Novel stretchable thermochromic transparent heaters designed for smart window defroster applications by spray coating silver nanowire
A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available thermochromic ink (TM-55-blue) and silver nanowire (AgNW)-coated polydimethylsiloxane (PDMS) is proposed. Lower resistance, elevated heat generation, an...
Saved in:
Published in | RSC advances Vol. 9; no. 61; pp. 35786 - 35796 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
04.11.2019
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available thermochromic ink (TM-55-blue) and silver nanowire (AgNW)-coated polydimethylsiloxane (PDMS) is proposed. Lower resistance, elevated heat generation, and higher transparencies were the expected essential prerequisites for the fabrication of items such as smart windows and window defrosters. AgNW-coated PDMS (hereafter PH devices) satisfied the essential prerequisites but did not produce sufficient color change. In addition to the appreciable electrical and optical characteristics and mechanical robustness, observable color changes represent a critical factor in effortless temperature monitoring by the heating device. Blending TM-55-blue thermochromic ink with PDMS (PBH device) improves the heating rate and color transformation and promotes the ultralow response time appreciably. More notably, it produces a visible transformation from blue to colorless. Color changes visible to the naked eye, ultralow response time, and heating rate represent valuable features for deploying the PBH devices as window defrosters and in smart window applications.
The as-designed heaters proved to be excellent candidates for employment in window defrosters, as they satisfy the essential prerequisites such as lower sheet resistance, high transparency, mechanical robustness and good stability to tensile strain. |
---|---|
AbstractList | A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available thermochromic ink (TM-55-blue) and silver nanowire (AgNW)-coated polydimethylsiloxane (PDMS) is proposed. Lower resistance, elevated heat generation, and higher transparencies were the expected essential prerequisites for the fabrication of items such as smart windows and window defrosters. AgNW-coated PDMS (hereafter PH devices) satisfied the essential prerequisites but did not produce sufficient color change. In addition to the appreciable electrical and optical characteristics and mechanical robustness, observable color changes represent a critical factor in effortless temperature monitoring by the heating device. Blending TM-55-blue thermochromic ink with PDMS (PBH device) improves the heating rate and color transformation and promotes the ultralow response time appreciably. More notably, it produces a visible transformation from blue to colorless. Color changes visible to the naked eye, ultralow response time, and heating rate represent valuable features for deploying the PBH devices as window defrosters and in smart window applications. A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available thermochromic ink (TM-55-blue) and silver nanowire (AgNW)-coated polydimethylsiloxane (PDMS) is proposed. Lower resistance, elevated heat generation, and higher transparencies were the expected essential prerequisites for the fabrication of items such as smart windows and window defrosters. AgNW-coated PDMS (hereafter PH devices) satisfied the essential prerequisites but did not produce sufficient color change. In addition to the appreciable electrical and optical characteristics and mechanical robustness, observable color changes represent a critical factor in effortless temperature monitoring by the heating device. Blending TM-55-blue thermochromic ink with PDMS (PBH device) improves the heating rate and color transformation and promotes the ultralow response time appreciably. More notably, it produces a visible transformation from blue to colorless. Color changes visible to the naked eye, ultralow response time, and heating rate represent valuable features for deploying the PBH devices as window defrosters and in smart window applications. The as-designed heaters proved to be excellent candidates for employment in window defrosters, as they satisfy the essential prerequisites such as lower sheet resistance, high transparency, mechanical robustness and good stability to tensile strain. A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available thermochromic ink (TM-55-blue) and silver nanowire (AgNW)-coated polydimethylsiloxane (PDMS) is proposed. Lower resistance, elevated heat generation, and higher transparencies were the expected essential prerequisites for the fabrication of items such as smart windows and window defrosters. AgNW-coated PDMS (hereafter PH devices) satisfied the essential prerequisites but did not produce sufficient color change. In addition to the appreciable electrical and optical characteristics and mechanical robustness, observable color changes represent a critical factor in effortless temperature monitoring by the heating device. Blending TM-55-blue thermochromic ink with PDMS (PBH device) improves the heating rate and color transformation and promotes the ultralow response time appreciably. More notably, it produces a visible transformation from blue to colorless. Color changes visible to the naked eye, ultralow response time, and heating rate represent valuable features for deploying the PBH devices as window defrosters and in smart window applications.A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available thermochromic ink (TM-55-blue) and silver nanowire (AgNW)-coated polydimethylsiloxane (PDMS) is proposed. Lower resistance, elevated heat generation, and higher transparencies were the expected essential prerequisites for the fabrication of items such as smart windows and window defrosters. AgNW-coated PDMS (hereafter PH devices) satisfied the essential prerequisites but did not produce sufficient color change. In addition to the appreciable electrical and optical characteristics and mechanical robustness, observable color changes represent a critical factor in effortless temperature monitoring by the heating device. Blending TM-55-blue thermochromic ink with PDMS (PBH device) improves the heating rate and color transformation and promotes the ultralow response time appreciably. More notably, it produces a visible transformation from blue to colorless. Color changes visible to the naked eye, ultralow response time, and heating rate represent valuable features for deploying the PBH devices as window defrosters and in smart window applications. |
Author | Veeramuthu, Loganathan Cai, Xingke Tsai, Ching-Yi Kuo, Chi-Ching Liang, Fang-Cheng Chen, Chin-Wen Jiang, Dai-Hua Venkatesan, Manikandan Chen, Bo-Yu |
AuthorAffiliation | Research and Development Center of Smart Textile Technology National Taipei University of Technology Institute for Advanced Study Institute of Organic and Polymeric Materials Shenzhen University |
AuthorAffiliation_xml | – sequence: 0 name: Shenzhen University – sequence: 0 name: Institute for Advanced Study – sequence: 0 name: National Taipei University of Technology – sequence: 0 name: Institute of Organic and Polymeric Materials – sequence: 0 name: Research and Development Center of Smart Textile Technology |
Author_xml | – sequence: 1 givenname: Loganathan surname: Veeramuthu fullname: Veeramuthu, Loganathan – sequence: 2 givenname: Bo-Yu surname: Chen fullname: Chen, Bo-Yu – sequence: 3 givenname: Ching-Yi surname: Tsai fullname: Tsai, Ching-Yi – sequence: 4 givenname: Fang-Cheng surname: Liang fullname: Liang, Fang-Cheng – sequence: 5 givenname: Manikandan surname: Venkatesan fullname: Venkatesan, Manikandan – sequence: 6 givenname: Dai-Hua surname: Jiang fullname: Jiang, Dai-Hua – sequence: 7 givenname: Chin-Wen surname: Chen fullname: Chen, Chin-Wen – sequence: 8 givenname: Xingke surname: Cai fullname: Cai, Xingke – sequence: 9 givenname: Chi-Ching surname: Kuo fullname: Kuo, Chi-Ching |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35528092$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk2LFDEQhoOsuB_uxbsS8LIIo0m6k3QuC8vgFywKoucmnVRPZ-lO2iQzw_wA_7dxZx3XRTCXhKqnXqry1ik68sEDQs8oeU1Jpd4YFTURnDTmETphpBYLRoQ6uvc-Rucp3ZByBKdM0CfouOKcNUSxE_TjU9jAiFOOkM2guxFwHiBOwQwxTM7gHLVPs47gMx5AZ4gJW0hu5cHiPkScJh0z3jpvw7Zk-hhSgbCe59EZnV3wCXc7nOaod9iEEvErnNy4KZDXPmxdhKfoca_HBOd39xn69u7t1-WHxfXn9x-XV9cLw5nMC9FQpSoFRHMpa855JzvZ25oJI3pNqVTKEuCSsE5xq5qmarhQHEAaa2nfVGfocq87r7sJrClDRT22c3RliF0btGv_zng3tKuwaRWRtaSqCFzcCcTwfQ0pt5NLBsZRewjr1DIhaN3Ukoj_o1VV7JCCkYK-fIDehHX05ScKRRknhMq6UC_uN3_o-reZBXi1B0zxIEXoDwgl7a9laZfqy9XtsiwLTB7AxuVbu8rgbvx3yfN9SUzmIP1n_6qf6b3NUw |
CitedBy_id | crossref_primary_10_1021_acsaelm_2c00029 crossref_primary_10_1186_s40486_021_00132_5 crossref_primary_10_1016_j_cej_2020_126222 crossref_primary_10_1007_s10570_023_05665_z crossref_primary_10_1016_j_optmat_2022_112361 crossref_primary_10_1038_s41378_024_00744_y crossref_primary_10_1016_j_nanoen_2021_106613 crossref_primary_10_3390_coatings10030223 crossref_primary_10_1007_s11814_021_0811_7 crossref_primary_10_1166_sam_2022_4359 crossref_primary_10_3390_nano14211735 crossref_primary_10_1002_adfm_201910225 crossref_primary_10_1002_adfm_202107023 crossref_primary_10_1039_D0MA00817F crossref_primary_10_1002_aelm_202100459 crossref_primary_10_1038_s41598_022_09813_6 crossref_primary_10_1021_acsanm_0c01404 crossref_primary_10_1016_j_jallcom_2022_164690 crossref_primary_10_1007_s10854_021_07552_4 crossref_primary_10_1016_j_cej_2024_154692 crossref_primary_10_1002_smll_202106006 crossref_primary_10_1021_acsomega_1c02475 crossref_primary_10_1186_s40643_023_00669_w crossref_primary_10_1016_j_mtcomm_2025_111767 crossref_primary_10_1021_acsaem_2c02171 crossref_primary_10_1016_j_cej_2020_125431 crossref_primary_10_1002_smll_202204078 crossref_primary_10_3390_polym12010084 crossref_primary_10_1039_D1TA00190F crossref_primary_10_1016_j_jallcom_2021_161191 crossref_primary_10_1021_acsaelm_4c00271 crossref_primary_10_3390_polym13244281 crossref_primary_10_1016_j_jallcom_2023_172013 crossref_primary_10_1016_j_pmatsci_2023_101206 crossref_primary_10_1021_acsami_2c09145 crossref_primary_10_1002_adem_202101625 crossref_primary_10_3365_KJMM_2022_60_8_570 crossref_primary_10_1016_j_nanoen_2022_107592 crossref_primary_10_1088_2043_6262_ac5499 crossref_primary_10_1002_admt_202100773 crossref_primary_10_1039_D2NR02475F crossref_primary_10_1021_acsanm_3c01635 crossref_primary_10_1021_acsami_2c04916 crossref_primary_10_1039_D3CP05942A crossref_primary_10_1016_j_enbuild_2021_111022 crossref_primary_10_1021_acsami_4c06315 crossref_primary_10_1002_adom_202202409 crossref_primary_10_1016_j_cej_2021_131878 crossref_primary_10_1021_acsami_0c03655 |
Cites_doi | 10.1039/C6TC04613D 10.1039/C8NR08819E 10.1021/acsami.6b01506 10.1016/j.carbon.2016.09.016 10.1039/c2jm34196d 10.1016/S0925-4005(03)00335-6 10.1002/adma.201802803 10.1039/C6TA10997G 10.1038/am.2016.85 10.1016/j.electacta.2011.08.024 10.1016/j.reactfunctpolym.2016.05.019 10.1021/acsami.6b16853 10.1021/acsami.7b14820 10.1016/j.solmat.2016.05.053 10.1021/acsnano.5b02790 10.1016/j.matdes.2015.07.089 10.1021/acs.jpclett.8b01752 10.1021/nl301045a 10.1016/j.isci.2019.01.014 10.1021/am508029x 10.1021/acsami.8b18366 10.1038/nphoton.2013.341 10.1007/s12274-012-0225-2 10.1021/acs.nanolett.5b04134 10.1021/acs.nanolett.7b02101 10.1002/adma.201500917 10.1016/j.snb.2009.08.057 10.1016/j.carbon.2013.12.046 10.1039/C5TC04276C 10.1016/j.bios.2018.01.022 10.1039/C7RA03181E 10.1016/j.orgel.2018.12.042 10.1016/j.tsf.2009.10.164 10.1016/j.sna.2017.09.050 10.1039/C5RA06529A 10.1039/C5NR04084A 10.1021/acsami.7b00970 10.1002/mame.201400097 10.1088/0022-3727/47/20/205103 10.1039/C7NR05748B 10.1016/j.apsusc.2017.10.054 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2019 This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2019 – notice: This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1039/c9ra06508c |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 35796 |
ExternalDocumentID | PMC9074719 35528092 10_1039_C9RA06508C c9ra06508c |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: MOST 106-2221-E-027-119-MY3; MOST 105-2221-E-027-134-; MOST 104-2113-M-027-007-MY3 – fundername: ; grantid: Unassigned – fundername: ; grantid: NTUT-SZU-108-01 |
GroupedDBID | -JG 0-7 0R~ 53G AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV ABEMK ABGFH ABPDG ABXOH ACGFS ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BCNDV BLAPV BSQNT C6K EBS EE0 EF- EJD GROUPED_DOAJ H13 HZ~ H~N J3I M~E O9- OK1 PGMZT R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH SMJ ZCN AAYXX ABIQK AFPKN CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c527t-6819939e0a5774555b7b7fd426c6fa11799d0e5702b95d988385695ee7cdd1f83 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 13:16:20 EDT 2025 Fri Jul 11 08:58:22 EDT 2025 Fri Jul 11 00:20:18 EDT 2025 Mon Jun 30 02:32:26 EDT 2025 Thu Apr 03 07:05:34 EDT 2025 Thu Apr 24 23:06:38 EDT 2025 Tue Jul 01 04:25:07 EDT 2025 Tue Dec 17 20:59:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 61 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c527t-6819939e0a5774555b7b7fd426c6fa11799d0e5702b95d988385695ee7cdd1f83 |
Notes | 10.1039/c9ra06508c Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 L. Veeramuthu, B.-Y. Chen, C.-Y. Tsai, and F.-C. Liang contributed equally to this work. |
ORCID | 0000-0003-3878-4456 0000-0001-6966-7573 0000-0002-1994-4664 |
OpenAccessLink | http://dx.doi.org/10.1039/c9ra06508c |
PMID | 35528092 |
PQID | 2312500174 |
PQPubID | 2047525 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2335127620 proquest_journals_2312500174 rsc_primary_c9ra06508c pubmedcentral_primary_oai_pubmedcentral_nih_gov_9074719 crossref_primary_10_1039_C9RA06508C proquest_miscellaneous_2661484706 pubmed_primary_35528092 crossref_citationtrail_10_1039_C9RA06508C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-November-04 |
PublicationDateYYYYMMDD | 2019-11-04 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-November-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Huang (C9RA06508C-(cit26)/*[position()=1]) 2019; 12 van de Groep (C9RA06508C-(cit29)/*[position()=1]) 2012; 12 Zhao (C9RA06508C-(cit16)/*[position()=1]) 2017; 5 Huang (C9RA06508C-(cit2)/*[position()=1]) 2019; 67 Tiwari (C9RA06508C-(cit39)/*[position()=1]) 2017; 9 Patel (C9RA06508C-(cit34)/*[position()=1]) 2017; 267 Xiong (C9RA06508C-(cit19)/*[position()=1]) 2018 Malinkiewicz (C9RA06508C-(cit1)/*[position()=1]) 2013; 8 Im (C9RA06508C-(cit6)/*[position()=1]) 2010; 518 Lee (C9RA06508C-(cit7)/*[position()=1]) 2003; 93 Yan (C9RA06508C-(cit12)/*[position()=1]) 2015; 86 Jiang (C9RA06508C-(cit27)/*[position()=1]) 2019; 11 Im (C9RA06508C-(cit9)/*[position()=1]) 2016; 8 Yeoh (C9RA06508C-(cit36)/*[position()=1]) 2014; 47 Lan (C9RA06508C-(cit17)/*[position()=1]) 2018; 433 Lan (C9RA06508C-(cit35)/*[position()=1]) 2017; 9 Zhang (C9RA06508C-(cit41)/*[position()=1]) 2014; 69 Choi (C9RA06508C-(cit37)/*[position()=1]) 2015; 9 Waleed (C9RA06508C-(cit4)/*[position()=1]) 2017; 17 Luo (C9RA06508C-(cit13)/*[position()=1]) 2016; 110 Shin (C9RA06508C-(cit38)/*[position()=1]) 2012; 22 Li (C9RA06508C-(cit33)/*[position()=1]) 2014; 299 Hong (C9RA06508C-(cit24)/*[position()=1]) 2015; 27 Ding (C9RA06508C-(cit20)/*[position()=1]) 2016; 157 Chen (C9RA06508C-(cit32)/*[position()=1]) 2015; 7 Celle (C9RA06508C-(cit11)/*[position()=1]) 2012; 5 Singh (C9RA06508C-(cit10)/*[position()=1]) 2016; 8 Cao (C9RA06508C-(cit14)/*[position()=1]) 2018; 10 Lagrange (C9RA06508C-(cit23)/*[position()=1]) 2015; 7 Wang (C9RA06508C-(cit18)/*[position()=1]) 2018; 9 Lee (C9RA06508C-(cit22)/*[position()=1]) 2017; 5 Liang (C9RA06508C-(cit30)/*[position()=1]) 2017; 9 Cho (C9RA06508C-(cit31)/*[position()=1]) 2016; 108 Li (C9RA06508C-(cit28)/*[position()=1]) 2016; 4 Liang (C9RA06508C-(cit21)/*[position()=1]) 2019; 11 Shariati (C9RA06508C-(cit3)/*[position()=1]) 2018; 105 Lin (C9RA06508C-(cit15)/*[position()=1]) 2017; 7 Xu (C9RA06508C-(cit8)/*[position()=1]) 2009; 143 An (C9RA06508C-(cit25)/*[position()=1]) 2016; 16 Alvi (C9RA06508C-(cit5)/*[position()=1]) 2011; 56 Huang (C9RA06508C-(cit40)/*[position()=1]) 2015; 5 |
References_xml | – volume: 5 start-page: 47 year: 2017 ident: C9RA06508C-(cit16)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC04613D – volume: 11 start-page: 1520 year: 2019 ident: C9RA06508C-(cit21)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR08819E – volume: 8 start-page: 12764 year: 2016 ident: C9RA06508C-(cit10)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01506 – volume: 110 start-page: 343 year: 2016 ident: C9RA06508C-(cit13)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2016.09.016 – volume: 22 start-page: 23404 year: 2012 ident: C9RA06508C-(cit38)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm34196d – volume: 93 start-page: 31 year: 2003 ident: C9RA06508C-(cit7)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/S0925-4005(03)00335-6 – start-page: e1802803 year: 2018 ident: C9RA06508C-(cit19)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201802803 – volume: 5 start-page: 6677 year: 2017 ident: C9RA06508C-(cit22)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10997G – volume: 8 start-page: e282 year: 2016 ident: C9RA06508C-(cit9)/*[position()=1] publication-title: NPG Asia Mater. doi: 10.1038/am.2016.85 – volume: 56 start-page: 9406 year: 2011 ident: C9RA06508C-(cit5)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.08.024 – volume: 108 start-page: 137 year: 2016 ident: C9RA06508C-(cit31)/*[position()=1] publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2016.05.019 – volume: 9 start-page: 6644 year: 2017 ident: C9RA06508C-(cit35)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16853 – volume: 10 start-page: 1077 year: 2018 ident: C9RA06508C-(cit14)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14820 – volume: 157 start-page: 305 year: 2016 ident: C9RA06508C-(cit20)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.05.053 – volume: 9 start-page: 6626 year: 2015 ident: C9RA06508C-(cit37)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b02790 – volume: 86 start-page: 72 year: 2015 ident: C9RA06508C-(cit12)/*[position()=1] publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.07.089 – volume: 9 start-page: 4166 year: 2018 ident: C9RA06508C-(cit18)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b01752 – volume: 12 start-page: 3138 year: 2012 ident: C9RA06508C-(cit29)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl301045a – volume: 12 start-page: 333 year: 2019 ident: C9RA06508C-(cit26)/*[position()=1] publication-title: iScience doi: 10.1016/j.isci.2019.01.014 – volume: 7 start-page: 2797 year: 2015 ident: C9RA06508C-(cit32)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508029x – volume: 11 start-page: 10118 year: 2019 ident: C9RA06508C-(cit27)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b18366 – volume: 8 start-page: 128 year: 2013 ident: C9RA06508C-(cit1)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.341 – volume: 5 start-page: 427 year: 2012 ident: C9RA06508C-(cit11)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-012-0225-2 – volume: 16 start-page: 471 year: 2016 ident: C9RA06508C-(cit25)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04134 – volume: 17 start-page: 4951 year: 2017 ident: C9RA06508C-(cit4)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02101 – volume: 27 start-page: 4744 year: 2015 ident: C9RA06508C-(cit24)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500917 – volume: 143 start-page: 71 year: 2009 ident: C9RA06508C-(cit8)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2009.08.057 – volume: 69 start-page: 437 year: 2014 ident: C9RA06508C-(cit41)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2013.12.046 – volume: 4 start-page: 3581 year: 2016 ident: C9RA06508C-(cit28)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC04276C – volume: 105 start-page: 58 year: 2018 ident: C9RA06508C-(cit3)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.01.022 – volume: 7 start-page: 27001 year: 2017 ident: C9RA06508C-(cit15)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA03181E – volume: 67 start-page: 294 year: 2019 ident: C9RA06508C-(cit2)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2018.12.042 – volume: 518 start-page: 3960 year: 2010 ident: C9RA06508C-(cit6)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.10.164 – volume: 267 start-page: 8 year: 2017 ident: C9RA06508C-(cit34)/*[position()=1] publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2017.09.050 – volume: 5 start-page: 45836 year: 2015 ident: C9RA06508C-(cit40)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA06529A – volume: 7 start-page: 17410 year: 2015 ident: C9RA06508C-(cit23)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR04084A – volume: 9 start-page: 16381 year: 2017 ident: C9RA06508C-(cit30)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00970 – volume: 299 start-page: 1403 year: 2014 ident: C9RA06508C-(cit33)/*[position()=1] publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201400097 – volume: 47 start-page: 205103 year: 2014 ident: C9RA06508C-(cit36)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/47/20/205103 – volume: 9 start-page: 14990 year: 2017 ident: C9RA06508C-(cit39)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR05748B – volume: 433 start-page: 821 year: 2018 ident: C9RA06508C-(cit17)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.10.054 |
SSID | ssj0000651261 |
Score | 2.4719694 |
Snippet | A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 35786 |
SubjectTerms | Chemistry coatings Color heat Heat generation heaters Heating rate mixing monitoring nanosilver Nanowires Optical properties Polydimethylsiloxane Response time Silicone resins silver Smart materials temperature Transformations Windows (apertures) |
Title | Novel stretchable thermochromic transparent heaters designed for smart window defroster applications by spray coating silver nanowire |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35528092 https://www.proquest.com/docview/2312500174 https://www.proquest.com/docview/2335127620 https://www.proquest.com/docview/2661484706 https://pubmed.ncbi.nlm.nih.gov/PMC9074719 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5QAXxKs0UNAiuCDL4Ef82GMVtapQFCRIUHqy1pt1EonYlR9U5c6P4N8ys-tX1KgCLlbkHTmJ57Pnm9l5EPKO2zaLw1iYMgmlOfKlYzJsBOk6YJwSsGcyUdkWU_9iPvq08BaDwe9e1lJVxh_Ez711Jf-jVTgHesUq2X_QbHtROAGfQb9wBA3D8a90PM1-SF3uAfde1UAhndtmYp1jsTHOf0gLTDFPS2SE2EjTWKqUDaCZmF9YbOGqxjX45dk1rCRYAiJzo7-rjfy0uMr5jSEyrnKkiw1mUxspT7N2FnnT4vvruMkqaLn6JFtxHaE3vkmZ821Vrqs2CpCZl5Xe9u9q0nCm98q8VHkGs4JvWoxxOI2CKx1N4LXVrYMWNlPVe13QUodGmrxUlXdST7fTZkm9_xxw3UHdepJL87JmPUzqLu71mxe79vg9M-5ike1eG2G52GJVsJwreio6S9js_k8_R-fzySSanS1mB-SeAx5I31vXRh6Ykm83DW9d9rG74C7FueW33E6_PcibaTOK1cwekYe1O0JPNbYek4FMn5D77X16Sn4pjNEexugOxmgPY7TGGG0wRgFjVGGMaozRFmO0jzEa31CFMVpjjGqM0QZjz8j8_Gw2vjDr0R2m8JygNP0QE0OZtLgH_oXneXEQB8kS6KDwE67aEC4t6QWWEzNvycLQDT2feVIGYrm0k9A9IodplspjQqUvwEXgMe63jwR4x4E1EiGzY6BW3PVGQ_K-uduRqPva43iV75HKr3BZNGZfTpVmxkPytpW90t1c9kqdNEqL6qe9iMAPAm8B7Bd84Zt2GZSBG2w8lVmFMi6gAuiFdYcMEmKghJY_JM81DtqfAtzfCS3mDEmwg5BWAHvB766km7XqCY8xrsBmQ3IEWGrlO0y-uPs_vSQPusf0hByWeSVfAdsu49cK938Azp_hSQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+stretchable+thermochromic+transparent+heaters+designed+for+smart+window+defroster+applications+by+spray+coating+silver+nanowire&rft.jtitle=RSC+advances&rft.au=Loganathan+Veeramuthu&rft.au=Bo-Yu%2C+Chen&rft.au=Ching-Yi%2C+Tsai&rft.au=Fang-Cheng%2C+Liang&rft.date=2019-11-04&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=9&rft.issue=61&rft.spage=35786&rft.epage=35796&rft_id=info:doi/10.1039%2Fc9ra06508c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |