Novel stretchable thermochromic transparent heaters designed for smart window defroster applications by spray coating silver nanowire

A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available thermochromic ink (TM-55-blue) and silver nanowire (AgNW)-coated polydimethylsiloxane (PDMS) is proposed. Lower resistance, elevated heat generation, an...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 9; no. 61; pp. 35786 - 35796
Main Authors Veeramuthu, Loganathan, Chen, Bo-Yu, Tsai, Ching-Yi, Liang, Fang-Cheng, Venkatesan, Manikandan, Jiang, Dai-Hua, Chen, Chin-Wen, Cai, Xingke, Kuo, Chi-Ching
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 04.11.2019
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available thermochromic ink (TM-55-blue) and silver nanowire (AgNW)-coated polydimethylsiloxane (PDMS) is proposed. Lower resistance, elevated heat generation, and higher transparencies were the expected essential prerequisites for the fabrication of items such as smart windows and window defrosters. AgNW-coated PDMS (hereafter PH devices) satisfied the essential prerequisites but did not produce sufficient color change. In addition to the appreciable electrical and optical characteristics and mechanical robustness, observable color changes represent a critical factor in effortless temperature monitoring by the heating device. Blending TM-55-blue thermochromic ink with PDMS (PBH device) improves the heating rate and color transformation and promotes the ultralow response time appreciably. More notably, it produces a visible transformation from blue to colorless. Color changes visible to the naked eye, ultralow response time, and heating rate represent valuable features for deploying the PBH devices as window defrosters and in smart window applications. The as-designed heaters proved to be excellent candidates for employment in window defrosters, as they satisfy the essential prerequisites such as lower sheet resistance, high transparency, mechanical robustness and good stability to tensile strain.
AbstractList A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available thermochromic ink (TM-55-blue) and silver nanowire (AgNW)-coated polydimethylsiloxane (PDMS) is proposed. Lower resistance, elevated heat generation, and higher transparencies were the expected essential prerequisites for the fabrication of items such as smart windows and window defrosters. AgNW-coated PDMS (hereafter PH devices) satisfied the essential prerequisites but did not produce sufficient color change. In addition to the appreciable electrical and optical characteristics and mechanical robustness, observable color changes represent a critical factor in effortless temperature monitoring by the heating device. Blending TM-55-blue thermochromic ink with PDMS (PBH device) improves the heating rate and color transformation and promotes the ultralow response time appreciably. More notably, it produces a visible transformation from blue to colorless. Color changes visible to the naked eye, ultralow response time, and heating rate represent valuable features for deploying the PBH devices as window defrosters and in smart window applications.
A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available thermochromic ink (TM-55-blue) and silver nanowire (AgNW)-coated polydimethylsiloxane (PDMS) is proposed. Lower resistance, elevated heat generation, and higher transparencies were the expected essential prerequisites for the fabrication of items such as smart windows and window defrosters. AgNW-coated PDMS (hereafter PH devices) satisfied the essential prerequisites but did not produce sufficient color change. In addition to the appreciable electrical and optical characteristics and mechanical robustness, observable color changes represent a critical factor in effortless temperature monitoring by the heating device. Blending TM-55-blue thermochromic ink with PDMS (PBH device) improves the heating rate and color transformation and promotes the ultralow response time appreciably. More notably, it produces a visible transformation from blue to colorless. Color changes visible to the naked eye, ultralow response time, and heating rate represent valuable features for deploying the PBH devices as window defrosters and in smart window applications. The as-designed heaters proved to be excellent candidates for employment in window defrosters, as they satisfy the essential prerequisites such as lower sheet resistance, high transparency, mechanical robustness and good stability to tensile strain.
A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available thermochromic ink (TM-55-blue) and silver nanowire (AgNW)-coated polydimethylsiloxane (PDMS) is proposed. Lower resistance, elevated heat generation, and higher transparencies were the expected essential prerequisites for the fabrication of items such as smart windows and window defrosters. AgNW-coated PDMS (hereafter PH devices) satisfied the essential prerequisites but did not produce sufficient color change. In addition to the appreciable electrical and optical characteristics and mechanical robustness, observable color changes represent a critical factor in effortless temperature monitoring by the heating device. Blending TM-55-blue thermochromic ink with PDMS (PBH device) improves the heating rate and color transformation and promotes the ultralow response time appreciably. More notably, it produces a visible transformation from blue to colorless. Color changes visible to the naked eye, ultralow response time, and heating rate represent valuable features for deploying the PBH devices as window defrosters and in smart window applications.A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available thermochromic ink (TM-55-blue) and silver nanowire (AgNW)-coated polydimethylsiloxane (PDMS) is proposed. Lower resistance, elevated heat generation, and higher transparencies were the expected essential prerequisites for the fabrication of items such as smart windows and window defrosters. AgNW-coated PDMS (hereafter PH devices) satisfied the essential prerequisites but did not produce sufficient color change. In addition to the appreciable electrical and optical characteristics and mechanical robustness, observable color changes represent a critical factor in effortless temperature monitoring by the heating device. Blending TM-55-blue thermochromic ink with PDMS (PBH device) improves the heating rate and color transformation and promotes the ultralow response time appreciably. More notably, it produces a visible transformation from blue to colorless. Color changes visible to the naked eye, ultralow response time, and heating rate represent valuable features for deploying the PBH devices as window defrosters and in smart window applications.
Author Veeramuthu, Loganathan
Cai, Xingke
Tsai, Ching-Yi
Kuo, Chi-Ching
Liang, Fang-Cheng
Chen, Chin-Wen
Jiang, Dai-Hua
Venkatesan, Manikandan
Chen, Bo-Yu
AuthorAffiliation Research and Development Center of Smart Textile Technology
National Taipei University of Technology
Institute for Advanced Study
Institute of Organic and Polymeric Materials
Shenzhen University
AuthorAffiliation_xml – sequence: 0
  name: Shenzhen University
– sequence: 0
  name: Institute for Advanced Study
– sequence: 0
  name: National Taipei University of Technology
– sequence: 0
  name: Institute of Organic and Polymeric Materials
– sequence: 0
  name: Research and Development Center of Smart Textile Technology
Author_xml – sequence: 1
  givenname: Loganathan
  surname: Veeramuthu
  fullname: Veeramuthu, Loganathan
– sequence: 2
  givenname: Bo-Yu
  surname: Chen
  fullname: Chen, Bo-Yu
– sequence: 3
  givenname: Ching-Yi
  surname: Tsai
  fullname: Tsai, Ching-Yi
– sequence: 4
  givenname: Fang-Cheng
  surname: Liang
  fullname: Liang, Fang-Cheng
– sequence: 5
  givenname: Manikandan
  surname: Venkatesan
  fullname: Venkatesan, Manikandan
– sequence: 6
  givenname: Dai-Hua
  surname: Jiang
  fullname: Jiang, Dai-Hua
– sequence: 7
  givenname: Chin-Wen
  surname: Chen
  fullname: Chen, Chin-Wen
– sequence: 8
  givenname: Xingke
  surname: Cai
  fullname: Cai, Xingke
– sequence: 9
  givenname: Chi-Ching
  surname: Kuo
  fullname: Kuo, Chi-Ching
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35528092$$D View this record in MEDLINE/PubMed
BookMark eNqFkk2LFDEQhoOsuB_uxbsS8LIIo0m6k3QuC8vgFywKoucmnVRPZ-lO2iQzw_wA_7dxZx3XRTCXhKqnXqry1ik68sEDQs8oeU1Jpd4YFTURnDTmETphpBYLRoQ6uvc-Rucp3ZByBKdM0CfouOKcNUSxE_TjU9jAiFOOkM2guxFwHiBOwQwxTM7gHLVPs47gMx5AZ4gJW0hu5cHiPkScJh0z3jpvw7Zk-hhSgbCe59EZnV3wCXc7nOaod9iEEvErnNy4KZDXPmxdhKfoca_HBOd39xn69u7t1-WHxfXn9x-XV9cLw5nMC9FQpSoFRHMpa855JzvZ25oJI3pNqVTKEuCSsE5xq5qmarhQHEAaa2nfVGfocq87r7sJrClDRT22c3RliF0btGv_zng3tKuwaRWRtaSqCFzcCcTwfQ0pt5NLBsZRewjr1DIhaN3Ukoj_o1VV7JCCkYK-fIDehHX05ScKRRknhMq6UC_uN3_o-reZBXi1B0zxIEXoDwgl7a9laZfqy9XtsiwLTB7AxuVbu8rgbvx3yfN9SUzmIP1n_6qf6b3NUw
CitedBy_id crossref_primary_10_1021_acsaelm_2c00029
crossref_primary_10_1186_s40486_021_00132_5
crossref_primary_10_1016_j_cej_2020_126222
crossref_primary_10_1007_s10570_023_05665_z
crossref_primary_10_1016_j_optmat_2022_112361
crossref_primary_10_1038_s41378_024_00744_y
crossref_primary_10_1016_j_nanoen_2021_106613
crossref_primary_10_3390_coatings10030223
crossref_primary_10_1007_s11814_021_0811_7
crossref_primary_10_1166_sam_2022_4359
crossref_primary_10_3390_nano14211735
crossref_primary_10_1002_adfm_201910225
crossref_primary_10_1002_adfm_202107023
crossref_primary_10_1039_D0MA00817F
crossref_primary_10_1002_aelm_202100459
crossref_primary_10_1038_s41598_022_09813_6
crossref_primary_10_1021_acsanm_0c01404
crossref_primary_10_1016_j_jallcom_2022_164690
crossref_primary_10_1007_s10854_021_07552_4
crossref_primary_10_1016_j_cej_2024_154692
crossref_primary_10_1002_smll_202106006
crossref_primary_10_1021_acsomega_1c02475
crossref_primary_10_1186_s40643_023_00669_w
crossref_primary_10_1016_j_mtcomm_2025_111767
crossref_primary_10_1021_acsaem_2c02171
crossref_primary_10_1016_j_cej_2020_125431
crossref_primary_10_1002_smll_202204078
crossref_primary_10_3390_polym12010084
crossref_primary_10_1039_D1TA00190F
crossref_primary_10_1016_j_jallcom_2021_161191
crossref_primary_10_1021_acsaelm_4c00271
crossref_primary_10_3390_polym13244281
crossref_primary_10_1016_j_jallcom_2023_172013
crossref_primary_10_1016_j_pmatsci_2023_101206
crossref_primary_10_1021_acsami_2c09145
crossref_primary_10_1002_adem_202101625
crossref_primary_10_3365_KJMM_2022_60_8_570
crossref_primary_10_1016_j_nanoen_2022_107592
crossref_primary_10_1088_2043_6262_ac5499
crossref_primary_10_1002_admt_202100773
crossref_primary_10_1039_D2NR02475F
crossref_primary_10_1021_acsanm_3c01635
crossref_primary_10_1021_acsami_2c04916
crossref_primary_10_1039_D3CP05942A
crossref_primary_10_1016_j_enbuild_2021_111022
crossref_primary_10_1021_acsami_4c06315
crossref_primary_10_1002_adom_202202409
crossref_primary_10_1016_j_cej_2021_131878
crossref_primary_10_1021_acsami_0c03655
Cites_doi 10.1039/C6TC04613D
10.1039/C8NR08819E
10.1021/acsami.6b01506
10.1016/j.carbon.2016.09.016
10.1039/c2jm34196d
10.1016/S0925-4005(03)00335-6
10.1002/adma.201802803
10.1039/C6TA10997G
10.1038/am.2016.85
10.1016/j.electacta.2011.08.024
10.1016/j.reactfunctpolym.2016.05.019
10.1021/acsami.6b16853
10.1021/acsami.7b14820
10.1016/j.solmat.2016.05.053
10.1021/acsnano.5b02790
10.1016/j.matdes.2015.07.089
10.1021/acs.jpclett.8b01752
10.1021/nl301045a
10.1016/j.isci.2019.01.014
10.1021/am508029x
10.1021/acsami.8b18366
10.1038/nphoton.2013.341
10.1007/s12274-012-0225-2
10.1021/acs.nanolett.5b04134
10.1021/acs.nanolett.7b02101
10.1002/adma.201500917
10.1016/j.snb.2009.08.057
10.1016/j.carbon.2013.12.046
10.1039/C5TC04276C
10.1016/j.bios.2018.01.022
10.1039/C7RA03181E
10.1016/j.orgel.2018.12.042
10.1016/j.tsf.2009.10.164
10.1016/j.sna.2017.09.050
10.1039/C5RA06529A
10.1039/C5NR04084A
10.1021/acsami.7b00970
10.1002/mame.201400097
10.1088/0022-3727/47/20/205103
10.1039/C7NR05748B
10.1016/j.apsusc.2017.10.054
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2019
This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2019
– notice: This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/c9ra06508c
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 35796
ExternalDocumentID PMC9074719
35528092
10_1039_C9RA06508C
c9ra06508c
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: MOST 106-2221-E-027-119-MY3; MOST 105-2221-E-027-134-; MOST 104-2113-M-027-007-MY3
– fundername: ;
  grantid: Unassigned
– fundername: ;
  grantid: NTUT-SZU-108-01
GroupedDBID -JG
0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
EJD
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
AAYXX
ABIQK
AFPKN
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c527t-6819939e0a5774555b7b7fd426c6fa11799d0e5702b95d988385695ee7cdd1f83
ISSN 2046-2069
IngestDate Thu Aug 21 13:16:20 EDT 2025
Fri Jul 11 08:58:22 EDT 2025
Fri Jul 11 00:20:18 EDT 2025
Mon Jun 30 02:32:26 EDT 2025
Thu Apr 03 07:05:34 EDT 2025
Thu Apr 24 23:06:38 EDT 2025
Tue Jul 01 04:25:07 EDT 2025
Tue Dec 17 20:59:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 61
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c527t-6819939e0a5774555b7b7fd426c6fa11799d0e5702b95d988385695ee7cdd1f83
Notes 10.1039/c9ra06508c
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
L. Veeramuthu, B.-Y. Chen, C.-Y. Tsai, and F.-C. Liang contributed equally to this work.
ORCID 0000-0003-3878-4456
0000-0001-6966-7573
0000-0002-1994-4664
OpenAccessLink http://dx.doi.org/10.1039/c9ra06508c
PMID 35528092
PQID 2312500174
PQPubID 2047525
PageCount 11
ParticipantIDs proquest_miscellaneous_2335127620
proquest_journals_2312500174
rsc_primary_c9ra06508c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9074719
crossref_primary_10_1039_C9RA06508C
proquest_miscellaneous_2661484706
pubmed_primary_35528092
crossref_citationtrail_10_1039_C9RA06508C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-November-04
PublicationDateYYYYMMDD 2019-11-04
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-November-04
  day: 04
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2019
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Huang (C9RA06508C-(cit26)/*[position()=1]) 2019; 12
van de Groep (C9RA06508C-(cit29)/*[position()=1]) 2012; 12
Zhao (C9RA06508C-(cit16)/*[position()=1]) 2017; 5
Huang (C9RA06508C-(cit2)/*[position()=1]) 2019; 67
Tiwari (C9RA06508C-(cit39)/*[position()=1]) 2017; 9
Patel (C9RA06508C-(cit34)/*[position()=1]) 2017; 267
Xiong (C9RA06508C-(cit19)/*[position()=1]) 2018
Malinkiewicz (C9RA06508C-(cit1)/*[position()=1]) 2013; 8
Im (C9RA06508C-(cit6)/*[position()=1]) 2010; 518
Lee (C9RA06508C-(cit7)/*[position()=1]) 2003; 93
Yan (C9RA06508C-(cit12)/*[position()=1]) 2015; 86
Jiang (C9RA06508C-(cit27)/*[position()=1]) 2019; 11
Im (C9RA06508C-(cit9)/*[position()=1]) 2016; 8
Yeoh (C9RA06508C-(cit36)/*[position()=1]) 2014; 47
Lan (C9RA06508C-(cit17)/*[position()=1]) 2018; 433
Lan (C9RA06508C-(cit35)/*[position()=1]) 2017; 9
Zhang (C9RA06508C-(cit41)/*[position()=1]) 2014; 69
Choi (C9RA06508C-(cit37)/*[position()=1]) 2015; 9
Waleed (C9RA06508C-(cit4)/*[position()=1]) 2017; 17
Luo (C9RA06508C-(cit13)/*[position()=1]) 2016; 110
Shin (C9RA06508C-(cit38)/*[position()=1]) 2012; 22
Li (C9RA06508C-(cit33)/*[position()=1]) 2014; 299
Hong (C9RA06508C-(cit24)/*[position()=1]) 2015; 27
Ding (C9RA06508C-(cit20)/*[position()=1]) 2016; 157
Chen (C9RA06508C-(cit32)/*[position()=1]) 2015; 7
Celle (C9RA06508C-(cit11)/*[position()=1]) 2012; 5
Singh (C9RA06508C-(cit10)/*[position()=1]) 2016; 8
Cao (C9RA06508C-(cit14)/*[position()=1]) 2018; 10
Lagrange (C9RA06508C-(cit23)/*[position()=1]) 2015; 7
Wang (C9RA06508C-(cit18)/*[position()=1]) 2018; 9
Lee (C9RA06508C-(cit22)/*[position()=1]) 2017; 5
Liang (C9RA06508C-(cit30)/*[position()=1]) 2017; 9
Cho (C9RA06508C-(cit31)/*[position()=1]) 2016; 108
Li (C9RA06508C-(cit28)/*[position()=1]) 2016; 4
Liang (C9RA06508C-(cit21)/*[position()=1]) 2019; 11
Shariati (C9RA06508C-(cit3)/*[position()=1]) 2018; 105
Lin (C9RA06508C-(cit15)/*[position()=1]) 2017; 7
Xu (C9RA06508C-(cit8)/*[position()=1]) 2009; 143
An (C9RA06508C-(cit25)/*[position()=1]) 2016; 16
Alvi (C9RA06508C-(cit5)/*[position()=1]) 2011; 56
Huang (C9RA06508C-(cit40)/*[position()=1]) 2015; 5
References_xml – volume: 5
  start-page: 47
  year: 2017
  ident: C9RA06508C-(cit16)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04613D
– volume: 11
  start-page: 1520
  year: 2019
  ident: C9RA06508C-(cit21)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR08819E
– volume: 8
  start-page: 12764
  year: 2016
  ident: C9RA06508C-(cit10)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01506
– volume: 110
  start-page: 343
  year: 2016
  ident: C9RA06508C-(cit13)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.09.016
– volume: 22
  start-page: 23404
  year: 2012
  ident: C9RA06508C-(cit38)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm34196d
– volume: 93
  start-page: 31
  year: 2003
  ident: C9RA06508C-(cit7)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/S0925-4005(03)00335-6
– start-page: e1802803
  year: 2018
  ident: C9RA06508C-(cit19)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802803
– volume: 5
  start-page: 6677
  year: 2017
  ident: C9RA06508C-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10997G
– volume: 8
  start-page: e282
  year: 2016
  ident: C9RA06508C-(cit9)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2016.85
– volume: 56
  start-page: 9406
  year: 2011
  ident: C9RA06508C-(cit5)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.08.024
– volume: 108
  start-page: 137
  year: 2016
  ident: C9RA06508C-(cit31)/*[position()=1]
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2016.05.019
– volume: 9
  start-page: 6644
  year: 2017
  ident: C9RA06508C-(cit35)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16853
– volume: 10
  start-page: 1077
  year: 2018
  ident: C9RA06508C-(cit14)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14820
– volume: 157
  start-page: 305
  year: 2016
  ident: C9RA06508C-(cit20)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.05.053
– volume: 9
  start-page: 6626
  year: 2015
  ident: C9RA06508C-(cit37)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02790
– volume: 86
  start-page: 72
  year: 2015
  ident: C9RA06508C-(cit12)/*[position()=1]
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.07.089
– volume: 9
  start-page: 4166
  year: 2018
  ident: C9RA06508C-(cit18)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b01752
– volume: 12
  start-page: 3138
  year: 2012
  ident: C9RA06508C-(cit29)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl301045a
– volume: 12
  start-page: 333
  year: 2019
  ident: C9RA06508C-(cit26)/*[position()=1]
  publication-title: iScience
  doi: 10.1016/j.isci.2019.01.014
– volume: 7
  start-page: 2797
  year: 2015
  ident: C9RA06508C-(cit32)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508029x
– volume: 11
  start-page: 10118
  year: 2019
  ident: C9RA06508C-(cit27)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b18366
– volume: 8
  start-page: 128
  year: 2013
  ident: C9RA06508C-(cit1)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.341
– volume: 5
  start-page: 427
  year: 2012
  ident: C9RA06508C-(cit11)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-012-0225-2
– volume: 16
  start-page: 471
  year: 2016
  ident: C9RA06508C-(cit25)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04134
– volume: 17
  start-page: 4951
  year: 2017
  ident: C9RA06508C-(cit4)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02101
– volume: 27
  start-page: 4744
  year: 2015
  ident: C9RA06508C-(cit24)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500917
– volume: 143
  start-page: 71
  year: 2009
  ident: C9RA06508C-(cit8)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2009.08.057
– volume: 69
  start-page: 437
  year: 2014
  ident: C9RA06508C-(cit41)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.12.046
– volume: 4
  start-page: 3581
  year: 2016
  ident: C9RA06508C-(cit28)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC04276C
– volume: 105
  start-page: 58
  year: 2018
  ident: C9RA06508C-(cit3)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.01.022
– volume: 7
  start-page: 27001
  year: 2017
  ident: C9RA06508C-(cit15)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA03181E
– volume: 67
  start-page: 294
  year: 2019
  ident: C9RA06508C-(cit2)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2018.12.042
– volume: 518
  start-page: 3960
  year: 2010
  ident: C9RA06508C-(cit6)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.10.164
– volume: 267
  start-page: 8
  year: 2017
  ident: C9RA06508C-(cit34)/*[position()=1]
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2017.09.050
– volume: 5
  start-page: 45836
  year: 2015
  ident: C9RA06508C-(cit40)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA06529A
– volume: 7
  start-page: 17410
  year: 2015
  ident: C9RA06508C-(cit23)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR04084A
– volume: 9
  start-page: 16381
  year: 2017
  ident: C9RA06508C-(cit30)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00970
– volume: 299
  start-page: 1403
  year: 2014
  ident: C9RA06508C-(cit33)/*[position()=1]
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201400097
– volume: 47
  start-page: 205103
  year: 2014
  ident: C9RA06508C-(cit36)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/47/20/205103
– volume: 9
  start-page: 14990
  year: 2017
  ident: C9RA06508C-(cit39)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR05748B
– volume: 433
  start-page: 821
  year: 2018
  ident: C9RA06508C-(cit17)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.10.054
SSID ssj0000651261
Score 2.4719694
Snippet A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 35786
SubjectTerms Chemistry
coatings
Color
heat
Heat generation
heaters
Heating rate
mixing
monitoring
nanosilver
Nanowires
Optical properties
Polydimethylsiloxane
Response time
Silicone resins
silver
Smart materials
temperature
Transformations
Windows (apertures)
Title Novel stretchable thermochromic transparent heaters designed for smart window defroster applications by spray coating silver nanowire
URI https://www.ncbi.nlm.nih.gov/pubmed/35528092
https://www.proquest.com/docview/2312500174
https://www.proquest.com/docview/2335127620
https://www.proquest.com/docview/2661484706
https://pubmed.ncbi.nlm.nih.gov/PMC9074719
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5QAXxKs0UNAiuCDL4Ef82GMVtapQFCRIUHqy1pt1EonYlR9U5c6P4N8ys-tX1KgCLlbkHTmJ57Pnm9l5EPKO2zaLw1iYMgmlOfKlYzJsBOk6YJwSsGcyUdkWU_9iPvq08BaDwe9e1lJVxh_Ez711Jf-jVTgHesUq2X_QbHtROAGfQb9wBA3D8a90PM1-SF3uAfde1UAhndtmYp1jsTHOf0gLTDFPS2SE2EjTWKqUDaCZmF9YbOGqxjX45dk1rCRYAiJzo7-rjfy0uMr5jSEyrnKkiw1mUxspT7N2FnnT4vvruMkqaLn6JFtxHaE3vkmZ821Vrqs2CpCZl5Xe9u9q0nCm98q8VHkGs4JvWoxxOI2CKx1N4LXVrYMWNlPVe13QUodGmrxUlXdST7fTZkm9_xxw3UHdepJL87JmPUzqLu71mxe79vg9M-5ike1eG2G52GJVsJwreio6S9js_k8_R-fzySSanS1mB-SeAx5I31vXRh6Ykm83DW9d9rG74C7FueW33E6_PcibaTOK1cwekYe1O0JPNbYek4FMn5D77X16Sn4pjNEexugOxmgPY7TGGG0wRgFjVGGMaozRFmO0jzEa31CFMVpjjGqM0QZjz8j8_Gw2vjDr0R2m8JygNP0QE0OZtLgH_oXneXEQB8kS6KDwE67aEC4t6QWWEzNvycLQDT2feVIGYrm0k9A9IodplspjQqUvwEXgMe63jwR4x4E1EiGzY6BW3PVGQ_K-uduRqPva43iV75HKr3BZNGZfTpVmxkPytpW90t1c9kqdNEqL6qe9iMAPAm8B7Bd84Zt2GZSBG2w8lVmFMi6gAuiFdYcMEmKghJY_JM81DtqfAtzfCS3mDEmwg5BWAHvB766km7XqCY8xrsBmQ3IEWGrlO0y-uPs_vSQPusf0hByWeSVfAdsu49cK938Azp_hSQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+stretchable+thermochromic+transparent+heaters+designed+for+smart+window+defroster+applications+by+spray+coating+silver+nanowire&rft.jtitle=RSC+advances&rft.au=Loganathan+Veeramuthu&rft.au=Bo-Yu%2C+Chen&rft.au=Ching-Yi%2C+Tsai&rft.au=Fang-Cheng%2C+Liang&rft.date=2019-11-04&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=9&rft.issue=61&rft.spage=35786&rft.epage=35796&rft_id=info:doi/10.1039%2Fc9ra06508c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon