Prediction of Peking duck intramuscle fat content by near-infrared spectroscopy

Peking duck is the most representative of the meat-type duck breed, and it is also one of the most popular meats in Asia. Few studies were reported on the fast assessment of duck meat quality. This study aimed to develop a fast measuring of duck fat content by using the near-infrared spectroscopy (N...

Full description

Saved in:
Bibliographic Details
Published inPoultry science Vol. 100; no. 8; p. 101281
Main Authors Qin, Fang-Li, Wang, Xin-Chun, Ding, Si-Ran, Li, Guang-Sheng, Hou, Zhuo-Cheng
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.08.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Peking duck is the most representative of the meat-type duck breed, and it is also one of the most popular meats in Asia. Few studies were reported on the fast assessment of duck meat quality. This study aimed to develop a fast measuring of duck fat content by using the near-infrared spectroscopy (NIRS) method. We measured 273 duck breast muscle intramuscle fat (IMF) content and spectra. Partial least-squares regression (PLSR) was used to model the fat content prediction by using the spectra in the wavelengths between 950 and 1650 nm. The best predictive abilities were obtained after the first derivative pretreatment, with coefficient of calibration (R2C) of 0.92, with coefficient of prediction (R2P) of 0.90, ratio performance to deviation (RPD) of 2.72, and ratio of error range (RER) of 15.45, for samples of 30 g duck. Results demonstrated that the near-infrared spectroscopy is a useful tool for fat content assessment of Peking duck meat.
AbstractList Peking duck is the most representative of the meat-type duck breed, and it is also one of the most popular meats in Asia. Few studies were reported on the fast assessment of duck meat quality. This study aimed to develop a fast measuring of duck fat content by using the near-infrared spectroscopy (NIRS) method. We measured 273 duck breast muscle intramuscle fat (IMF) content and spectra. Partial least-squares regression (PLSR) was used to model the fat content prediction by using the spectra in the wavelengths between 950 and 1650 nm. The best predictive abilities were obtained after the first derivative pretreatment, with coefficient of calibration (R2C) of 0.92, with coefficient of prediction (R2P) of 0.90, ratio performance to deviation (RPD) of 2.72, and ratio of error range (RER) of 15.45, for samples of 30 g duck. Results demonstrated that the near-infrared spectroscopy is a useful tool for fat content assessment of Peking duck meat.
Peking duck is the most representative of the meat-type duck breed, and it is also one of the most popular meats in Asia. Few studies were reported on the fast assessment of duck meat quality. This study aimed to develop a fast measuring of duck fat content by using the near-infrared spectroscopy (NIRS) method. We measured 273 duck breast muscle intramuscle fat (IMF) content and spectra. Partial least-squares regression (PLSR) was used to model the fat content prediction by using the spectra in the wavelengths between 950 and 1650 nm. The best predictive abilities were obtained after the first derivative pretreatment, with coefficient of calibration (R2C) of 0.92, with coefficient of prediction (R2P) of 0.90, ratio performance to deviation (RPD) of 2.72, and ratio of error range (RER) of 15.45, for samples of 30 g duck. Results demonstrated that the near-infrared spectroscopy is a useful tool for fat content assessment of Peking duck meat.Peking duck is the most representative of the meat-type duck breed, and it is also one of the most popular meats in Asia. Few studies were reported on the fast assessment of duck meat quality. This study aimed to develop a fast measuring of duck fat content by using the near-infrared spectroscopy (NIRS) method. We measured 273 duck breast muscle intramuscle fat (IMF) content and spectra. Partial least-squares regression (PLSR) was used to model the fat content prediction by using the spectra in the wavelengths between 950 and 1650 nm. The best predictive abilities were obtained after the first derivative pretreatment, with coefficient of calibration (R2C) of 0.92, with coefficient of prediction (R2P) of 0.90, ratio performance to deviation (RPD) of 2.72, and ratio of error range (RER) of 15.45, for samples of 30 g duck. Results demonstrated that the near-infrared spectroscopy is a useful tool for fat content assessment of Peking duck meat.
Peking duck is the most representative of the meat-type duck breed, and it is also one of the most popular meats in Asia. Few studies were reported on the fast assessment of duck meat quality. This study aimed to develop a fast measuring of duck fat content by using the near-infrared spectroscopy ( NIRS ) method. We measured 273 duck breast muscle intramuscle fat (IMF ) content and spectra. Partial least-squares regression ( PLSR ) was used to model the fat content prediction by using the spectra in the wavelengths between 950 and 1650 nm. The best predictive abilities were obtained after the first derivative pretreatment, with coefficient of calibration ( R 2 C ) of 0.92, with coefficient of prediction ( R 2 P ) of 0.90, ratio performance to deviation ( RPD ) of 2.72, and ratio of error range ( RER ) of 15.45, for samples of 30 g duck. Results demonstrated that the near-infrared spectroscopy is a useful tool for fat content assessment of Peking duck meat.
Peking duck is the most representative of the meat-type duck breed, and it is also one of the most popular meats in Asia. Few studies were reported on the fast assessment of duck meat quality. This study aimed to develop a fast measuring of duck fat content by using the near-infrared spectroscopy (NIRS) method. We measured 273 duck breast muscle intramuscle fat (IMF) content and spectra. Partial least-squares regression (PLSR) was used to model the fat content prediction by using the spectra in the wavelengths between 950 and 1650 nm. The best predictive abilities were obtained after the first derivative pretreatment, with coefficient of calibration (R²C) of 0.92, with coefficient of prediction (R²P) of 0.90, ratio performance to deviation (RPD) of 2.72, and ratio of error range (RER) of 15.45, for samples of 30 g duck. Results demonstrated that the near-infrared spectroscopy is a useful tool for fat content assessment of Peking duck meat.
ArticleNumber 101281
Author Wang, Xin-Chun
Ding, Si-Ran
Qin, Fang-Li
Hou, Zhuo-Cheng
Li, Guang-Sheng
Author_xml – sequence: 1
  givenname: Fang-Li
  surname: Qin
  fullname: Qin, Fang-Li
  email: qinfangli@cup.edu.cn
  organization: College of Science, China University of Petroleum, Beijing 102249, China
– sequence: 2
  givenname: Xin-Chun
  surname: Wang
  fullname: Wang, Xin-Chun
  organization: College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
– sequence: 3
  givenname: Si-Ran
  surname: Ding
  fullname: Ding, Si-Ran
  organization: National Engineering Laboratory for Animal Breeding and MARA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
– sequence: 4
  givenname: Guang-Sheng
  surname: Li
  fullname: Li, Guang-Sheng
  organization: National Engineering Laboratory for Animal Breeding and MARA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
– sequence: 5
  givenname: Zhuo-Cheng
  surname: Hou
  fullname: Hou, Zhuo-Cheng
  organization: National Engineering Laboratory for Animal Breeding and MARA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
BookMark eNqNUstuFDEQtFAQ2QQ-gNscuczix9ieERISinhEipQc4Gx52u3Fm1l7sWcj7d_jYcMhHCJOlttV5a7uuiBnMUUk5C2ja0aZer9d78t2zSlny5337AVZMcllK5hmZ2RFqeCt1AM7JxelbGkFKqVfkXPRcaFl163I7V1GF2AOKTbJN3d4H-KmcQe4b0Kcs90dCkzYeDs3kOKMcW7GYxPR5jZEn21lN2WPMOdUIO2Pr8lLb6eCbx7PS_Ljy-fvV9_am9uv11efblqQXM-thH5guqMglGMULFimBBMD7Z1kStLB2x5Z7zntUUvpcKScDtyBcFbXirgk1yddl-zW7HPY2Xw0yQbzp5Dyxtg8h9q78VyOMIITjvvO-fqZ1wq0QjeKrqdD1fp40tofxh06wMX49ET06UsMP80mPZieKy0HVQXePQrk9OuAZTa7UACnyUZMh2K4lJwKoQT_HyjlispBV6g-QaHOtmT0BsJsl03VJsJkGDVLCky1X7ZmSYE5paAy2T_Mv16e43w4cbBu7SFgNgUCRqjpyHW9dazhGfZvZjTL1A
CitedBy_id crossref_primary_10_1016_j_psj_2024_103532
crossref_primary_10_1016_j_microc_2023_109785
crossref_primary_10_1155_2022_9009756
crossref_primary_10_1016_j_hazadv_2023_100253
crossref_primary_10_1007_s42461_023_00826_x
crossref_primary_10_3390_ani14101431
crossref_primary_10_3390_foods13010025
Cites_doi 10.1111/1541-4337.12295
10.1016/j.foodchem.2017.06.031
10.1016/j.meatsci.2016.02.042
10.1016/j.jfoodeng.2015.01.006
10.1093/ps/83.4.521
10.1016/j.jfoodeng.2015.08.023
10.1016/j.foodres.2010.10.011
10.1007/s11947-009-0298-4
10.1016/j.foodchem.2015.11.084
10.1080/00387010.2017.1358183
10.1016/j.foodchem.2015.01.071
10.1016/j.jfoodeng.2017.03.023
10.1007/s12161-017-1102-0
10.1016/j.infrared.2018.06.025
10.4028/www.scientific.net/AMM.602-605.3867
10.1186/s12864-018-5379-1
10.1016/j.foodchem.2014.07.101
10.1177/0003702818788878
10.1111/jfpe.12566
10.1109/IMCCC.2016.117
10.1016/j.jfoodeng.2016.07.005
10.1016/j.biosystemseng.2019.04.013
10.1093/japr/12.1.69
10.1093/ps/84.1.128
10.1016/j.meatsci.2015.04.018
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.psj.2021.101281
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic


AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1525-3171
ExternalDocumentID oai_doaj_org_article_f25bcbcd3d2f4dfcacf76c76edb34809
PMC8267596
10_1016_j_psj_2021_101281
S0032579121003151
GeographicLocations Asia
GeographicLocations_xml – name: Asia
GroupedDBID ---
.GJ
0R~
0SF
123
18M
1TH
29O
2WC
3V.
4.4
48X
53G
5RE
5VS
6I.
7X2
7X7
7XC
88E
8FE
8FG
8FH
8FI
8FJ
8FW
8R4
8R5
AABJS
AABMN
AAEDW
AAESY
AAFTH
AAIMJ
AAIYJ
AAJQQ
AAMDB
AAMVS
AAOGV
AAUQX
AAXUO
ABCQX
ABEUO
ABIXL
ABJCF
ABJNI
ABQLI
ABSAR
ABSMQ
ABUWG
ACGFO
ACGFS
ACIWK
ACLIJ
ACUFI
ADBBV
ADEIU
ADHKW
ADHZD
ADORX
ADQLU
ADRIX
ADRTK
ADYVW
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEWNT
AEXQZ
AFIYH
AFKRA
AFOFC
AFRAH
AFXEN
AGINJ
AGSYK
AHMBA
AIAGR
AIKOY
AITUG
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMRAJ
APIBT
ARIXL
ASAOO
ATCPS
ATDFG
AVWKF
AXUDD
AYOIW
AZQFJ
BAWUL
BAYMD
BENPR
BEYMZ
BGLVJ
BHONS
BHPHI
BPHCQ
BQDIO
BSWAC
BVXVI
BYORX
CASEJ
CCPQU
CDBKE
CKLRP
CS3
CXTWN
DAKXR
DFGAJ
DIK
DILTD
DPPUQ
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
FYUFA
GJXCC
GROUPED_DOAJ
HAR
HCIFZ
HF~
HMCUK
H~9
INIJC
J21
KQ8
KSI
KSN
L6V
L7B
M0K
M1P
M7S
MBTAY
NCXOZ
NLBLG
NVLIB
O9-
OAWHX
ODMLO
OHT
OJQWA
OK1
OVD
P2P
PAFKI
PATMY
PEELM
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
Q5Y
ROL
ROX
ROZ
RPM
RXO
S0X
SJN
TCN
TEORI
TLC
TPS
TR2
TWZ
UKHRP
W8F
WOQ
XOL
Y6R
YAYTL
YKOAZ
ZXP
~KM
AAHBH
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AEUYN
AFJKZ
AFPUW
AGKRT
AIGII
AKBMS
AKRWK
AKYEP
ALIPV
APXCP
CITATION
H13
PHGZM
PHGZT
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c527t-5c891740c36d10caca16313908d516509fa8e18f208e755deb02092dc3da7e753
IEDL.DBID DOA
ISSN 0032-5791
1525-3171
IngestDate Wed Aug 27 01:31:28 EDT 2025
Thu Aug 21 17:42:35 EDT 2025
Fri Jul 11 05:24:45 EDT 2025
Thu Jul 10 23:46:23 EDT 2025
Tue Jul 01 03:55:44 EDT 2025
Thu Apr 24 22:49:06 EDT 2025
Fri Feb 23 02:43:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords fat content
meat quality
near-infrared spectroscopy
partial least-squares regression
Language English
License This is an open access article under the CC BY-NC-ND license.
https://www.elsevier.com/tdm/userlicense/1.0
http://creativecommons.org/licenses/by-nc-nd/4.0
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-5c891740c36d10caca16313908d516509fa8e18f208e755deb02092dc3da7e753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/f25bcbcd3d2f4dfcacf76c76edb34809
PMID 34237544
PQID 2550260597
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f25bcbcd3d2f4dfcacf76c76edb34809
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8267596
proquest_miscellaneous_2552033632
proquest_miscellaneous_2550260597
crossref_citationtrail_10_1016_j_psj_2021_101281
crossref_primary_10_1016_j_psj_2021_101281
elsevier_sciencedirect_doi_10_1016_j_psj_2021_101281
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Poultry science
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Balage, da Luz e Silva, Gomide, Bonin, Figueira (bib0002) 2015; 108
Huang, Chen, Li, Huang, Ouyang, Zhao (bib0009) 2015; 154
Xiong, Sun, Xie, Pu, Han, Luo (bib0024) 2015; 178
Zereharan, Vereijken, van Arendonk, van der Waaijt (bib0026) 2004; 83
Ding, Li, Chen, Zhu, Hao, Yang, Hou (bib0006) 2020; 34
Deng, Zhu, Yang, Yang, Hao, Chen, Hou (bib0005) 2019; 20
Perez, Badaró, Barbon, Barbon, Pollonio, Barbin (bib0018) 2018; 72
Yang, Zhuang, Yoon, Wang, Jiang, Jia, Li (bib0025) 2018; 11
Wu, Fu, Tian, Wu, Sun (bib0022) 2017; 40
Qiao, Tang, Zhu, Su (bib0020) 2017; 50
Kamruzzaman, Makino, Oshita (bib0014) 2016; 170
Nolasco-Perez, Rocco, Cruz-Tirado, Pollonio, Barbon, Barbon, Barbin (bib0017) 2019; 183
Alexandrakis, Downey, Scannell (bib0001) 2012; 5
Barbin, Kaminishikawahara, Soares, Mizubuti, Grespan, Shimokomaki, Hirooka (bib0003) 2015; 168
Jiang, Yoon, Zhuang, Wang, Li, Lu, Li (bib0013) 2018; 92
Khulal, Zhao, Hu, Chen (bib0015) 2016; 197
Huang, Liu, Ngadi (bib0011) 2017; 193
Grau, Sánchez, Girón, Iborra, Fuentes, Barat (bib0008) 2011; 44
Wu, Qiu, Li, Wu, Li, Sun (bib0023) 2014; 602-605
Berzaghi, Dalla Zotte, Jansson, Andrighetto (bib0004) 2005; 84
Jia, Yoon, Zhuang, Wang, Li (bib0012) 2017; 208
Qiao, Tang, Dong (bib0019) 2017; 237
Li, W., M. Lin, and Y. Zhang. 2016. Application of wavelet transform and neural network in near infrared spectroscopy analysis in pork. Pages 826–829 in 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC).
Dixit, Casado-Gavalda, Cama-Moncunill, Cama-Moncunill, Markiewicz-Keszycka, Cullen, Sullivan (bib0007) 2017; 16
Huang, Liu, Ngadi (bib0010) 2016; 119
Windham, Lawrence, Feldner (bib0021) 2003; 12
Dixit (10.1016/j.psj.2021.101281_bib0007) 2017; 16
Qiao (10.1016/j.psj.2021.101281_bib0020) 2017; 50
Yang (10.1016/j.psj.2021.101281_bib0025) 2018; 11
Jia (10.1016/j.psj.2021.101281_bib0012) 2017; 208
Deng (10.1016/j.psj.2021.101281_bib0005) 2019; 20
Alexandrakis (10.1016/j.psj.2021.101281_bib0001) 2012; 5
Huang (10.1016/j.psj.2021.101281_bib0011) 2017; 193
Nolasco-Perez (10.1016/j.psj.2021.101281_bib0017) 2019; 183
Barbin (10.1016/j.psj.2021.101281_bib0003) 2015; 168
Perez (10.1016/j.psj.2021.101281_bib0018) 2018; 72
Huang (10.1016/j.psj.2021.101281_bib0009) 2015; 154
Wu (10.1016/j.psj.2021.101281_bib0022) 2017; 40
Khulal (10.1016/j.psj.2021.101281_bib0015) 2016; 197
Windham (10.1016/j.psj.2021.101281_bib0021) 2003; 12
Wu (10.1016/j.psj.2021.101281_bib0023) 2014; 602-605
10.1016/j.psj.2021.101281_bib0016
Xiong (10.1016/j.psj.2021.101281_bib0024) 2015; 178
Huang (10.1016/j.psj.2021.101281_bib0010) 2016; 119
Qiao (10.1016/j.psj.2021.101281_bib0019) 2017; 237
Zereharan (10.1016/j.psj.2021.101281_bib0026) 2004; 83
Balage (10.1016/j.psj.2021.101281_bib0002) 2015; 108
Ding (10.1016/j.psj.2021.101281_bib0006) 2020; 34
Kamruzzaman (10.1016/j.psj.2021.101281_bib0014) 2016; 170
Berzaghi (10.1016/j.psj.2021.101281_bib0004) 2005; 84
Grau (10.1016/j.psj.2021.101281_bib0008) 2011; 44
Jiang (10.1016/j.psj.2021.101281_bib0013) 2018; 92
References_xml – volume: 154
  start-page: 69
  year: 2015
  end-page: 75
  ident: bib0009
  article-title: Non-destructively sensing pork's freshness indicator using near infrared multispectral imaging technique
  publication-title: J. Food Eng.
– volume: 197
  start-page: 1191
  year: 2016
  end-page: 1199
  ident: bib0015
  article-title: Nondestructive quantifying total volatile basic nitrogen (TVB-N) content in chicken using hyperspectral imaging (HSI) technique combined with different data dimension reduction algorithms
  publication-title: Food Chem.
– volume: 602-605
  start-page: 3867
  year: 2014
  end-page: 3870
  ident: bib0023
  article-title: Rapid classification of pork NIR speca using PCA and FLVQ
  publication-title: Appl. Mech. Mater.
– volume: 44
  start-page: 331
  year: 2011
  end-page: 337
  ident: bib0008
  article-title: Nondestructive assessment of freshness in packaged sliced chicken breasts using SW-NIR spectroscopy
  publication-title: Food Res. Int.
– volume: 20
  start-page: 1
  year: 2019
  ident: bib0005
  article-title: Genome-wide association study reveals novel loci associated with body size and carcass yields in Pekin ducks
  publication-title: BMC Genomics
– volume: 178
  start-page: 339
  year: 2015
  end-page: 345
  ident: bib0024
  article-title: Quantitative determination of total pigments in red meats using hyperspectral imaging and multivariate analysis
  publication-title: Food Chem.
– volume: 84
  start-page: 128
  year: 2005
  end-page: 136
  ident: bib0004
  article-title: Near-infrared reflectance spectroscopy as a method to predict chemical composition of breast meat and discriminate between different n-3 feeding sources
  publication-title: Poult. Sci.
– volume: 83
  start-page: 521
  year: 2004
  end-page: 525
  ident: bib0026
  article-title: Estimation of genetic parameters for fat deposition and carcass traits in broilers
  publication-title: Poult. Sci.
– reference: Li, W., M. Lin, and Y. Zhang. 2016. Application of wavelet transform and neural network in near infrared spectroscopy analysis in pork. Pages 826–829 in 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC).
– volume: 50
  start-page: 456
  year: 2017
  end-page: 461
  ident: bib0020
  article-title: Rapid nondestructive evaluation of duck meat pH and color using visible and near-infrared reflectance spectroscopy
  publication-title: Spectrosc. Lett.
– volume: 12
  start-page: 69
  year: 2003
  end-page: 73
  ident: bib0021
  article-title: Prediction of fat content in poultry meat by near-infrared transmission analysis
  publication-title: J. Appl. Poult. Res.
– volume: 40
  start-page: e12566.1
  year: 2017
  ident: bib0022
  article-title: Prediction of pork storage time using Fourier transform near infrared spectroscopy and Adaboost-ULDA
  publication-title: J. Food Process Eng.
– volume: 237
  start-page: 1179
  year: 2017
  end-page: 1185
  ident: bib0019
  article-title: A feasibility quantification study of total volatile basic nitrogen (TVB-N) content in duck meat for freshness evaluation
  publication-title: Food Chem.
– volume: 34
  start-page: 1193
  year: 2020
  end-page: 1201
  ident: bib0006
  article-title: Comparison of carcass and meat quality traits between lean and fat Pekin ducks
  publication-title: Asian-Australas J. Anim. Sci.
– volume: 193
  start-page: 29
  year: 2017
  end-page: 41
  ident: bib0011
  article-title: Assessment of intramuscular fat content of pork using NIR hyperspectral images of rib end
  publication-title: J. Food Eng.
– volume: 72
  start-page: 1774
  year: 2018
  end-page: 1780
  ident: bib0018
  article-title: Classification of chicken parts using a portable near-infrared (NIR) spectrophotometer and machine learning
  publication-title: Appl. Spectrosc.
– volume: 5
  start-page: 338
  year: 2012
  end-page: 347
  ident: bib0001
  article-title: Rapid non-destructive detection of spoilage of intact chicken breast muscle using near-infrared and Fourier transform mid-infrared spectroscopy and multivariate statistics
  publication-title: Food Bioprocess Technol.
– volume: 183
  start-page: 151
  year: 2019
  end-page: 159
  ident: bib0017
  article-title: Comparison of rapid techniques for classification of ground meat
  publication-title: Biosyst. Eng.
– volume: 119
  start-page: 51
  year: 2016
  end-page: 61
  ident: bib0010
  article-title: Prediction of pork fat attributes using NIR images of frozen and thawed pork
  publication-title: Meat Sci.
– volume: 92
  start-page: 309
  year: 2018
  end-page: 317
  ident: bib0013
  article-title: Non-destructive assessment of final color and pH attributes of broiler breast fillets using visible and near-infrared hyperspectral imaging: a preliminary study
  publication-title: Infrared Phys. Technol.
– volume: 16
  start-page: 1172
  year: 2017
  end-page: 1187
  ident: bib0007
  article-title: Developments and challenges in online NIR spectroscopy for meat processing
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 108
  start-page: 37
  year: 2015
  end-page: 43
  ident: bib0002
  article-title: Predicting pork quality using Vis/NIR spectroscopy
  publication-title: Meat Sci.
– volume: 168
  start-page: 554
  year: 2015
  end-page: 560
  ident: bib0003
  article-title: Prediction of chicken quality attributes by near infrared spectroscopy
  publication-title: Food Chem.
– volume: 170
  start-page: 8
  year: 2016
  end-page: 15
  ident: bib0014
  article-title: Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning
  publication-title: J. Food Eng.
– volume: 11
  start-page: 1356
  year: 2018
  end-page: 1366
  ident: bib0025
  article-title: Quality assessment of intact chicken breast fillets using factor analysis with Vis/NIR spectroscopy
  publication-title: Food Anal. Methods
– volume: 208
  start-page: 57
  year: 2017
  end-page: 65
  ident: bib0012
  article-title: Prediction of pH of fresh chicken breast fillets by VNIR hyperspectral imaging
  publication-title: J. Food Eng.
– volume: 16
  start-page: 1172
  year: 2017
  ident: 10.1016/j.psj.2021.101281_bib0007
  article-title: Developments and challenges in online NIR spectroscopy for meat processing
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12295
– volume: 237
  start-page: 1179
  year: 2017
  ident: 10.1016/j.psj.2021.101281_bib0019
  article-title: A feasibility quantification study of total volatile basic nitrogen (TVB-N) content in duck meat for freshness evaluation
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.06.031
– volume: 119
  start-page: 51
  year: 2016
  ident: 10.1016/j.psj.2021.101281_bib0010
  article-title: Prediction of pork fat attributes using NIR images of frozen and thawed pork
  publication-title: Meat Sci.
  doi: 10.1016/j.meatsci.2016.02.042
– volume: 154
  start-page: 69
  year: 2015
  ident: 10.1016/j.psj.2021.101281_bib0009
  article-title: Non-destructively sensing pork's freshness indicator using near infrared multispectral imaging technique
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2015.01.006
– volume: 83
  start-page: 521
  year: 2004
  ident: 10.1016/j.psj.2021.101281_bib0026
  article-title: Estimation of genetic parameters for fat deposition and carcass traits in broilers
  publication-title: Poult. Sci.
  doi: 10.1093/ps/83.4.521
– volume: 170
  start-page: 8
  year: 2016
  ident: 10.1016/j.psj.2021.101281_bib0014
  article-title: Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2015.08.023
– volume: 44
  start-page: 331
  year: 2011
  ident: 10.1016/j.psj.2021.101281_bib0008
  article-title: Nondestructive assessment of freshness in packaged sliced chicken breasts using SW-NIR spectroscopy
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2010.10.011
– volume: 5
  start-page: 338
  year: 2012
  ident: 10.1016/j.psj.2021.101281_bib0001
  article-title: Rapid non-destructive detection of spoilage of intact chicken breast muscle using near-infrared and Fourier transform mid-infrared spectroscopy and multivariate statistics
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-009-0298-4
– volume: 197
  start-page: 1191
  issue: Pt B
  year: 2016
  ident: 10.1016/j.psj.2021.101281_bib0015
  article-title: Nondestructive quantifying total volatile basic nitrogen (TVB-N) content in chicken using hyperspectral imaging (HSI) technique combined with different data dimension reduction algorithms
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.11.084
– volume: 50
  start-page: 456
  year: 2017
  ident: 10.1016/j.psj.2021.101281_bib0020
  article-title: Rapid nondestructive evaluation of duck meat pH and color using visible and near-infrared reflectance spectroscopy
  publication-title: Spectrosc. Lett.
  doi: 10.1080/00387010.2017.1358183
– volume: 178
  start-page: 339
  year: 2015
  ident: 10.1016/j.psj.2021.101281_bib0024
  article-title: Quantitative determination of total pigments in red meats using hyperspectral imaging and multivariate analysis
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.01.071
– volume: 208
  start-page: 57
  year: 2017
  ident: 10.1016/j.psj.2021.101281_bib0012
  article-title: Prediction of pH of fresh chicken breast fillets by VNIR hyperspectral imaging
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2017.03.023
– volume: 11
  start-page: 1356
  year: 2018
  ident: 10.1016/j.psj.2021.101281_bib0025
  article-title: Quality assessment of intact chicken breast fillets using factor analysis with Vis/NIR spectroscopy
  publication-title: Food Anal. Methods
  doi: 10.1007/s12161-017-1102-0
– volume: 34
  start-page: 1193
  year: 2020
  ident: 10.1016/j.psj.2021.101281_bib0006
  article-title: Comparison of carcass and meat quality traits between lean and fat Pekin ducks
  publication-title: Asian-Australas J. Anim. Sci.
– volume: 92
  start-page: 309
  year: 2018
  ident: 10.1016/j.psj.2021.101281_bib0013
  article-title: Non-destructive assessment of final color and pH attributes of broiler breast fillets using visible and near-infrared hyperspectral imaging: a preliminary study
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2018.06.025
– volume: 602-605
  start-page: 3867
  year: 2014
  ident: 10.1016/j.psj.2021.101281_bib0023
  article-title: Rapid classification of pork NIR speca using PCA and FLVQ
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.602-605.3867
– volume: 20
  start-page: 1
  year: 2019
  ident: 10.1016/j.psj.2021.101281_bib0005
  article-title: Genome-wide association study reveals novel loci associated with body size and carcass yields in Pekin ducks
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5379-1
– volume: 168
  start-page: 554
  year: 2015
  ident: 10.1016/j.psj.2021.101281_bib0003
  article-title: Prediction of chicken quality attributes by near infrared spectroscopy
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.07.101
– volume: 72
  start-page: 1774
  year: 2018
  ident: 10.1016/j.psj.2021.101281_bib0018
  article-title: Classification of chicken parts using a portable near-infrared (NIR) spectrophotometer and machine learning
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702818788878
– volume: 40
  start-page: e12566.1
  year: 2017
  ident: 10.1016/j.psj.2021.101281_bib0022
  article-title: Prediction of pork storage time using Fourier transform near infrared spectroscopy and Adaboost-ULDA
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.12566
– ident: 10.1016/j.psj.2021.101281_bib0016
  doi: 10.1109/IMCCC.2016.117
– volume: 193
  start-page: 29
  year: 2017
  ident: 10.1016/j.psj.2021.101281_bib0011
  article-title: Assessment of intramuscular fat content of pork using NIR hyperspectral images of rib end
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2016.07.005
– volume: 183
  start-page: 151
  year: 2019
  ident: 10.1016/j.psj.2021.101281_bib0017
  article-title: Comparison of rapid techniques for classification of ground meat
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.04.013
– volume: 12
  start-page: 69
  year: 2003
  ident: 10.1016/j.psj.2021.101281_bib0021
  article-title: Prediction of fat content in poultry meat by near-infrared transmission analysis
  publication-title: J. Appl. Poult. Res.
  doi: 10.1093/japr/12.1.69
– volume: 84
  start-page: 128
  year: 2005
  ident: 10.1016/j.psj.2021.101281_bib0004
  article-title: Near-infrared reflectance spectroscopy as a method to predict chemical composition of breast meat and discriminate between different n-3 feeding sources
  publication-title: Poult. Sci.
  doi: 10.1093/ps/84.1.128
– volume: 108
  start-page: 37
  year: 2015
  ident: 10.1016/j.psj.2021.101281_bib0002
  article-title: Predicting pork quality using Vis/NIR spectroscopy
  publication-title: Meat Sci.
  doi: 10.1016/j.meatsci.2015.04.018
SSID ssj0021667
Score 2.3835404
Snippet Peking duck is the most representative of the meat-type duck breed, and it is also one of the most popular meats in Asia. Few studies were reported on the fast...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101281
SubjectTerms Asia
breast muscle
duck meat
ducks
fat content
least squares
lipid content
meat quality
near-infrared spectroscopy
partial least-squares regression
prediction
PROCESSING AND PRODUCT
Title Prediction of Peking duck intramuscle fat content by near-infrared spectroscopy
URI https://dx.doi.org/10.1016/j.psj.2021.101281
https://www.proquest.com/docview/2550260597
https://www.proquest.com/docview/2552033632
https://pubmed.ncbi.nlm.nih.gov/PMC8267596
https://doaj.org/article/f25bcbcd3d2f4dfcacf76c76edb34809
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BALVB1W4qMxAkpIrHjR47biqriAHugUm-Wn7Clza72cei_ZyZOVpvLcuGYxI94PNZ8Xzz5TMgnFpmMkbkiJaAoNatc0QTVFEGXTkA8U9x1ap_f5e1d_e1e3O8d9YU5YVkeOBvuS2LCeecDDyzVIXnrk5JeyRgcr3X-dQ9i3kCmeqpVSZnVMjlQLdVUw35ml9m1XD8AMWQVXjNdjSJSJ9w_Ckx7wHOcNrkXh26OyeseQNJpfvET8iK2b8ir6a9VL6IR35IfsxVuv6DJ6SLRWcTP4TRs_R86xzaftmuoSpPdUMxUh36oe6Yt-HwB_rbClHTa_YGJSpeL5fM7cnfz9ef1bdEfnFB4wdSmEF4DC6tLz2WoSjCZBdQFUK_UQVQomZesjpVOrNRRCRGiA9DYsOB5sAru8FNy1C7aeEYoa3RKEeK6DLa2XDQAoMrkAqBKq6X0E1IOxjO-VxXHwy0ezZA-9mDA3gbtbbK9J-TzrsoyS2ocKnyFM7IriGrY3Q3wEdP7iPmXj0xIPcyn6YFFBgzQ1PxQ3x-HuTew6HAnxbZxsV0b4GGoxQZk7GAZVnIuOZsQNXKc0WDGT9r5707iG0ifEo08_x-jvyAvcVA5a_E9OdqstvESkNTGfegWzV_2Ex5v
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Peking+duck+intramuscle+fat+content+by+near-infrared+spectroscopy&rft.jtitle=Poultry+science&rft.au=Qin%2C+Fang-Li&rft.au=Wang%2C+Xin-Chun&rft.au=Ding%2C+Si-Ran&rft.au=Li%2C+Guang-Sheng&rft.date=2021-08-01&rft.issn=1525-3171&rft.eissn=1525-3171&rft.volume=100&rft.issue=8&rft.spage=101281&rft_id=info:doi/10.1016%2Fj.psj.2021.101281&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5791&client=summon