X-Vectors: New Quantitative Biomarkers for Early Parkinson's Disease Detection From Speech

Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In this article, we have adapted the latest speaker recognition system, called x-vectors, in order to detect PD at an early stage using voice...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 15; pp. 578369 - 578369:18
Main Authors Jeancolas, Laetitia, Petrovska-Delacrétaz, Dijana, Mangone, Graziella, Benkelfat, Badr-Eddine, Corvol, Jean-Christophe, Vidailhet, Marie, Lehéricy, Stéphane, Benali, Habib
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 19.02.2021
Frontiers Media
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In this article, we have adapted the latest speaker recognition system, called x-vectors, in order to detect PD at an early stage using voice analysis. X-vectors are embeddings extracted from Deep Neural Networks (DNNs), which provide robust speaker representations and improve speaker recognition when large amounts of training data are used. Our goal was to assess whether, in the context of early PD detection, this technique would outperform the more standard classifier MFCC-GMM (Mel-Frequency Cepstral Coefficients—Gaussian Mixture Model) and, if so, under which conditions. We recorded 221 French speakers (recently diagnosed PD subjects and healthy controls) with a high-quality microphone and via the telephone network. Men and women were analyzed separately in order to have more precise models and to assess a possible gender effect. Several experimental and methodological aspects were tested in order to analyze their impacts on classification performance. We assessed the impact of the audio segment durations, data augmentation, type of dataset used for the neural network training, kind of speech tasks, and back-end analyses. X-vectors technique provided better classification performances than MFCC-GMM for the text-independent tasks, and seemed to be particularly suited for the early detection of PD in women (7–15% improvement). This result was observed for both recording types (high-quality microphone and telephone).
AbstractList Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In this article, we have adapted the latest speaker recognition system, called x-vectors, in order to detect PD at an early stage using voice analysis. X-vectors are embeddings extracted from Deep Neural Networks (DNNs), which provide robust speaker representations and improve speaker recognition when large amounts of training data are used. Our goal was to assess whether, in the context of early PD detection, this technique would outperform the more standard classifier MFCC-GMM (Mel-Frequency Cepstral Coefficients-Gaussian Mixture Model) and, if so, under which conditions. We recorded 221 French speakers (recently diagnosed PD subjects and healthy controls) with a high-quality microphone and via the telephone network. Men and women were analyzed separately in order to have more precise models and to assess a possible gender effect. Several experimental and methodological aspects were tested in order to analyze their impacts on classification performance. We assessed the impact of the audio segment durations, data augmentation, type of dataset used for the neural network training, kind of speech tasks, and back-end analyses. X-vectors technique provided better classification performances than MFCC-GMM for the text-independent tasks, and seemed to be particularly suited for the early detection of PD in women (7-15% improvement). This result was observed for both recording types (high-quality microphone and telephone).Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In this article, we have adapted the latest speaker recognition system, called x-vectors, in order to detect PD at an early stage using voice analysis. X-vectors are embeddings extracted from Deep Neural Networks (DNNs), which provide robust speaker representations and improve speaker recognition when large amounts of training data are used. Our goal was to assess whether, in the context of early PD detection, this technique would outperform the more standard classifier MFCC-GMM (Mel-Frequency Cepstral Coefficients-Gaussian Mixture Model) and, if so, under which conditions. We recorded 221 French speakers (recently diagnosed PD subjects and healthy controls) with a high-quality microphone and via the telephone network. Men and women were analyzed separately in order to have more precise models and to assess a possible gender effect. Several experimental and methodological aspects were tested in order to analyze their impacts on classification performance. We assessed the impact of the audio segment durations, data augmentation, type of dataset used for the neural network training, kind of speech tasks, and back-end analyses. X-vectors technique provided better classification performances than MFCC-GMM for the text-independent tasks, and seemed to be particularly suited for the early detection of PD in women (7-15% improvement). This result was observed for both recording types (high-quality microphone and telephone).
Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In this article, we have adapted the latest speaker recognition system, called x-vectors, in order to detect PD at an early stage using voice analysis. X-vectors are embeddings extracted from Deep Neural Networks (DNNs), which provide robust speaker representations and improve speaker recognition when large amounts of training data are used. Our goal was to assess whether, in the context of early PD detection, this technique would outperform the more standard classifier MFCC-GMM (Mel-Frequency Cepstral Coefficients-Gaussian Mixture Model) and, if so, under which conditions. We recorded 221 French speakers (recently diagnosed PD subjects and healthy controls) with a high-quality microphone and via the telephone network. Men and women were analyzed separately in order to have more precise models and to assess a possible gender effect. Several experimental and methodological aspects were tested in order to analyze their impacts on classification performance. We assessed the impact of the audio segment durations, data augmentation, type of dataset used for the neural network training, kind of speech tasks, and back-end analyses. X-vectors technique provided better classification performances than MFCC-GMM for the text-independent tasks, and seemed to be particularly suited for the early detection of PD in women (7-15% improvement). This result was observed for both recording types (high-quality microphone and telephone).
Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In this article, we have adapted the latest speaker recognition system, called x-vectors, in order to detect PD at an early stage using voice analysis. X-vectors are embeddings extracted from Deep Neural Networks (DNNs), which provide robust speaker representations and improve speaker recognition when large amounts of training data are used. Our goal was to assess whether, in the context of early PD detection, this technique would outperform the more standard classifier MFCC-GMM (Mel-Frequency Cepstral Coefficients - Gaussian Mixture Model) and, if so, under which conditions. We recorded 221 French speakers (recently diagnosed PD subjects and healthy controls) with a high-quality microphone and via the telephone network. Men and women were analyzed separately in order to have more precise models and to assess a possible gender effect. Several experimental and methodological aspects were tested in order to analyze their impacts on classification performance. We assessed the impact of the audio segment durations, data augmentation, type of dataset used for the neural network training, kind of speech tasks, and back-end analyses. X-vectors technique provided better classification performances than MFCC-GMM for the text-independent tasks, and seemed to be particularly suited for the early detection of PD in women (7 to 15 % improvement). This result was observed for both recording types (high-quality microphone and telephone).
Author Petrovska-Delacrétaz, Dijana
Jeancolas, Laetitia
Mangone, Graziella
Vidailhet, Marie
Benali, Habib
Benkelfat, Badr-Eddine
Corvol, Jean-Christophe
Lehéricy, Stéphane
AuthorAffiliation 1 Paris Brain Institute—ICM, Centre de NeuroImagerie de Recherche—CENIR , Paris , France
3 Sorbonne University, Inserm, CNRS, Paris Brain Institute—ICM , Paris , France
5 Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neuroradiology , Paris , France
4 Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, Clinical Investigation Center for Neurosciences , Paris , France
6 Department of Electrical & Computer Engineering, PERFORM Center, Concordia University , Montreal, QC , Canada
2 Laboratoire SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris , Palaiseau , France
AuthorAffiliation_xml – name: 4 Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neurology, Clinical Investigation Center for Neurosciences , Paris , France
– name: 2 Laboratoire SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris , Palaiseau , France
– name: 1 Paris Brain Institute—ICM, Centre de NeuroImagerie de Recherche—CENIR , Paris , France
– name: 6 Department of Electrical & Computer Engineering, PERFORM Center, Concordia University , Montreal, QC , Canada
– name: 5 Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Department of Neuroradiology , Paris , France
– name: 3 Sorbonne University, Inserm, CNRS, Paris Brain Institute—ICM , Paris , France
Author_xml – sequence: 1
  givenname: Laetitia
  surname: Jeancolas
  fullname: Jeancolas, Laetitia
– sequence: 2
  givenname: Dijana
  surname: Petrovska-Delacrétaz
  fullname: Petrovska-Delacrétaz, Dijana
– sequence: 3
  givenname: Graziella
  surname: Mangone
  fullname: Mangone, Graziella
– sequence: 4
  givenname: Badr-Eddine
  surname: Benkelfat
  fullname: Benkelfat, Badr-Eddine
– sequence: 5
  givenname: Jean-Christophe
  surname: Corvol
  fullname: Corvol, Jean-Christophe
– sequence: 6
  givenname: Marie
  surname: Vidailhet
  fullname: Vidailhet, Marie
– sequence: 7
  givenname: Stéphane
  surname: Lehéricy
  fullname: Lehéricy, Stéphane
– sequence: 8
  givenname: Habib
  surname: Benali
  fullname: Benali, Habib
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33679361$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03152631$$DView record in HAL
BookMark eNp1kklvEzEUx0eoiC7wAbigkTgAhwlexh4PB6TShVaKWMQixMVy7OfGYWIHeyao3x4n06I2Eidbz__3e4v_h8WeDx6K4ilGE0pF-9p65-2EIIInrBGUtw-KA8w5qRhu-d6d-35xmNICIU44ax4V-5TypqUcHxQ_f1TfQfchpjflB_hTfh6U712vereG8p0LSxV_QUylDbE8U7G7Lj_liPMp-BepPHUJVILyFPoMccGX5zEsyy8rAD1_XDy0qkvw5OY8Kr6dn309uaimH99fnhxPK81I01ccMG8sxgQhA43iyNSYGmuIEq2GtsGIaYxrppRpDHBDFWPGUstrNaOkMfSouBy5JqiFXEWXe76WQTm5DYR4JVXsne5AEkFqy2GWRxc1WCWwmAlOgRiaixKdWW9H1mqYLcFo8H1U3T3o_Rfv5vIqrGVeJ2MYZ8CrETDfSbs4nspNDFHMCKd4vdG-vCkWw-8BUi-XLmnoOuUhDEmSuhVti1CNsvT5jnQRhujzWmWG1YLXRIisena3-3_1b787C5pRoGNIKYKVevvXYTOM6yRGcmMsuTWW3BhLjsbKmXgn8xb-_5y_BELQhQ
CitedBy_id crossref_primary_10_1016_j_vrih_2024_08_001
crossref_primary_10_2196_63004
crossref_primary_10_1038_s41598_023_49352_2
crossref_primary_10_1016_j_bbe_2022_04_003
crossref_primary_10_3389_fneur_2022_788427
crossref_primary_10_1016_j_parkreldis_2022_01_003
crossref_primary_10_3390_s24175520
crossref_primary_10_3390_app11104361
crossref_primary_10_1007_s13278_022_00905_9
crossref_primary_10_2196_46105
crossref_primary_10_3390_s23115208
crossref_primary_10_1016_j_irbm_2024_100874
crossref_primary_10_1038_s41531_023_00497_x
crossref_primary_10_30773_pi_2023_0417
crossref_primary_10_1038_s41531_025_00895_3
crossref_primary_10_1044_2021_JSLHR_21_00396
crossref_primary_10_3389_frai_2024_1359094
crossref_primary_10_1111_exsy_13660
crossref_primary_10_2196_50117
crossref_primary_10_1007_s13534_023_00319_2
crossref_primary_10_1016_j_compbiomed_2023_107559
crossref_primary_10_3390_s24051499
crossref_primary_10_1016_j_specom_2023_103011
crossref_primary_10_1016_j_bbe_2022_07_002
crossref_primary_10_1007_s11064_023_03873_4
crossref_primary_10_3390_app14177873
Cites_doi 10.1002/mds.21198
10.1121/1.4816541
10.3389/fnins.2019.00795
10.1136/jnnp.2006.103788
10.1109/TBME.2012.2183367
10.1109/TBME.2008.2005954
10.1109/SLT.2016.7846260
10.1007/s11517-020-02260-3
10.1007/978-3-319-64206-2_17
10.21437/Interspeech.2017-950
10.21533/scjournal.v2i1.44
10.1038/373607a0
10.21437/Interspeech.2015-195
10.1016/j.cmpb.2017.02.019
10.1109/TSP.2017.8076086
10.1007/978-3-030-00794-2_50
10.1109/TASLP.2014.2329734
10.21437/Interspeech.2017-620
10.3390/e18040115
10.1098/rsif.2010.0456
10.1109/JBHI.2013.2245674
10.1016/S1474-4422(06)70471-9
10.1159/000219950
10.1109/TNSRE.2016.2533582
10.1371/journal.pone.0185613
10.1093/brain/114.5.2283
10.4236/jbise.2014.74019
10.1016/j.bandl.2006.04.007
10.1016/j.sleep.2015.07.030
10.1109/ICCV.2007.4409052
10.4015/S1016237213500014
10.1109/ICASSP40776.2020.9053770
10.1007/BF00058655
10.1016/S0168-0102(99)00102-9
10.1186/2047-9158-1-11
10.1371/journal.pone.0182428
10.1016/j.asoc.2017.11.001
10.1002/mds.23680
10.21437/Interspeech.2017-1078
10.1109/TASSP.1979.1163209
10.1214/aos/1031689014
10.1007/978-3-642-13923-9_33
10.1212/WNL.17.5.427
10.1109/BHI.2018.8333407
10.21437/Interspeech.2019-2825
10.1109/LSC.2018.8572136
10.1109/JBHI.2015.2467375
10.1007/s00415-015-7671-1
10.1109/JTEHM.2019.2940900
10.1109/ICASSP.2005.1415253
10.14569/IJACSA.2019.0100315
10.1006/dspr.1999.0361
10.1093/brain/awaa234
10.1155/S1110865704310024
10.21437/Interspeech.2016-1062
10.1109/ICASSP.2014.6854363
10.1121/1.5100272
10.1121/1.4939739
10.3389/fninf.2017.00056
10.1109/TBME.2003.820386
10.3389/fnins.2019.00898
10.1007/s12559-017-9497-x
10.21437/Interspeech.2019-2217
10.5120/1821-2393
ContentType Journal Article
Copyright Copyright © 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright © 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali. 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali
Copyright_xml – notice: Copyright © 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
– notice: Copyright © 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali. 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/fninf.2021.578369
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 1662-5196
EndPage 578369:18
ExternalDocumentID oai_doaj_org_article_2824f6eb36184efa818b863e2d34132c
PMC7935511
oai_HAL_hal_03152631v1
33679361
10_3389_fninf_2021_578369
Genre Journal Article
GrantInformation_xml – fundername: Concordia University
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
1XC
PUEGO
VOOES
5PM
ID FETCH-LOGICAL-c527t-6e167f11200de7a60d413dfd2a89ce97105c1145aad7de6d3a55df3f64ab327d3
IEDL.DBID M48
ISSN 1662-5196
IngestDate Wed Aug 27 01:26:14 EDT 2025
Thu Aug 21 18:17:04 EDT 2025
Wed Sep 03 07:07:58 EDT 2025
Fri Jul 11 11:08:11 EDT 2025
Fri Jul 25 11:41:39 EDT 2025
Thu Apr 03 07:04:05 EDT 2025
Tue Jul 01 01:13:23 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords x-vectors
Parkinson's disease
telediagnosis
voice analysis
automatic detection
early detection
MFCC
deep neural networks
Deep neural networks
Telediagnosis
X-vectors
Voice analysis
Early detection
Automatic detection
Language English
License Copyright © 2021 Jeancolas, Petrovska-Delacrétaz, Mangone, Benkelfat, Corvol, Vidailhet, Lehéricy and Benali.
Attribution: http://creativecommons.org/licenses/by
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-6e167f11200de7a60d413dfd2a89ce97105c1145aad7de6d3a55df3f64ab327d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Michel Dojat, Institut National de la Santé et de la Recherche Médicale (INSERM), France
Reviewed by: Maria L. Bringas, University of Electronic Science and Technology of China, China; Pedro Gomez-Vilda, Polytechnic University of Madrid, Spain; Alberto Mazzoni, Sant'Anna School of Advanced Studies, Italy
ORCID 0000-0001-9202-5165
0000-0002-2409-9143
0000-0002-5802-3518
0000-0001-7158-1218
0000-0001-6485-2972
0000-0002-2847-3067
0000-0002-5756-1859
0000-0001-7325-0199
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2021.578369
PMID 33679361
PQID 2634864288
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_2824f6eb36184efa818b863e2d34132c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7935511
hal_primary_oai_HAL_hal_03152631v1
proquest_miscellaneous_2498990040
proquest_journals_2634864288
pubmed_primary_33679361
crossref_citationtrail_10_3389_fninf_2021_578369
crossref_primary_10_3389_fninf_2021_578369
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-19
PublicationDateYYYYMMDD 2021-02-19
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-19
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media
– name: Frontiers Media S.A
References Rusz (B66); 262
Avuçlu (B4) 2020; 58
Tsanas (B80) 2011; 8
Dibazar (B16) 2002
B27
Vaiciukynas (B82) 2017; 12
Dorion (B17) 2000; 36
Orozco-Arroyave (B58)
Jeancolas (B39) 2019
Zhang (B85) 2018
Clements (B13) 2006; 98
De Lau (B14) 2006; 5
Friedman (B23) 2001
Rizvi (B64) 2020; 29
Reynolds (B63) 2000; 10
Sakar (B71) 2017; 12
Jung (B41) 2019; 13
Povey (B60) 2011
Goetz (B29) 2007; 22
Snyder (B77)
Bülmann (B12) 2002; 30
Arora (B3) 2019; 145
Drissi (B18) 2019; 10
Gómez-Vilda (B30) 2017; 11
Prince (B61) 2007
B38
Orozco-Arroyave (B57); 139
Ozkan (B59) 2016; 18
Snyder (B78) 2016
Bocklet (B8) 2013
Benba (B5) 2014
Moro-Velazquez (B49) 2020
Kapoor (B42) 2011; 14
B9
Jafari (B37) 2013; 25
Rustempasic (B65) 2013; 2
Garcia (B24) 2017
Little (B44) 2009; 56
Fraile (B22) 2009; 61
Sakar (B70) 2013; 17
Benba (B6) 2016; 24
Garcia-Romero (B26) 2011
Khojasteh (B43) 2018
Rusz (B67) 2011; 26
Jeancolas (B40) 2016
Malyska (B47) 2005
Schuller (B72) 2015
Novotný (B53) 2014; 22
Guo (B32) 2010
Naranjo (B52) 2017; 142
Grosz (B31) 2015
Orozco-Arroyave (B56)
Rusz (B68) 2013; 134
Fang (B20) 2020
Garcia-Ospina (B25) 2018
Arias-Vergara (B2) 2017; 9
Boll (B10) 1979; 27
Breiman (B11) 1996; 24
Shahbakhi (B73) 2014; 7
Godino-Llorente (B28) 2004; 51
Rusz (B69); 19
Bimbot (B7) 2004; 2004
Tremblay (B79) 2020; 143
Orozco-Arroyave (B54); 19
Snyder (B75)
Snyder (B76) 2017
de Lima Xavier (B15) 2019; 13
Ene (B19) 2008; 35
Maillard (B46) 2017
Tsanas (B81) 2012; 59
Ali (B1) 2019; 7
Vásquez-Correa (B84) 2017
Hemmerling (B35) 2016
Fearnley (B21) 1991; 114
Haaxma (B34) 2007; 78
Nagrani (B51) 2017
Moro-Velázquez (B48) 2018; 62
Hoehn (B36) 1967; 17
Haas (B33) 2012; 1
López (B45) 2019
Mucha (B50) 2017
Variani (B83) 2014
Shaywitz (B74) 1995; 373
Orozco-Arroyave (B55) 2014
Quatieri (B62) 2001
References_xml – volume: 22
  start-page: 41
  year: 2007
  ident: B29
  article-title: Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan
  publication-title: Mov. Disord
  doi: 10.1002/mds.21198
– volume: 134
  start-page: 2171
  year: 2013
  ident: B68
  article-title: Imprecise vowel articulation as a potential early marker of Parkinson's disease: effect of speaking task
  publication-title: J. Acoust. Soc. Am
  doi: 10.1121/1.4816541
– volume: 13
  start-page: 795
  year: 2019
  ident: B15
  article-title: Sexual dimorphism within brain regions controlling speech production
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2019.00795
– volume: 78
  start-page: 819
  year: 2007
  ident: B34
  article-title: Gender differences in Parkinson's disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2006.103788
– volume: 59
  start-page: 1264
  year: 2012
  ident: B81
  article-title: Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2012.2183367
– volume: 56
  start-page: 1015
  year: 2009
  ident: B44
  article-title: Suitability of dysphonia measurements for telemonitoring of Parkinson's disease
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2008.2005954
– start-page: 6490
  volume-title: Conference: 41st ICASSP
  ident: B58
  article-title: Towards an automatic monitoring of the neurological state of Parkinson's patients from speech
– volume: 35
  start-page: 112
  year: 2008
  ident: B19
  article-title: Neural network-based approach to discriminate healthy people from those with Parkinson's disease
  publication-title: Ann. Univ. Craiova Math. Comput. Sci
– start-page: 113
  volume-title: CORESA 2016 : 18e Edition COmpressions et REprésentation des Signaux Audiovisuels
  year: 2016
  ident: B40
  article-title: L'analyse de la voix comme outil de diagnostic précoce de la maladie de Parkinson : état de l'art
– start-page: 5
  volume-title: INTERSPEECH
  year: 2015
  ident: B72
  article-title: The INTERSPEECH 2015 computational paralinguistics challenge: nativeness, Parkinson's & eating condition
– start-page: 165
  volume-title: 2016 IEEE Spoken Language Technology Workshop (SLT)
  year: 2016
  ident: B78
  article-title: Deep neural network-based speaker embeddings for end-to-end speaker verification
  doi: 10.1109/SLT.2016.7846260
– volume-title: The Elements of Statistical Learning, Vol. 1
  year: 2001
  ident: B23
– volume: 58
  start-page: 2775
  year: 2020
  ident: B4
  article-title: Evaluation of train and test performance of machine learning algorithms and Parkinson diagnosis with statistical measurements
  publication-title: Med. Biol. Eng. Comput
  doi: 10.1007/s11517-020-02260-3
– start-page: 4
  volume-title: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding
  year: 2011
  ident: B60
  article-title: The Kaldi speech recognition toolkit
– start-page: 147
  volume-title: Text, Speech, and Dialogue, Vol. 10415
  year: 2017
  ident: B24
  article-title: Language independent assessment of motor impairments of patients with Parkinson's disease using i-vectors
  doi: 10.1007/978-3-319-64206-2_17
– start-page: 105
  volume-title: Odyssey 2018 the Speaker and Language Recognition Workshop
  ident: B75
  article-title: Spoken language recognition using X-vectors
– start-page: 2616
  volume-title: Interspeech 2017
  year: 2017
  ident: B51
  article-title: VoxCeleb: a large-scale speaker identification dataset
  doi: 10.21437/Interspeech.2017-950
– volume: 2
  start-page: 42
  year: 2013
  ident: B65
  article-title: Diagnosis of Parkinson's disease using fuzzy C-means clustering and pattern recognition
  publication-title: SouthEast Eur. J. Soft Comput
  doi: 10.21533/scjournal.v2i1.44
– volume: 373
  start-page: 607
  year: 1995
  ident: B74
  article-title: Sex differences in the functional organization of the brain for language
  publication-title: Nature
  doi: 10.1038/373607a0
– start-page: 5
  volume-title: Interspeech 2015
  year: 2015
  ident: B31
  article-title: Assessing the degree of nativeness and Parkinson's condition using gaussian processes and deep rectifier neural networks
  doi: 10.21437/Interspeech.2015-195
– volume: 142
  start-page: 147
  year: 2017
  ident: B52
  article-title: A two-stage variable selection and classification approach for Parkinson's disease detection by using voice recording replications
  publication-title: Comput. Methods Prog. Biomed
  doi: 10.1016/j.cmpb.2017.02.019
– start-page: 739
  volume-title: 2017 40th International Conference on Telecommunications and Signal Processing (TSP)
  year: 2017
  ident: B50
  article-title: Identification of hypokinetic dysarthria using acoustic analysis of poem recitation
  doi: 10.1109/TSP.2017.8076086
– year: 2017
  ident: B46
  article-title: Cross-validation improved by aggregation: Agghoo
  publication-title: arXiv [Preprint]. arXiv:1709.03702
– start-page: 462
  volume-title: Text, Speech, and Dialogue
  year: 2018
  ident: B25
  article-title: Phonological i-vectors to detect Parkinson's disease
  doi: 10.1007/978-3-030-00794-2_50
– volume: 22
  start-page: 1366
  year: 2014
  ident: B53
  article-title: Automatic evaluation of articulatory disorders in Parkinson's disease
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process
  doi: 10.1109/TASLP.2014.2329734
– start-page: 999
  volume-title: Interspeech 2017
  year: 2017
  ident: B76
  article-title: Deep neural network embeddings for text-independent speaker verification
  doi: 10.21437/Interspeech.2017-620
– volume: 18
  start-page: 115
  year: 2016
  ident: B59
  article-title: A comparison of classification methods for telediagnosis of Parkinson's disease
  publication-title: Entropy
  doi: 10.3390/e18040115
– volume-title: Discrete-Time Speech Signal Processing: Principles and Practice, 1st Edn
  year: 2001
  ident: B62
– volume: 8
  start-page: 842
  year: 2011
  ident: B80
  article-title: Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson's disease symptom severity
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2010.0456
– volume: 17
  start-page: 828
  year: 2013
  ident: B70
  article-title: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings
  publication-title: IEEE J. Biomed. Health Inform
  doi: 10.1109/JBHI.2013.2245674
– volume: 5
  start-page: 525
  year: 2006
  ident: B14
  article-title: Epidemiology of Parkinson's disease
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(06)70471-9
– volume: 61
  start-page: 146
  year: 2009
  ident: B22
  article-title: Automatic detection of laryngeal pathologies in records of sustained vowels by means of mel-frequency cepstral coefficient parameters and differentiation of patients by sex
  publication-title: Folia Phoniat. Logopaed
  doi: 10.1159/000219950
– volume: 24
  start-page: 1100
  year: 2016
  ident: B6
  article-title: Discriminating between patients with Parkinson's and neurological diseases using cepstral analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2016.2533582
– start-page: 1573
  volume-title: INTERSPEECH
  year: 2014
  ident: B55
  article-title: Automatic detection of Parkinson's disease from words uttered in three different languages
– ident: B38
– volume: 12
  start-page: e0185613
  year: 2017
  ident: B82
  article-title: Detecting Parkinson's disease from sustained phonation and speech signals
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0185613
– ident: B9
– volume: 114
  start-page: 2283
  year: 1991
  ident: B21
  article-title: Ageing and Parkinson's disease: substantia nigra regional selectivity
  publication-title: Brain
  doi: 10.1093/brain/114.5.2283
– volume: 7
  start-page: 147
  year: 2014
  ident: B73
  article-title: Speech analysis for diagnosis of Parkinson's disease using genetic algorithm and support vector machine
  publication-title: J. Biomed. Sci. Eng
  doi: 10.4236/jbise.2014.74019
– volume: 98
  start-page: 150
  year: 2006
  ident: B13
  article-title: Sex differences in cerebral laterality of language and visuospatial processing
  publication-title: Brain Lang
  doi: 10.1016/j.bandl.2006.04.007
– start-page: 95
  volume-title: INTERSPEECH
  ident: B56
  article-title: Voiced/unvoiced transitions in speech as a potential bio-marker to detect Parkinson's disease
– volume: 19
  start-page: 141
  ident: B69
  article-title: Quantitative assessment of motor speech abnormalities in idiopathic rapid eye movement sleep behaviour disorder
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2015.07.030
– start-page: 23
  volume-title: The 2014 International Conference on Circuits, Systems and Signal Processing
  year: 2014
  ident: B5
  article-title: Voice analysis for detecting persons with Parkinson's disease using MFCC and VQ
– start-page: 182
  volume-title: Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology, Vol. 1
  year: 2002
  ident: B16
  article-title: Feature analysis for automatic detection of pathological speech
– volume-title: IEEE 11th International Conference on Computer Vision
  year: 2007
  ident: B61
  article-title: Probabilistic linear discriminant analysis for inferences about identity
  doi: 10.1109/ICCV.2007.4409052
– volume: 25
  start-page: 1350001
  year: 2013
  ident: B37
  article-title: Classification of Parkinson's disease patients using nonlinear phonetic features and mel-frequency cepstral analysis
  publication-title: Biomed. Eng
  doi: 10.4015/S1016237213500014
– start-page: 1155
  year: 2020
  ident: B49
  article-title: Using X-vectors to automatically detect Parkinson's disease from speech
  publication-title: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  doi: 10.1109/ICASSP40776.2020.9053770
– volume: 24
  start-page: 123
  year: 1996
  ident: B11
  article-title: Bagging predictors
  publication-title: Mach. Learn
  doi: 10.1007/BF00058655
– ident: B27
– volume: 36
  start-page: 9
  year: 2000
  ident: B17
  article-title: Hemispheric asymmetry and corpus callosum morphometry: a magnetic resonance imaging study
  publication-title: Neurosci. Res
  doi: 10.1016/S0168-0102(99)00102-9
– volume: 1
  start-page: 11
  year: 2012
  ident: B33
  article-title: Premotor biomarkers for Parkinson's disease-a promising direction of research
  publication-title: Transl. Neurodegener
  doi: 10.1186/2047-9158-1-11
– volume: 12
  start-page: e0182428
  year: 2017
  ident: B71
  article-title: Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson's disease
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0182428
– start-page: 12
  year: 2020
  ident: B20
  article-title: Parkinsonian Chinese speech analysis towards automatic classification of Parkinson's disease
  publication-title: Proceedings of Machine Learning Research 2020
– volume: 62
  start-page: 649
  year: 2018
  ident: B48
  article-title: Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically detect Parkinson's Disease
  publication-title: Appl. Soft Comput
  doi: 10.1016/j.asoc.2017.11.001
– volume: 26
  start-page: 1951
  year: 2011
  ident: B67
  article-title: Acoustic assessment of voice and speech disorders in Parkinson's disease through quick vocal test
  publication-title: Mov. Disord
  doi: 10.1002/mds.23680
– start-page: 314
  volume-title: INTERSPEECH
  year: 2017
  ident: B84
  article-title: Convolutional neural network to model articulation impairments in patients with Parkinson's disease
  doi: 10.21437/Interspeech.2017-1078
– volume: 27
  start-page: 113
  year: 1979
  ident: B10
  article-title: Suppression of acoustic noise in speech using spectral subtraction
  publication-title: IEEE Trans. Acoust. Speech Signal Process
  doi: 10.1109/TASSP.1979.1163209
– volume: 30
  start-page: 927
  year: 2002
  ident: B12
  article-title: Analyzing bagging
  publication-title: Ann. Stat
  doi: 10.1214/aos/1031689014
– volume-title: Medical Biometrics
  year: 2010
  ident: B32
  article-title: Advances in detecting Parkinson's disease
  doi: 10.1007/978-3-642-13923-9_33
– volume: 17
  start-page: 427
  year: 1967
  ident: B36
  article-title: Parkinsonism: onset, progression and mortality
  publication-title: Neurology
  doi: 10.1212/WNL.17.5.427
– start-page: 214
  volume-title: IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)
  year: 2018
  ident: B85
  article-title: DeepVoice: a voiceprint-based mobile health framework for Parkinson's disease identification
  doi: 10.1109/BHI.2018.8333407
– start-page: 3033
  volume-title: Interspeech 2019
  year: 2019
  ident: B39
  article-title: Comparison of telephone recordings and professional microphone recordings for early detection of Parkinson's disease, using mel-frequency cepstral coefficients with Gaussian mixture models
  doi: 10.21437/Interspeech.2019-2825
– start-page: 187
  volume-title: 2018 IEEE Life Sciences Conference (LSC)
  year: 2018
  ident: B43
  article-title: Parkinson's disease diagnosis based on multivariate deep features of speech signal
  doi: 10.1109/LSC.2018.8572136
– volume: 19
  start-page: 1820
  ident: B54
  article-title: Characterization methods for the detection of multiple voice disorders: neurological, functional, and laryngeal diseases
  publication-title: IEEE J. Biomed. Health Inform
  doi: 10.1109/JBHI.2015.2467375
– volume: 262
  start-page: 992
  ident: B66
  article-title: Speech disorders reflect differing pathophysiology in Parkinson's disease, progressive supranuclear palsy and multiple system atrophy
  publication-title: J. Neurol
  doi: 10.1007/s00415-015-7671-1
– volume: 7
  start-page: 1
  year: 2019
  ident: B1
  article-title: Automated detection of Parkinson's disease based on multiple types of sustained phonations using linear discriminant analysis and genetically optimized neural network
  publication-title: IEEE J. Transl. Eng. Health Med
  doi: 10.1109/JTEHM.2019.2940900
– start-page: 1
  volume-title: IEEE International Conference on, Acoustics, Speech, and Signal Processing, 2005, Proceedings (ICASSP'05), Vol. 1
  year: 2005
  ident: B47
  article-title: Automatic dysphonia recognition using biologically-inspired amplitude-modulation features
  doi: 10.1109/ICASSP.2005.1415253
– volume: 10
  start-page: 125
  year: 2019
  ident: B18
  article-title: Diagnosis of Parkinson's disease based on wavelet transform and mel frequency cepstral coefficients
  publication-title: Int. J. Adv. Comput. Sci. Appl
  doi: 10.14569/IJACSA.2019.0100315
– volume: 10
  start-page: 19
  year: 2000
  ident: B63
  article-title: Speaker verification using adapted Gaussian mixture models
  publication-title: Digit. Signal Process
  doi: 10.1006/dspr.1999.0361
– volume: 143
  start-page: 3052
  year: 2020
  ident: B79
  article-title: Sex effects on brain structure in de novo Parkinson's disease: a multimodal neuroimaging study
  doi: 10.1093/brain/awaa234
– volume: 2004
  start-page: 101962
  year: 2004
  ident: B7
  article-title: A tutorial on text-independent speaker verification
  publication-title: EURASIP J. Adv. Signal Process
  doi: 10.1155/S1110865704310024
– start-page: 1190
  volume-title: INTERSPEECH
  year: 2016
  ident: B35
  article-title: Automatic detection of Parkinson's disease based on modulated vowels
  doi: 10.21437/Interspeech.2016-1062
– start-page: 4052
  volume-title: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2014
  ident: B83
  article-title: Deep neural networks for small footprint text-dependent speaker verification
  doi: 10.1109/ICASSP.2014.6854363
– start-page: 249
  volume-title: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
  year: 2011
  ident: B26
  article-title: Analysis of I-vector length normalization in speaker recognition systems
– volume: 145
  start-page: 2871
  year: 2019
  ident: B3
  article-title: Developing a large scale population screening tool for the assessment of Parkinson's disease using telephone-quality voice
  publication-title: J. Acoust. Soc. Am
  doi: 10.1121/1.5100272
– volume: 139
  start-page: 481
  ident: B57
  article-title: Automatic detection of Parkinson's disease in running speech spoken in three different languages
  publication-title: J. Acoust. Soc. Am
  doi: 10.1121/1.4939739
– volume: 11
  start-page: 56
  year: 2017
  ident: B30
  article-title: Parkinson disease detection from speech articulation neuromechanics
  publication-title: Front. Neuroinform
  doi: 10.3389/fninf.2017.00056
– start-page: 5329
  volume-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  ident: B77
  article-title: X-vectors: robust DNN embeddings for speaker recognition
– volume: 29
  start-page: 8
  year: 2020
  ident: B64
  article-title: An LSTM based deep learning model for voice-based detection of Parkinson's disease
  publication-title: Int. J. Adv. Sci. Technol
– start-page: 1149
  volume-title: Interspeech
  year: 2013
  ident: B8
  article-title: Automatic evaluation of Parkinson's speech-acoustic, prosodic and voice related cues
– volume: 51
  start-page: 380
  year: 2004
  ident: B28
  article-title: Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2003.820386
– volume: 13
  start-page: 898
  year: 2019
  ident: B41
  article-title: Sex differences in white matter pathways related to language ability
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2019.00898
– volume: 9
  start-page: 731
  year: 2017
  ident: B2
  article-title: Parkinson's disease and aging: analysis of their effect in phonation and articulation of speech
  publication-title: Cogn. Comput
  doi: 10.1007/s12559-017-9497-x
– start-page: 3063
  volume-title: Interspeech 2019
  year: 2019
  ident: B45
  article-title: Assessing Parkinson's disease from speech using fisher vectors
  doi: 10.21437/Interspeech.2019-2217
– volume: 14
  start-page: 43
  year: 2011
  ident: B42
  article-title: Parkinson's disease diagnosis using Mel-frequency cepstral coefficients and vector quantization
  publication-title: Int. J. Comput. Appl
  doi: 10.5120/1821-2393
SSID ssj0062657
Score 2.462362
Snippet Many articles have used voice analysis to detect Parkinson's disease (PD), but few have focused on the early stages of the disease and the gender effect. In...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 578369
SubjectTerms Alzheimer's disease
automatic detection
Classification
Computer Science
Decision trees
Discriminant analysis
early detection
Gender
Larynx
Life Sciences
Machine Learning
Movement disorders
Neural and Evolutionary Computing
Neural networks
Neurodegenerative diseases
Neurons and Cognition
Neuroscience
Parkinson's disease
Signal and Image Processing
Sound
Speech
Standard deviation
Support vector machines
telediagnosis
voice analysis
x-vectors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_Sp76Itn6sthJFFIS12WST7Pbtaj0OUUG0cvgSsvngCt5euY9C_3tnsntHV0FfhH1KsrthZjIzv2QyQ8jLinvHfRB545uQl1rr3HJf5FL76CyLTHjcGvj0WU0uyg9TOb1V6gtjwrr0wB3hTgASlFEB5MPKJCFaMDBNpUTgHvUvd6h9weZtwVSng8FLl7o7wwQIVp_EFtgFYJAXbyVeW6gHVigl6wfbMsNQyD_9zN_DJW_Zn_E9crd3HOmom_B9cie0B-Rw1AJont_QVzSFcqY98kPyY5p_T7vxq1MKWox-2dg2XSYD1UbPLhdzjMlZrig4rDRlOKZ4-TndA3u9oufdmQ09D-sUp9XS8XIxp1-vQnCzB-Ri_P7bu0neF1HIneR6natQKB3Bq2LMB20V80A2Hz23Ve1CDQ6GdICJpLVe-6C8sFL6KKIqbSO49uIh2WsXbXhMqI4-cniEdLFkVQ1YSzIRZe2axpaszAjbEtW4PsM4Frr4aQBpIB9M4oNBPpiODxl5s3vlqkuv8bfBZ8ip3UDMjJ0aQF5MLy_mX_KSkRfA58E3JqOPBtuw4AVXorguMnK0FQPTr-mVga6yQrhWZeT5rhtWIx6x2DYsNjCmrAHAombMyKNOana_EkKBMlTwcT2Qp8Fchj3t5Sxl_NaYBb8onvwPAjwl-0hTjDwv6iOyt15uwjE4VuvmWVpDvwC1fCDD
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA969-KLqOdH9ZQooiDUa5MmaX2RXe-WRfTw62TxpaT5uD1w23W7K_jfO5N2V6tw0Kc2_aAzmfn9JpMZQp7mzBpmHY8rW7k4U0rFmtk0Fsp6oxOfcIuhgfencnqWvZ2JWR9wa_u0yq1NDIbaNgZj5EdM8ixHsJy_Xv6IsWsUrq72LTSukn0wwTmQr_3xyemHT1tbDGhdqG4tE6hYceRrEBuQQpa-FLh9oRh4o1C0H3zMHFMi_8eb_6ZN_uWHJjfI9R5A0lEn8ZvkiqtvkYNRDeR58Ys-oyGlM8TKD8i3Wfw1ROXbVxSsGf240XXYVAYmjo4vmgXm5qxaCsCVhkrHFDdBh_1gz1t63K3d0GO3DvlaNZ2smgX9vHTOzG-Ts8nJlzfTuG-mEBvB1DqWLpXKA7pKEuuUlokF92W9ZTovjCsAaAgD3EhobZV10nIthPXcy0xXnCnL75C9uqndPUKVt57BwYXxWZIXwLlEwr0oTFXpLMkikmx_amn6SuPY8OJ7CYwD5VAGOZQoh7KTQ0Re7G5ZdmU2Lhs8RkntBmKF7HCiWZ2X_YQrgUpmXrqKY0cb5zUAkyqX3DGLfpuZiDwBOQ-eMR29K_EcNr4AdUt_phE53KpB2c_ttvyjiRF5vLsMsxKXWnTtmg2MyQogsmghI3K305rdqziXYBQlPFwN9GnwLcMr9cU8VP5WWA0_Te9f_lkPyDX8W5hbnhaHZG-92riHAJ3W1aN-fvwGKE0aXg
  priority: 102
  providerName: ProQuest
Title X-Vectors: New Quantitative Biomarkers for Early Parkinson's Disease Detection From Speech
URI https://www.ncbi.nlm.nih.gov/pubmed/33679361
https://www.proquest.com/docview/2634864288
https://www.proquest.com/docview/2498990040
https://hal.science/hal-03152631
https://pubmed.ncbi.nlm.nih.gov/PMC7935511
https://doaj.org/article/2824f6eb36184efa818b863e2d34132c
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGJqG9IGB8BEZlEAIJKSO2YztBQqhlKxViE19FFS-RE9t00pqOtEXsv-fOaSsKAynKQ85xIt-d7372-Y6Qxxm3FbdOxKUtXZxqrWPDLYultr4yiU-ExaWB4xM1GKZvR3K0RVblrZYDOLsU2mE9qWFzdvDz-8UrUPiXiDjB3j73NZAB6nF2IPFQQn6F7IBh0qinx-l6UwFc95D4kykF-Askr93kvLyLXXJVCAXCq9iGxQqJ_cEOjTFs8m-f9M_Qyt9sVf86ubZ0Mmm3lYobZMvVN8letwaAPbmgT2gI-wzr6Xvk6yj-ElbuZy8ozHj0w8LU4eAZTIO0dzqdYPxOM6Pg3NKQDZniQelwZuzpjB62-zv00M1DTFdN-810Qj-dO1eNb5Fh_-jz60G8LLgQV5LreawcU9qDB5Yk1mmjEgsmznrLTZZXLgdnRFaAn6QxVlunrDBSWi-8Sk0puLbiNtmup7W7S6j21nO4hKx8mmQ54DKZCC_zqixNmqQRSVaDWlTLbORYFOOsAFSCLCkCSwpkSdGyJCLP1q-ct6k4_te4h5xaN8Qs2uHBtPlWLJWyALiZeuVKgVVvnDfgvJSZEo5btO28isgj4PNGH4PuuwKfYXEMrgT7wSKyvxKDYiW-BZDSDKFdFpGHazJoLm7HmNpNF9AmzQHs4iwakTut1Kw_tZK9iOgNedr4l01KfToO2cE1Zsxn7N4_-7xPdnGgMPSc5ftke94s3APwrOZlh-z0jk7ef-yElQm4vxmxTtChXz-bIgc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvCBgfgQEG8SEhhSV2HDdICLV0U8e6CtiGKl6CE9t0Ek1KP0D7p_gbuXOSQkHa26Q8JY4T-c4_3893viPkSZvpnGnD_Uxnxo-klL5iOvSF1DZXgQ24xq2Bw2HcP4nejcRog_xqzsJgWGWDiQ6odZnjHvkOi3nURmO5_Wb63ceqUehdbUpoVGpxYM5-AmWbv97vgXyfMra3e_y279dVBfxcMLnwYxPG0oKZEQTaSBUHGnBcW81UO8lNAiuuyIEkCKW01CbWXAmhLbdxpDLOpObQ7yWyGXGgMi2y2d0dvv_YYD-wAyEr3ylQv2THFqAmQEJZ-FLgcYlkbfVzRQJgTRtjCOb_9u2_YZp_rXt718jV2mClnUrDrpMNU9wgW50CyPrkjD6jLoTU7c1vkc8j_5PzAsxfUUBP-mGpCneIDSCVdk_LCcYCzeYUDGXqMitTPHTtzp89n9Ne5SuiPbNw8WEF3ZuVE3o0NSYf3yQnFzLMt0irKAtzh1BptWVwcZHbKGgnwPFEwK1I8ixTURB5JGgGNc3rzOZYYONbCgwH5ZA6OaQoh7SSg0derF6ZVmk9zmvcRUmtGmJGbnejnH1N6wmeAnWNbGwyjhV0jFVgCGXtmBum0U5guUceg5zX-uh3Binew0IboN7hj9Aj240apDWWzNM_mu-RR6vHgALo2lGFKZfQJkqAOCMie-R2pTWrT3EeAwjH0Llc06e1f1l_UpyOXaZxidn3w_Du-b_1kFzuHx8O0sH-8OAeuYIjh3HtYbJNWovZ0twHs22RPajnCiVfLnp6_gau_lef
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEDAugQEGcZGQQhM7jhMkhFq6qmOjGpehipfgxDadRNPSC2h_jV_HOU5SKEh7m5SnxHEin4vP53Mj5FHCdMG04X6uc-NHUkpfMR36QmpbqMAGXOPRwNthPDiO3ozEaIv8anJhMKyy0YlOUetpgWfkbRbzKEFjOWnbOiziqNd_NfvuYwcp9LQ27TQqFjkwpz8Bvi1e7veA1o8Z6-99fD3w6w4DfiGYXPqxCWNpweQIAm2kigMNOl1bzVSSFiaF3VcUABiEUlpqE2uuhNCW2zhSOWdSc5j3AtmWgIqCFtnu7g2P3jf7ACAFISs_KsDAtG1LYBkApCx8LjB1It3YCV3DANjfxhiO-b-t-2_I5l97YP8KuVwbr7RTcdtVsmXKa2SnUwJwn5zSJ9SFk7pz-h3yeeR_ch6BxQsKmpS-W6nSJbSBeqXdk-kE44LmCwpGM3VVlikmYLtctKcL2qv8RrRnli5WrKT9-XRCP8yMKcbXyfG5LPMN0iqnpblFqLTaMri4KGwUJCngPRFwK9Iiz1UURB4JmkXNirrKOTbb-JYB2kE6ZI4OGdIhq-jgkWfrV2ZViY-zBneRUuuBWJ3b3ZjOv2a1sGcAYyMbm5xjNx1jFRhFeRJzwzTaDKzwyEOg88Ycg85hhvew6Qawevgj9MhuwwZZrVcW2R8p8MiD9WPQCOjmUaWZrmBMlAKIRu3skZsV16w_xXkMCjmGyeUGP238y-aT8mTsqo5LrMQfhrfP_q375CKIZXa4Pzy4Qy7hwmGIe5juktZyvjJ3wYJb5vdqUaHky3lL52-ZB1vU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=X-Vectors%3A+New+Quantitative+Biomarkers+for+Early+Parkinson%27s+Disease+Detection+From+Speech&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Jeancolas%2C+Laetitia&rft.au=Petrovska-Delacr%C3%A9taz%2C+Dijana&rft.au=Mangone%2C+Graziella&rft.au=Benkelfat%2C+Badr-Eddine&rft.date=2021-02-19&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=15&rft.spage=578369&rft_id=info:doi/10.3389%2Ffninf.2021.578369&rft_id=info%3Apmid%2F33679361&rft.externalDocID=33679361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon