Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment
Heat shock proteins (HSPs) are a group of proteins, also known as molecular chaperones, which participate in protein folding and maturation in response to stresses or high temperature. According to their molecular weights, mammalian HSPs are classified into HSP27, HSP40, HSP60, HSP70, HSP90, and lar...
Saved in:
Published in | Biomedicine & pharmacotherapy Vol. 142; p. 112074 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
France
Elsevier Masson SAS
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heat shock proteins (HSPs) are a group of proteins, also known as molecular chaperones, which participate in protein folding and maturation in response to stresses or high temperature. According to their molecular weights, mammalian HSPs are classified into HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. Previous studies have revealed that HSPs play important roles in oncogenesis and malignant progression because they can modulate all six hallmark traits of cancer. Because of this, HSPs have been propelled into the spotlight as biomarkers for cancer diagnosis and prognosis, as well as an exciting anticancer drug target. However, the relationship between the expression level of HSPs and their activity and cancer diagnosis, prognosis, metabolism and treatment is not clear and has not been completely established. Herein, this review summarizes and discusses recent advances and perspectives in major HSPs as biomarkers for cancer diagnosis, as regulators for cancer metabolism or as therapeutic targets for cancer therapy, which may provide new directions to improve the accuracy of cancer diagnosis and develop more effective and safer anticancer therapeutics.
[Display omitted]
•HSF-1 and HSPs can be used as biomarkers for cancer diagnosis and prognosis.•HSPs, particularly HSP70 and HSP90, participate in and regulate cancer metabolism.•Two approaches are employed to target HSPs for cancer therapy, including HSP inhibitors and HSP-based immunotherapies.•The combination of the HSP inhibitors with conventional therapies will help improve the therapeutic outcome.•HSP-based targeting or immunotherapy will remain a major focus in the field of cancer therapy. |
---|---|
AbstractList | Heat shock proteins (HSPs) are a group of proteins, also known as molecular chaperones, which participate in protein folding and maturation in response to stresses or high temperature. According to their molecular weights, mammalian HSPs are classified into HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. Previous studies have revealed that HSPs play important roles in oncogenesis and malignant progression because they can modulate all six hallmark traits of cancer. Because of this, HSPs have been propelled into the spotlight as biomarkers for cancer diagnosis and prognosis, as well as an exciting anticancer drug target. However, the relationship between the expression level of HSPs and their activity and cancer diagnosis, prognosis, metabolism and treatment is not clear and has not been completely established. Herein, this review summarizes and discusses recent advances and perspectives in major HSPs as biomarkers for cancer diagnosis, as regulators for cancer metabolism or as therapeutic targets for cancer therapy, which may provide new directions to improve the accuracy of cancer diagnosis and develop more effective and safer anticancer therapeutics.Heat shock proteins (HSPs) are a group of proteins, also known as molecular chaperones, which participate in protein folding and maturation in response to stresses or high temperature. According to their molecular weights, mammalian HSPs are classified into HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. Previous studies have revealed that HSPs play important roles in oncogenesis and malignant progression because they can modulate all six hallmark traits of cancer. Because of this, HSPs have been propelled into the spotlight as biomarkers for cancer diagnosis and prognosis, as well as an exciting anticancer drug target. However, the relationship between the expression level of HSPs and their activity and cancer diagnosis, prognosis, metabolism and treatment is not clear and has not been completely established. Herein, this review summarizes and discusses recent advances and perspectives in major HSPs as biomarkers for cancer diagnosis, as regulators for cancer metabolism or as therapeutic targets for cancer therapy, which may provide new directions to improve the accuracy of cancer diagnosis and develop more effective and safer anticancer therapeutics. Heat shock proteins (HSPs) are a group of proteins, also known as molecular chaperones, which participate in protein folding and maturation in response to stresses or high temperature. According to their molecular weights, mammalian HSPs are classified into HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. Previous studies have revealed that HSPs play important roles in oncogenesis and malignant progression because they can modulate all six hallmark traits of cancer. Because of this, HSPs have been propelled into the spotlight as biomarkers for cancer diagnosis and prognosis, as well as an exciting anticancer drug target. However, the relationship between the expression level of HSPs and their activity and cancer diagnosis, prognosis, metabolism and treatment is not clear and has not been completely established. Herein, this review summarizes and discusses recent advances and perspectives in major HSPs as biomarkers for cancer diagnosis, as regulators for cancer metabolism or as therapeutic targets for cancer therapy, which may provide new directions to improve the accuracy of cancer diagnosis and develop more effective and safer anticancer therapeutics. [Display omitted] •HSF-1 and HSPs can be used as biomarkers for cancer diagnosis and prognosis.•HSPs, particularly HSP70 and HSP90, participate in and regulate cancer metabolism.•Two approaches are employed to target HSPs for cancer therapy, including HSP inhibitors and HSP-based immunotherapies.•The combination of the HSP inhibitors with conventional therapies will help improve the therapeutic outcome.•HSP-based targeting or immunotherapy will remain a major focus in the field of cancer therapy. Heat shock proteins (HSPs) are a group of proteins, also known as molecular chaperones, which participate in protein folding and maturation in response to stresses or high temperature. According to their molecular weights, mammalian HSPs are classified into HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. Previous studies have revealed that HSPs play important roles in oncogenesis and malignant progression because they can modulate all six hallmark traits of cancer. Because of this, HSPs have been propelled into the spotlight as biomarkers for cancer diagnosis and prognosis, as well as an exciting anticancer drug target. However, the relationship between the expression level of HSPs and their activity and cancer diagnosis, prognosis, metabolism and treatment is not clear and has not been completely established. Herein, this review summarizes and discusses recent advances and perspectives in major HSPs as biomarkers for cancer diagnosis, as regulators for cancer metabolism or as therapeutic targets for cancer therapy, which may provide new directions to improve the accuracy of cancer diagnosis and develop more effective and safer anticancer therapeutics. |
ArticleNumber | 112074 |
Author | Yang, Shuxian Cao, Li Xiao, Haiyan |
Author_xml | – sequence: 1 givenname: Shuxian surname: Yang fullname: Yang, Shuxian organization: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China – sequence: 2 givenname: Haiyan surname: Xiao fullname: Xiao, Haiyan organization: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China – sequence: 3 givenname: Li surname: Cao fullname: Cao, Li email: lcao@implad.ac.cn organization: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34426258$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9LHDEUxYModdV-Aynz2AdnzZ_JzESKIFJtQRDEPoc7mbvdrDPJmmQFv32zHffFl33KJff8DpdzTsih8w4JOWd0ziirL1fzzvr1EuaccjZnjNOmOiAzpiQta0qbQzKjjRSlEJwfk5MYV5RSWYv2CzkWVcVrLtsZ0U9o0KUC-jdwBmNhXbFESEVcevNSrINPaN3_b7MVhKK38Nf5aOPFdrsbR0zQ-cHGsQDXFylkjzEbn5GjBQwRv368p-TP3c_n21_lw-P979ubh9JI3qSyBqMqka9mplWwaFvWgWqadoGKt6Ao65nkIKSUStUsb7ATwKmQdddkqBOn5Pvkm2963WBMerTR4DCAQ7-Jmsu6YoJVimbptw_pphux1-tgRwjvehdKFlxNAhN8jAEX2tgEyXqXAthBM6q3DeiVnhrQ2wb01ECGq0_wzn8Pdj1hmEN6sxh0NBZz4L0NaJLuvd1n8OOTgRmsswaGF3zfj_8DwqC0gQ |
CitedBy_id | crossref_primary_10_3390_cells10113121 crossref_primary_10_1016_j_talanta_2022_123511 crossref_primary_10_1016_j_hoc_2024_11_009 crossref_primary_10_3390_cancers16030638 crossref_primary_10_1038_s41598_022_19182_9 crossref_primary_10_3390_cancers16081500 crossref_primary_10_1007_s12192_022_01263_3 crossref_primary_10_3390_pharmaceutics16030380 crossref_primary_10_1016_j_phymed_2024_156023 crossref_primary_10_1039_D2BM01281B crossref_primary_10_1016_j_slast_2024_100212 crossref_primary_10_62347_OSGO7209 crossref_primary_10_1002_adtp_202400006 crossref_primary_10_1016_j_bbcan_2023_189069 crossref_primary_10_3390_cancers14194600 crossref_primary_10_3390_ijms25063415 crossref_primary_10_3390_livers4010011 crossref_primary_10_3389_fcvm_2023_1195464 crossref_primary_10_3390_ijms25158208 crossref_primary_10_1002_jbt_23861 crossref_primary_10_3390_ph14121298 crossref_primary_10_1016_j_canlet_2024_216678 crossref_primary_10_1007_s12274_022_4470_8 crossref_primary_10_1002_EXP_20230133 crossref_primary_10_3390_ijms23179758 crossref_primary_10_1016_j_jconrel_2022_12_022 crossref_primary_10_2217_fon_2023_0263 crossref_primary_10_1002_ptr_7840 crossref_primary_10_1016_j_mtcomm_2024_110579 crossref_primary_10_1186_s12935_023_03058_7 crossref_primary_10_1016_j_exger_2022_111896 crossref_primary_10_1016_j_jbc_2021_101414 crossref_primary_10_1177_11779322231224187 crossref_primary_10_1016_j_drup_2022_100888 crossref_primary_10_3390_ijms24032609 crossref_primary_10_3390_ijms222313170 crossref_primary_10_31857_S0555109923040062 crossref_primary_10_1002_cam4_5310 crossref_primary_10_1002_jcb_30326 crossref_primary_10_17826_cumj_1052787 crossref_primary_10_3390_ijms24043933 crossref_primary_10_1155_2022_2256671 crossref_primary_10_3390_pharmaceutics16060775 crossref_primary_10_1097_CAD_0000000000001612 crossref_primary_10_3390_ijms24044083 crossref_primary_10_3390_ijms241310733 crossref_primary_10_1016_j_biotechadv_2022_107907 crossref_primary_10_1134_S0003683823040063 crossref_primary_10_1186_s10020_023_00636_3 crossref_primary_10_1021_acsanm_4c03574 crossref_primary_10_1093_jncimonographs_lgad014 crossref_primary_10_1590_0103_6440202305036 crossref_primary_10_1016_j_accre_2024_07_001 crossref_primary_10_1007_s12192_023_01374_5 crossref_primary_10_1016_j_advms_2023_10_005 crossref_primary_10_1016_j_isci_2024_110382 crossref_primary_10_1007_s10585_024_10282_6 crossref_primary_10_1080_02726351_2022_2089303 crossref_primary_10_3390_cancers15133414 crossref_primary_10_1186_s12951_024_03084_1 crossref_primary_10_1016_j_celrep_2023_113081 crossref_primary_10_1016_j_ijpharm_2022_121580 crossref_primary_10_1096_fj_202300667RR crossref_primary_10_3389_fimmu_2025_1510650 crossref_primary_10_1016_j_canlet_2025_217571 crossref_primary_10_3390_cancers15235651 crossref_primary_10_1038_s41392_025_02166_2 crossref_primary_10_1186_s13045_024_01601_1 |
Cites_doi | 10.1038/onc.2013.439 10.1186/1479-5876-10-96 10.3390/ijms20184588 10.1002/elps.201100462 10.1093/emboj/18.8.2049 10.1073/pnas.1115031108 10.1038/onc.2017.263 10.1186/s12943-017-0748-y 10.1016/j.ijpharm.2019.05.056 10.18632/oncotarget.12438 10.4161/cc.8.23.10423 10.18632/oncotarget.17180 10.1007/BF00689048 10.1007/s13402-012-0079-3 10.1016/j.biocel.2012.04.002 10.1080/14728222.2019.1602119 10.1021/pr800130d 10.1016/S0301-472X(99)00104-6 10.3389/fimmu.2019.00454 10.1007/s10549-011-1866-7 10.3892/or.2016.5286 10.3389/fonc.2019.00832 10.3390/ijms18091978 10.1016/j.ijrobp.2013.11.008 10.1016/j.tcb.2015.10.011 10.1186/s13046-016-0331-1 10.3171/2013.7.PEDS1376 10.1200/JCO.19.00816 10.1158/1078-0432.CCR-11-0072 10.1186/s12943-015-0481-3 10.1038/onc.2012.144 10.1073/pnas.1209565109 10.1158/2326-6066.CIR-16-0374 10.1007/s13277-013-1139-7 10.1200/JCO.2005.00.612 10.18632/oncotarget.20308 10.2174/1568009618666181018162117 10.3390/genes9040195 10.1016/j.ejca.2009.10.026 10.1007/s13277-015-3674-x 10.1038/s41598-017-13956-2 10.1155/2010/212537 10.1038/srep28388 10.1172/JCI130819 10.1038/srep24267 10.2174/138161213804143617 10.1186/1471-2407-5-139 10.3390/cells9030587 10.1158/0008-5472.CAN-12-0538 10.21873/anticanres.13283 10.1080/17474086.2020.1711730 10.1038/nrc2468 10.1021/np4009333 10.3390/cells9041046 10.1152/japplphysiol.00658.2012 10.3892/mmr.2015.4600 10.3389/fgene.2014.00346 10.1093/carcin/bgt111 10.1158/0008-5472.CAN-13-2752 10.1007/s12192-008-0068-7 10.18632/oncotarget.9774 10.3109/07853899908995889 10.1002/1878-0261.12042 10.1080/15384047.2020.1736482 10.1016/j.biopha.2018.03.102 10.1111/j.1749-6632.2010.05196.x 10.3390/metabo10100394 10.1016/j.bbrc.2017.04.056 10.1007/s00432-020-03175-0 10.1016/j.tibs.2016.01.003 10.1007/s10637-014-0095-4 10.1007/s00262-003-0416-5 10.1038/onc.2014.349 10.18632/oncotarget.20113 10.1038/cddis.2011.99 10.1016/S0090-4295(99)00358-1 10.1016/j.redox.2019.101218 10.1016/j.mito.2019.09.011 10.1186/s12943-017-0640-9 10.2174/1389450118666170823121248 10.1007/s12038-007-0051-y 10.1073/pnas.0903392106 10.12998/wjcc.v7.i3.260 10.1155/2020/2148253 10.1002/cncr.29499 10.18632/oncotarget.2484 10.3892/or.2014.3132 10.1186/1476-4598-6-25 10.1111/imm.12104 10.1016/S0140-6736(08)60697-2 10.1002/hep.22912 10.1038/onc.2016.494 10.1002/jso.21992 10.1186/s13046-016-0316-0 10.1038/s41416-019-0617-0 10.3390/molecules25143279 10.1016/S0002-9440(10)64954-1 10.1196/annals.1391.019 10.1038/bjc.2014.262 10.1186/1477-5956-2-8 10.1093/carcin/bgv045 10.1038/leu.2009.292 10.1007/978-0-387-39975-1_1 10.1093/annonc/mdm545 10.1111/cbdd.13486 10.1073/pnas.1017909109 10.1158/1541-7786.MCR-13-0605 10.3816/CGC.2004.n.013 10.1586/erv.11.124 10.1002/mc.22185 10.1080/10253890.2019.1568987 10.1016/j.vaccine.2011.09.046 10.1186/s12964-015-0094-x 10.1007/s10637-010-9493-4 10.1002/cncr.25599 10.18632/oncotarget.1917 10.1158/1535-7163.1021.3.8 10.3389/fphar.2020.01029 10.3389/fimmu.2015.00162 10.1155/2018/6184162 10.1155/2019/3267207 10.1016/j.tips.2016.11.009 10.1200/JCO.2007.11.9941 10.3390/cancers11091389 10.1111/bjh.12943 10.1007/s10637-017-0556-7 10.1093/jnci/92.19.1564 10.1002/jcp.30132 10.1016/S0361-090X(02)00126-5 10.1007/s12272-012-1101-z 10.20892/j.issn.2095-3941.2018.0235 10.1379/CSC-99r.1 10.1080/2162402X.2020.1756130 10.1038/nrc2887 10.1038/s41598-019-48992-7 10.1016/j.chembiol.2018.06.010 10.1007/s12192-016-0721-5 10.3389/fmolb.2020.00060 10.2174/1568009033481859 10.1007/s12272-018-1015-5 10.1093/nar/gkx194 10.1002/mnfr.201600025 10.1007/s00432-011-1005-1 10.1093/jnci/85.19.1558 10.1021/acs.nanolett.0c01230 10.1016/j.ijbiomac.2020.08.198 10.3389/fnins.2017.00254 10.3390/ijms19092560 10.1016/j.jmb.2015.02.002 10.1016/j.bcmd.2012.11.002 10.1007/s10495-019-01577-1 10.3109/07357907.2015.1069834 10.18632/oncotarget.991 10.1146/annurev.ge.22.120188.003215 10.3389/fimmu.2014.00307 10.3892/ol.2017.5637 10.18632/oncotarget.1734 10.1093/neuonc/not203 10.3390/cells9010060 10.1007/s11060-016-2149-2 10.18632/oncotarget.27333 10.2147/OTT.S153682 10.3892/ol.2015.3579 10.1016/j.cmet.2015.12.006 10.1007/s12192-016-0687-3 10.18632/oncotarget.16361 10.1517/17460441.2011.563296 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved. |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.biopha.2021.112074 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1950-6007 |
ExternalDocumentID | 34426258 10_1016_j_biopha_2021_112074 S075333222100857X |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABMAC ABMZM ABWVN ABXDB ABZDS ACDAQ ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OD~ OGGZJ OK1 OO0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SDP SEM SES SEW SPT SSH SSP SSZ T5K VH1 WUQ Z5R ~02 ~G- 0SF 6I. AACTN AAFTH AAIAV AATCM ABLVK ABMYL ABYKQ AFCTW AFKWA AFPKN AJBFU AJOXV AMFUW EFLBG GROUPED_DOAJ LCYCR NCXOZ RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c527t-6ac9430071c89af881ba9778fe928a901d152a35559961977eb3a20356b7071b3 |
IEDL.DBID | .~1 |
ISSN | 0753-3322 1950-6007 |
IngestDate | Mon Jul 21 09:42:26 EDT 2025 Thu Apr 03 07:06:03 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Tue Jul 01 04:12:58 EDT 2025 Sat Mar 23 16:29:59 EDT 2024 Tue Aug 26 16:31:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CLL Heat shock proteins (HSPs) OXPHOS HIF-1α DFS TNM PI3K Cancer metabolism SDH VEGFR MCLs HSF HSP inhibitors HBV PSA CML HSR EAC BCG HCC ER GRP94 ESCC 17-DMAG BCR AR RD PDAC HSEs 17-AAG HCV Cancer diagnosis and prognosis NK IVM Biomarker nChap HSPs HSP-based immunotherapies GA OSCC APCs SCLC TRAP1 OS NSCLC PKM2 AKT MHC I ccRCC gp96 PES |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-6ac9430071c89af881ba9778fe928a901d152a35559961977eb3a20356b7071b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S075333222100857X |
PMID | 34426258 |
PQID | 2564131490 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2564131490 pubmed_primary_34426258 crossref_citationtrail_10_1016_j_biopha_2021_112074 crossref_primary_10_1016_j_biopha_2021_112074 elsevier_sciencedirect_doi_10_1016_j_biopha_2021_112074 elsevier_clinicalkey_doi_10_1016_j_biopha_2021_112074 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 2021-Oct 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | France |
PublicationPlace_xml | – name: France |
PublicationTitle | Biomedicine & pharmacotherapy |
PublicationTitleAlternate | Biomed Pharmacother |
PublicationYear | 2021 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Liu, Liu, Long, Liu, Wang (bib144) 2020; 19 Chatterjee, Bhattacharya, Socinski, Burns (bib13) 2016; 14 Nappi, Aguda, Nakouzi, Lelj-Garolla, Beraldi, Lallous, Thi, Moore, Fazli, Battsogt, Battsogt, Stief, Ban, Nguyen, Saxena, Dueva, Zhang, Yamazaki, Zoubeidi, Cherkasov, Brayer, Gleave (bib145) 2020; 130 Hoter, Naim (bib11) 2019; 11 Cai, Wang, Zhang, Han, Liu, Bei, Peng, Liang, Feng, Wang, Chen, Fu, Kang, Shao, Zeng (bib72) 2012; 10 Yun, Kim, Lim, Lee (bib1) 2019; 9 Abe, Manola, Oh, Parslow, George, Austin, Kantoff (bib73) 2004; 3 Katsogiannou, Andrieu, Rocchi (bib37) 2014; 5 Kijima, Prince, Neckers, Koga, Fujii (bib143) 2019; 23 Prince, Lang, Guerrero-Gimenez, Fernandez-Muñoz, Ackerman, Calderwood (bib23) 2020; 9 Sengupta, Pratx (bib96) 2016; 15 Choi, Lee (bib129) 2012; 35 Vostakolaei, Hatami-Baroogh, Babaei, Molavi, Kordi, Abdolalizadeh (bib70) 2021; 236 Jäättelä (bib7) 1999; 31 Jiang, Tu, Fu, Schmitt, Zhou, Lu, Zhao (bib25) 2015; 36 Myung, Afjehi-Sadat, Felizardo-Cabatic, Slavc, Lubec (bib53) 2004; 2 Cho (bib18) 2007; 6 Voll, Ogden, Pavese, Huang, Xu, Jovanovic, Bergan (bib39) 2014; 5 Nagaraju, Long, Park, Landry, Taliaferro-Smith, Farris, Diaz, El-Rayes (bib84) 2015; 54 Soga, Akinaga, Shiotsu (bib124) 2013; 19 Caldas-Lopes, Cerchietti, Ahn, Clement, Robles, Rodina, Moulick, Taldone, Gozman, Guo, Guo, Wu, de Stanchina, White, Gross, Ma, Varticovski, Melnick, Chiosis (bib133) 2009; 106 Denko (bib97) 2008; 8 Chen, Dong, Gao, Jiang, Jin, Chang, Chen, Wang (bib146) 2016; 13 Košec, Novak, Konjevoda, Trkulja, Bedeković, Grgurević (bib92) 2019; 10 Rappa, Pitruzzella, Marino Gammazza, Barone, Mocciaro, Tomasello, Carini, Farina, Zummo, Conway de Macario, Macario, Cappello (bib61) 2016; 21 Lindquist, Craig (bib3) 1988; 22 Heinrich, Tuukkanen, Schroeder, Fahrig, Fahrig (bib149) 2011; 137 Bloch, Crane, Fuks, Kaur, Aghi, Berger, Butowski, Chang, Clarke, McDermott, McDermott, Prados, Sloan, Bruce, Parsa (bib176) 2014; 16 Rao, Taylor, Chi-Sabins, Kawabe, Gooding, Storkus (bib182) 2012; 72 Meng, Liu, Han, Tan, Chen, Qiao, Zhou, Sun, Yang (bib85) 2017; 16 Alexiou, Vartholomatos, Stefanaki, Patereli, Dova, Karamoutsios, Lallas, Sfakianos, Moschovi, Prodromou (bib93) 2013; 12 Teng, Liu, Tang, Zhang, Chen, Xu, Chen, Song, Liu, Deng (bib63) 2019; 24 Sherman (bib71) 2010; 1197 Huang, Chen, Han, Li, Huang, Zhang, Yin, Wang, Ma, Dai, Duan, Zou, Chen (bib86) 2014; 7 Zhao, Raines, Huang (bib98) 2020; 10 Li, Qian, Zhang, Fu, Du, Jiang, Zhang, Zhang, Xi, Yi, Yi, Hou (bib172) 2014; 166 Gökmen-Polar, Badve (bib29) 2016; 7 Rappa, Farina, Zummo, David, Campanella, Carini, Tomasello, Damiani, Cappello, DE Macario, Macario (bib55) 2012; 32 Xu, Wang, Shao, Yin, Chen, Qiu, Mo, Zhao, Deng, He (bib64) 2011; 104 Konda, Olivero, Musiani, Lamba, Di Renzo (bib38) 2017; 11 Liu, Sun, Dong, Wang, Qin, Zhang, Zhang (bib122) 2017; 487 Drexler, Wagner, Küchler, Feyerabend, Kleine, Oldhafer (bib46) 2020; 146 Acquaviva, He, Sang, Smith, Sequeira, Zhang, Bates, Proia (bib165) 2014; 12 Tang, Li, Liu, Wang, Luo, Deng (bib52) 2016; 6 Mittal, Rajala (bib108) 2020; 21 Li, Cai, Zhang, Ding, Ma, Huang, Liu, Liu, Shi (bib175) 2020; 20 Hoter, El-Sabban, Naim (bib83) 2018; 19 Zou, Liu, She, Yin, Li, Li, Zhou, Chen, Liu (bib40) 2020; 11 Santiago-O’Farrill, Kleinerman, Hollomon, Livingston, Wang, Tsai, Gordon (bib49) 2018; 9 Chatterjee, Burns (bib8) 2017; 18 Murphy (bib67) 2013; 34 Multhoff, Mizzen, Winchester, Milner, Wenk, Eissner, Kampinga, Laumbacher, Johnson (bib171) 1999; 27 Mano, Zilber, Di Natale, Kedar, Lifshitz, Yossepowitch, Baniel, Margel (bib62) 2018; 36 Ciocca, Calderwood (bib22) 2005; 10 Bhardwaj, Paul, Jakhar, Khan, Kang, Kim, Yun, Lee, Cho, Lee, Lee, Kang (bib140) 2017; 8 Campanella, Rappa, Sciumè, Marino Gammazza, Barone, Bucchieri, David, Curcurù, Caruso Bavisotto, Pitruzzella, Geraci, Modica, Farina, Zummo, Fais, Conway de Macario, Macario, Cappello (bib56) 2015; 121 Im (bib102) 2016; 21 Lee, Saini, Parris, Zhao, Yang (bib125) 2017; 51 Acunzo, Katsogiannou, Rocchi (bib36) 2012; 44 Zahm, Colluru, McNeel (bib184) 2017; 5 Tang, Yang, Brown, Huang (bib75) 2018; 2018 Lai, Park, Lee, Alberobello, Raffeld, Pierobon, Pin, Petricoin Iii, Wang, Giaccone (bib164) 2014; 33 Bauer, Nitsche, Slotta-Huspenina, Drecoll, von Weyhern, Rosenberg, Höfler, Langer (bib44) 2012; 35 Gráf, Barabás, Madaras, Garam, Maláti, Horváth, Prohászka, Horváth, Kocsis (bib76) 2018; 23 Neckers (bib109) 2007; 32 Bepperling, Alte, Kriehuber, Braun, Weinkauf, Groll, Haslbeck, Buchner (bib5) 2012; 109 Guo, Lu, Lee, Zhen, Chiosis, Wang (bib131) 2017; 36 Lin, Qiu, Peng, Peng (bib90) 2020; 2020 Ramkumar, Dharaskar, Mounika, Paithankar, Sreedhar (bib103) 2020; 50 Lancet, Gojo, Burton, Quinn, Tighe, Kersey, Zhong, Albitar, Bhalla, Hannah, Baer (bib119) 2010; 24 Sin, Martin, Wills, Currie, Baillie (bib179) 2015; 13 Ishiwata, Kasamatsu, Sakuma, Iyoda, Yamatoji, Usukura, Ishige, Shimizu, Yamano, Ogawara, Shiiba, Tanzawa, Uzawa (bib33) 2012; 40 Bendell, Jones, Hart, Pant, Moyhuddin, Lane, Earwood, Murphy, Patton, Penley, Penley, Thompson, Infante (bib163) 2015; 33 Trepel, Mollapour, Giaccone, Neckers (bib110) 2010; 10 Supko, Hickman, Grever, Malspeis (bib113) 1995; 36 Kurihara, Shien, Torigoe, Takeda, Takahashi, Ogoshi, Yoshioka, Namba, Sato, Suzawa, Yamamoto, Soh, Okazaki, Shien, Tomida, Toyooka (bib128) 2019; 39 Saini, Sharma (bib107) 2018; 19 Engerud, Tangen, Berg, Kusonmano, Halle, Oyan, Kalland, Stefansson, Trovik, Salvesen, Krakstad (bib30) 2014; 111 Vilaboa, Boré, Martin-Saavedra, Bayford, Winfield, Firth-Clark, Kirton, Voellmy (bib142) 2017; 45 Kinzel, Ernst, Orth, Albrecht, Hennel, Brix, Frey, Gaipl, Zuchtriegel, Reichel, Reichel, Blutke, Schilling, Multhoff, Li, Niyazi, Friedl, Winssinger, Belka, Lauber (bib166) 2016; 7 Soga, Shiotsu, Akinaga, Sharma (bib121) 2003; 3 He, Smith, Sequeira, Sang, Bates, Proia (bib159) 2014; 32 Park, Baek, Shin, Shin (bib156) 2018; 25 Straume, Shimamura, Lampa, Carretero, Øyan, Jia, Borgman, Soucheray, Downing, Short, Kang, Wang, Chen, Collett, Bachmann, Wong, Shapiro, Kalland, Folkman, Watnick, Akslen, Naumov (bib16) 2012; 109 Workman (bib111) 2002; 26 Lall, Adhami, Mukhtar (bib137) 2016; 60 Wald, Koelle, Fife, Warren, Leclair, Chicz, Monks, Levey, Musselli, Srivastava (bib180) 2011; 29 Choi, Woo, Choi, Seo, Kim (bib181) 2011; 4 Ando, Oki, Zhao, Ikawa-Yoshida, Kitao, Saeki, Kimura, Ida, Morita, Kusumoto, Maehara (bib80) 2014; 17 Wood, Srivastava, Bukowski, Lacombe, Gorelov, Gorelov, Mulders, Zielinski, Hoos, Teofilovici, Teofilovici, Isakov, Flanigan, Figlin, Gupta, Escudier, C-- RCC Study (bib178) 2008; 372 Dai, Sampson (bib24) 2016; 26 Canonici, Qadir, Conlon, Collins, O’Brien, Walsh, Eustace, O’Donovan, Crown (bib123) 2018; 36 Ciocca, Oesterreich, Chamness, McGuire, Fuqua (bib48) 1993; 85 Das, Xiong, Ren, Yang, Song (bib15) 2019; 2019 Sherman, Gabai (bib68) 2015; 34 Shevtsov, Pitkin, Ischenko, Stangl, Khachatryan, Galibin, Edmond, Lobinger, Multhoff (bib174) 2019; 10 Mielczarek-Lewandowska, Hartman, Czyz (bib134) 2020; 25 Breinig, Caldas-Lopes, Goeppert, Malz, Rieker, Bergmann, Schirmacher, Mayer, Chiosis, Kern (bib132) 2009; 50 Söderström, Kauppi, Oksala, Paavonen, Krogerus, Räsänen, Rantanen (bib47) 2019; 7 Pirali, Taheri, Zarei, Majidi, Ghafouri (bib154) 2020; 164 Wu, Niu, Bremner, Nie, Fu, Li, Zhu (bib167) 2020; 9 Gartner, Silverman, Simon, Flaherty, Abrams, Ivy, Lorusso (bib118) 2012; 131 Britten, Rowinsky, Baker, Weiss, Smith, Stephenson, Rothenberg, Smetzer, Cramer, Collins, Collins, Von Hoff, Eckhardt (bib157) 2000; 6 Murshid, Gong, Stevenson, Calderwood (bib169) 2011; 10 Nagaraju, Alese, Landry, Diaz, El-Rayes (bib162) 2014; 5 Specht, Ahrens, Blankenstein, Duell, Fietkau, Gaipl, Günther, Gunther, Habl, Hautmann, Hautmann, Hautmann, Huber, Molls, Offner, Rödel, Rödel, Schütz, Combs, Multhoff (bib173) 2015; 6 Taha, Ono, Eguchi (bib10) 2019; 20 Castilla, Congregado, Conde, Medina, Torrubia, Japón, Sáez (bib60) 2010; 76 Kim, Lee, Kim, Kim, Kwon, Han (bib136) 2015; 36 Lackie, Maciejewski, Ostapchenko, Marques-Lopes, Choy, Duennwald, Prado, Prado (bib186) 2017; 11 Ellis (bib2) 2007; 594 Ray-Coquard, Braicu, Berger, Mahner, Sehouli, Pujade-Lauraine, Cassier, Moll, Ulmer, Leunen, Zeimet, Marth, Vergote, Concin (bib127) 2019; 9 Mellatyar, Talaei, Pilehvar-Soltanahmadi, Barzegar, Akbarzadeh, Shahabi, Barekati-Mowahed, Zarghami (bib120) 2018; 102 Duraiswamy, Freeman, Coukos (bib183) 2014; 74 Pavlova, Thompson (bib95) 2016; 23 Yoon, Kang, Han, Seo, Lee (bib141) 2014; 77 Calderwood, Gong (bib14) 2016; 41 Hoter, Rizk, Naim (bib66) 2020; 7 Chaiwatanasirikul, Sala (bib57) 2011; 2 Wong, Wong, Chan, Ma, Hui, Wong, Lam, Au, Chan, Cheuk, Cheuk, Chan (bib151) 2008; 20 Lee, Han, Yoon, Yun, Yun, Kim, Kwon, Jeong, Baek, Lee, Lee, Han, Lee (bib78) 2017; 36 Kumar, O’Malley, Chaudhary, Inigo, Yadav, Kumar, Chandra (bib59) 2019; 121 Huang, Kao, Wu, Wang, Lee, Liang, Chen, Shieh (bib101) 2014; 5 Záčková, Moučková, Lopotová, Ondráčková, Klamová, Moravcová (bib88) 2013; 50 Yerushalmi, Raiter, Nalbandyan, Hardy (bib94) 2015; 10 Chen, Chen, Loo, Jaeger, Bagdasarian, Yu, Chung, Korn, Ruddy, Guo, McLaughlin, Feng, Zhu, Stegmeier, Pagliarini, Porter, Zhou (bib31) 2013; 4 Zhou, Ma, Zhang, He, Gong, Long (bib155) 2017; 37 Xanthoudakis, Roy, Rasper, Hennessey, Aubin, Cassady, Tawa, Ruel, Rosen, Nicholson (bib65) 1999; 18 Xu, Tu, Dou, Zhang, Yang, Liu, Lei, Liu, Wang, Li, Bao, Wang, Tu (bib99) 2017; 16 Shi, Chevolot, Souteyrand, Laurenceau (bib21) 2017; 18 Eto, Hisaka, Horiuchi, Uchida, Ishikawa, Kawashima, Kinugasa, Nakashima, Yano, Okuda, Akagi (bib50) 2016; 36 Bagatell, Whitesell (bib12) 2004; 3 Jin, Ji, Chen, Liu, Che, Xu, Lin (bib81) 2016; 35 Ito, Matsuoka, Honda, Kobayashi (bib185) 2004; 53 Ma, Sato, Sato, Matsubara, Hirai, Yamasaki, Shin, Shimada, Nomura, Mori, Mori, Sumino, Mimata (bib158) 2014; 31 Guo, Li, Zhang, Chen, Zhu, Chen, Xu, Lv, Wu, Guo, Liu, Lu, Deng (bib58) 2019; 9 Liu, Kang, Li, Qin, Wang (bib89) 2019; 17 Jolly, Morimoto (bib19) 2000; 92 Bayer, Liebhardt, Schmid, Trajkovic-Arsic, Hube, Specht, Schilling, Gehrmann, Stangl, Siveke, Wilkens, Multhoff (bib74) 2014; 88 Gehrmann, Cervello, Montalto, Cappello Ando (10.1016/j.biopha.2021.112074_bib80) 2014; 17 Murphy (10.1016/j.biopha.2021.112074_bib67) 2013; 34 Gehrmann (10.1016/j.biopha.2021.112074_bib17) 2014; 5 Naz (10.1016/j.biopha.2021.112074_bib139) 2020; 25 Bepperling (10.1016/j.biopha.2021.112074_bib5) 2012; 109 Albakova (10.1016/j.biopha.2021.112074_bib153) 2020; 9 Tang (10.1016/j.biopha.2021.112074_bib75) 2018; 2018 Sherman (10.1016/j.biopha.2021.112074_bib71) 2010; 1197 Gráf (10.1016/j.biopha.2021.112074_bib76) 2018; 23 Choi (10.1016/j.biopha.2021.112074_bib181) 2011; 4 Wu (10.1016/j.biopha.2021.112074_bib51) 2017; 38 Alexiou (10.1016/j.biopha.2021.112074_bib93) 2013; 12 Vilaboa (10.1016/j.biopha.2021.112074_bib142) 2017; 45 Jin (10.1016/j.biopha.2021.112074_bib81) 2016; 35 Záčková (10.1016/j.biopha.2021.112074_bib88) 2013; 50 Multhoff (10.1016/j.biopha.2021.112074_bib171) 1999; 27 Ellis (10.1016/j.biopha.2021.112074_bib2) 2007; 594 Modi (10.1016/j.biopha.2021.112074_bib161) 2011; 17 Ito (10.1016/j.biopha.2021.112074_bib185) 2004; 53 Wang (10.1016/j.biopha.2021.112074_bib105) 2012; 113 Murshid (10.1016/j.biopha.2021.112074_bib169) 2011; 10 Zhao (10.1016/j.biopha.2021.112074_bib98) 2020; 10 Talaei (10.1016/j.biopha.2021.112074_bib116) 2019; 93 Kumar (10.1016/j.biopha.2021.112074_bib59) 2019; 121 Kummar (10.1016/j.biopha.2021.112074_bib115) 2010 Haslbeck (10.1016/j.biopha.2021.112074_bib4) 2015; 427 Bloch (10.1016/j.biopha.2021.112074_bib176) 2014; 16 Lackie (10.1016/j.biopha.2021.112074_bib186) 2017; 11 Bhardwaj (10.1016/j.biopha.2021.112074_bib140) 2017; 8 Nagaraju (10.1016/j.biopha.2021.112074_bib84) 2015; 54 Cho (10.1016/j.biopha.2021.112074_bib18) 2007; 6 Huang (10.1016/j.biopha.2021.112074_bib86) 2014; 7 Hoter (10.1016/j.biopha.2021.112074_bib66) 2020; 7 Gartner (10.1016/j.biopha.2021.112074_bib118) 2012; 131 Pacey (10.1016/j.biopha.2021.112074_bib117) 2012; 30 Konda (10.1016/j.biopha.2021.112074_bib38) 2017; 11 Ramkumar (10.1016/j.biopha.2021.112074_bib103) 2020; 50 Xanthoudakis (10.1016/j.biopha.2021.112074_bib65) 1999; 18 Guo (10.1016/j.biopha.2021.112074_bib58) 2019; 9 Prince (10.1016/j.biopha.2021.112074_bib23) 2020; 9 Lin (10.1016/j.biopha.2021.112074_bib90) 2020; 2020 Thanner (10.1016/j.biopha.2021.112074_bib91) 2020; 9 Breinig (10.1016/j.biopha.2021.112074_bib132) 2009; 50 Gupta (10.1016/j.biopha.2021.112074_bib77) 2017; 7 Chaiwatanasirikul (10.1016/j.biopha.2021.112074_bib57) 2011; 2 Lee (10.1016/j.biopha.2021.112074_bib125) 2017; 51 Chen (10.1016/j.biopha.2021.112074_bib138) 2020; 40 Grosicki (10.1016/j.biopha.2021.112074_bib6) 2020; 13 Voll (10.1016/j.biopha.2021.112074_bib39) 2014; 5 Wood (10.1016/j.biopha.2021.112074_bib178) 2008; 372 Bayer (10.1016/j.biopha.2021.112074_bib74) 2014; 88 Shi (10.1016/j.biopha.2021.112074_bib106) 2019; 22 Hoang (10.1016/j.biopha.2021.112074_bib20) 2000; 156 Zhao (10.1016/j.biopha.2021.112074_bib41) 2014; 35 Vostakolaei (10.1016/j.biopha.2021.112074_bib70) 2021; 236 Kim (10.1016/j.biopha.2021.112074_bib136) 2015; 36 Acquaviva (10.1016/j.biopha.2021.112074_bib165) 2014; 12 Janik (10.1016/j.biopha.2021.112074_bib43) 2016; 6 Calderwood (10.1016/j.biopha.2021.112074_bib14) 2016; 41 Acunzo (10.1016/j.biopha.2021.112074_bib36) 2012; 44 Katsogiannou (10.1016/j.biopha.2021.112074_bib37) 2014; 5 Li (10.1016/j.biopha.2021.112074_bib148) 2016; 35 Jin (10.1016/j.biopha.2021.112074_bib45) 2018; 41 Calderwood (10.1016/j.biopha.2021.112074_bib170) 2007; 1113 Taha (10.1016/j.biopha.2021.112074_bib10) 2019; 20 Zou (10.1016/j.biopha.2021.112074_bib40) 2020; 11 Matassa (10.1016/j.biopha.2021.112074_bib104) 2018; 9 Shoskes (10.1016/j.biopha.2021.112074_bib150) 1999; 54 Campanella (10.1016/j.biopha.2021.112074_bib56) 2015; 121 Workman (10.1016/j.biopha.2021.112074_bib111) 2002; 26 Mellatyar (10.1016/j.biopha.2021.112074_bib120) 2018; 102 Rao (10.1016/j.biopha.2021.112074_bib182) 2012; 72 Kurihara (10.1016/j.biopha.2021.112074_bib128) 2019; 39 Jiang (10.1016/j.biopha.2021.112074_bib25) 2015; 36 Neckers (10.1016/j.biopha.2021.112074_bib109) 2007; 32 Tang (10.1016/j.biopha.2021.112074_bib52) 2016; 6 Hoter (10.1016/j.biopha.2021.112074_bib83) 2018; 19 Ma (10.1016/j.biopha.2021.112074_bib158) 2014; 31 Caldas-Lopes (10.1016/j.biopha.2021.112074_bib133) 2009; 106 Hsu (10.1016/j.biopha.2021.112074_bib35) 2011; 117 Cappello (10.1016/j.biopha.2021.112074_bib54) 2005; 5 Nagaraju (10.1016/j.biopha.2021.112074_bib162) 2014; 5 Bauer (10.1016/j.biopha.2021.112074_bib44) 2012; 35 Britten (10.1016/j.biopha.2021.112074_bib157) 2000; 6 de Billy (10.1016/j.biopha.2021.112074_bib9) 2009; 8 Yerushalmi (10.1016/j.biopha.2021.112074_bib94) 2015; 10 Shevtsov (10.1016/j.biopha.2021.112074_bib174) 2019; 10 Wong (10.1016/j.biopha.2021.112074_bib151) 2008; 20 Li (10.1016/j.biopha.2021.112074_bib175) 2020; 20 Li (10.1016/j.biopha.2021.112074_bib172) 2014; 166 Wald (10.1016/j.biopha.2021.112074_bib180) 2011; 29 Sin (10.1016/j.biopha.2021.112074_bib179) 2015; 13 Das (10.1016/j.biopha.2021.112074_bib15) 2019; 2019 Söderström (10.1016/j.biopha.2021.112074_bib47) 2019; 7 Santiago-O’Farrill (10.1016/j.biopha.2021.112074_bib49) 2018; 9 Gökmen-Polar (10.1016/j.biopha.2021.112074_bib29) 2016; 7 Straume (10.1016/j.biopha.2021.112074_bib16) 2012; 109 Ishiwata (10.1016/j.biopha.2021.112074_bib33) 2012; 40 Patel (10.1016/j.biopha.2021.112074_bib112) 2011; 6 Zahm (10.1016/j.biopha.2021.112074_bib184) 2017; 5 Eto (10.1016/j.biopha.2021.112074_bib50) 2016; 36 Wang (10.1016/j.biopha.2021.112074_bib160) 2019; 566 Rappa (10.1016/j.biopha.2021.112074_bib55) 2012; 32 Lee (10.1016/j.biopha.2021.112074_bib78) 2017; 36 Pavlova (10.1016/j.biopha.2021.112074_bib95) 2016; 23 Wu (10.1016/j.biopha.2021.112074_bib167) 2020; 9 Rappa (10.1016/j.biopha.2021.112074_bib61) 2016; 21 Duraiswamy (10.1016/j.biopha.2021.112074_bib183) 2014; 74 Yasuda (10.1016/j.biopha.2021.112074_bib34) 2017; 8 Pirali (10.1016/j.biopha.2021.112074_bib154) 2020; 164 Liu (10.1016/j.biopha.2021.112074_bib89) 2019; 17 Košec (10.1016/j.biopha.2021.112074_bib92) 2019; 10 Meng (10.1016/j.biopha.2021.112074_bib85) 2017; 16 Cai (10.1016/j.biopha.2021.112074_bib72) 2012; 10 Xu (10.1016/j.biopha.2021.112074_bib99) 2017; 16 Myung (10.1016/j.biopha.2021.112074_bib53) 2004; 2 Huang (10.1016/j.biopha.2021.112074_bib101) 2014; 5 Banerji (10.1016/j.biopha.2021.112074_bib114) 2005; 23 Kijima (10.1016/j.biopha.2021.112074_bib143) 2019; 23 Kampinga (10.1016/j.biopha.2021.112074_bib69) 2009; 14 Abe (10.1016/j.biopha.2021.112074_bib73) 2004; 3 McCarthy (10.1016/j.biopha.2021.112074_bib87) 2008; 19 Pillai (10.1016/j.biopha.2021.112074_bib130) 2020; 38 Bagatell (10.1016/j.biopha.2021.112074_bib12) 2004; 3 Shi (10.1016/j.biopha.2021.112074_bib21) 2017; 18 Mano (10.1016/j.biopha.2021.112074_bib62) 2018; 36 Chen (10.1016/j.biopha.2021.112074_bib31) 2013; 4 Teng (10.1016/j.biopha.2021.112074_bib63) 2019; 24 Lindquist (10.1016/j.biopha.2021.112074_bib3) 1988; 22 Li (10.1016/j.biopha.2021.112074_bib135) 2019; 16 Kinzel (10.1016/j.biopha.2021.112074_bib166) 2016; 7 Wang (10.1016/j.biopha.2021.112074_bib79) 2010; 2010 Lai (10.1016/j.biopha.2021.112074_bib164) 2014; 33 Lancet (10.1016/j.biopha.2021.112074_bib119) 2010; 24 Liu (10.1016/j.biopha.2021.112074_bib122) 2017; 487 Castilla (10.1016/j.biopha.2021.112074_bib60) 2010; 76 Soga (10.1016/j.biopha.2021.112074_bib124) 2013; 19 Santagata (10.1016/j.biopha.2021.112074_bib28) 2011; 108 Liu (10.1016/j.biopha.2021.112074_bib144) 2020; 19 Ciocca (10.1016/j.biopha.2021.112074_bib22) 2005; 10 Paul (10.1016/j.biopha.2021.112074_bib100) 2013; 32 Zhou (10.1016/j.biopha.2021.112074_bib155) 2017; 37 Xu (10.1016/j.biopha.2021.112074_bib64) 2011; 104 He (10.1016/j.biopha.2021.112074_bib159) 2014; 32 McNulty (10.1016/j.biopha.2021.112074_bib168) 2013; 139 Jäättelä (10.1016/j.biopha.2021.112074_bib7) 1999; 31 Chatterjee (10.1016/j.biopha.2021.112074_bib13) 2016; 14 Lall (10.1016/j.biopha.2021.112074_bib137) 2016; 60 Hoter (10.1016/j.biopha.2021.112074_bib11) 2019; 11 Sheng (10.1016/j.biopha.2021.112074_bib42) 2017; 7 Yoon (10.1016/j.biopha.2021.112074_bib141) 2014; 77 Su (10.1016/j.biopha.2021.112074_bib152) 2012; 33 Bendell (10.1016/j.biopha.2021.112074_bib163) 2015; 33 Heinrich (10.1016/j.biopha.2021.112074_bib149) 2011; 137 Guo (10.1016/j.biopha.2021.112074_bib131) 2017; 36 Nappi (10.1016/j.biopha.2021.112074_bib145) 2020; 130 Canonici (10.1016/j.biopha.2021.112074_bib123) 2018; 36 Wan (10.1016/j.biopha.2021.112074_bib27) 2018; 11 Soga (10.1016/j.biopha.2021.112074_bib121) 2003; 3 Chen (10.1016/j.biopha.2021.112074_bib146) 2016; 13 Desmetz (10.1016/j.biopha.2021.112074_bib82) 2008; 7 Park (10.1016/j.biopha.2021.112074_bib156) 2018; 25 Tsukao (10.1016/j.biopha.2021.112074_bib32) 2017; 13 Engerud (10.1016/j.biopha.2021.112074_bib30) 2014; 111 Sherman (10.1016/j.biopha.2021.112074_bib68) 2015; 34 Im (10.1016/j.biopha.2021.112074_bib102) 2016; 21 Jolly (10.1016/j.biopha.2021.112074_bib19) 2000; 92 Dai (10.1016/j.biopha.2021.112074_bib24) 2016; 26 Testori (10.1016/j.biopha.2021.112074_bib177) 2008; 26 Choi (10.1016/j.biopha.2021.112074_bib129) 2012; 35 Chatterjee (10.1016/j.biopha.2021.112074_bib8) 2017; 18 Drexler (10.1016/j.biopha.2021.112074_bib46) 2020; 146 Ciocca (10.1016/j.biopha.2021.112074_bib48) 1993; 85 Trepel (10.1016/j.biopha.2021.112074_bib110) 2010; 10 Lin (10.1016/j.biopha.2021.112074_bib126) 2017; 8 Mielczarek-Lewandowska (10.1016/j.biopha.2021.112074_bib134) 2020; 25 Yun (10.1016/j.biopha.2021.112074_bib1) 2019; 9 Saini (10.1016/j.biopha.2021.112074_bib107) 2018; 19 Ray-Coquard (10.1016/j.biopha.2021.112074_bib127) 2019; 9 Mittal (10.1016/j.biopha.2021.112074_bib108) 2020; 21 Li (10.1016/j.biopha.2021.112074_bib147) 2016; 129 Carpenter (10.1016/j.biopha.2021.112074_bib26) 2019; 19 Sengupta (10.1016/j.biopha.2021.112074_bib96) 2016; 15 Specht (10.1016/j.biopha.2021.112074_bib173) 2015; 6 Denko (10.1016/j.biopha.2021.112074_bib97) 2008; 8 Supko (10.1016/j.biopha.2021.112074_bib113) 1995; 36 |
References_xml | – volume: 18 start-page: 105 year: 2017 end-page: 116 ident: bib21 article-title: Autoantibodies against heat shock proteins as biomarkers for the diagnosis and prognosis of cancer publication-title: Cancer Biomark. Sect. A Dis. Markers – volume: 40 start-page: 47 year: 2012 end-page: 52 ident: bib33 article-title: State of heat shock factor 1 expression as a putative diagnostic marker for oral squamous cell carcinoma publication-title: Int. J. Oncol. – volume: 121 start-page: 3230 year: 2015 end-page: 3239 ident: bib56 article-title: Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery publication-title: Cancer – volume: 10 start-page: 2149 year: 2015 end-page: 2155 ident: bib94 article-title: Cell surface GRP78: a potential marker of good prognosis and response to chemotherapy in breast cancer publication-title: Oncol. Lett. – volume: 3 start-page: 1021 year: 2004 end-page: 1030 ident: bib12 article-title: Altered Hsp90 function in cancer: a unique therapeutic opportunity publication-title: Mol. Cancer Ther. – volume: 5 start-page: 139 year: 2005 ident: bib54 article-title: The expression of HSP60 and HSP10 in large bowel carcinomas with lymph node metastase publication-title: BMC Cancer – volume: 22 start-page: 366 year: 2019 end-page: 376 ident: bib106 article-title: Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure publication-title: Stress – volume: 18 start-page: 2049 year: 1999 end-page: 2056 ident: bib65 article-title: Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis publication-title: EMBO J. – volume: 10 start-page: 454 year: 2019 ident: bib174 article-title: Ex vivo Hsp70-activated NK cells in combination with PD-1 inhibition significantly increase overall survival in preclinical models of glioblastoma and lung cancer publication-title: Front. Immunol. – volume: 29 start-page: 8520 year: 2011 end-page: 8529 ident: bib180 article-title: Safety and immunogenicity of long HSV-2 peptides complexed with rhHsc70 in HSV-2 seropositive persons publication-title: Vaccine – volume: 38 start-page: 613 year: 2020 end-page: 622 ident: bib130 article-title: Randomized phase III study of ganetespib, a heat shock protein 90 inhibitor, with docetaxel versus docetaxel in advanced non-small-cell lung cancer (GALAXY-2) publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. – volume: 11 start-page: 383 year: 2018 end-page: 393 ident: bib27 article-title: Prognostic role of HSF1 overexpression in solid tumors: a pooled analysis of 3,159 patients publication-title: OncoTargets Ther. – volume: 7 start-page: 1252 year: 2017 end-page: 1269 ident: bib77 article-title: Heat shock protein 70-2 (HSP70-2) a novel cancer testis antigen that promotes growth of ovarian cancer publication-title: Am. J. Cancer Res. – volume: 60 start-page: 1396 year: 2016 end-page: 1405 ident: bib137 article-title: Dietary flavonoid fisetin for cancer prevention and treatment publication-title: Mol. Nutr. Food Res. – volume: 16 start-page: 178 year: 2017 ident: bib99 article-title: HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma publication-title: Mol. Cancer – volume: 11 start-page: 11 year: 2019 ident: bib11 article-title: Heat shock proteins and ovarian cancer: important roles and therapeutic opportunities publication-title: Cancers – volume: 36 start-page: 3441 year: 2017 end-page: 3449 ident: bib131 article-title: HSP90 stabilizes B-cell receptor kinases in a multi-client interactome: PU-H71 induces CLL apoptosis in a cytoprotective microenvironment publication-title: Oncogene – volume: 36 start-page: 3775 year: 2016 end-page: 3779 ident: bib50 article-title: Expression of HSP27 in hepatocellular carcinoma publication-title: Anticancer Res. – volume: 2019 year: 2019 ident: bib15 article-title: Heat shock proteins in cancer immunotherapy publication-title: J. Oncol. – volume: 23 start-page: 539 year: 2018 end-page: 547 ident: bib76 article-title: High serum Hsp70 level predicts poor survival in colorectal cancer: results obtained in an independent validation cohort publication-title: Cancer Biomark. Sect. A Dis. Markers – volume: 23 start-page: 369 year: 2019 end-page: 377 ident: bib143 article-title: Heat shock factor 1 (HSF1)-targeted anticancer therapeutics: overview of current preclinical progress publication-title: Expert Opin. Ther. Targets – volume: 139 start-page: 407 year: 2013 end-page: 415 ident: bib168 article-title: Heat-shock proteins as dendritic cell-targeting vaccines--getting warmer publication-title: Immunology – volume: 85 start-page: 1558 year: 1993 end-page: 1570 ident: bib48 article-title: Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review publication-title: J. Natl. Cancer Inst. – volume: 7 start-page: 60 year: 2020 ident: bib66 article-title: Heat shock protein 60 in hepatocellular carcinoma: insights and perspectives publication-title: Front. Mol. Biosci. – volume: 10 start-page: 537 year: 2010 end-page: 549 ident: bib110 article-title: Targeting the dynamic HSP90 complex in cancer publication-title: Nat. Rev. Cancer – volume: 108 start-page: 18378 year: 2011 end-page: 18383 ident: bib28 article-title: High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer publication-title: Proc. Natl. Acad. Sci. USA – volume: 38 start-page: 226 year: 2017 end-page: 256 ident: bib51 article-title: Heat shock proteins and cancer publication-title: Trends Pharmacol. Sci. – volume: 11 start-page: 1029 year: 2020 ident: bib40 article-title: The association between heat-shock protein polymorphisms and prognosis in lung cancer patients treated with platinum-based chemotherapy publication-title: Front. Pharmacol. – volume: 25 start-page: 1242 year: 2018 end-page: 1254 ident: bib156 article-title: Subcellular Hsp70 inhibitors promote cancer cell death via different mechanisms publication-title: Cell Chem. Biol. – volume: 7 start-page: 13807 year: 2017 ident: bib42 article-title: Increased HSP27 correlates with malignant biological behavior of non-small cell lung cancer and predicts patient’s survival publication-title: Sci. Rep. – volume: 113 start-page: 1669 year: 2012 end-page: 1676 ident: bib105 article-title: Heat shock protein 70 (Hsp70) inhibits oxidative phosphorylation and compensates ATP balance through enhanced glycolytic activity publication-title: J. Appl. Physiol. – volume: 23 start-page: 4152 year: 2005 end-page: 4161 ident: bib114 article-title: Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. – volume: 104 start-page: 598 year: 2011 end-page: 603 ident: bib64 article-title: Heat shock protein-60 expression was significantly correlated with the prognosis of lung adenocarcinoma publication-title: J. Surg. Oncol. – volume: 36 start-page: e539 year: 2018 end-page: 531 ident: bib62 article-title: Heat shock proteins 60 and 70 are associated with long-term outcome of T1-stage high-grade urothelial tumors of the bladder treated with intravesical Bacillus Calmette-Guérin immunotherapy publication-title: Urol. Oncol. – volume: 566 start-page: 40 year: 2019 end-page: 45 ident: bib160 article-title: pH-activated heat shock protein inhibition and radical generation enhanced NIR luminescence imaging-guided photothermal tumour ablation publication-title: Int. J. Pharm. – volume: 35 start-page: 1855 year: 2012 end-page: 1859 ident: bib129 article-title: Recent updates on the development of ganetespib as a Hsp90 inhibitor publication-title: Arch. Pharm. Res. – volume: 33 start-page: 1139 year: 2012 end-page: 1152 ident: bib152 article-title: Proteomic investigation of anti-tumor activities exerted by sinularin against A2058 melanoma cells publication-title: Electrophoresis – volume: 44 start-page: 1622 year: 2012 end-page: 1631 ident: bib36 article-title: Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death publication-title: Int. J. Biochem. Cell Biol. – volume: 6 start-page: 42 year: 2000 end-page: 49 ident: bib157 article-title: A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077 publication-title: Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. – volume: 5 start-page: 9980 year: 2014 end-page: 9991 ident: bib162 article-title: HSP90 inhibition downregulates thymidylate synthase and sensitizes colorectal cancer cell lines to the effect of 5FU-based chemotherapy publication-title: Oncotarget – volume: 8 start-page: 41294 year: 2017 end-page: 41304 ident: bib126 article-title: Efficacy of an HSP90 inhibitor, ganetespib, in preclinical thyroid cancer models publication-title: Oncotarget – volume: 19 start-page: 2021 year: 2020 end-page: 2027 ident: bib144 article-title: Role of HSP27 in the multidrug sensitivity and resistance of colon cancer cells publication-title: Oncol. Lett. – volume: 54 start-page: 1147 year: 2015 end-page: 1158 ident: bib84 article-title: Heat shock protein 90 promotes epithelial to mesenchymal transition, invasion, and migration in colorectal cancer publication-title: Mol. Carcinog. – volume: 5 start-page: 307 year: 2014 ident: bib17 article-title: Heat shock protein 70 serum levels differ significantly in patients with chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma publication-title: Front. Immunol. – volume: 106 start-page: 8368 year: 2009 end-page: 8373 ident: bib133 article-title: Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 72 year: 2017 ident: bib85 article-title: Hsp90β promoted endothelial cell-dependent tumor angiogenesis in hepatocellular carcinoma publication-title: Mol. Cancer – volume: 39 start-page: 1767 year: 2019 end-page: 1775 ident: bib128 article-title: Ganetespib in epidermal growth factor receptor-tyrosine kinase inhibitor-resistant non-small cell lung cancer publication-title: Anticancer Res. – volume: 117 start-page: 1516 year: 2011 end-page: 1528 ident: bib35 article-title: Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27 publication-title: Cancer – volume: 3 start-page: 359 year: 2003 end-page: 369 ident: bib121 article-title: Development of radicicol analogues publication-title: Curr. Cancer Drug Targets – volume: 130 start-page: 699 year: 2020 end-page: 714 ident: bib145 article-title: Ivermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models publication-title: J. Clin. Investig. – volume: 10 start-page: 10 year: 2020 ident: bib98 article-title: Molecular chaperones: molecular assembly line brings metabolism and immunity in shape publication-title: Metabolites – volume: 146 start-page: 1125 year: 2020 end-page: 1137 ident: bib46 article-title: Significance of unphosphorylated and phosphorylated heat shock protein 27 as a prognostic biomarker in pancreatic ductal adenocarcinoma publication-title: J. Cancer Res. Clin. Oncol. – volume: 72 start-page: 3196 year: 2012 end-page: 3206 ident: bib182 article-title: Combination therapy with HSP90 inhibitor 17-DMAG reconditions the tumor microenvironment to improve recruitment of therapeutic T cells publication-title: Cancer Res. – volume: 109 start-page: 20407 year: 2012 end-page: 20412 ident: bib5 article-title: Alternative bacterial two-component small heat shock protein systems publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 20 year: 2019 ident: bib10 article-title: Roles of extracellular HSPs as biomarkers in immune surveillance and immune evasion publication-title: Int. J. Mol. Sci. – volume: 32 start-page: 517 year: 2007 end-page: 530 ident: bib109 article-title: Heat shock protein 90: the cancer chaperone publication-title: J. Biosci. – volume: 45 start-page: 5797 year: 2017 end-page: 5817 ident: bib142 article-title: New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival publication-title: Nucleic Acids Res. – volume: 24 year: 2019 ident: bib63 article-title: HSP60 silencing promotes Warburg-like phenotypes and switches the mitochondrial function from ATP production to biosynthesis in ccRCC cells publication-title: Redox Biol. – volume: 17 start-page: 2657 year: 2019 end-page: 2665 ident: bib89 article-title: Prognostic value of the mRNA expression of members of the HSP90 family in non-small cell lung cancer publication-title: Exp. Ther. Med. – volume: 92 start-page: 1564 year: 2000 end-page: 1572 ident: bib19 article-title: Role of the heat shock response and molecular chaperones in oncogenesis and cell death publication-title: J. Natl. Cancer Inst. – volume: 34 start-page: 4153 year: 2015 end-page: 4161 ident: bib68 article-title: Hsp70 in cancer: back to the future publication-title: Oncogene – volume: 34 start-page: 1181 year: 2013 end-page: 1188 ident: bib67 article-title: The HSP70 family and cancer publication-title: Carcinogenesis – volume: 7 start-page: 1544 year: 2014 end-page: 1552 ident: bib86 article-title: Expression of Hsp90α and cyclin B1 were related to prognosis of esophageal squamous cell carcinoma and keratin pearl formation publication-title: Int. J. Clin. Exp. Pathol. – volume: 10 start-page: 96 year: 2012 ident: bib72 article-title: Expression of heat shock protein 70 in nasopharyngeal carcinomas: different expression patterns correlate with distinct clinical prognosis publication-title: J. Transl. Med. – volume: 77 start-page: 1123 year: 2014 end-page: 1129 ident: bib141 article-title: 2,4-Bis(4-hydroxybenzyl)phenol inhibits heat shock transcription factor 1 and sensitizes lung cancer cells to conventional anticancer modalities publication-title: J. Nat. Prod. – volume: 50 start-page: 102 year: 2009 end-page: 112 ident: bib132 article-title: Targeting heat shock protein 90 with non-quinone inhibitors: a novel chemotherapeutic approach in human hepatocellular carcinoma publication-title: Hepatology – volume: 31 start-page: 261 year: 1999 end-page: 271 ident: bib7 article-title: Heat shock proteins as cellular lifeguards publication-title: Ann. Med. – volume: 36 start-page: 305 year: 1995 end-page: 315 ident: bib113 article-title: Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent publication-title: Cancer Chemother. Pharmacol. – volume: 36 start-page: 4923 year: 2015 end-page: 4931 ident: bib25 article-title: Multifaceted roles of HSF1 in cancer publication-title: Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. – volume: 19 start-page: 1478 year: 2018 end-page: 1490 ident: bib107 article-title: Clinical, prognostic and therapeutic significance of heat shock proteins in cancer publication-title: Curr. Drug Targets – volume: 3 start-page: 49 year: 2004 end-page: 53 ident: bib73 article-title: Plasma levels of heat shock protein 70 in patients with prostate cancer: a potential biomarker for prostate cancer publication-title: Clin. Prostate Cancer – volume: 37 start-page: 313 year: 2017 end-page: 322 ident: bib155 article-title: Pifithrin-μ is efficacious against non-small cell lung cancer via inhibition of heat shock protein 70 publication-title: Oncol. Rep. – volume: 7 start-page: 43199 year: 2016 end-page: 43219 ident: bib166 article-title: A novel HSP90 inhibitor with reduced hepatotoxicity synergizes with radiotherapy to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer publication-title: Oncotarget – volume: 19 start-page: 19 year: 2018 ident: bib83 article-title: The HSP90 family: structure, regulation, function, and implications in health and disease publication-title: Int. J. Mol. Sci. – volume: 2020 year: 2020 ident: bib90 article-title: Heat shock protein 90 family isoforms as prognostic biomarkers and their correlations with immune infiltration in breast cancer publication-title: BioMed. Res. Int. – volume: 13 start-page: 1819 year: 2017 end-page: 1825 ident: bib32 article-title: Overexpression of heat-shock factor 1 is associated with a poor prognosis in esophageal squamous cell carcinoma publication-title: Oncol. Lett. – volume: 6 start-page: 24267 year: 2016 ident: bib43 article-title: HSP27 and 70 expression in thymic epithelial tumors and benign thymic alterations: diagnostic, prognostic and physiologic implications publication-title: Sci. Rep. – volume: 7 start-page: 3830 year: 2008 end-page: 3837 ident: bib82 article-title: Proteomics-based identification of HSP60 as a tumor-associated antigen in early stage breast cancer and ductal carcinoma in situ publication-title: J. Proteome Res. – volume: 594 start-page: 1 year: 2007 end-page: 13 ident: bib2 article-title: Protein misassembly: macromolecular crowding and molecular chaperones publication-title: Adv. Exp. Med. Biol. – volume: 36 start-page: 6555 year: 2017 end-page: 6567 ident: bib78 article-title: Role of HSPA1L as a cellular prion protein stabilizer in tumor progression via HIF-1α/GP78 axis publication-title: Oncogene – volume: 12 start-page: 703 year: 2014 end-page: 713 ident: bib165 article-title: mTOR inhibition potentiates HSP90 inhibitor activity via cessation of HSP synthesis publication-title: Mol. Cancer Res. MCR – volume: 13 start-page: 16 year: 2015 ident: bib179 article-title: Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D 1 (PKD1) during cardiac hypertrophy publication-title: Cell Commun. Signal. CCS – volume: 1113 start-page: 28 year: 2007 end-page: 39 ident: bib170 article-title: Extracellular heat shock proteins in cell signaling and immunity publication-title: Ann. N. Y. Acad. Sci. – volume: 8 start-page: 3806 year: 2009 end-page: 3808 ident: bib9 article-title: Drugging the heat shock factor 1 pathway: exploitation of the critical cancer cell dependence on the guardian of the proteome publication-title: Cell Cycle – volume: 156 start-page: 857 year: 2000 end-page: 864 ident: bib20 article-title: A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma publication-title: Am. J. Pathol. – volume: 19 start-page: 515 year: 2019 end-page: 524 ident: bib26 article-title: HSF1 as a cancer biomarker and therapeutic target publication-title: Curr. Cancer Drug Targets – volume: 25 start-page: 12 year: 2020 end-page: 28 ident: bib134 article-title: Inhibitors of HSP90 in melanoma publication-title: Apoptosis Int. J. Program. Cell Death – volume: 164 start-page: 3369 year: 2020 end-page: 3375 ident: bib154 article-title: Artesunate, as a HSP70 ATPase activity inhibitor, induces apoptosis in breast cancer cells publication-title: Int. J. Biol. Macromol. – volume: 18 start-page: 18 year: 2017 ident: bib8 article-title: Targeting heat shock proteins in cancer: a promising therapeutic approach publication-title: Int. J. Mol. Sci. – volume: 74 start-page: 633 year: 2014 end-page: 634 ident: bib183 article-title: Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors--response publication-title: Cancer Res. – volume: 111 start-page: 78 year: 2014 end-page: 84 ident: bib30 article-title: High level of HSF1 associates with aggressive endometrial carcinoma and suggests potential for HSP90 inhibitors publication-title: Br. J. Cancer – volume: 32 start-page: 5139 year: 2012 end-page: 5150 ident: bib55 article-title: HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview publication-title: Anticancer Res. – volume: 16 start-page: 220 year: 2019 end-page: 233 ident: bib135 article-title: Dorsomorphin induces cancer cell apoptosis and sensitizes cancer cells to HSP90 and proteasome inhibitors by reducing nuclear heat shock factor 1 levels publication-title: Cancer Biol. Med. – volume: 23 start-page: 27 year: 2016 end-page: 47 ident: bib95 article-title: The emerging hallmarks of cancer metabolism publication-title: Cell Metab. – volume: 129 start-page: 39 year: 2016 end-page: 45 ident: bib147 article-title: Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro publication-title: J. Neuro-Oncol. – volume: 17 start-page: 5132 year: 2011 end-page: 5139 ident: bib161 article-title: HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab publication-title: Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. – volume: 12 start-page: 452 year: 2013 end-page: 457 ident: bib93 article-title: Expression of heat shock proteins in medulloblastoma publication-title: J. Neurosurg. Pediatr. – volume: 36 start-page: 696 year: 2015 end-page: 706 ident: bib136 article-title: Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter publication-title: Carcinogenesis – volume: 6 start-page: 162 year: 2015 ident: bib173 article-title: Heat shock protein 70 (Hsp70) peptide activated natural killer (NK) cells for the treatment of patients with non-small cell lung cancer (NSCLC) after radiochemotherapy (RCTx) - from preclinical studies to a clinical phase II trial publication-title: Front. Immunol. – volume: 35 start-page: 1051 year: 2014 end-page: 1056 ident: bib41 article-title: Heat shock protein 27: a potential biomarker of peritoneal metastasis in epithelial ovarian cancer? publication-title: Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. – volume: 35 start-page: 197 year: 2012 end-page: 205 ident: bib44 article-title: High HSP27 and HSP70 expression levels are independent adverse prognostic factors in primary resected colon cancer publication-title: Cell. Oncol. – volume: 76 start-page: e1011 year: 2010 end-page: e1016 ident: bib60 article-title: Immunohistochemical expression of Hsp60 correlates with tumor progression and hormone resistance in prostate cancer publication-title: Urology – volume: 32 start-page: 1284 year: 2013 end-page: 1295 ident: bib100 article-title: The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity publication-title: Oncogene – volume: 14 start-page: 346 year: 2016 end-page: 356 ident: bib13 article-title: HSP90 inhibitors in lung cancer: promise still unfulfilled publication-title: Clin. Adv. Hematol. Oncol. – volume: 11 start-page: 599 year: 2017 end-page: 611 ident: bib38 article-title: Heat-shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF publication-title: Mol. Oncol. – volume: 19 start-page: 590 year: 2008 end-page: 594 ident: bib87 article-title: HSP90 as a marker of progression in melanoma publication-title: Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. – volume: 24 start-page: 699 year: 2010 end-page: 705 ident: bib119 article-title: Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid publication-title: Leukemia – volume: 1197 start-page: 152 year: 2010 end-page: 157 ident: bib71 article-title: Major heat shock protein Hsp72 controls oncogene-induced senescence publication-title: Ann. N. Y. Acad. Sci. – volume: 9 start-page: 9 year: 2020 ident: bib23 article-title: HSF1: primary factor in molecular chaperone expression and a major contributor to cancer morbidity publication-title: Cells – volume: 36 start-page: 581 year: 2018 end-page: 589 ident: bib123 article-title: The HSP90 inhibitor NVP-AUY922 inhibits growth of HER2 positive and trastuzumab-resistant breast cancer cells publication-title: Investig. New Drugs – volume: 236 start-page: 3420 year: 2021 end-page: 3444 ident: bib70 article-title: Hsp70 in cancer: a double agent in the battle between survival and death publication-title: J. Cell. Physiol. – volume: 102 start-page: 608 year: 2018 end-page: 617 ident: bib120 article-title: Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: overview and current state of the art publication-title: Biomed. Pharm. – volume: 6 start-page: 25 year: 2007 ident: bib18 article-title: Contribution of oncoproteomics to cancer biomarker discovery publication-title: Mol. Cancer – volume: 21 start-page: 553 year: 2016 end-page: 562 ident: bib102 article-title: Past, present, and emerging roles of mitochondrial heat shock protein TRAP1 in the metabolism and regulation of cancer stem cells publication-title: Cell Stress Chaperon-.-. – volume: 50 start-page: 184 year: 2013 end-page: 189 ident: bib88 article-title: Hsp90 - a potential prognostic marker in CML publication-title: Blood Cells Mol. Dis. – volume: 11 start-page: 254 year: 2017 ident: bib186 article-title: The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases publication-title: Front. Neurosci. – volume: 5 start-page: 346 year: 2014 ident: bib37 article-title: Heat shock protein 27 phosphorylation state is associated with cancer progression publication-title: Front. Genet. – volume: 14 start-page: 105 year: 2009 end-page: 111 ident: bib69 article-title: Guidelines for the nomenclature of the human heat shock proteins publication-title: Cell Stress Chaperon-.-. – volume: 20 start-page: 89 year: 2008 end-page: 98 ident: bib151 article-title: Identification of 5-fluorouracil response proteins in colorectal carcinoma cell line SW480 by two-dimensional electrophoresis and MALDI-TOF mass spectrometry publication-title: Oncol. Rep. – volume: 2010 year: 2010 ident: bib79 article-title: Correlation between clinicopathology and expression of heat shock protein 72 and glycoprotein 96 in human esophageal squamous cell carcinoma publication-title: Clin. Dev. Immunol. – volume: 33 start-page: 4867 year: 2014 end-page: 4876 ident: bib164 article-title: HSP-90 inhibitor ganetespib is synergistic with doxorubicin in small cell lung cancer publication-title: Oncogene – volume: 2 start-page: 8 year: 2004 ident: bib53 article-title: Expressional patterns of chaperones in ten human tumor cell lines publication-title: Proteome Sci. – volume: 9 start-page: 12628 year: 2019 ident: bib58 article-title: HSP60-regulated mitochondrial proteostasis and protein translation promote tumor growth of ovarian cancer publication-title: Sci. Rep. – volume: 2018 year: 2018 ident: bib75 article-title: Circulating heat shock protein 70 is a novel biomarker for early diagnosis of lung cancer publication-title: Dis. Markers – volume: 9 start-page: 9 year: 2018 ident: bib104 article-title: TRAP1 regulation of cancer metabolism: dual role as oncogene or tumor suppressor publication-title: Genes – volume: 9 start-page: 9 year: 2020 ident: bib153 article-title: HSP70 multi-functionality in cancer publication-title: Cells – volume: 27 start-page: 1627 year: 1999 end-page: 1636 ident: bib171 article-title: Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells publication-title: Exp. Hematol. – volume: 93 start-page: 760 year: 2019 end-page: 786 ident: bib116 article-title: Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment publication-title: Chem. Biol. Drug Des. – volume: 8 start-page: 705 year: 2008 end-page: 713 ident: bib97 article-title: Hypoxia, HIF1 and glucose metabolism in the solid tumour publication-title: Nat. Rev. Cancer – volume: 166 start-page: 690 year: 2014 end-page: 701 ident: bib172 article-title: Human heat shock protein-specific cytotoxic T lymphocytes display potent antitumour immunity in multiple myeloma publication-title: Br. J. Haematol. – volume: 22 start-page: 631 year: 1988 end-page: 677 ident: bib3 article-title: The heat-shock proteins publication-title: Annu. Rev. Genet. – volume: 19 start-page: 366 year: 2013 end-page: 376 ident: bib124 article-title: Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development publication-title: Curr. Pharm. Des. – volume: 372 start-page: 145 year: 2008 end-page: 154 ident: bib178 article-title: An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial publication-title: Lancet – volume: 21 start-page: 927 year: 2016 end-page: 933 ident: bib61 article-title: Quantitative patterns of Hsps in tubular adenoma compared with normal and tumor tissues reveal the value of Hsp10 and Hsp60 in early diagnosis of large bowel cancer publication-title: Cell Stress Chaperon-.-. – volume: 5 start-page: 1363 year: 2014 end-page: 1381 ident: bib101 article-title: Targeting aerobic glycolysis and HIF-1alpha expression enhance imiquimod-induced apoptosis in cancer cells publication-title: Oncotarget – volume: 25 start-page: 25 year: 2020 ident: bib139 article-title: Anticancer attributes of cantharidin: involved molecular mechanisms and pathways publication-title: Molecules – volume: 9 start-page: 832 year: 2019 ident: bib127 article-title: Part I of GANNET53: a European multicenter phase I/II trial of the Hsp90 inhibitor ganetespib combined with weekly paclitaxel in women with high-grade, platinum-resistant epithelial ovarian cancer-a study of the GANNET53 consortium publication-title: Front. Oncol. – volume: 40 start-page: 40 year: 2020 ident: bib138 article-title: Schizandrin A exhibits potent anticancer activity in colorectal cancer cells by inhibiting heat shock factor 1 publication-title: Biosci. Rep. – volume: 13 start-page: 689 year: 2016 end-page: 696 ident: bib146 article-title: Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells publication-title: Mol. Med. Rep. – volume: 109 start-page: 8699 year: 2012 end-page: 8704 ident: bib16 article-title: Suppression of heat shock protein 27 induces long-term dormancy in human breast cancer publication-title: Proc. Natl. Acad. Sci. USA – volume: 35 start-page: 61 year: 2016 ident: bib148 article-title: Quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo publication-title: J. Exp. Clin. Cancer Res. CR – volume: 9 year: 2020 ident: bib167 article-title: A tumor microenvironment-responsive biodegradable mesoporous nanosystem for anti-inflammation and cancer theranostics publication-title: Adv. Healthc. Mater. – volume: 7 start-page: 260 year: 2019 end-page: 269 ident: bib47 article-title: Overexpression of HSP27 and HSP70 is associated with decreased survival among patients with esophageal adenocarcinoma publication-title: World J. Clin. Cases – volume: 50 start-page: 42 year: 2020 end-page: 50 ident: bib103 article-title: Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism publication-title: Mitochondrion – volume: 4 start-page: 816 year: 2013 end-page: 829 ident: bib31 article-title: Targeting HSF1 sensitizes cancer cells to HSP90 inhibition publication-title: Oncotarget – volume: 10 start-page: 1553 year: 2011 end-page: 1568 ident: bib169 article-title: Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come publication-title: Expert Rev. Vaccin. – volume: 26 start-page: 17 year: 2016 end-page: 28 ident: bib24 article-title: HSF1: guardian of proteostasis in cancer publication-title: Trends Cell Biol. – volume: 4 start-page: 885 year: 2011 end-page: 890 ident: bib181 article-title: A novel chimeric DNA vaccine: enhancement of preventive and therapeutic efficacy of DNA vaccine by fusion of Mucin 1 to a heat shock protein 70 gene publication-title: Mol. Med. Rep. – volume: 9 year: 2020 ident: bib91 article-title: Heat shock protein 90α in thymic epithelial tumors and non-thymomatous myasthenia gravis publication-title: Oncoimmunology – volume: 32 start-page: 577 year: 2014 end-page: 586 ident: bib159 article-title: The HSP90 inhibitor ganetespib has chemosensitizer and radiosensitizer activity in colorectal cancer publication-title: Investig. New Drugs – volume: 17 start-page: 255 year: 2014 end-page: 262 ident: bib80 article-title: Mortalin is a prognostic factor of gastric cancer with normal p53 function publication-title: Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. – volume: 10 start-page: 6713 year: 2019 end-page: 6722 ident: bib92 article-title: Tumor tissue hnRNP M and HSP 90α as potential predictors of disease-specific mortality in patients with early-stage cutaneous head and neck melanoma: a proteomics-based study publication-title: Oncotarget – volume: 121 start-page: 934 year: 2019 end-page: 943 ident: bib59 article-title: Hsp60 and IL-8 axis promotes apoptosis resistance in cancer publication-title: Br. J. Cancer – volume: 9 start-page: 9 year: 2019 ident: bib1 article-title: Heat shock proteins: agents of cancer development and therapeutic targets in anti-cancer therapy publication-title: Cells – volume: 7 start-page: 84239 year: 2016 end-page: 84245 ident: bib29 article-title: Upregulation of HSF1 in estrogen receptor positive breast cancer publication-title: Oncotarget – volume: 427 start-page: 1537 year: 2015 end-page: 1548 ident: bib4 article-title: A first line of stress defense: small heat shock proteins and their function in protein homeostasis publication-title: J. Mol. Biol. – volume: 8 start-page: 112426 year: 2017 end-page: 112441 ident: bib140 article-title: Vitexin confers HSF-1 mediated autophagic cell death by activating JNK and ApoL1 in colorectal carcinoma cells publication-title: Oncotarget – volume: 20 start-page: 4454 year: 2020 end-page: 4463 ident: bib175 article-title: Mimetic heat shock protein mediated immune process to enhance cancer immunotherapy publication-title: Nano Lett. – volume: 8 start-page: 31540 year: 2017 end-page: 31553 ident: bib34 article-title: Phosphorylation of HSF1 at serine 326 residue is related to the maintenance of gynecologic cancer stem cells through expression of HSP27 publication-title: Oncotarget – volume: 2 year: 2011 ident: bib57 article-title: The tumour-suppressive function of CLU is explained by its localisation and interaction with HSP60 publication-title: Cell Death Dis. – volume: 41 start-page: 438 year: 2018 end-page: 449 ident: bib45 article-title: Use of protein-based biomarkers of exfoliated cervical cells for primary screening of cervical cancer publication-title: Arch. Pharm. Res. – volume: 15 start-page: 4 year: 2016 ident: bib96 article-title: Imaging metabolic heterogeneity in cancer publication-title: Mol. Cancer – volume: 51 start-page: 967 year: 2017 end-page: 974 ident: bib125 article-title: Ganetespib induces G2/M cell cycle arrest and apoptosis in gastric cancer cells through targeting of receptor tyrosine kinase signaling publication-title: Int. J. Oncol. – volume: 16 start-page: 274 year: 2014 end-page: 279 ident: bib176 article-title: Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial publication-title: Neuro-Oncol. – volume: 41 start-page: 311 year: 2016 end-page: 323 ident: bib14 article-title: Heat shock proteins promote cancer: it’s a protection racket publication-title: Trends Biochem. Sci. – volume: 35 start-page: 42 year: 2016 ident: bib81 article-title: The clinicopathological significance of Mortalin overexpression in invasive ductal carcinoma of breast publication-title: J. Exp. Clin. Cancer Res. CR – volume: 13 start-page: 117 year: 2020 end-page: 126 ident: bib6 article-title: Heat shock proteins as a new, promising target of multiple myeloma therapy publication-title: Expert Rev. Hematol. – volume: 5 start-page: 630 year: 2017 end-page: 641 ident: bib184 article-title: Vaccination with high-affinity epitopes impairs antitumor efficacy by increasing PD-1 expression on CD8(+) T cells publication-title: Cancer Immunol. Res. – volume: 26 start-page: 955 year: 2008 end-page: 962 ident: bib177 article-title: Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100-21 Study Group publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. – volume: 6 start-page: 559 year: 2011 end-page: 587 ident: bib112 article-title: Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment publication-title: Expert Opin. Drug Discov. – volume: 5 start-page: 2648 year: 2014 end-page: 2663 ident: bib39 article-title: Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression publication-title: Oncotarget – volume: 9 start-page: 1602 year: 2018 end-page: 1616 ident: bib49 article-title: Phosphorylated heat shock protein 27 as a potential biomarker to predict the role of chemotherapy-induced autophagy in osteosarcoma response to therapy publication-title: Oncotarget – volume: 137 start-page: 1349 year: 2011 end-page: 1361 ident: bib149 article-title: RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients publication-title: J. Cancer Res. Clin. Oncol. – volume: 31 start-page: 2482 year: 2014 end-page: 2492 ident: bib158 article-title: Dual targeting of heat shock proteins 90 and 70 promotes cell death and enhances the anticancer effect of chemotherapeutic agents in bladder cancer publication-title: Oncol. Rep. – volume: 53 start-page: 26 year: 2004 end-page: 32 ident: bib185 article-title: Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma publication-title: Cancer Immunol. Immunother. CII – volume: 26 start-page: 405 year: 2002 end-page: 410 ident: bib111 article-title: Pharmacogenomics in cancer drug discovery and development: inhibitors of the Hsp90 molecular chaperone publication-title: Cancer Detect. Prev. – volume: 10 start-page: 86 year: 2005 end-page: 103 ident: bib22 article-title: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications publication-title: Cell Stress Chaperon-.-. – volume: 33 start-page: 477 year: 2015 end-page: 482 ident: bib163 article-title: A phase I study of the Hsp90 inhibitor AUY922 plus capecitabine for the treatment of patients with advanced solid tumors publication-title: Cancer Investig. – volume: 487 start-page: 313 year: 2017 end-page: 319 ident: bib122 article-title: HSP90 inhibitor NVP-AUY922 induces cell apoptosis by disruption of the survivin in papillary thyroid carcinoma cells publication-title: Biochem. Biophys. Res. Commun. – volume: 6 start-page: 28388 year: 2016 ident: bib52 article-title: Down-regulation of HSP60 suppresses the proliferation of glioblastoma cells via the ROS/AMPK/mTOR pathway publication-title: Sci. Rep. – volume: 21 start-page: 477 year: 2020 end-page: 485 ident: bib108 article-title: Heat shock proteins as biomarkers of lung cancer publication-title: Cancer Biol. Ther. – start-page: 340 year: 2010 end-page: 347 ident: bib115 article-title: Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies publication-title: European J. Cancer – volume: 54 start-page: 960 year: 1999 end-page: 963 ident: bib150 article-title: Quercetin in men with category III chronic prostatitis: a preliminary prospective, double-blind, placebo-controlled trial publication-title: Urology – volume: 30 start-page: 341 year: 2012 end-page: 349 ident: bib117 article-title: A Phase II trial of 17-allylamino, 17-demethoxygeldanamycin (17-AAG, tanespimycin) in patients with metastatic melanoma publication-title: Investig. New Drugs – volume: 88 start-page: 694 year: 2014 end-page: 700 ident: bib74 article-title: Validation of heat shock protein 70 as a tumor-specific biomarker for monitoring the outcome of radiation therapy in tumor mouse models publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 131 start-page: 933 year: 2012 end-page: 937 ident: bib118 article-title: A phase II study of 17-allylamino-17-demethoxygeldanamycin in metastatic or locally advanced, unresectable breast cancer publication-title: Breast Cancer Res. Treat. – volume: 33 start-page: 4867 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib164 article-title: HSP-90 inhibitor ganetespib is synergistic with doxorubicin in small cell lung cancer publication-title: Oncogene doi: 10.1038/onc.2013.439 – volume: 10 start-page: 96 year: 2012 ident: 10.1016/j.biopha.2021.112074_bib72 article-title: Expression of heat shock protein 70 in nasopharyngeal carcinomas: different expression patterns correlate with distinct clinical prognosis publication-title: J. Transl. Med. doi: 10.1186/1479-5876-10-96 – volume: 20 start-page: 20 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib10 article-title: Roles of extracellular HSPs as biomarkers in immune surveillance and immune evasion publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20184588 – volume: 18 start-page: 105 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib21 article-title: Autoantibodies against heat shock proteins as biomarkers for the diagnosis and prognosis of cancer publication-title: Cancer Biomark. Sect. A Dis. Markers – volume: 33 start-page: 1139 year: 2012 ident: 10.1016/j.biopha.2021.112074_bib152 article-title: Proteomic investigation of anti-tumor activities exerted by sinularin against A2058 melanoma cells publication-title: Electrophoresis doi: 10.1002/elps.201100462 – volume: 18 start-page: 2049 year: 1999 ident: 10.1016/j.biopha.2021.112074_bib65 article-title: Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis publication-title: EMBO J. doi: 10.1093/emboj/18.8.2049 – volume: 108 start-page: 18378 year: 2011 ident: 10.1016/j.biopha.2021.112074_bib28 article-title: High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1115031108 – volume: 36 start-page: 6555 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib78 article-title: Role of HSPA1L as a cellular prion protein stabilizer in tumor progression via HIF-1α/GP78 axis publication-title: Oncogene doi: 10.1038/onc.2017.263 – volume: 16 start-page: 178 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib99 article-title: HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma publication-title: Mol. Cancer doi: 10.1186/s12943-017-0748-y – volume: 566 start-page: 40 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib160 article-title: pH-activated heat shock protein inhibition and radical generation enhanced NIR luminescence imaging-guided photothermal tumour ablation publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.05.056 – volume: 7 start-page: 84239 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib29 article-title: Upregulation of HSF1 in estrogen receptor positive breast cancer publication-title: Oncotarget doi: 10.18632/oncotarget.12438 – volume: 8 start-page: 3806 year: 2009 ident: 10.1016/j.biopha.2021.112074_bib9 article-title: Drugging the heat shock factor 1 pathway: exploitation of the critical cancer cell dependence on the guardian of the proteome publication-title: Cell Cycle doi: 10.4161/cc.8.23.10423 – volume: 8 start-page: 41294 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib126 article-title: Efficacy of an HSP90 inhibitor, ganetespib, in preclinical thyroid cancer models publication-title: Oncotarget doi: 10.18632/oncotarget.17180 – volume: 36 start-page: 305 year: 1995 ident: 10.1016/j.biopha.2021.112074_bib113 article-title: Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/BF00689048 – volume: 35 start-page: 197 year: 2012 ident: 10.1016/j.biopha.2021.112074_bib44 article-title: High HSP27 and HSP70 expression levels are independent adverse prognostic factors in primary resected colon cancer publication-title: Cell. Oncol. doi: 10.1007/s13402-012-0079-3 – volume: 44 start-page: 1622 year: 2012 ident: 10.1016/j.biopha.2021.112074_bib36 article-title: Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2012.04.002 – volume: 23 start-page: 369 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib143 article-title: Heat shock factor 1 (HSF1)-targeted anticancer therapeutics: overview of current preclinical progress publication-title: Expert Opin. Ther. Targets doi: 10.1080/14728222.2019.1602119 – volume: 7 start-page: 3830 year: 2008 ident: 10.1016/j.biopha.2021.112074_bib82 article-title: Proteomics-based identification of HSP60 as a tumor-associated antigen in early stage breast cancer and ductal carcinoma in situ publication-title: J. Proteome Res. doi: 10.1021/pr800130d – volume: 27 start-page: 1627 year: 1999 ident: 10.1016/j.biopha.2021.112074_bib171 article-title: Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells publication-title: Exp. Hematol. doi: 10.1016/S0301-472X(99)00104-6 – volume: 10 start-page: 454 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib174 article-title: Ex vivo Hsp70-activated NK cells in combination with PD-1 inhibition significantly increase overall survival in preclinical models of glioblastoma and lung cancer publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00454 – volume: 131 start-page: 933 year: 2012 ident: 10.1016/j.biopha.2021.112074_bib118 article-title: A phase II study of 17-allylamino-17-demethoxygeldanamycin in metastatic or locally advanced, unresectable breast cancer publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-011-1866-7 – volume: 37 start-page: 313 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib155 article-title: Pifithrin-μ is efficacious against non-small cell lung cancer via inhibition of heat shock protein 70 publication-title: Oncol. Rep. doi: 10.3892/or.2016.5286 – volume: 6 start-page: 42 year: 2000 ident: 10.1016/j.biopha.2021.112074_bib157 article-title: A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077 publication-title: Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. – volume: 9 start-page: 832 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib127 article-title: Part I of GANNET53: a European multicenter phase I/II trial of the Hsp90 inhibitor ganetespib combined with weekly paclitaxel in women with high-grade, platinum-resistant epithelial ovarian cancer-a study of the GANNET53 consortium publication-title: Front. Oncol. doi: 10.3389/fonc.2019.00832 – volume: 18 start-page: 18 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib8 article-title: Targeting heat shock proteins in cancer: a promising therapeutic approach publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18091978 – volume: 88 start-page: 694 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib74 article-title: Validation of heat shock protein 70 as a tumor-specific biomarker for monitoring the outcome of radiation therapy in tumor mouse models publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2013.11.008 – volume: 26 start-page: 17 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib24 article-title: HSF1: guardian of proteostasis in cancer publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.10.011 – volume: 35 start-page: 61 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib148 article-title: Quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo publication-title: J. Exp. Clin. Cancer Res. CR doi: 10.1186/s13046-016-0331-1 – volume: 12 start-page: 452 year: 2013 ident: 10.1016/j.biopha.2021.112074_bib93 article-title: Expression of heat shock proteins in medulloblastoma publication-title: J. Neurosurg. Pediatr. doi: 10.3171/2013.7.PEDS1376 – volume: 38 start-page: 613 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib130 article-title: Randomized phase III study of ganetespib, a heat shock protein 90 inhibitor, with docetaxel versus docetaxel in advanced non-small-cell lung cancer (GALAXY-2) publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. doi: 10.1200/JCO.19.00816 – volume: 17 start-page: 5132 year: 2011 ident: 10.1016/j.biopha.2021.112074_bib161 article-title: HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab publication-title: Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. doi: 10.1158/1078-0432.CCR-11-0072 – volume: 15 start-page: 4 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib96 article-title: Imaging metabolic heterogeneity in cancer publication-title: Mol. Cancer doi: 10.1186/s12943-015-0481-3 – volume: 32 start-page: 1284 year: 2013 ident: 10.1016/j.biopha.2021.112074_bib100 article-title: The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity publication-title: Oncogene doi: 10.1038/onc.2012.144 – volume: 109 start-page: 20407 year: 2012 ident: 10.1016/j.biopha.2021.112074_bib5 article-title: Alternative bacterial two-component small heat shock protein systems publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1209565109 – volume: 5 start-page: 630 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib184 article-title: Vaccination with high-affinity epitopes impairs antitumor efficacy by increasing PD-1 expression on CD8(+) T cells publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-16-0374 – volume: 35 start-page: 1051 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib41 article-title: Heat shock protein 27: a potential biomarker of peritoneal metastasis in epithelial ovarian cancer? publication-title: Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. doi: 10.1007/s13277-013-1139-7 – volume: 23 start-page: 4152 year: 2005 ident: 10.1016/j.biopha.2021.112074_bib114 article-title: Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. doi: 10.1200/JCO.2005.00.612 – volume: 9 start-page: 1602 year: 2018 ident: 10.1016/j.biopha.2021.112074_bib49 article-title: Phosphorylated heat shock protein 27 as a potential biomarker to predict the role of chemotherapy-induced autophagy in osteosarcoma response to therapy publication-title: Oncotarget doi: 10.18632/oncotarget.20308 – volume: 19 start-page: 515 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib26 article-title: HSF1 as a cancer biomarker and therapeutic target publication-title: Curr. Cancer Drug Targets doi: 10.2174/1568009618666181018162117 – volume: 9 start-page: 9 year: 2018 ident: 10.1016/j.biopha.2021.112074_bib104 article-title: TRAP1 regulation of cancer metabolism: dual role as oncogene or tumor suppressor publication-title: Genes doi: 10.3390/genes9040195 – start-page: 340 year: 2010 ident: 10.1016/j.biopha.2021.112074_bib115 article-title: Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies publication-title: European J. Cancer doi: 10.1016/j.ejca.2009.10.026 – volume: 36 start-page: 4923 year: 2015 ident: 10.1016/j.biopha.2021.112074_bib25 article-title: Multifaceted roles of HSF1 in cancer publication-title: Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. doi: 10.1007/s13277-015-3674-x – volume: 7 start-page: 13807 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib42 article-title: Increased HSP27 correlates with malignant biological behavior of non-small cell lung cancer and predicts patient’s survival publication-title: Sci. Rep. doi: 10.1038/s41598-017-13956-2 – volume: 2010 year: 2010 ident: 10.1016/j.biopha.2021.112074_bib79 article-title: Correlation between clinicopathology and expression of heat shock protein 72 and glycoprotein 96 in human esophageal squamous cell carcinoma publication-title: Clin. Dev. Immunol. doi: 10.1155/2010/212537 – volume: 7 start-page: 1544 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib86 article-title: Expression of Hsp90α and cyclin B1 were related to prognosis of esophageal squamous cell carcinoma and keratin pearl formation publication-title: Int. J. Clin. Exp. Pathol. – volume: 6 start-page: 28388 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib52 article-title: Down-regulation of HSP60 suppresses the proliferation of glioblastoma cells via the ROS/AMPK/mTOR pathway publication-title: Sci. Rep. doi: 10.1038/srep28388 – volume: 4 start-page: 885 year: 2011 ident: 10.1016/j.biopha.2021.112074_bib181 article-title: A novel chimeric DNA vaccine: enhancement of preventive and therapeutic efficacy of DNA vaccine by fusion of Mucin 1 to a heat shock protein 70 gene publication-title: Mol. Med. Rep. – volume: 130 start-page: 699 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib145 article-title: Ivermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models publication-title: J. Clin. Investig. doi: 10.1172/JCI130819 – volume: 6 start-page: 24267 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib43 article-title: HSP27 and 70 expression in thymic epithelial tumors and benign thymic alterations: diagnostic, prognostic and physiologic implications publication-title: Sci. Rep. doi: 10.1038/srep24267 – volume: 19 start-page: 366 year: 2013 ident: 10.1016/j.biopha.2021.112074_bib124 article-title: Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development publication-title: Curr. Pharm. Des. doi: 10.2174/138161213804143617 – volume: 5 start-page: 139 year: 2005 ident: 10.1016/j.biopha.2021.112074_bib54 article-title: The expression of HSP60 and HSP10 in large bowel carcinomas with lymph node metastase publication-title: BMC Cancer doi: 10.1186/1471-2407-5-139 – volume: 9 start-page: 9 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib153 article-title: HSP70 multi-functionality in cancer publication-title: Cells doi: 10.3390/cells9030587 – volume: 72 start-page: 3196 year: 2012 ident: 10.1016/j.biopha.2021.112074_bib182 article-title: Combination therapy with HSP90 inhibitor 17-DMAG reconditions the tumor microenvironment to improve recruitment of therapeutic T cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-0538 – volume: 40 start-page: 40 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib138 article-title: Schizandrin A exhibits potent anticancer activity in colorectal cancer cells by inhibiting heat shock factor 1 publication-title: Biosci. Rep. – volume: 39 start-page: 1767 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib128 article-title: Ganetespib in epidermal growth factor receptor-tyrosine kinase inhibitor-resistant non-small cell lung cancer publication-title: Anticancer Res. doi: 10.21873/anticanres.13283 – volume: 13 start-page: 117 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib6 article-title: Heat shock proteins as a new, promising target of multiple myeloma therapy publication-title: Expert Rev. Hematol. doi: 10.1080/17474086.2020.1711730 – volume: 8 start-page: 705 year: 2008 ident: 10.1016/j.biopha.2021.112074_bib97 article-title: Hypoxia, HIF1 and glucose metabolism in the solid tumour publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2468 – volume: 77 start-page: 1123 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib141 article-title: 2,4-Bis(4-hydroxybenzyl)phenol inhibits heat shock transcription factor 1 and sensitizes lung cancer cells to conventional anticancer modalities publication-title: J. Nat. Prod. doi: 10.1021/np4009333 – volume: 9 start-page: 9 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib23 article-title: HSF1: primary factor in molecular chaperone expression and a major contributor to cancer morbidity publication-title: Cells doi: 10.3390/cells9041046 – volume: 113 start-page: 1669 year: 2012 ident: 10.1016/j.biopha.2021.112074_bib105 article-title: Heat shock protein 70 (Hsp70) inhibits oxidative phosphorylation and compensates ATP balance through enhanced glycolytic activity publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00658.2012 – volume: 13 start-page: 689 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib146 article-title: Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2015.4600 – volume: 5 start-page: 346 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib37 article-title: Heat shock protein 27 phosphorylation state is associated with cancer progression publication-title: Front. Genet. doi: 10.3389/fgene.2014.00346 – volume: 34 start-page: 1181 year: 2013 ident: 10.1016/j.biopha.2021.112074_bib67 article-title: The HSP70 family and cancer publication-title: Carcinogenesis doi: 10.1093/carcin/bgt111 – volume: 74 start-page: 633 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib183 article-title: Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors--response publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-2752 – volume: 40 start-page: 47 year: 2012 ident: 10.1016/j.biopha.2021.112074_bib33 article-title: State of heat shock factor 1 expression as a putative diagnostic marker for oral squamous cell carcinoma publication-title: Int. J. Oncol. – volume: 14 start-page: 105 year: 2009 ident: 10.1016/j.biopha.2021.112074_bib69 article-title: Guidelines for the nomenclature of the human heat shock proteins publication-title: Cell Stress Chaperon-.-. doi: 10.1007/s12192-008-0068-7 – volume: 7 start-page: 43199 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib166 article-title: A novel HSP90 inhibitor with reduced hepatotoxicity synergizes with radiotherapy to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer publication-title: Oncotarget doi: 10.18632/oncotarget.9774 – volume: 31 start-page: 261 year: 1999 ident: 10.1016/j.biopha.2021.112074_bib7 article-title: Heat shock proteins as cellular lifeguards publication-title: Ann. Med. doi: 10.3109/07853899908995889 – volume: 11 start-page: 599 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib38 article-title: Heat-shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12042 – volume: 21 start-page: 477 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib108 article-title: Heat shock proteins as biomarkers of lung cancer publication-title: Cancer Biol. Ther. doi: 10.1080/15384047.2020.1736482 – volume: 102 start-page: 608 year: 2018 ident: 10.1016/j.biopha.2021.112074_bib120 article-title: Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: overview and current state of the art publication-title: Biomed. Pharm. doi: 10.1016/j.biopha.2018.03.102 – volume: 1197 start-page: 152 year: 2010 ident: 10.1016/j.biopha.2021.112074_bib71 article-title: Major heat shock protein Hsp72 controls oncogene-induced senescence publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2010.05196.x – volume: 10 start-page: 10 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib98 article-title: Molecular chaperones: molecular assembly line brings metabolism and immunity in shape publication-title: Metabolites doi: 10.3390/metabo10100394 – volume: 487 start-page: 313 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib122 article-title: HSP90 inhibitor NVP-AUY922 induces cell apoptosis by disruption of the survivin in papillary thyroid carcinoma cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.04.056 – volume: 146 start-page: 1125 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib46 article-title: Significance of unphosphorylated and phosphorylated heat shock protein 27 as a prognostic biomarker in pancreatic ductal adenocarcinoma publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-020-03175-0 – volume: 41 start-page: 311 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib14 article-title: Heat shock proteins promote cancer: it’s a protection racket publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2016.01.003 – volume: 32 start-page: 577 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib159 article-title: The HSP90 inhibitor ganetespib has chemosensitizer and radiosensitizer activity in colorectal cancer publication-title: Investig. New Drugs doi: 10.1007/s10637-014-0095-4 – volume: 53 start-page: 26 year: 2004 ident: 10.1016/j.biopha.2021.112074_bib185 article-title: Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma publication-title: Cancer Immunol. Immunother. CII doi: 10.1007/s00262-003-0416-5 – volume: 36 start-page: 3775 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib50 article-title: Expression of HSP27 in hepatocellular carcinoma publication-title: Anticancer Res. – volume: 34 start-page: 4153 year: 2015 ident: 10.1016/j.biopha.2021.112074_bib68 article-title: Hsp70 in cancer: back to the future publication-title: Oncogene doi: 10.1038/onc.2014.349 – volume: 8 start-page: 112426 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib140 article-title: Vitexin confers HSF-1 mediated autophagic cell death by activating JNK and ApoL1 in colorectal carcinoma cells publication-title: Oncotarget doi: 10.18632/oncotarget.20113 – volume: 2 year: 2011 ident: 10.1016/j.biopha.2021.112074_bib57 article-title: The tumour-suppressive function of CLU is explained by its localisation and interaction with HSP60 publication-title: Cell Death Dis. doi: 10.1038/cddis.2011.99 – volume: 54 start-page: 960 year: 1999 ident: 10.1016/j.biopha.2021.112074_bib150 article-title: Quercetin in men with category III chronic prostatitis: a preliminary prospective, double-blind, placebo-controlled trial publication-title: Urology doi: 10.1016/S0090-4295(99)00358-1 – volume: 14 start-page: 346 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib13 article-title: HSP90 inhibitors in lung cancer: promise still unfulfilled publication-title: Clin. Adv. Hematol. Oncol. – volume: 24 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib63 article-title: HSP60 silencing promotes Warburg-like phenotypes and switches the mitochondrial function from ATP production to biosynthesis in ccRCC cells publication-title: Redox Biol. doi: 10.1016/j.redox.2019.101218 – volume: 50 start-page: 42 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib103 article-title: Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism publication-title: Mitochondrion doi: 10.1016/j.mito.2019.09.011 – volume: 16 start-page: 72 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib85 article-title: Hsp90β promoted endothelial cell-dependent tumor angiogenesis in hepatocellular carcinoma publication-title: Mol. Cancer doi: 10.1186/s12943-017-0640-9 – volume: 19 start-page: 1478 year: 2018 ident: 10.1016/j.biopha.2021.112074_bib107 article-title: Clinical, prognostic and therapeutic significance of heat shock proteins in cancer publication-title: Curr. Drug Targets doi: 10.2174/1389450118666170823121248 – volume: 32 start-page: 517 year: 2007 ident: 10.1016/j.biopha.2021.112074_bib109 article-title: Heat shock protein 90: the cancer chaperone publication-title: J. Biosci. doi: 10.1007/s12038-007-0051-y – volume: 106 start-page: 8368 year: 2009 ident: 10.1016/j.biopha.2021.112074_bib133 article-title: Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0903392106 – volume: 7 start-page: 260 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib47 article-title: Overexpression of HSP27 and HSP70 is associated with decreased survival among patients with esophageal adenocarcinoma publication-title: World J. Clin. Cases doi: 10.12998/wjcc.v7.i3.260 – volume: 2020 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib90 article-title: Heat shock protein 90 family isoforms as prognostic biomarkers and their correlations with immune infiltration in breast cancer publication-title: BioMed. Res. Int. doi: 10.1155/2020/2148253 – volume: 20 start-page: 89 year: 2008 ident: 10.1016/j.biopha.2021.112074_bib151 article-title: Identification of 5-fluorouracil response proteins in colorectal carcinoma cell line SW480 by two-dimensional electrophoresis and MALDI-TOF mass spectrometry publication-title: Oncol. Rep. – volume: 121 start-page: 3230 year: 2015 ident: 10.1016/j.biopha.2021.112074_bib56 article-title: Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery publication-title: Cancer doi: 10.1002/cncr.29499 – volume: 5 start-page: 9980 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib162 article-title: HSP90 inhibition downregulates thymidylate synthase and sensitizes colorectal cancer cell lines to the effect of 5FU-based chemotherapy publication-title: Oncotarget doi: 10.18632/oncotarget.2484 – volume: 31 start-page: 2482 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib158 article-title: Dual targeting of heat shock proteins 90 and 70 promotes cell death and enhances the anticancer effect of chemotherapeutic agents in bladder cancer publication-title: Oncol. Rep. doi: 10.3892/or.2014.3132 – volume: 6 start-page: 25 year: 2007 ident: 10.1016/j.biopha.2021.112074_bib18 article-title: Contribution of oncoproteomics to cancer biomarker discovery publication-title: Mol. Cancer doi: 10.1186/1476-4598-6-25 – volume: 139 start-page: 407 year: 2013 ident: 10.1016/j.biopha.2021.112074_bib168 article-title: Heat-shock proteins as dendritic cell-targeting vaccines--getting warmer publication-title: Immunology doi: 10.1111/imm.12104 – volume: 372 start-page: 145 year: 2008 ident: 10.1016/j.biopha.2021.112074_bib178 article-title: An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial publication-title: Lancet doi: 10.1016/S0140-6736(08)60697-2 – volume: 50 start-page: 102 year: 2009 ident: 10.1016/j.biopha.2021.112074_bib132 article-title: Targeting heat shock protein 90 with non-quinone inhibitors: a novel chemotherapeutic approach in human hepatocellular carcinoma publication-title: Hepatology doi: 10.1002/hep.22912 – volume: 36 start-page: 3441 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib131 article-title: HSP90 stabilizes B-cell receptor kinases in a multi-client interactome: PU-H71 induces CLL apoptosis in a cytoprotective microenvironment publication-title: Oncogene doi: 10.1038/onc.2016.494 – volume: 36 start-page: e539 issue: 531 year: 2018 ident: 10.1016/j.biopha.2021.112074_bib62 article-title: Heat shock proteins 60 and 70 are associated with long-term outcome of T1-stage high-grade urothelial tumors of the bladder treated with intravesical Bacillus Calmette-Guérin immunotherapy publication-title: Urol. Oncol. – volume: 104 start-page: 598 year: 2011 ident: 10.1016/j.biopha.2021.112074_bib64 article-title: Heat shock protein-60 expression was significantly correlated with the prognosis of lung adenocarcinoma publication-title: J. Surg. Oncol. doi: 10.1002/jso.21992 – volume: 32 start-page: 5139 year: 2012 ident: 10.1016/j.biopha.2021.112074_bib55 article-title: HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview publication-title: Anticancer Res. – volume: 35 start-page: 42 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib81 article-title: The clinicopathological significance of Mortalin overexpression in invasive ductal carcinoma of breast publication-title: J. Exp. Clin. Cancer Res. CR doi: 10.1186/s13046-016-0316-0 – volume: 121 start-page: 934 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib59 article-title: Hsp60 and IL-8 axis promotes apoptosis resistance in cancer publication-title: Br. J. Cancer doi: 10.1038/s41416-019-0617-0 – volume: 25 start-page: 25 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib139 article-title: Anticancer attributes of cantharidin: involved molecular mechanisms and pathways publication-title: Molecules doi: 10.3390/molecules25143279 – volume: 156 start-page: 857 year: 2000 ident: 10.1016/j.biopha.2021.112074_bib20 article-title: A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)64954-1 – volume: 1113 start-page: 28 year: 2007 ident: 10.1016/j.biopha.2021.112074_bib170 article-title: Extracellular heat shock proteins in cell signaling and immunity publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1391.019 – volume: 19 start-page: 2021 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib144 article-title: Role of HSP27 in the multidrug sensitivity and resistance of colon cancer cells publication-title: Oncol. Lett. – volume: 111 start-page: 78 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib30 article-title: High level of HSF1 associates with aggressive endometrial carcinoma and suggests potential for HSP90 inhibitors publication-title: Br. J. Cancer doi: 10.1038/bjc.2014.262 – volume: 2 start-page: 8 year: 2004 ident: 10.1016/j.biopha.2021.112074_bib53 article-title: Expressional patterns of chaperones in ten human tumor cell lines publication-title: Proteome Sci. doi: 10.1186/1477-5956-2-8 – volume: 36 start-page: 696 year: 2015 ident: 10.1016/j.biopha.2021.112074_bib136 article-title: Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter publication-title: Carcinogenesis doi: 10.1093/carcin/bgv045 – volume: 24 start-page: 699 year: 2010 ident: 10.1016/j.biopha.2021.112074_bib119 article-title: Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid publication-title: Leukemia doi: 10.1038/leu.2009.292 – volume: 594 start-page: 1 year: 2007 ident: 10.1016/j.biopha.2021.112074_bib2 article-title: Protein misassembly: macromolecular crowding and molecular chaperones publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-0-387-39975-1_1 – volume: 19 start-page: 590 year: 2008 ident: 10.1016/j.biopha.2021.112074_bib87 article-title: HSP90 as a marker of progression in melanoma publication-title: Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. doi: 10.1093/annonc/mdm545 – volume: 93 start-page: 760 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib116 article-title: Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment publication-title: Chem. Biol. Drug Des. doi: 10.1111/cbdd.13486 – volume: 109 start-page: 8699 year: 2012 ident: 10.1016/j.biopha.2021.112074_bib16 article-title: Suppression of heat shock protein 27 induces long-term dormancy in human breast cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1017909109 – volume: 12 start-page: 703 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib165 article-title: mTOR inhibition potentiates HSP90 inhibitor activity via cessation of HSP synthesis publication-title: Mol. Cancer Res. MCR doi: 10.1158/1541-7786.MCR-13-0605 – volume: 3 start-page: 49 year: 2004 ident: 10.1016/j.biopha.2021.112074_bib73 article-title: Plasma levels of heat shock protein 70 in patients with prostate cancer: a potential biomarker for prostate cancer publication-title: Clin. Prostate Cancer doi: 10.3816/CGC.2004.n.013 – volume: 10 start-page: 1553 year: 2011 ident: 10.1016/j.biopha.2021.112074_bib169 article-title: Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come publication-title: Expert Rev. Vaccin. doi: 10.1586/erv.11.124 – volume: 54 start-page: 1147 year: 2015 ident: 10.1016/j.biopha.2021.112074_bib84 article-title: Heat shock protein 90 promotes epithelial to mesenchymal transition, invasion, and migration in colorectal cancer publication-title: Mol. Carcinog. doi: 10.1002/mc.22185 – volume: 22 start-page: 366 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib106 article-title: Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure publication-title: Stress doi: 10.1080/10253890.2019.1568987 – volume: 29 start-page: 8520 year: 2011 ident: 10.1016/j.biopha.2021.112074_bib180 article-title: Safety and immunogenicity of long HSV-2 peptides complexed with rhHsc70 in HSV-2 seropositive persons publication-title: Vaccine doi: 10.1016/j.vaccine.2011.09.046 – volume: 13 start-page: 16 year: 2015 ident: 10.1016/j.biopha.2021.112074_bib179 article-title: Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D 1 (PKD1) during cardiac hypertrophy publication-title: Cell Commun. Signal. CCS doi: 10.1186/s12964-015-0094-x – volume: 76 start-page: e1011 issue: 1017 year: 2010 ident: 10.1016/j.biopha.2021.112074_bib60 article-title: Immunohistochemical expression of Hsp60 correlates with tumor progression and hormone resistance in prostate cancer publication-title: Urology – volume: 30 start-page: 341 year: 2012 ident: 10.1016/j.biopha.2021.112074_bib117 article-title: A Phase II trial of 17-allylamino, 17-demethoxygeldanamycin (17-AAG, tanespimycin) in patients with metastatic melanoma publication-title: Investig. New Drugs doi: 10.1007/s10637-010-9493-4 – volume: 17 start-page: 2657 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib89 article-title: Prognostic value of the mRNA expression of members of the HSP90 family in non-small cell lung cancer publication-title: Exp. Ther. Med. – volume: 117 start-page: 1516 year: 2011 ident: 10.1016/j.biopha.2021.112074_bib35 article-title: Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27 publication-title: Cancer doi: 10.1002/cncr.25599 – volume: 5 start-page: 2648 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib39 article-title: Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression publication-title: Oncotarget doi: 10.18632/oncotarget.1917 – volume: 3 start-page: 1021 year: 2004 ident: 10.1016/j.biopha.2021.112074_bib12 article-title: Altered Hsp90 function in cancer: a unique therapeutic opportunity publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.1021.3.8 – volume: 11 start-page: 1029 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib40 article-title: The association between heat-shock protein polymorphisms and prognosis in lung cancer patients treated with platinum-based chemotherapy publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.01029 – volume: 6 start-page: 162 year: 2015 ident: 10.1016/j.biopha.2021.112074_bib173 article-title: Heat shock protein 70 (Hsp70) peptide activated natural killer (NK) cells for the treatment of patients with non-small cell lung cancer (NSCLC) after radiochemotherapy (RCTx) - from preclinical studies to a clinical phase II trial publication-title: Front. Immunol. doi: 10.3389/fimmu.2015.00162 – volume: 17 start-page: 255 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib80 article-title: Mortalin is a prognostic factor of gastric cancer with normal p53 function publication-title: Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. – volume: 2018 year: 2018 ident: 10.1016/j.biopha.2021.112074_bib75 article-title: Circulating heat shock protein 70 is a novel biomarker for early diagnosis of lung cancer publication-title: Dis. Markers doi: 10.1155/2018/6184162 – volume: 2019 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib15 article-title: Heat shock proteins in cancer immunotherapy publication-title: J. Oncol. doi: 10.1155/2019/3267207 – volume: 38 start-page: 226 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib51 article-title: Heat shock proteins and cancer publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2016.11.009 – volume: 26 start-page: 955 year: 2008 ident: 10.1016/j.biopha.2021.112074_bib177 article-title: Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100-21 Study Group publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. doi: 10.1200/JCO.2007.11.9941 – volume: 11 start-page: 11 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib11 article-title: Heat shock proteins and ovarian cancer: important roles and therapeutic opportunities publication-title: Cancers doi: 10.3390/cancers11091389 – volume: 166 start-page: 690 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib172 article-title: Human heat shock protein-specific cytotoxic T lymphocytes display potent antitumour immunity in multiple myeloma publication-title: Br. J. Haematol. doi: 10.1111/bjh.12943 – volume: 36 start-page: 581 year: 2018 ident: 10.1016/j.biopha.2021.112074_bib123 article-title: The HSP90 inhibitor NVP-AUY922 inhibits growth of HER2 positive and trastuzumab-resistant breast cancer cells publication-title: Investig. New Drugs doi: 10.1007/s10637-017-0556-7 – volume: 92 start-page: 1564 year: 2000 ident: 10.1016/j.biopha.2021.112074_bib19 article-title: Role of the heat shock response and molecular chaperones in oncogenesis and cell death publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/92.19.1564 – volume: 236 start-page: 3420 year: 2021 ident: 10.1016/j.biopha.2021.112074_bib70 article-title: Hsp70 in cancer: a double agent in the battle between survival and death publication-title: J. Cell. Physiol. doi: 10.1002/jcp.30132 – volume: 26 start-page: 405 year: 2002 ident: 10.1016/j.biopha.2021.112074_bib111 article-title: Pharmacogenomics in cancer drug discovery and development: inhibitors of the Hsp90 molecular chaperone publication-title: Cancer Detect. Prev. doi: 10.1016/S0361-090X(02)00126-5 – volume: 35 start-page: 1855 year: 2012 ident: 10.1016/j.biopha.2021.112074_bib129 article-title: Recent updates on the development of ganetespib as a Hsp90 inhibitor publication-title: Arch. Pharm. Res. doi: 10.1007/s12272-012-1101-z – volume: 16 start-page: 220 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib135 article-title: Dorsomorphin induces cancer cell apoptosis and sensitizes cancer cells to HSP90 and proteasome inhibitors by reducing nuclear heat shock factor 1 levels publication-title: Cancer Biol. Med. doi: 10.20892/j.issn.2095-3941.2018.0235 – volume: 10 start-page: 86 year: 2005 ident: 10.1016/j.biopha.2021.112074_bib22 article-title: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications publication-title: Cell Stress Chaperon-.-. doi: 10.1379/CSC-99r.1 – volume: 7 start-page: 1252 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib77 article-title: Heat shock protein 70-2 (HSP70-2) a novel cancer testis antigen that promotes growth of ovarian cancer publication-title: Am. J. Cancer Res. – volume: 9 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib167 article-title: A tumor microenvironment-responsive biodegradable mesoporous nanosystem for anti-inflammation and cancer theranostics publication-title: Adv. Healthc. Mater. – volume: 9 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib91 article-title: Heat shock protein 90α in thymic epithelial tumors and non-thymomatous myasthenia gravis publication-title: Oncoimmunology doi: 10.1080/2162402X.2020.1756130 – volume: 10 start-page: 537 year: 2010 ident: 10.1016/j.biopha.2021.112074_bib110 article-title: Targeting the dynamic HSP90 complex in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2887 – volume: 9 start-page: 12628 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib58 article-title: HSP60-regulated mitochondrial proteostasis and protein translation promote tumor growth of ovarian cancer publication-title: Sci. Rep. doi: 10.1038/s41598-019-48992-7 – volume: 25 start-page: 1242 issue: 1242–1254 year: 2018 ident: 10.1016/j.biopha.2021.112074_bib156 article-title: Subcellular Hsp70 inhibitors promote cancer cell death via different mechanisms publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.06.010 – volume: 21 start-page: 927 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib61 article-title: Quantitative patterns of Hsps in tubular adenoma compared with normal and tumor tissues reveal the value of Hsp10 and Hsp60 in early diagnosis of large bowel cancer publication-title: Cell Stress Chaperon-.-. doi: 10.1007/s12192-016-0721-5 – volume: 23 start-page: 539 year: 2018 ident: 10.1016/j.biopha.2021.112074_bib76 article-title: High serum Hsp70 level predicts poor survival in colorectal cancer: results obtained in an independent validation cohort publication-title: Cancer Biomark. Sect. A Dis. Markers – volume: 7 start-page: 60 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib66 article-title: Heat shock protein 60 in hepatocellular carcinoma: insights and perspectives publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2020.00060 – volume: 3 start-page: 359 year: 2003 ident: 10.1016/j.biopha.2021.112074_bib121 article-title: Development of radicicol analogues publication-title: Curr. Cancer Drug Targets doi: 10.2174/1568009033481859 – volume: 41 start-page: 438 year: 2018 ident: 10.1016/j.biopha.2021.112074_bib45 article-title: Use of protein-based biomarkers of exfoliated cervical cells for primary screening of cervical cancer publication-title: Arch. Pharm. Res. doi: 10.1007/s12272-018-1015-5 – volume: 45 start-page: 5797 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib142 article-title: New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx194 – volume: 60 start-page: 1396 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib137 article-title: Dietary flavonoid fisetin for cancer prevention and treatment publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201600025 – volume: 137 start-page: 1349 year: 2011 ident: 10.1016/j.biopha.2021.112074_bib149 article-title: RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-011-1005-1 – volume: 85 start-page: 1558 year: 1993 ident: 10.1016/j.biopha.2021.112074_bib48 article-title: Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/85.19.1558 – volume: 20 start-page: 4454 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib175 article-title: Mimetic heat shock protein mediated immune process to enhance cancer immunotherapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01230 – volume: 164 start-page: 3369 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib154 article-title: Artesunate, as a HSP70 ATPase activity inhibitor, induces apoptosis in breast cancer cells publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.08.198 – volume: 11 start-page: 254 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib186 article-title: The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00254 – volume: 19 start-page: 19 year: 2018 ident: 10.1016/j.biopha.2021.112074_bib83 article-title: The HSP90 family: structure, regulation, function, and implications in health and disease publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19092560 – volume: 427 start-page: 1537 year: 2015 ident: 10.1016/j.biopha.2021.112074_bib4 article-title: A first line of stress defense: small heat shock proteins and their function in protein homeostasis publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.02.002 – volume: 50 start-page: 184 year: 2013 ident: 10.1016/j.biopha.2021.112074_bib88 article-title: Hsp90 - a potential prognostic marker in CML publication-title: Blood Cells Mol. Dis. doi: 10.1016/j.bcmd.2012.11.002 – volume: 25 start-page: 12 year: 2020 ident: 10.1016/j.biopha.2021.112074_bib134 article-title: Inhibitors of HSP90 in melanoma publication-title: Apoptosis Int. J. Program. Cell Death doi: 10.1007/s10495-019-01577-1 – volume: 33 start-page: 477 year: 2015 ident: 10.1016/j.biopha.2021.112074_bib163 article-title: A phase I study of the Hsp90 inhibitor AUY922 plus capecitabine for the treatment of patients with advanced solid tumors publication-title: Cancer Investig. doi: 10.3109/07357907.2015.1069834 – volume: 4 start-page: 816 year: 2013 ident: 10.1016/j.biopha.2021.112074_bib31 article-title: Targeting HSF1 sensitizes cancer cells to HSP90 inhibition publication-title: Oncotarget doi: 10.18632/oncotarget.991 – volume: 22 start-page: 631 year: 1988 ident: 10.1016/j.biopha.2021.112074_bib3 article-title: The heat-shock proteins publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.ge.22.120188.003215 – volume: 5 start-page: 307 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib17 article-title: Heat shock protein 70 serum levels differ significantly in patients with chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma publication-title: Front. Immunol. doi: 10.3389/fimmu.2014.00307 – volume: 13 start-page: 1819 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib32 article-title: Overexpression of heat-shock factor 1 is associated with a poor prognosis in esophageal squamous cell carcinoma publication-title: Oncol. Lett. doi: 10.3892/ol.2017.5637 – volume: 5 start-page: 1363 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib101 article-title: Targeting aerobic glycolysis and HIF-1alpha expression enhance imiquimod-induced apoptosis in cancer cells publication-title: Oncotarget doi: 10.18632/oncotarget.1734 – volume: 16 start-page: 274 year: 2014 ident: 10.1016/j.biopha.2021.112074_bib176 article-title: Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial publication-title: Neuro-Oncol. doi: 10.1093/neuonc/not203 – volume: 9 start-page: 9 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib1 article-title: Heat shock proteins: agents of cancer development and therapeutic targets in anti-cancer therapy publication-title: Cells doi: 10.3390/cells9010060 – volume: 129 start-page: 39 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib147 article-title: Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro publication-title: J. Neuro-Oncol. doi: 10.1007/s11060-016-2149-2 – volume: 10 start-page: 6713 year: 2019 ident: 10.1016/j.biopha.2021.112074_bib92 article-title: Tumor tissue hnRNP M and HSP 90α as potential predictors of disease-specific mortality in patients with early-stage cutaneous head and neck melanoma: a proteomics-based study publication-title: Oncotarget doi: 10.18632/oncotarget.27333 – volume: 11 start-page: 383 year: 2018 ident: 10.1016/j.biopha.2021.112074_bib27 article-title: Prognostic role of HSF1 overexpression in solid tumors: a pooled analysis of 3,159 patients publication-title: OncoTargets Ther. doi: 10.2147/OTT.S153682 – volume: 10 start-page: 2149 year: 2015 ident: 10.1016/j.biopha.2021.112074_bib94 article-title: Cell surface GRP78: a potential marker of good prognosis and response to chemotherapy in breast cancer publication-title: Oncol. Lett. doi: 10.3892/ol.2015.3579 – volume: 23 start-page: 27 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib95 article-title: The emerging hallmarks of cancer metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.12.006 – volume: 51 start-page: 967 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib125 article-title: Ganetespib induces G2/M cell cycle arrest and apoptosis in gastric cancer cells through targeting of receptor tyrosine kinase signaling publication-title: Int. J. Oncol. – volume: 21 start-page: 553 year: 2016 ident: 10.1016/j.biopha.2021.112074_bib102 article-title: Past, present, and emerging roles of mitochondrial heat shock protein TRAP1 in the metabolism and regulation of cancer stem cells publication-title: Cell Stress Chaperon-.-. doi: 10.1007/s12192-016-0687-3 – volume: 8 start-page: 31540 year: 2017 ident: 10.1016/j.biopha.2021.112074_bib34 article-title: Phosphorylation of HSF1 at serine 326 residue is related to the maintenance of gynecologic cancer stem cells through expression of HSP27 publication-title: Oncotarget doi: 10.18632/oncotarget.16361 – volume: 6 start-page: 559 year: 2011 ident: 10.1016/j.biopha.2021.112074_bib112 article-title: Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment publication-title: Expert Opin. Drug Discov. doi: 10.1517/17460441.2011.563296 |
SSID | ssj0005638 |
Score | 2.5489335 |
SecondaryResourceType | review_article |
Snippet | Heat shock proteins (HSPs) are a group of proteins, also known as molecular chaperones, which participate in protein folding and maturation in response to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 112074 |
SubjectTerms | Animals Antineoplastic Agents - pharmacology Biomarker Biomarkers, Tumor - metabolism Cancer diagnosis and prognosis Cancer metabolism Disease Progression Heat shock proteins (HSPs) Heat-Shock Proteins - chemistry Heat-Shock Proteins - metabolism HSP inhibitors HSP-based immunotherapies Humans Molecular Targeted Therapy Molecular Weight Neoplasms - diagnosis Neoplasms - pathology Neoplasms - therapy Prognosis |
Title | Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S075333222100857X https://dx.doi.org/10.1016/j.biopha.2021.112074 https://www.ncbi.nlm.nih.gov/pubmed/34426258 https://www.proquest.com/docview/2564131490 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EQbyIb9cXEcSTcbvb9HUUUVZFEVTYW0jaFCvaFbsevPjbnUnSVQ-ieNt2M9ttZzrzhXzzBWCvjJNenoWKmzA1XJiyx7U2JddxLLQidRYr13R5FQ_uxPkwGk7BcdsLQ7RKn_tdTrfZ2p_p-qfZfa6q7g0WuzCkhYKelWkfUge7SCjKD9-_0Dxiu5s1DeY0um2fsxwvXY1IlKmPhY56aYJE_FSefoKftgydLsC8x4_syP3FRZgy9RLMXvoV8iXYv3Za1G8H7Paztao5YPvs-lOl-m0ZJAJGLDjMkwAaVtWMEjNr7jFFMqvfUNX2dE4DXljhWHkV_hixuvzHJzPGOHqsmiem6oJNiOsrcHd6cns84H63BZ5H_WTMY5WTFDtCjjzNVJkinlUIDtPSZP1UIWwosNQrhCck6NLDb3AarvpBGMU6QSMdrsJ0ParNOjBEkYVOEQzgfEUUIlAZ-lwnIkt1IEqRdSBsH7LMvRQ57YjxKFvO2YN0rpHkGulc0wE-sXp2Uhy_jI9a_8m2zRQTo8Ra8YtdMrH7Fop_sNxtw0TiW0pLL6o2o9dGIrBEtICz0aADay5-JvcQCtoVIEo3_n3dTZijI8cx3ILp8cur2UasNNY79mXYgZmjs4vB1QfDHRDy |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RKrW9VC30Y9vSGolywmw2cb4OHBAtWgqLkLpIe3PtxFFTQRaRRdVe-qf6BztjO0s5IKpK3FZJJpt4JvOe5fEbgI0qSQdFHiluosxwYaoB19pUXCeJ0IrUWaxc0-g4GZ6KL5N4sgS_u70wVFbpc7_L6TZb-yN9P5r9i7ruf0WwiyJaKBhYmfaJr6w8NPOfOG9rdw4-oZM_huH-5_HekPvWAryIw3TGE1WQ7jjia5HlqsqQvClkQlll8jBTiJEl4ppCLCb1kgGewTmnCoMoTnSKRjrC-z6AhwLTBbVN2P71V11JYttn09Nxerxuv54tKtP1lFSgQkRW2rwTpOI2PLyN71rc238GTz1hZbtuTJ7DkmlW4NHIL8mvwOaJE7-eb7Hx9V6udottspNrWez5KkhkqIhwzFcdtKxuGCEBa79jTmZWMKJu7OGCLrhkpSsDrPFmVEbmf56bGQbuWd2eM9WUbFEp_wJO78UHL2G5mTbmNTCkraXOkH3gBEmUIlA5BplORZ7pQFQi70HUDbIsvPY5teA4k12R2w_pXCPJNdK5pgd8YXXhtD_uuD7u_Ce7fa2YiSWC0x126cLuRuz_g-V6FyYS0wKt9ajGTK9aiUwW6QlOf4MevHLxs3iHSFAbgjh789__-wEeD8ejI3l0cHz4Fp7QGVfg-A6WZ5dXZg2J2ky_tx8Gg2_3_SX-AfDtSd4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+heat+shock+proteins+in+cancer+diagnosis%2C+prognosis%2C+metabolism+and+treatment&rft.jtitle=Biomedicine+%26+pharmacotherapy&rft.au=Yang%2C+Shuxian&rft.au=Xiao%2C+Haiyan&rft.au=Cao%2C+Li&rft.date=2021-10-01&rft.issn=1950-6007&rft.eissn=1950-6007&rft.volume=142&rft.spage=112074&rft_id=info:doi/10.1016%2Fj.biopha.2021.112074&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0753-3322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0753-3322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0753-3322&client=summon |