of training data are used. Our goal was to assess whether, in the context of early PD detection, this technique would outperform the more standard classifier MFCC-GMM (Mel-Frequency Cepstral Coefficients-Gaussian Mixture Model) and, if so, under which conditions. We recorded 221 French speakers (recently diagnosed PD subjects and healthy controls) with a high-quality microphone and via the telephone network. Men and women were analyzed separately in order to have more precise models and to assess a possible gender effect. Several experimental and methodological aspects were tested in order to analyze their impacts on classification performance. We assessed the impact of the audio segment durations, data augmentation, type of dataset used for the neural network training, kind of speech tasks, and back-end analyses. X-vectors technique provided better classification performances than MFCC-GMM for the text-independent tasks, and seemed to be particularly suited for the early detection of PD in women (7-15% improvement). This result was observed for both recording types (high-quality microphone and telephone).Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In this article, we have adapted the latest speaker recognition system, called x-vectors, in order to detect PD at an early stage using voice analysis. X-vectors are embeddings extracted from Deep Neural Networks (DNNs), which provide robust speaker representations and improve speaker recognition when large amounts of training data are used. Our goal was to assess whether, in the context of early PD detection, this technique would outperform the more standard classifier MFCC-GMM (Mel-Frequency Cepstral Coefficients-Gaussian Mixture Model) and, if so, under which conditions. We recorded 221 French speakers (recently diagnosed PD subjects and healthy controls) with a high-quality microphone and via the telephone network. Men and women were analyzed separately in order to have more precise models and to assess a possible gender effect. Several experimental and methodological aspects were tested in order to analyze their impacts on classification performance. We assessed the impact of the audio segment durations, data augmentation, type of dataset used for the neural network training, kind of speech tasks, and back-end analyses. X-vectors technique provided better classification performances than MFCC-GMM for the text-independent tasks, and seemed to be particularly suited for the early detection of PD in women (7-15% improvement). This result was observed for both recording types (high-quality microphone and telephone). Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In this article, we have adapted the latest speaker recognition system, called x-vectors, in order to detect PD at an early stage using voice analysis. X-vectors are embeddings extracted from Deep Neural Networks (DNNs), which provide robust speaker representations and improve speaker recognition when large amounts of training data are used. Our goal was to assess whether, in the context of early PD detection, this technique would outperform the more standard classifier MFCC-GMM (Mel-Frequency Cepstral Coefficients-Gaussian Mixture Model) and, if so, under which conditions. We recorded 221 French speakers (recently diagnosed PD subjects and healthy controls) with a high-quality microphone and via the telephone network. Men and women were analyzed separately in order to have more precise models and to assess a possible gender effect. Several experimental and methodological aspects were tested in order to analyze their impacts on classification performance. We assessed the impact of the audio segment durations, data augmentation, type of dataset used for the neural network training, kind of speech tasks, and back-end analyses. X-vectors technique provided better classification performances than MFCC-GMM for the text-independent tasks, and seemed to be particularly suited for the early detection of PD in women (7-15% improvement). This result was observed for both recording types (high-quality microphone and telephone). Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In this article, we have adapted the latest speaker recognition system, called x-vectors, in order to detect PD at an early stage using voice analysis. X-vectors are embeddings extracted from Deep Neural Networks (DNNs), which provide robust speaker representations and improve speaker recognition when large amounts of training data are used. Our goal was to assess whether, in the context of early PD detection, this technique would outperform the more standard classifier MFCC-GMM (Mel-Frequency Cepstral Coefficients - Gaussian Mixture Model) and, if so, under which conditions. We recorded 221 French speakers (recently diagnosed PD subjects and healthy controls) with a high-quality microphone and via the telephone network. Men and women were analyzed separately in order to have more precise models and to assess a possible gender effect. Several experimental and methodological aspects were tested in order to analyze their impacts on classification performance. We assessed the impact of the audio segment durations, data augmentation, type of dataset used for the neural network training, kind of speech tasks, and back-end analyses. X-vectors technique provided better classification performances than MFCC-GMM for the text-independent tasks, and seemed to be particularly suited for the early detection of PD in women (7 to 15 % improvement). This result was observed for both recording types (high-quality microphone and telephone). |
Author | Petrovska-Delacrétaz, Dijana Jeancolas, Laetitia Mangone, Graziella Vidailhet, Marie Benali, Habib Benkelfat, Badr-Eddine Corvol, Jean-Christophe Lehéricy, Stéphane |
AuthorAffiliation | 1 Paris Brain Institute—ICM, Centre de NeuroImagerie de Recherche—CENIR , Paris , France 3 Sorbonne University, Inserm, CNRS, Paris Brain Institute—ICM , Paris , France 5 Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neuroradiology , Paris , France 4 Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, Clinical Investigation Center for Neurosciences , Paris , France 6 Department of Electrical & Computer Engineering, PERFORM Center, Concordia University , Montreal, QC , Canada 2 Laboratoire SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris , Palaiseau , France |
AuthorAffiliation_xml | – name: 4 Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, Clinical Investigation Center for Neurosciences , Paris , France – name: 2 Laboratoire SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris , Palaiseau , France – name: 1 Paris Brain Institute—ICM, Centre de NeuroImagerie de Recherche—CENIR , Paris , France – name: 6 Department of Electrical & Computer Engineering, PERFORM Center, Concordia University , Montreal, QC , Canada – name: 5 Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neuroradiology , Paris , France – name: 3 Sorbonne University, Inserm, CNRS, Paris Brain Institute—ICM , Paris , France |
Author_xml | – sequence: 1 givenname: Laetitia surname: Jeancolas fullname: Jeancolas, Laetitia – sequence: 2 givenname: Dijana surname: Petrovska-Delacrétaz fullname: Petrovska-Delacrétaz, Dijana – sequence: 3 givenname: Graziella surname: Mangone fullname: Mangone, Graziella – sequence: 4 givenname: Badr-Eddine surname: Benkelfat fullname: Benkelfat, Badr-Eddine – sequence: 5 givenname: Jean-Christophe surname: Corvol fullname: Corvol, Jean-Christophe – sequence: 6 givenname: Marie surname: Vidailhet fullname: Vidailhet, Marie – sequence: 7 givenname: Stéphane surname: Lehéricy fullname: Lehéricy, Stéphane – sequence: 8 givenname: Habib surname: Benali fullname: Benali, Habib |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33679361$$D View this record in MEDLINE/PubMed https://hal.science/hal-03152631$$DView record in HAL |
BookMark | eNp1kklvEzEUx0eoiC7wAbigkTgAhwlexh4PB6TShVaKWMQixMVy7OfGYWIHeyao3x4n06I2Eidbz__3e4v_h8WeDx6K4ilGE0pF-9p65-2EIIInrBGUtw-KA8w5qRhu-d6d-35xmNICIU44ax4V-5TypqUcHxQ_f1TfQfchpjflB_hTfh6U712vereG8p0LSxV_QUylDbE8U7G7Lj_liPMp-BepPHUJVILyFPoMccGX5zEsyy8rAD1_XDy0qkvw5OY8Kr6dn309uaimH99fnhxPK81I01ccMG8sxgQhA43iyNSYGmuIEq2GtsGIaYxrppRpDHBDFWPGUstrNaOkMfSouBy5JqiFXEWXe76WQTm5DYR4JVXsne5AEkFqy2GWRxc1WCWwmAlOgRiaixKdWW9H1mqYLcFo8H1U3T3o_Rfv5vIqrGVeJ2MYZ8CrETDfSbs4nspNDFHMCKd4vdG-vCkWw-8BUi-XLmnoOuUhDEmSuhVti1CNsvT5jnQRhujzWmWG1YLXRIisena3-3_1b787C5pRoGNIKYKVevvXYTOM6yRGcmMsuTWW3BhLjsbKmXgn8xb-_5y_BELQhQ |
CitedBy_id | crossref_primary_10_1016_j_vrih_2024_08_001 crossref_primary_10_2196_63004 crossref_primary_10_1038_s41598_023_49352_2 crossref_primary_10_1016_j_bbe_2022_04_003 crossref_primary_10_3389_fneur_2022_788427 crossref_primary_10_1016_j_parkreldis_2022_01_003 crossref_primary_10_3390_s24175520 crossref_primary_10_3390_app11104361 crossref_primary_10_1007_s13278_022_00905_9 crossref_primary_10_2196_46105 crossref_primary_10_3390_s23115208 crossref_primary_10_1016_j_irbm_2024_100874 crossref_primary_10_1038_s41531_023_00497_x crossref_primary_10_30773_pi_2023_0417 crossref_primary_10_1038_s41531_025_00895_3 crossref_primary_10_1044_2021_JSLHR_21_00396 crossref_primary_10_3389_frai_2024_1359094 crossref_primary_10_1111_exsy_13660 crossref_primary_10_2196_50117 crossref_primary_10_1007_s13534_023_00319_2 crossref_primary_10_1016_j_compbiomed_2023_107559 crossref_primary_10_3390_s24051499 crossref_primary_10_1016_j_specom_2023_103011 crossref_primary_10_1016_j_bbe_2022_07_002 crossref_primary_10_1007_s11064_023_03873_4 crossref_primary_10_3390_app14177873 |
Cites_doi | 10.1002/mds.21198 10.1121/1.4816541 10.3389/fnins.2019.00795 10.1136/jnnp.2006.103788 10.1109/TBME.2012.2183367 10.1109/TBME.2008.2005954 10.1109/SLT.2016.7846260 10.1007/s11517-020-02260-3 10.1007/978-3-319-64206-2_17 10.21437/Interspeech.2017-950 10.21533/scjournal.v2i1.44 10.1038/373607a0 10.21437/Interspeech.2015-195 10.1016/j.cmpb.2017.02.019 10.1109/TSP.2017.8076086 10.1007/978-3-030-00794-2_50 10.1109/TASLP.2014.2329734 10.21437/Interspeech.2017-620 10.3390/e18040115 10.1098/rsif.2010.0456 10.1109/JBHI.2013.2245674 10.1016/S1474-4422(06)70471-9 10.1159/000219950 10.1109/TNSRE.2016.2533582 10.1371/journal.pone.0185613 10.1093/brain/114.5.2283 10.4236/jbise.2014.74019 10.1016/j.bandl.2006.04.007 10.1016/j.sleep.2015.07.030 10.1109/ICCV.2007.4409052 10.4015/S1016237213500014 10.1109/ICASSP40776.2020.9053770 10.1007/BF00058655 10.1016/S0168-0102(99)00102-9 10.1186/2047-9158-1-11 10.1371/journal.pone.0182428 10.1016/j.asoc.2017.11.001 10.1002/mds.23680 10.21437/Interspeech.2017-1078 10.1109/TASSP.1979.1163209 10.1214/aos/1031689014 10.1007/978-3-642-13923-9_33 10.1212/WNL.17.5.427 10.1109/BHI.2018.8333407 10.21437/Interspeech.2019-2825 10.1109/LSC.2018.8572136 10.1109/JBHI.2015.2467375 10.1007/s00415-015-7671-1 10.1109/JTEHM.2019.2940900 10.1109/ICASSP.2005.1415253 10.14569/IJACSA.2019.0100315 10.1006/dspr.1999.0361 10.1093/brain/awaa234 10.1155/S1110865704310024 10.21437/Interspeech.2016-1062 10.1109/ICASSP.2014.6854363 10.1121/1.5100272 10.1121/1.4939739 10.3389/fninf.2017.00056 10.1109/TBME.2003.820386 10.3389/fnins.2019.00898 10.1007/s12559-017-9497-x 10.21437/Interspeech.2019-2217 10.5120/1821-2393 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution Copyright © 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali. 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali |
Copyright_xml | – notice: Copyright © 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution – notice: Copyright © 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali. 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
DOI | 10.3389/fninf.2021.578369 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Computer Science |
EISSN | 1662-5196 |
EndPage | 578369:18 |
ExternalDocumentID | oai_doaj_org_article_2824f6eb36184efa818b863e2d34132c PMC7935511 oai_HAL_hal_03152631v1 33679361 10_3389_fninf_2021_578369 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Concordia University |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 1XC PUEGO VOOES 5PM |
ID | FETCH-LOGICAL-c527t-6e167f11200de7a60d413dfd2a89ce97105c1145aad7de6d3a55df3f64ab327d3 |
IEDL.DBID | M48 |
ISSN | 1662-5196 |
IngestDate | Wed Aug 27 01:26:14 EDT 2025 Thu Aug 21 18:17:04 EDT 2025 Wed Sep 03 07:07:58 EDT 2025 Fri Jul 11 11:08:11 EDT 2025 Fri Jul 25 11:41:39 EDT 2025 Thu Apr 03 07:04:05 EDT 2025 Tue Jul 01 01:13:23 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | x-vectors Parkinson's disease telediagnosis voice analysis automatic detection early detection MFCC deep neural networks Deep neural networks Telediagnosis X-vectors Voice analysis Early detection Automatic detection |
Language | English |
License | Copyright © 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali. Attribution: http://creativecommons.org/licenses/by This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-6e167f11200de7a60d413dfd2a89ce97105c1145aad7de6d3a55df3f64ab327d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Michel Dojat, Institut National de la Santé et de la Recherche Médicale (INSERM), France Reviewed by: Maria L. Bringas, University of Electronic Science and Technology of China, China; Pedro Gomez-Vilda, Polytechnic University of Madrid, Spain; Alberto Mazzoni, Sant'Anna School of Advanced Studies, Italy |
ORCID | 0000-0001-9202-5165 0000-0002-2409-9143 0000-0002-5802-3518 0000-0001-7158-1218 0000-0001-6485-2972 0000-0002-2847-3067 0000-0002-5756-1859 0000-0001-7325-0199 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2021.578369 |
PMID | 33679361 |
PQID | 2634864288 |
PQPubID | 4424404 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2824f6eb36184efa818b863e2d34132c pubmedcentral_primary_oai_pubmedcentral_nih_gov_7935511 hal_primary_oai_HAL_hal_03152631v1 proquest_miscellaneous_2498990040 proquest_journals_2634864288 pubmed_primary_33679361 crossref_citationtrail_10_3389_fninf_2021_578369 crossref_primary_10_3389_fninf_2021_578369 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-19 |
PublicationDateYYYYMMDD | 2021-02-19 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroinformatics |
PublicationTitleAlternate | Front Neuroinform |
PublicationYear | 2021 |
Publisher | Frontiers Research Foundation Frontiers Media Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media – name: Frontiers Media S.A |
References | Rusz (B66); 262 Avuçlu (B4) 2020; 58 Tsanas (B80) 2011; 8 Dibazar (B16) 2002 B27 Vaiciukynas (B82) 2017; 12 Dorion (B17) 2000; 36 Orozco-Arroyave (B58) Jeancolas (B39) 2019 Zhang (B85) 2018 Clements (B13) 2006; 98 De Lau (B14) 2006; 5 Friedman (B23) 2001 Rizvi (B64) 2020; 29 Reynolds (B63) 2000; 10 Sakar (B71) 2017; 12 Jung (B41) 2019; 13 Povey (B60) 2011 Goetz (B29) 2007; 22 Snyder (B77) Bülmann (B12) 2002; 30 Arora (B3) 2019; 145 Drissi (B18) 2019; 10 Gómez-Vilda (B30) 2017; 11 Prince (B61) 2007 B38 Orozco-Arroyave (B57); 139 Ozkan (B59) 2016; 18 Snyder (B78) 2016 Bocklet (B8) 2013 Benba (B5) 2014 Moro-Velazquez (B49) 2020 Kapoor (B42) 2011; 14 B9 Jafari (B37) 2013; 25 Rustempasic (B65) 2013; 2 Garcia (B24) 2017 Little (B44) 2009; 56 Fraile (B22) 2009; 61 Sakar (B70) 2013; 17 Benba (B6) 2016; 24 Garcia-Romero (B26) 2011 Khojasteh (B43) 2018 Rusz (B67) 2011; 26 Jeancolas (B40) 2016 Malyska (B47) 2005 Schuller (B72) 2015 Novotný (B53) 2014; 22 Guo (B32) 2010 Naranjo (B52) 2017; 142 Grosz (B31) 2015 Orozco-Arroyave (B56) Rusz (B68) 2013; 134 Fang (B20) 2020 Garcia-Ospina (B25) 2018 Arias-Vergara (B2) 2017; 9 Boll (B10) 1979; 27 Breiman (B11) 1996; 24 Shahbakhi (B73) 2014; 7 Godino-Llorente (B28) 2004; 51 Rusz (B69); 19 Bimbot (B7) 2004; 2004 Tremblay (B79) 2020; 143 Orozco-Arroyave (B54); 19 Snyder (B75) Snyder (B76) 2017 de Lima Xavier (B15) 2019; 13 Ene (B19) 2008; 35 Maillard (B46) 2017 Tsanas (B81) 2012; 59 Ali (B1) 2019; 7 Vásquez-Correa (B84) 2017 Hemmerling (B35) 2016 Fearnley (B21) 1991; 114 Haaxma (B34) 2007; 78 Nagrani (B51) 2017 Moro-Velázquez (B48) 2018; 62 Hoehn (B36) 1967; 17 Haas (B33) 2012; 1 López (B45) 2019 Mucha (B50) 2017 Variani (B83) 2014 Shaywitz (B74) 1995; 373 Orozco-Arroyave (B55) 2014 Quatieri (B62) 2001 |
References_xml | – volume: 22 start-page: 41 year: 2007 ident: B29 article-title: Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan publication-title: Mov. Disord doi: 10.1002/mds.21198 – volume: 134 start-page: 2171 year: 2013 ident: B68 article-title: Imprecise vowel articulation as a potential early marker of Parkinson's disease: effect of speaking task publication-title: J. Acoust. Soc. Am doi: 10.1121/1.4816541 – volume: 13 start-page: 795 year: 2019 ident: B15 article-title: Sexual dimorphism within brain regions controlling speech production publication-title: Front. Neurosci doi: 10.3389/fnins.2019.00795 – volume: 78 start-page: 819 year: 2007 ident: B34 article-title: Gender differences in Parkinson's disease publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2006.103788 – volume: 59 start-page: 1264 year: 2012 ident: B81 article-title: Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2012.2183367 – volume: 56 start-page: 1015 year: 2009 ident: B44 article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson's disease publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2008.2005954 – start-page: 6490 volume-title: Conference: 41st ICASSP ident: B58 article-title: Towards an automatic monitoring of the neurological state of Parkinson's patients from speech – volume: 35 start-page: 112 year: 2008 ident: B19 article-title: Neural network-based approach to discriminate healthy people from those with Parkinson's disease publication-title: Ann. Univ. Craiova Math. Comput. Sci – start-page: 113 volume-title: CORESA 2016 : 18e Edition COmpressions et REprésentation des Signaux Audiovisuels year: 2016 ident: B40 article-title: L'analyse de la voix comme outil de diagnostic précoce de la maladie de Parkinson : état de l'art – start-page: 5 volume-title: INTERSPEECH year: 2015 ident: B72 article-title: The INTERSPEECH 2015 computational paralinguistics challenge: nativeness, Parkinson's & eating condition – start-page: 165 volume-title: 2016 IEEE Spoken Language Technology Workshop (SLT) year: 2016 ident: B78 article-title: Deep neural network-based speaker embeddings for end-to-end speaker verification doi: 10.1109/SLT.2016.7846260 – volume-title: The Elements of Statistical Learning, Vol. 1 year: 2001 ident: B23 – volume: 58 start-page: 2775 year: 2020 ident: B4 article-title: Evaluation of train and test performance of machine learning algorithms and Parkinson diagnosis with statistical measurements publication-title: Med. Biol. Eng. Comput doi: 10.1007/s11517-020-02260-3 – start-page: 4 volume-title: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding year: 2011 ident: B60 article-title: The Kaldi speech recognition toolkit – start-page: 147 volume-title: Text, Speech, and Dialogue, Vol. 10415 year: 2017 ident: B24 article-title: Language independent assessment of motor impairments of patients with Parkinson's disease using i-vectors doi: 10.1007/978-3-319-64206-2_17 – start-page: 105 volume-title: Odyssey 2018 the Speaker and Language Recognition Workshop ident: B75 article-title: Spoken language recognition using X-vectors – start-page: 2616 volume-title: Interspeech 2017 year: 2017 ident: B51 article-title: VoxCeleb: a large-scale speaker identification dataset doi: 10.21437/Interspeech.2017-950 – volume: 2 start-page: 42 year: 2013 ident: B65 article-title: Diagnosis of Parkinson's disease using fuzzy C-means clustering and pattern recognition publication-title: SouthEast Eur. J. Soft Comput doi: 10.21533/scjournal.v2i1.44 – volume: 373 start-page: 607 year: 1995 ident: B74 article-title: Sex differences in the functional organization of the brain for language publication-title: Nature doi: 10.1038/373607a0 – start-page: 5 volume-title: Interspeech 2015 year: 2015 ident: B31 article-title: Assessing the degree of nativeness and Parkinson's condition using gaussian processes and deep rectifier neural networks doi: 10.21437/Interspeech.2015-195 – volume: 142 start-page: 147 year: 2017 ident: B52 article-title: A two-stage variable selection and classification approach for Parkinson's disease detection by using voice recording replications publication-title: Comput. Methods Prog. Biomed doi: 10.1016/j.cmpb.2017.02.019 – start-page: 739 volume-title: 2017 40th International Conference on Telecommunications and Signal Processing (TSP) year: 2017 ident: B50 article-title: Identification of hypokinetic dysarthria using acoustic analysis of poem recitation doi: 10.1109/TSP.2017.8076086 – year: 2017 ident: B46 article-title: Cross-validation improved by aggregation: Agghoo publication-title: arXiv [Preprint]. arXiv:1709.03702 – start-page: 462 volume-title: Text, Speech, and Dialogue year: 2018 ident: B25 article-title: Phonological i-vectors to detect Parkinson's disease doi: 10.1007/978-3-030-00794-2_50 – volume: 22 start-page: 1366 year: 2014 ident: B53 article-title: Automatic evaluation of articulatory disorders in Parkinson's disease publication-title: IEEE/ACM Trans. Audio Speech Lang. Process doi: 10.1109/TASLP.2014.2329734 – start-page: 999 volume-title: Interspeech 2017 year: 2017 ident: B76 article-title: Deep neural network embeddings for text-independent speaker verification doi: 10.21437/Interspeech.2017-620 – volume: 18 start-page: 115 year: 2016 ident: B59 article-title: A comparison of classification methods for telediagnosis of Parkinson's disease publication-title: Entropy doi: 10.3390/e18040115 – volume-title: Discrete-Time Speech Signal Processing: Principles and Practice, 1st Edn year: 2001 ident: B62 – volume: 8 start-page: 842 year: 2011 ident: B80 article-title: Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson's disease symptom severity publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2010.0456 – volume: 17 start-page: 828 year: 2013 ident: B70 article-title: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings publication-title: IEEE J. Biomed. Health Inform doi: 10.1109/JBHI.2013.2245674 – volume: 5 start-page: 525 year: 2006 ident: B14 article-title: Epidemiology of Parkinson's disease publication-title: Lancet Neurol doi: 10.1016/S1474-4422(06)70471-9 – volume: 61 start-page: 146 year: 2009 ident: B22 article-title: Automatic detection of laryngeal pathologies in records of sustained vowels by means of mel-frequency cepstral coefficient parameters and differentiation of patients by sex publication-title: Folia Phoniat. Logopaed doi: 10.1159/000219950 – volume: 24 start-page: 1100 year: 2016 ident: B6 article-title: Discriminating between patients with Parkinson's and neurological diseases using cepstral analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2016.2533582 – start-page: 1573 volume-title: INTERSPEECH year: 2014 ident: B55 article-title: Automatic detection of Parkinson's disease from words uttered in three different languages – ident: B38 – volume: 12 start-page: e0185613 year: 2017 ident: B82 article-title: Detecting Parkinson's disease from sustained phonation and speech signals publication-title: PLoS ONE doi: 10.1371/journal.pone.0185613 – ident: B9 – volume: 114 start-page: 2283 year: 1991 ident: B21 article-title: Ageing and Parkinson's disease: substantia nigra regional selectivity publication-title: Brain doi: 10.1093/brain/114.5.2283 – volume: 7 start-page: 147 year: 2014 ident: B73 article-title: Speech analysis for diagnosis of Parkinson's disease using genetic algorithm and support vector machine publication-title: J. Biomed. Sci. Eng doi: 10.4236/jbise.2014.74019 – volume: 98 start-page: 150 year: 2006 ident: B13 article-title: Sex differences in cerebral laterality of language and visuospatial processing publication-title: Brain Lang doi: 10.1016/j.bandl.2006.04.007 – start-page: 95 volume-title: INTERSPEECH ident: B56 article-title: Voiced/unvoiced transitions in speech as a potential bio-marker to detect Parkinson's disease – volume: 19 start-page: 141 ident: B69 article-title: Quantitative assessment of motor speech abnormalities in idiopathic rapid eye movement sleep behaviour disorder publication-title: Sleep Med doi: 10.1016/j.sleep.2015.07.030 – start-page: 23 volume-title: The 2014 International Conference on Circuits, Systems and Signal Processing year: 2014 ident: B5 article-title: Voice analysis for detecting persons with Parkinson's disease using MFCC and VQ – start-page: 182 volume-title: Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology, Vol. 1 year: 2002 ident: B16 article-title: Feature analysis for automatic detection of pathological speech – volume-title: IEEE 11th International Conference on Computer Vision year: 2007 ident: B61 article-title: Probabilistic linear discriminant analysis for inferences about identity doi: 10.1109/ICCV.2007.4409052 – volume: 25 start-page: 1350001 year: 2013 ident: B37 article-title: Classification of Parkinson's disease patients using nonlinear phonetic features and mel-frequency cepstral analysis publication-title: Biomed. Eng doi: 10.4015/S1016237213500014 – start-page: 1155 year: 2020 ident: B49 article-title: Using X-vectors to automatically detect Parkinson's disease from speech publication-title: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) doi: 10.1109/ICASSP40776.2020.9053770 – volume: 24 start-page: 123 year: 1996 ident: B11 article-title: Bagging predictors publication-title: Mach. Learn doi: 10.1007/BF00058655 – ident: B27 – volume: 36 start-page: 9 year: 2000 ident: B17 article-title: Hemispheric asymmetry and corpus callosum morphometry: a magnetic resonance imaging study publication-title: Neurosci. Res doi: 10.1016/S0168-0102(99)00102-9 – volume: 1 start-page: 11 year: 2012 ident: B33 article-title: Premotor biomarkers for Parkinson's disease-a promising direction of research publication-title: Transl. Neurodegener doi: 10.1186/2047-9158-1-11 – volume: 12 start-page: e0182428 year: 2017 ident: B71 article-title: Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson's disease publication-title: PLoS ONE doi: 10.1371/journal.pone.0182428 – start-page: 12 year: 2020 ident: B20 article-title: Parkinsonian Chinese speech analysis towards automatic classification of Parkinson's disease publication-title: Proceedings of Machine Learning Research 2020 – volume: 62 start-page: 649 year: 2018 ident: B48 article-title: Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically detect Parkinson's Disease publication-title: Appl. Soft Comput doi: 10.1016/j.asoc.2017.11.001 – volume: 26 start-page: 1951 year: 2011 ident: B67 article-title: Acoustic assessment of voice and speech disorders in Parkinson's disease through quick vocal test publication-title: Mov. Disord doi: 10.1002/mds.23680 – start-page: 314 volume-title: INTERSPEECH year: 2017 ident: B84 article-title: Convolutional neural network to model articulation impairments in patients with Parkinson's disease doi: 10.21437/Interspeech.2017-1078 – volume: 27 start-page: 113 year: 1979 ident: B10 article-title: Suppression of acoustic noise in speech using spectral subtraction publication-title: IEEE Trans. Acoust. Speech Signal Process doi: 10.1109/TASSP.1979.1163209 – volume: 30 start-page: 927 year: 2002 ident: B12 article-title: Analyzing bagging publication-title: Ann. Stat doi: 10.1214/aos/1031689014 – volume-title: Medical Biometrics year: 2010 ident: B32 article-title: Advances in detecting Parkinson's disease doi: 10.1007/978-3-642-13923-9_33 – volume: 17 start-page: 427 year: 1967 ident: B36 article-title: Parkinsonism: onset, progression and mortality publication-title: Neurology doi: 10.1212/WNL.17.5.427 – start-page: 214 volume-title: IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) year: 2018 ident: B85 article-title: DeepVoice: a voiceprint-based mobile health framework for Parkinson's disease identification doi: 10.1109/BHI.2018.8333407 – start-page: 3033 volume-title: Interspeech 2019 year: 2019 ident: B39 article-title: Comparison of telephone recordings and professional microphone recordings for early detection of Parkinson's disease, using mel-frequency cepstral coefficients with Gaussian mixture models doi: 10.21437/Interspeech.2019-2825 – start-page: 187 volume-title: 2018 IEEE Life Sciences Conference (LSC) year: 2018 ident: B43 article-title: Parkinson's disease diagnosis based on multivariate deep features of speech signal doi: 10.1109/LSC.2018.8572136 – volume: 19 start-page: 1820 ident: B54 article-title: Characterization methods for the detection of multiple voice disorders: neurological, functional, and laryngeal diseases publication-title: IEEE J. Biomed. Health Inform doi: 10.1109/JBHI.2015.2467375 – volume: 262 start-page: 992 ident: B66 article-title: Speech disorders reflect differing pathophysiology in Parkinson's disease, progressive supranuclear palsy and multiple system atrophy publication-title: J. Neurol doi: 10.1007/s00415-015-7671-1 – volume: 7 start-page: 1 year: 2019 ident: B1 article-title: Automated detection of Parkinson's disease based on multiple types of sustained phonations using linear discriminant analysis and genetically optimized neural network publication-title: IEEE J. Transl. Eng. Health Med doi: 10.1109/JTEHM.2019.2940900 – start-page: 1 volume-title: IEEE International Conference on, Acoustics, Speech, and Signal Processing, 2005, Proceedings (ICASSP'05), Vol. 1 year: 2005 ident: B47 article-title: Automatic dysphonia recognition using biologically-inspired amplitude-modulation features doi: 10.1109/ICASSP.2005.1415253 – volume: 10 start-page: 125 year: 2019 ident: B18 article-title: Diagnosis of Parkinson's disease based on wavelet transform and mel frequency cepstral coefficients publication-title: Int. J. Adv. Comput. Sci. Appl doi: 10.14569/IJACSA.2019.0100315 – volume: 10 start-page: 19 year: 2000 ident: B63 article-title: Speaker verification using adapted Gaussian mixture models publication-title: Digit. Signal Process doi: 10.1006/dspr.1999.0361 – volume: 143 start-page: 3052 year: 2020 ident: B79 article-title: Sex effects on brain structure in de novo Parkinson's disease: a multimodal neuroimaging study doi: 10.1093/brain/awaa234 – volume: 2004 start-page: 101962 year: 2004 ident: B7 article-title: A tutorial on text-independent speaker verification publication-title: EURASIP J. Adv. Signal Process doi: 10.1155/S1110865704310024 – start-page: 1190 volume-title: INTERSPEECH year: 2016 ident: B35 article-title: Automatic detection of Parkinson's disease based on modulated vowels doi: 10.21437/Interspeech.2016-1062 – start-page: 4052 volume-title: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) year: 2014 ident: B83 article-title: Deep neural networks for small footprint text-dependent speaker verification doi: 10.1109/ICASSP.2014.6854363 – start-page: 249 volume-title: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH year: 2011 ident: B26 article-title: Analysis of I-vector length normalization in speaker recognition systems – volume: 145 start-page: 2871 year: 2019 ident: B3 article-title: Developing a large scale population screening tool for the assessment of Parkinson's disease using telephone-quality voice publication-title: J. Acoust. Soc. Am doi: 10.1121/1.5100272 – volume: 139 start-page: 481 ident: B57 article-title: Automatic detection of Parkinson's disease in running speech spoken in three different languages publication-title: J. Acoust. Soc. Am doi: 10.1121/1.4939739 – volume: 11 start-page: 56 year: 2017 ident: B30 article-title: Parkinson disease detection from speech articulation neuromechanics publication-title: Front. Neuroinform doi: 10.3389/fninf.2017.00056 – start-page: 5329 volume-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) ident: B77 article-title: X-vectors: robust DNN embeddings for speaker recognition – volume: 29 start-page: 8 year: 2020 ident: B64 article-title: An LSTM based deep learning model for voice-based detection of Parkinson's disease publication-title: Int. J. Adv. Sci. Technol – start-page: 1149 volume-title: Interspeech year: 2013 ident: B8 article-title: Automatic evaluation of Parkinson's speech-acoustic, prosodic and voice related cues – volume: 51 start-page: 380 year: 2004 ident: B28 article-title: Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2003.820386 – volume: 13 start-page: 898 year: 2019 ident: B41 article-title: Sex differences in white matter pathways related to language ability publication-title: Front. Neurosci doi: 10.3389/fnins.2019.00898 – volume: 9 start-page: 731 year: 2017 ident: B2 article-title: Parkinson's disease and aging: analysis of their effect in phonation and articulation of speech publication-title: Cogn. Comput doi: 10.1007/s12559-017-9497-x – start-page: 3063 volume-title: Interspeech 2019 year: 2019 ident: B45 article-title: Assessing Parkinson's disease from speech using fisher vectors doi: 10.21437/Interspeech.2019-2217 – volume: 14 start-page: 43 year: 2011 ident: B42 article-title: Parkinson's disease diagnosis using Mel-frequency cepstral coefficients and vector quantization publication-title: Int. J. Comput. Appl doi: 10.5120/1821-2393 |
SSID | ssj0062657 |
Score | 2.462362 |
Snippet | Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 578369 |
SubjectTerms | Alzheimer's disease automatic detection Classification Computer Science Decision trees Discriminant analysis early detection Gender Larynx Life Sciences Machine Learning Movement disorders Neural and Evolutionary Computing Neural networks Neurodegenerative diseases Neurons and Cognition Neuroscience Parkinson's disease Signal and Image Processing Sound Speech Standard deviation Support vector machines telediagnosis voice analysis x-vectors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_Sp76Itn6sthJFFIS12WST7Pbtaj0OUUG0cvgSsvngCt5euY9C_3tnsntHV0FfhH1KsrthZjIzv2QyQ8jLinvHfRB545uQl1rr3HJf5FL76CyLTHjcGvj0WU0uyg9TOb1V6gtjwrr0wB3hTgASlFEB5MPKJCFaMDBNpUTgHvUvd6h9weZtwVSng8FLl7o7wwQIVp_EFtgFYJAXbyVeW6gHVigl6wfbMsNQyD_9zN_DJW_Zn_E9crd3HOmom_B9cie0B-Rw1AJont_QVzSFcqY98kPyY5p_T7vxq1MKWox-2dg2XSYD1UbPLhdzjMlZrig4rDRlOKZ4-TndA3u9oufdmQ09D-sUp9XS8XIxp1-vQnCzB-Ri_P7bu0neF1HIneR6natQKB3Bq2LMB20V80A2Hz23Ve1CDQ6GdICJpLVe-6C8sFL6KKIqbSO49uIh2WsXbXhMqI4-cniEdLFkVQ1YSzIRZe2axpaszAjbEtW4PsM4Frr4aQBpIB9M4oNBPpiODxl5s3vlqkuv8bfBZ8ip3UDMjJ0aQF5MLy_mX_KSkRfA58E3JqOPBtuw4AVXorguMnK0FQPTr-mVga6yQrhWZeT5rhtWIx6x2DYsNjCmrAHAombMyKNOana_EkKBMlTwcT2Qp8Fchj3t5Sxl_NaYBb8onvwPAjwl-0hTjDwv6iOyt15uwjE4VuvmWVpDvwC1fCDD priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA969-KLqOdH9ZQooiDUa5MmaX2RXe-WRfTw62TxpaT5uD1w23W7K_jfO5N2V6tw0Kc2_aAzmfn9JpMZQp7mzBpmHY8rW7k4U0rFmtk0Fsp6oxOfcIuhgfencnqWvZ2JWR9wa_u0yq1NDIbaNgZj5EdM8ixHsJy_Xv6IsWsUrq72LTSukn0wwTmQr_3xyemHT1tbDGhdqG4tE6hYceRrEBuQQpa-FLh9oRh4o1C0H3zMHFMi_8eb_6ZN_uWHJjfI9R5A0lEn8ZvkiqtvkYNRDeR58Ys-oyGlM8TKD8i3Wfw1ROXbVxSsGf240XXYVAYmjo4vmgXm5qxaCsCVhkrHFDdBh_1gz1t63K3d0GO3DvlaNZ2smgX9vHTOzG-Ts8nJlzfTuG-mEBvB1DqWLpXKA7pKEuuUlokF92W9ZTovjCsAaAgD3EhobZV10nIthPXcy0xXnCnL75C9uqndPUKVt57BwYXxWZIXwLlEwr0oTFXpLMkikmx_amn6SuPY8OJ7CYwD5VAGOZQoh7KTQ0Re7G5ZdmU2Lhs8RkntBmKF7HCiWZ2X_YQrgUpmXrqKY0cb5zUAkyqX3DGLfpuZiDwBOQ-eMR29K_EcNr4AdUt_phE53KpB2c_ttvyjiRF5vLsMsxKXWnTtmg2MyQogsmghI3K305rdqziXYBQlPFwN9GnwLcMr9cU8VP5WWA0_Te9f_lkPyDX8W5hbnhaHZG-92riHAJ3W1aN-fvwGKE0aXg priority: 102 providerName: ProQuest |
Title | X-Vectors: New Quantitative Biomarkers for Early Parkinson's Disease Detection From Speech |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33679361 https://www.proquest.com/docview/2634864288 https://www.proquest.com/docview/2498990040 https://hal.science/hal-03152631 https://pubmed.ncbi.nlm.nih.gov/PMC7935511 https://doaj.org/article/2824f6eb36184efa818b863e2d34132c |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGJqG9IGB8BEZlEAIJKSO2YztBQqhlKxViE19FFS-RE9t00pqOtEXsv-fOaSsKAynKQ85xIt-d7372-Y6Qxxm3FbdOxKUtXZxqrWPDLYultr4yiU-ExaWB4xM1GKZvR3K0RVblrZYDOLsU2mE9qWFzdvDz-8UrUPiXiDjB3j73NZAB6nF2IPFQQn6F7IBh0qinx-l6UwFc95D4kykF-Askr93kvLyLXXJVCAXCq9iGxQqJ_cEOjTFs8m-f9M_Qyt9sVf86ubZ0Mmm3lYobZMvVN8letwaAPbmgT2gI-wzr6Xvk6yj-ElbuZy8ozHj0w8LU4eAZTIO0dzqdYPxOM6Pg3NKQDZniQelwZuzpjB62-zv00M1DTFdN-810Qj-dO1eNb5Fh_-jz60G8LLgQV5LreawcU9qDB5Yk1mmjEgsmznrLTZZXLgdnRFaAn6QxVlunrDBSWi-8Sk0puLbiNtmup7W7S6j21nO4hKx8mmQ54DKZCC_zqixNmqQRSVaDWlTLbORYFOOsAFSCLCkCSwpkSdGyJCLP1q-ct6k4_te4h5xaN8Qs2uHBtPlWLJWyALiZeuVKgVVvnDfgvJSZEo5btO28isgj4PNGH4PuuwKfYXEMrgT7wSKyvxKDYiW-BZDSDKFdFpGHazJoLm7HmNpNF9AmzQHs4iwakTut1Kw_tZK9iOgNedr4l01KfToO2cE1Zsxn7N4_-7xPdnGgMPSc5ftke94s3APwrOZlh-z0jk7ef-yElQm4vxmxTtChXz-bIgc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvCBgfgQEG8SEhhSV2HDdICLV0U8e6CtiGKl6CE9t0Ek1KP0D7p_gbuXOSQkHa26Q8JY4T-c4_3893viPkSZvpnGnD_Uxnxo-klL5iOvSF1DZXgQ24xq2Bw2HcP4nejcRog_xqzsJgWGWDiQ6odZnjHvkOi3nURmO5_Wb63ceqUehdbUpoVGpxYM5-AmWbv97vgXyfMra3e_y279dVBfxcMLnwYxPG0oKZEQTaSBUHGnBcW81UO8lNAiuuyIEkCKW01CbWXAmhLbdxpDLOpObQ7yWyGXGgMi2y2d0dvv_YYD-wAyEr3ylQv2THFqAmQEJZ-FLgcYlkbfVzRQJgTRtjCOb_9u2_YZp_rXt718jV2mClnUrDrpMNU9wgW50CyPrkjD6jLoTU7c1vkc8j_5PzAsxfUUBP-mGpCneIDSCVdk_LCcYCzeYUDGXqMitTPHTtzp89n9Ne5SuiPbNw8WEF3ZuVE3o0NSYf3yQnFzLMt0irKAtzh1BptWVwcZHbKGgnwPFEwK1I8ixTURB5JGgGNc3rzOZYYONbCgwH5ZA6OaQoh7SSg0derF6ZVmk9zmvcRUmtGmJGbnejnH1N6wmeAnWNbGwyjhV0jFVgCGXtmBum0U5guUceg5zX-uh3Binew0IboN7hj9Aj240apDWWzNM_mu-RR6vHgALo2lGFKZfQJkqAOCMie-R2pTWrT3EeAwjH0Llc06e1f1l_UpyOXaZxidn3w_Du-b_1kFzuHx8O0sH-8OAeuYIjh3HtYbJNWovZ0twHs22RPajnCiVfLnp6_gau_lef |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEDAugQEGcZGQQhM7jhMkhFq6qmOjGpehipfgxDadRNPSC2h_jV_HOU5SKEh7m5SnxHEin4vP53Mj5FHCdMG04X6uc-NHUkpfMR36QmpbqMAGXOPRwNthPDiO3ozEaIv8anJhMKyy0YlOUetpgWfkbRbzKEFjOWnbOiziqNd_NfvuYwcp9LQ27TQqFjkwpz8Bvi1e7veA1o8Z6-99fD3w6w4DfiGYXPqxCWNpweQIAm2kigMNOl1bzVSSFiaF3VcUABiEUlpqE2uuhNCW2zhSOWdSc5j3AtmWgIqCFtnu7g2P3jf7ACAFISs_KsDAtG1LYBkApCx8LjB1It3YCV3DANjfxhiO-b-t-2_I5l97YP8KuVwbr7RTcdtVsmXKa2SnUwJwn5zSJ9SFk7pz-h3yeeR_ch6BxQsKmpS-W6nSJbSBeqXdk-kE44LmCwpGM3VVlikmYLtctKcL2qv8RrRnli5WrKT9-XRCP8yMKcbXyfG5LPMN0iqnpblFqLTaMri4KGwUJCngPRFwK9Iiz1UURB4JmkXNirrKOTbb-JYB2kE6ZI4OGdIhq-jgkWfrV2ZViY-zBneRUuuBWJ3b3ZjOv2a1sGcAYyMbm5xjNx1jFRhFeRJzwzTaDKzwyEOg88Ycg85hhvew6Qawevgj9MhuwwZZrVcW2R8p8MiD9WPQCOjmUaWZrmBMlAKIRu3skZsV16w_xXkMCjmGyeUGP238y-aT8mTsqo5LrMQfhrfP_q375CKIZXa4Pzy4Qy7hwmGIe5juktZyvjJ3wYJb5vdqUaHky3lL52-ZB1vU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=X-Vectors%3A+New+Quantitative+Biomarkers+for+Early+Parkinson%27s+Disease+Detection+From+Speech&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Jeancolas%2C+Laetitia&rft.au=Petrovska-Delacr%C3%A9taz%2C+Dijana&rft.au=Mangone%2C+Graziella&rft.au=Benkelfat%2C+Badr-Eddine&rft.date=2021-02-19&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=15&rft.spage=578369&rft_id=info:doi/10.3389%2Ffninf.2021.578369&rft_id=info%3Apmid%2F33679361&rft.externalDocID=33679361 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |