Realistic Modeling of Entorhinal Cortex Field Potentials and Interpretation of Epileptic Activity in the Guinea Pig Isolated Brain Preparation
1 Laboratoire Traitement du Signal et de L'Image, Institut National de la Santé et de la Recherche Médicale U642, Rennes University 1, Rennes, France; and 2 Department of Experimental Neurophysiology, Istituto Nazionale Neurologico, Milan, Italy Submitted 20 December 2005; accepted in final for...
Saved in:
Published in | Journal of neurophysiology Vol. 96; no. 1; pp. 363 - 377 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Phys Soc
01.07.2006
American Physiological Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1 Laboratoire Traitement du Signal et de L'Image, Institut National de la Santé et de la Recherche Médicale U642, Rennes University 1, Rennes, France; and 2 Department of Experimental Neurophysiology, Istituto Nazionale Neurologico, Milan, Italy
Submitted 20 December 2005;
accepted in final form 30 March 2006
Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea pig isolated brain perfused with bicuculline). A macroscopic modeling approach representing synaptic interactions between cells subpopulations in the EC was chosen for its adequacy to mimic field potentials reflecting overall dynamics rising from interconnected cells populations. Therefore intrinsic properties of neurons were not included in the modeling design. Model parameters were adjusted from an identification procedure based on quantitative comparison between real and simulated signals. For both EC deep and superficial layers, results show that the model generates very realistic signals regarding temporal dynamics, spectral features, and cross-correlation values. These simulations allowed us to infer information about the evolution of synaptic transmission between principal cell and interneuronal populations and about connectivity between deep and superficial layers during the transition from background to ictal activity. In the model, this transition was obtained for increased excitation in deep versus superficial layers. Transitions between epileptiform activities [interictal spikes, fast onset activity (25 Hz), ictal bursting activity] were explained by changes of parameters mainly related to GABAergic interactions. Notably, the model predicted an important role of GABA a,fast - and GABA b -receptormediated inhibition in the generation of ictal fast onset and burst activities, respectively. These findings are discussed with respect to experimental data.
Address for reprint requests and other correspondence: F. Wendling, Laboratoire de Traitement du Signal et de l'Image (LTSI), INSERM U642Campus Beaulieu, Université de Rennes 1, 35042 Rennes cedex, France (E-mail: fabrice.wendling{at}univ-rennes1.fr ) |
---|---|
AbstractList | Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea pig isolated brain perfused with bicuculline). A macroscopic modeling approach representing synaptic interactions between cells subpopulations in the EC was chosen for its adequacy to mimic field potentials reflecting overall dynamics rising from interconnected cells populations. Therefore intrinsic properties of neurons were not included in the modeling design. Model parameters were adjusted from an identification procedure based on quantitative comparison between real and simulated signals. For both EC deep and superficial layers, results show that the model generates very realistic signals regarding temporal dynamics, spectral features, and cross-correlation values. These simulations allowed us to infer information about the evolution of synaptic transmission between principal cell and interneuronal populations and about connectivity between deep and superficial layers during the transition from background to ictal activity. In the model, this transition was obtained for increased excitation in deep versus superficial layers. Transitions between epileptiform activities [interictal spikes, fast onset activity (25 Hz), ictal bursting activity] were explained by changes of parameters mainly related to GABAergic interactions. Notably, the model predicted an important role of GABAa,fast- and GABAb-receptor-mediated inhibition in the generation of ictal fast onset and burst activities, respectively. These findings are discussed with respect to experimental data. Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea pig isolated brain perfused with bicuculline). A macroscopic modeling approach representing synaptic interactions between cells subpopulations in the EC was chosen for its adequacy to mimic field potentials reflecting overall dynamics rising from interconnected cells populations. Therefore intrinsic properties of neurons were not included in the modeling design. Model parameters were adjusted from an identification procedure based on quantitative comparison between real and simulated signals. For both EC deep and superficial layers, results show that the model generates very realistic signals regarding temporal dynamics, spectral features, and cross-correlation values. These simulations allowed us to infer information about the evolution of synaptic transmission between principal cell and interneuronal populations and about connectivity between deep and superficial layers during the transition from background to ictal activity. In the model, this transition was obtained for increased excitation in deep versus superficial layers. Transitions between epileptiform activities [interictal spikes, fast onset activity (25 Hz), ictal bursting activity] were explained by changes of parameters mainly related to GABAergic interactions. Notably, the model predicted an important role of GABA sub(a,fast)- and GABA sub(b)-receptor-mediated inhibition in the generation of ictal fast onset and burst activities, respectively. These findings are discussed with respect to experimental data. Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea pig isolated brain perfused with bicuculline). A macroscopic modeling approach representing synaptic interactions between cells subpopulations in the EC was chosen for its adequacy to mimic field potentials reflecting overall dynamics rising from interconnected cells populations. Therefore intrinsic properties of neurons were not included in the modeling design. Model parameters were adjusted from an identification procedure based on quantitative comparison between real and simulated signals. For both EC deep and superficial layers, results show that the model generates very realistic signals regarding temporal dynamics, spectral features, and cross-correlation values. These simulations allowed us to infer information about the evolution of synaptic transmission between principal cell and interneuronal populations and about connectivity between deep and superficial layers during the transition from background to ictal activity. In the model, this transition was obtained for increased excitation in deep versus superficial layers. Transitions between epileptiform activities [interictal spikes, fast onset activity (25 Hz), ictal bursting activity] were explained by changes of parameters mainly related to GABAergic interactions. Notably, the model predicted an important role of GABA a,fast - and GABA b -receptor–mediated inhibition in the generation of ictal fast onset and burst activities, respectively. These findings are discussed with respect to experimental data. Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea-pig isolated brain perfused with bicuculline). A macroscopic modeling approach representing synaptic interactions between cells subpopulations in the EC was chosen for its adequacy to mimic field potentials reflecting overall dynamics rising from interconnected cells populations. Therefore, intrinsic properties of neurons were not included in the modeling design. Model parameters were adjusted from an identification procedure based on quantitative comparison between real and simulated signals. For both EC deep and superficial layers, results show that the model generates very realistic signals regarding temporal dynamics, spectral features and cross-correlation values. These simulations allowed us to infer information about the evolution of synaptic transmission between principal cell and interneuronal populations and about connectivity between deep and superficial layers during the transition from background to ictal activity. In the model, this transition was obtained for increased excitation in deep versus superficial layers. Transitions between epileptiform activities (interictal spikes, fast onset activity (25Hz), ictal bursting activity) were explained by changes of parameters mainly related to GABAergic interactions. Notably, the model predicted an important role of GABA a,fast and GABA b receptor-mediated inhibition in the generation of ictal fast onset and burst activities, respectively. These findings are discussed with respect to experimental data. 1 Laboratoire Traitement du Signal et de L'Image, Institut National de la Santé et de la Recherche Médicale U642, Rennes University 1, Rennes, France; and 2 Department of Experimental Neurophysiology, Istituto Nazionale Neurologico, Milan, Italy Submitted 20 December 2005; accepted in final form 30 March 2006 Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea pig isolated brain perfused with bicuculline). A macroscopic modeling approach representing synaptic interactions between cells subpopulations in the EC was chosen for its adequacy to mimic field potentials reflecting overall dynamics rising from interconnected cells populations. Therefore intrinsic properties of neurons were not included in the modeling design. Model parameters were adjusted from an identification procedure based on quantitative comparison between real and simulated signals. For both EC deep and superficial layers, results show that the model generates very realistic signals regarding temporal dynamics, spectral features, and cross-correlation values. These simulations allowed us to infer information about the evolution of synaptic transmission between principal cell and interneuronal populations and about connectivity between deep and superficial layers during the transition from background to ictal activity. In the model, this transition was obtained for increased excitation in deep versus superficial layers. Transitions between epileptiform activities [interictal spikes, fast onset activity (25 Hz), ictal bursting activity] were explained by changes of parameters mainly related to GABAergic interactions. Notably, the model predicted an important role of GABA a,fast - and GABA b -receptormediated inhibition in the generation of ictal fast onset and burst activities, respectively. These findings are discussed with respect to experimental data. Address for reprint requests and other correspondence: F. Wendling, Laboratoire de Traitement du Signal et de l'Image (LTSI), INSERM U642Campus Beaulieu, Université de Rennes 1, 35042 Rennes cedex, France (E-mail: fabrice.wendling{at}univ-rennes1.fr ) |
Author | de Curtis, M Wendling, F Labyt, E Uva, L |
AuthorAffiliation | 2 Department Experimental Neurophysiology Istituto Nazionale Neurologico C. Besta via Celoria 11 20133 Milan,IT 1 LTSI, Laboratoire Traitement du Signal et de l'Image INSERM : U642 Université Rennes I Campus de Beaulieu, 263 Avenue du Général Leclerc - CS 74205 - 35042 Rennes Cedex,FR |
AuthorAffiliation_xml | – name: 1 LTSI, Laboratoire Traitement du Signal et de l'Image INSERM : U642 Université Rennes I Campus de Beaulieu, 263 Avenue du Général Leclerc - CS 74205 - 35042 Rennes Cedex,FR – name: 2 Department Experimental Neurophysiology Istituto Nazionale Neurologico C. Besta via Celoria 11 20133 Milan,IT |
Author_xml | – sequence: 1 fullname: Labyt, E – sequence: 2 fullname: Uva, L – sequence: 3 fullname: de Curtis, M – sequence: 4 fullname: Wendling, F |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16598061$$D View this record in MEDLINE/PubMed https://inserm.hal.science/inserm-00147359$$DView record in HAL |
BookMark | eNqFkkFv0zAUxyM0xLrBkSvyiRMtthM7yQWpq9atUhEVGmfLSV4aV64dbLesX4LPjNMWBgiJky2_3_v5Pel_lVwYayBJXhM8IYTR9xszwSTN6IRizJ4lo_hGx4SVxUUywjjeU5znl8mV9xuMcc4wfZFcEh4BzMko-f4ZpFY-qBp9tA1oZdbItujWBOs6ZaRGM-sCPKK5At2glQ1ggpLaI2katDABXO8gyKCsOTb2SkM_6KZ1UHsVDkgZFDpAdztlQKKVWqOFt1oGaNCNk7G6ctBLd1S8TJ63UQ6vzud18mV--zC7Hy8_3S1m0-W4ZjQPY8aLkjFcVAyTMmNNVhVlxqum5WXDaMHamlWcE16TsqwyCRlpqhTyvORF3ZCSpNfJh5O331VbaOq4lJNa9E5tpTsIK5X4s2JUJ9Z2L2hW8JQNgncnQfdX2_10KZTx4LYCY5LlKSv3A_72_J-zX3fgg9gqX4PW0oDdecELnEcv_S9IcspZmrMIjk9g7az3DtpfUxAshmSIjRHHZIghGZF_8_vGT_Q5ChGg543UuvumHIi-O3hltV0fxHyn9QM8higtuSAi5anom_Zp3H81xQF-wukPzp3Xng |
CitedBy_id | crossref_primary_10_1155_2016_3628247 crossref_primary_10_1002_ana_21519 crossref_primary_10_1007_s10827_013_0457_5 crossref_primary_10_1016_j_neuroimage_2010_12_074 crossref_primary_10_1586_14737175_8_6_889 crossref_primary_10_1016_j_neuroimage_2011_08_060 crossref_primary_10_1016_j_jneumeth_2015_03_027 crossref_primary_10_4103_2228_7477_83521 crossref_primary_10_1016_j_compbiomed_2013_08_022 crossref_primary_10_1109_JSSC_2015_2482498 crossref_primary_10_1016_j_pneurobio_2011_07_003 |
Cites_doi | 10.1002/1096-9861(20000918)425:2<177::AID-CNE2>3.0.CO;2-G 10.1046/j.1460-9568.2002.01985.x 10.1016/j.tins.2004.11.011 10.1016/S0014-2999(97)01085-6 10.1007/BF01128839 10.1523/JNEUROSCI.23-30-09761.2003 10.1093/cercor/13.1.5 10.1002/(SICI)1096-9861(20000320)418:4<457::AID-CNE7>3.0.CO;2-L 10.1111/j.1460-9568.2004.03266.x 10.1111/j.1528-1167.2005.00342.x 10.1016/0304-3940(93)90341-H 10.1152/jn.1994.71.6.2463 10.1523/JNEUROSCI.20-20-07846.2000 10.1016/S0278-5846(01)00247-0 10.1016/0301-0082(89)90009-9 10.1016/j.neuroscience.2004.03.014 10.1016/S1388-2457(01)00547-8 10.1002/cne.903530306 10.1016/j.eplepsyres.2004.06.006 10.1002/(SICI)1098-1063(1997)7:5<571::AID-HIPO12>3.0.CO;2-Y 10.1523/JNEUROSCI.09-01-00216.1989 10.1152/jn.2002.88.4.1743 10.1016/j.neures.2005.06.009 10.1152/jn.2000.83.5.2562 10.1002/hipo.450010402 10.1002/(SICI)1098-1063(2000)10:1<77::AID-HIPO8>3.0.CO;2-P 10.1111/j.1460-9568.2004.03627.x 10.1016/S0248-4900(03)00081-9 10.1016/S0301-0082(02)00077-1 10.1002/(SICI)1096-9861(19980817)398:1<49::AID-CNE4>3.0.CO;2-9 10.1002/ana.410350604 10.1016/j.neuroscience.2003.11.013 10.1046/j.0953-816X.2000.01405.x 10.1016/0920-1211(90)90015-N 10.1152/jn.1998.80.1.230 10.1523/JNEUROSCI.1135-05.2005 10.1126/science.1082053 10.1085/jgp.114.4.491 10.1007/s004220000160 10.1002/hipo.20047 10.1007/BF00224863 10.1126/science.1076510 10.1016/S0306-4522(00)00455-3 10.1046/j.1528-1157.2003.01603.x 10.1007/BF01181556 10.1016/j.neuropharm.2003.07.001 10.1523/JNEUROSCI.17-02-00862.1997 10.1007/BF00243220 10.1002/ana.10471 10.1016/S0006-3495(72)86068-5 10.1113/jphysiol.1993.sp019600 10.1088/0954-898X_13_3_305 10.1001/archneur.1964.00460150003001 10.1002/(SICI)1098-1063(1997)7:2<146::AID-HIPO4>3.0.CO;2-L 10.1523/JNEUROSCI.18-18-07543.1998 10.1113/jphysiol.2002.037796 10.1007/BF00270757 10.1016/S0079-6123(08)60995-4 10.1111/j.1528-1167.2005.43804.x 10.1111/j.1460-9568.1993.tb00942.x 10.1002/hipo.10144 10.1016/j.pneurobio.2005.09.006 10.1073/pnas.82.5.1558 10.1016/0006-8993(95)01203-6 10.1073/pnas.100124097 10.1152/physrev.1995.75.4.689 10.1016/0920-1211(93)90043-7 10.1111/j.0013-9580.2004.17004.x 10.1523/JNEUROSCI.19-03-01088.1999 10.1152/jn.1997.78.5.2531 10.1002/cne.10472 10.1002/(SICI)1096-9861(19980817)398:1<25::AID-CNE3>3.0.CO;2-B 10.1016/j.neuroscience.2005.04.013 10.1002/(SICI)1098-2396(199701)25:1<62::AID-SYN8>3.0.CO;2-D 10.1152/jn.1996.76.2.1089 10.1016/0301-0082(95)00030-5 10.1093/jnen/59.10.907 10.1016/S0149-7634(97)00016-X 10.1016/j.pneurobio.2004.03.009 10.1002/cne.901990405 10.1103/PhysRevE.71.041902 10.1016/S0306-4522(96)00494-0 10.1002/(SICI)1096-9861(19971110)388:1<64::AID-CNE5>3.0.CO;2-M 10.1017/S031716710003287X 10.1016/j.brainres.2004.03.017 10.1085/jgp.20028676 10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P 10.1016/S0896-6273(00)80907-1 10.1016/j.neuroscience.2004.08.042 10.1152/jn.2000.83.4.1924 10.1016/S0006-8993(97)01384-X 10.1523/JNEUROSCI.18-01-00388.1998 10.1523/JNEUROSCI.20-03-00937.2000 10.1002/cne.10335 10.1007/BF00199471 10.1111/j.1528-1157.1994.tb02502.x |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 1XC VOOES 5PM |
DOI | 10.1152/jn.01342.2005 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Computer Science |
EISSN | 1522-1598 |
EndPage | 377 |
ExternalDocumentID | oai_HAL_inserm_00147359v1 10_1152_jn_01342_2005 16598061 jn_96_1_363 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 0VX 29L 2WC 39C 3O- 4.4 41 53G 55 5GY 5VS AALRV ABFLS ABIVO ABPTK ABUFD ABZEH ACGFS ACNCT ADACO ADBBV ADKLL AENEX AETEA AFFNX ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FH7 FRP GJ GX1 H13 H~9 KQ8 L7B MVM NEJ O0- OHT OK1 P2P RAP RHF RHI RPL SJN UHB UPT UQL WH7 WOQ WOW X X7M ZA5 ZY4 --- -DZ -~X .55 .GJ 18M 1CY 1Z7 41~ 476 8M5 ABCQX ABJNI ABKWE ABTAH ACGFO ADFNX ADIYS AFOSN AI. AIZAD BKKCC BTFSW CGR CUY CVF ECM EIF EMOBN ITBOX NPM RPRKH TR2 VH1 W8F XJT XOL XSW YBH YQT YSK ZGI ZXP AAYXX CITATION 7TK 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c527t-56895508b501945d4b8946bdf69d5285fc5b6616c199b4ae41db3e77968cd1913 |
ISSN | 0022-3077 |
IngestDate | Tue Sep 17 21:12:29 EDT 2024 Fri Oct 18 06:52:08 EDT 2024 Fri Oct 25 09:54:35 EDT 2024 Sun Sep 29 08:43:20 EDT 2024 Thu Sep 26 19:24:18 EDT 2024 Sat Sep 28 07:48:18 EDT 2024 Mon May 06 11:55:24 EDT 2019 Tue Jan 05 17:54:14 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | epilepsy computational model entorhinal cortex synaptic transmission field potential |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c527t-56895508b501945d4b8946bdf69d5285fc5b6616c199b4ae41db3e77968cd1913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2428-9665 0000-0002-8680-7213 |
OpenAccessLink | https://inserm.hal.science/inserm-00147359 |
PMID | 16598061 |
PQID | 17265375 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | pubmed_primary_16598061 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2486351 proquest_miscellaneous_68076352 crossref_primary_10_1152_jn_01342_2005 proquest_miscellaneous_17265375 hal_primary_oai_HAL_inserm_00147359v1 highwire_physiology_jn_96_1_363 |
PublicationCentury | 2000 |
PublicationDate | 2006-07-01 |
PublicationDateYYYYMMDD | 2006-07-01 |
PublicationDate_xml | – month: 07 year: 2006 text: 2006-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2006 |
Publisher | Am Phys Soc American Physiological Society |
Publisher_xml | – name: Am Phys Soc – name: American Physiological Society |
References | 7745443 - J Neurocytol. 1995 Feb;24(2):135-53 12209840 - J Comp Neurol. 2002 Sep 9;451(1):45-61 9136047 - Hippocampus. 1997;7(2):146-83 10954838 - J Comp Neurol. 2000 Sep 18;425(2):177-92 9347353 - Hippocampus. 1997;7(5):571-83 9658044 - J Neurophysiol. 1998 Jul;80(1):230-40 285858 - Electroencephalogr Clin Neurophysiol Suppl. 1978;(34):9-18 9412515 - J Neurosci. 1998 Jan 1;18(1):388-98 16039740 - Neurosci Res. 2005 Oct;53(2):140-6 2913203 - J Neurosci. 1989 Jan;9(1):216-28 6168668 - J Comp Neurol. 1981 Jul 10;199(4):495-512 2641479 - Brain Topogr. 1989 Fall-Winter;2(1-2):9-18 8281302 - Eur J Neurosci. 1993 Jul 1;5(7):915-26 14751281 - Neuroscience. 2004;123(4):875-86 9364239 - J Comp Neurol. 1997 Nov 10;388(1):64-88 10706219 - Hippocampus. 2000;10(1):77-86 15329064 - Epilepsia. 2004 Sep;45(9):1017-23 1669314 - Hippocampus. 1991 Oct;1(4):341-54 15903696 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 1):041902 9703026 - J Comp Neurol. 1998 Aug 17;398(1):25-48 8082614 - Epilepsia. 1994 Jul-Aug;35(4):721-7 15951123 - Neuroscience. 2005;134(2):691-704 7843307 - Exp Brain Res. 1994;101(1):93-108 9518538 - Brain Res. 1998 Mar 16;787(1):19-33 12919385 - Epilepsia. 2003 Sep;44(9):1145-52 9356403 - J Neurophysiol. 1997 Nov;78(5):2531-45 12222817 - Network. 2002 Aug;13(3):327-42 16033887 - J Neurosci. 2005 Jul 20;25(29):6775-86 10758103 - J Neurophysiol. 2000 Apr;83(4):1924-31 4332108 - Biophys J. 1972 Jan;12(1):1-24 12450487 - Prog Neurobiol. 2002 Oct;68(3):167-207 7578475 - Biol Cybern. 1995 Sep;73(4):357-66 14654095 - Neuropharmacology. 2004 Jan;46(1):31-42 9703027 - J Comp Neurol. 1998 Aug 17;398(1):49-82 15857433 - Epilepsia. 2005 May;46(5):677-87 11039701 - Biol Cybern. 2000 Oct;83(4):367-78 9300256 - Eur J Pharmacol. 1997 Aug 13;332(3):245-55 11027250 - J Neurosci. 2000 Oct 15;20(20):7846-54 8469376 - Neurosci Lett. 1993 Jan 4;149(1):35-9 15380011 - Eur J Neurosci. 2004 Oct;20(7):1897-905 15078573 - Eur J Neurosci. 2004 Apr;19(7):1987-91 15386594 - Hippocampus. 2005;15(2):232-45 11516732 - Clin Neurophysiol. 2001 Jul;112(7):1201-18 8871222 - J Neurophysiol. 1996 Aug;76(2):1089-100 7480159 - Physiol Rev. 1995 Oct;75(4):689-723 16393157 - Epilepsia. 2005 Dec;46(12):1914-25 2983351 - Proc Natl Acad Sci U S A. 1985 Mar;82(5):1558-62 7538515 - J Comp Neurol. 1995 Mar 13;353(3):379-90 9736672 - J Neurosci. 1998 Sep 15;18(18):7543-51 11168548 - Eur J Neurosci. 2001 Jan;13(2):413-20 8987807 - J Neurosci. 1997 Jan 15;17(2):862-74 15207365 - Neuroscience. 2004;126(2):467-84 16307840 - Prog Neurobiol. 2005 Oct;77(3):166-200 12649485 - Science. 2003 Mar 21;299(5614):1902-5 12454982 - J Comp Neurol. 2003 Jan 6;455(2):156-71 8210220 - Ann Neurol. 1994 Jun;35(6):640-54 12601706 - Ann Neurol. 2003 Mar;53(3):382-9 15196963 - Brain Res. 2004 Jul 2;1013(1):1-12 7931528 - J Neurophysiol. 1994 Jun;71(6):2463-76 8987149 - Synapse. 1997 Jan;25(1):62-72 8504790 - Epilepsy Res. 1993 Mar;14(3):183-93 10719898 - Neuron. 2000 Feb;25(2):449-57 1705225 - Epilepsy Res. 1990 Dec;7(3):197-204 14519549 - Biol Cell. 2003 Sep;95(6):329-33 8720498 - Brain Res. 1996 Jan 8;706(1):113-22 9579320 - Neurosci Biobehav Rev. 1998 Mar;22(2):303-10 9886046 - J Comp Neurol. 1999 Jan 11;403(2):229-60 1777886 - Can J Neurol Sci. 1991 Nov;18(4 Suppl):645-8 11226669 - Neuroscience. 2001;102(1):53-64 9070741 - Neuroscience. 1997 Apr;77(3):629-48 10648698 - J Neurosci. 2000 Feb 1;20(3):937-48 14106980 - Arch Neurol. 1964 Mar;10:233-48 8787032 - Prog Neurobiol. 1995 Dec;47(6):477-511 2682783 - Prog Neurobiol. 1989;33(3):161-253 8452897 - Biol Cybern. 1993;68(3):275-83 15667934 - Trends Neurosci. 2005 Feb;28(2):108-15 11817519 - Prog Neuropsychopharmacol Biol Psychiatry. 2002 Feb;26(2):393-6 12466210 - Cereb Cortex. 2003 Jan;13(1):5-14 15193778 - Prog Neurobiol. 2004 May;73(1):1-60 1013341 - Prog Brain Res. 1976;45:281-308 12434059 - Science. 2002 Nov 15;298(5597):1418-21 12028360 - Eur J Neurosci. 2002 May;15(9):1499-508 9920671 - J Neurosci. 1999 Feb 1;19(3):1088-105 4853232 - Kybernetik. 1974 May 31;15(1):27-37 12451054 - J Gen Physiol. 2002 Dec;120(6):855-73 10869419 - Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8128-33 14586003 - J Neurosci. 2003 Oct 29;23(30):9761-9 15561441 - Neuroscience. 2005;130(1):249-58 15451011 - Epilepsy Res. 2004 Sep-Oct;61(1-3):89-104 8246190 - J Physiol. 1993 Apr;463:391-407 12364503 - J Neurophysiol. 2002 Oct;88(4):1743-52 10713573 - J Comp Neurol. 2000 Mar 20;418(4):457-72 10498669 - J Gen Physiol. 1999 Oct;114(4):491-509 10805658 - J Neurophysiol. 2000 May;83(5):2562-79 14750656 - Hippocampus. 2003;13(8):943-52 11079781 - J Neuropathol Exp Neurol. 2000 Oct;59(10):907-20 12679369 - J Physiol. 2003 Jun 1;549(Pt 2):361-74 R21 R20 R23 R22 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R54 R53 R56 R55 R58 R57 R59 R61 R60 R63 R62 R65 R64 R67 R66 R69 R68 R70 R72 R71 R74 R73 R76 R75 R78 R77 R79 R81 R80 R83 R82 R85 R84 R87 R86 R89 R88 R90 R92 R91 R94 R93 R96 R95 R10 R98 R97 R12 R11 R99 R14 R13 R16 R15 R18 R17 R19 |
References_xml | – ident: R94 doi: 10.1002/1096-9861(20000918)425:2<177::AID-CNE2>3.0.CO;2-G – ident: R85 doi: 10.1046/j.1460-9568.2002.01985.x – ident: R22 doi: 10.1016/j.tins.2004.11.011 – ident: R83 doi: 10.1016/S0014-2999(97)01085-6 – ident: R55 doi: 10.1007/BF01128839 – ident: R24 doi: 10.1523/JNEUROSCI.23-30-09761.2003 – ident: R77 doi: 10.1093/cercor/13.1.5 – ident: R43 doi: 10.1002/(SICI)1096-9861(20000320)418:4<457::AID-CNE7>3.0.CO;2-L – ident: R16 doi: 10.1111/j.1460-9568.2004.03266.x – ident: R80 doi: 10.1111/j.1528-1167.2005.00342.x – ident: R48 doi: 10.1016/0304-3940(93)90341-H – ident: R25 doi: 10.1152/jn.1994.71.6.2463 – ident: R30 doi: 10.1523/JNEUROSCI.20-20-07846.2000 – ident: R62 doi: 10.1016/S0278-5846(01)00247-0 – ident: R90 doi: 10.1016/0301-0082(89)90009-9 – ident: R74 doi: 10.1016/j.neuroscience.2004.03.014 – ident: R84 doi: 10.1016/S1388-2457(01)00547-8 – ident: R75 doi: 10.1002/cne.903530306 – ident: R9 doi: 10.1016/j.eplepsyres.2004.06.006 – ident: R36 – ident: R51 doi: 10.1002/(SICI)1098-1063(1997)7:5<571::AID-HIPO12>3.0.CO;2-Y – ident: R89 doi: 10.1523/JNEUROSCI.09-01-00216.1989 – ident: R72 doi: 10.1152/jn.2002.88.4.1743 – ident: R23 doi: 10.1016/j.neures.2005.06.009 – ident: R31 doi: 10.1152/jn.2000.83.5.2562 – ident: R67 – ident: R27 doi: 10.1002/hipo.450010402 – ident: R93 doi: 10.1002/(SICI)1098-1063(2000)10:1<77::AID-HIPO8>3.0.CO;2-P – ident: R41 doi: 10.1111/j.1460-9568.2004.03627.x – ident: R20 doi: 10.1016/S0248-4900(03)00081-9 – ident: R3 doi: 10.1016/S0301-0082(02)00077-1 – ident: R33 doi: 10.1002/(SICI)1096-9861(19980817)398:1<49::AID-CNE4>3.0.CO;2-9 – ident: R70 doi: 10.1002/ana.410350604 – ident: R28 doi: 10.1016/j.neuroscience.2003.11.013 – ident: R39 doi: 10.1046/j.0953-816X.2000.01405.x – ident: R73 doi: 10.1016/0920-1211(90)90015-N – ident: R35 doi: 10.1152/jn.1998.80.1.230 – ident: R69 doi: 10.1523/JNEUROSCI.1135-05.2005 – ident: R76 doi: 10.1126/science.1082053 – ident: R58 doi: 10.1085/jgp.114.4.491 – ident: R86 doi: 10.1007/s004220000160 – ident: R91 doi: 10.1002/hipo.20047 – ident: R46 doi: 10.1007/BF00224863 – ident: R21 doi: 10.1126/science.1076510 – ident: R1 doi: 10.1016/S0306-4522(00)00455-3 – ident: R50 doi: 10.1046/j.1528-1157.2003.01603.x – ident: R92 doi: 10.1007/BF01181556 – ident: R5 doi: 10.1016/j.neuropharm.2003.07.001 – ident: R82 doi: 10.1523/JNEUROSCI.17-02-00862.1997 – ident: R17 doi: 10.1007/BF00243220 – ident: R54 doi: 10.1002/ana.10471 – ident: R88 doi: 10.1016/S0006-3495(72)86068-5 – ident: R66 doi: 10.1113/jphysiol.1993.sp019600 – ident: R96 doi: 10.1088/0954-898X_13_3_305 – ident: R34 doi: 10.1001/archneur.1964.00460150003001 – ident: R44 doi: 10.1002/(SICI)1098-1063(1997)7:2<146::AID-HIPO4>3.0.CO;2-L – ident: R26 doi: 10.1523/JNEUROSCI.18-18-07543.1998 – ident: R53 doi: 10.1113/jphysiol.2002.037796 – ident: R56 doi: 10.1007/BF00270757 – ident: R57 doi: 10.1016/S0079-6123(08)60995-4 – ident: R8 doi: 10.1111/j.1528-1167.2005.43804.x – ident: R64 doi: 10.1111/j.1460-9568.1993.tb00942.x – ident: R81 doi: 10.1002/hipo.10144 – ident: R2 doi: 10.1016/j.pneurobio.2005.09.006 – ident: R38 doi: 10.1073/pnas.82.5.1558 – ident: R60 doi: 10.1016/0006-8993(95)01203-6 – ident: R87 doi: 10.1073/pnas.100124097 – ident: R47 doi: 10.1152/physrev.1995.75.4.689 – ident: R10 doi: 10.1016/0920-1211(93)90043-7 – ident: R15 doi: 10.1111/j.0013-9580.2004.17004.x – ident: R78 doi: 10.1523/JNEUROSCI.19-03-01088.1999 – ident: R49 doi: 10.1152/jn.1997.78.5.2531 – ident: R52 doi: 10.1002/cne.10472 – ident: R32 doi: 10.1002/(SICI)1096-9861(19980817)398:1<25::AID-CNE3>3.0.CO;2-B – ident: R65 doi: 10.1016/j.neuroscience.2005.04.013 – ident: R29 doi: 10.1002/(SICI)1098-2396(199701)25:1<62::AID-SYN8>3.0.CO;2-D – ident: R11 doi: 10.1152/jn.1996.76.2.1089 – ident: R14 doi: 10.1016/0301-0082(95)00030-5 – ident: R99 doi: 10.1093/jnen/59.10.907 – ident: R18 doi: 10.1016/S0149-7634(97)00016-X – ident: R63 doi: 10.1016/j.pneurobio.2004.03.009 – ident: R98 doi: 10.1002/cne.901990405 – ident: R13 doi: 10.1103/PhysRevE.71.041902 – ident: R40 doi: 10.1016/S0306-4522(96)00494-0 – ident: R61 doi: 10.1002/(SICI)1096-9861(19971110)388:1<64::AID-CNE5>3.0.CO;2-M – ident: R4 doi: 10.1017/S031716710003287X – ident: R95 doi: 10.1016/j.brainres.2004.03.017 – ident: R59 doi: 10.1085/jgp.20028676 – ident: R68 doi: 10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P – ident: R7 doi: 10.1016/S0896-6273(00)80907-1 – ident: R79 doi: 10.1016/j.neuroscience.2004.08.042 – ident: R12 doi: 10.1152/jn.2000.83.4.1924 – ident: R97 – ident: R37 doi: 10.1016/S0006-8993(97)01384-X – ident: R19 doi: 10.1523/JNEUROSCI.18-01-00388.1998 – ident: R6 doi: 10.1523/JNEUROSCI.20-03-00937.2000 – ident: R42 doi: 10.1002/cne.10335 – ident: R45 doi: 10.1007/BF00199471 – ident: R71 doi: 10.1111/j.1528-1157.1994.tb02502.x |
SSID | ssj0007502 |
Score | 1.9505371 |
Snippet | 1 Laboratoire Traitement du Signal et de L'Image, Institut National de la Santé et de la Recherche Médicale U642, Rennes University 1, Rennes, France; and 2... Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic... |
SourceID | pubmedcentral hal proquest crossref pubmed highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 363 |
SubjectTerms | Action Potentials Action Potentials - physiology Animals Bicuculline Bicuculline - pharmacology Bioengineering Cognitive science Computer Science Computer Simulation Electrophysiology Engineering Sciences Entorhinal Cortex Entorhinal Cortex - physiology Epilepsy Epilepsy - physiopathology GABA Antagonists GABA Antagonists - pharmacology Guinea Pigs Interneurons Interneurons - physiology Life Sciences Models, Theoretical Neuroscience Receptors, GABA-A Receptors, GABA-A - physiology Receptors, GABA-B Receptors, GABA-B - physiology Signal and Image Processing Synaptic Transmission Synaptic Transmission - physiology |
Title | Realistic Modeling of Entorhinal Cortex Field Potentials and Interpretation of Epileptic Activity in the Guinea Pig Isolated Brain Preparation |
URI | http://jn.physiology.org/cgi/content/abstract/96/1/363 https://www.ncbi.nlm.nih.gov/pubmed/16598061 https://search.proquest.com/docview/17265375 https://search.proquest.com/docview/68076352 https://inserm.hal.science/inserm-00147359 https://pubmed.ncbi.nlm.nih.gov/PMC2486351 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLU6w4YNAoZHeHoBs6k6NImdxMtSTSkwoIJaMbsoThza0TStIB0xfAQfxZdxr_N0p4jHJqpS14l1Tm6u3eNzCXkWKHjMEtftuSyGCQrjSS-CLKIXSwnpBwsSIXCj8Lv33njG3pzy007nZ0u1tMnlUfx9576S_0EVzgGuuEv2H5CtO4UT8BnwhSMgDMe_wvijQvtCtFzFkmbnpYD5OIN59FxXuxqilPZbd4Qyte5klaM0CP2SCxGwITfEH64hRKyxu0FcFpUoVZCvNpCMRt3J4nP3NQwpwjT1JRaXQAlH4R5ewns1z9WOmXoBxVjBP4nkZW5shZhdRM02iEJbO9xgsWhj0faTypLzshDLaHvNwjf0H0td2QeFqe3YjPsK-mVRF1WGYzgHCVfQjtdFBVyDl0XwdYtQefWlwNFk9iw7gnSXafNR3m4HmK6XmiG2B5fqF-bwpjX31iuzFjKeZaHwQjuES--Raw4EO5QVvv3QONZDRtY41sPoKp9X7rww7gjda8vLGynS3hwFurV59a6J0Laet5UgTW-SGyXidFDQ9BbpqOw2ORhkUb5aXtJDOqkpcEB-1MylFXPpKqUNc2nBXKqZSxvmUmAuNZmrf1gxl1bMpYuMAnNpwVwKzKUVc6lmLm0x9w6ZjY6nw3GvrAzSi7nj5z3uBQKm1oHkMEOB-MJkIJgnk9QTCXcCnsZcQuLpxbYQkkWK2Yl0le8LL4gTW9juXbKfrTJ1n1AvjrDuXpxK7jMlY8jXWd9NGY-VJzhTFjmswAjXhQFMqCfO3AkBfQ0g1nLlFnkOUNVt0LZ9PDgJFxkEnCVKR7HIt7iwLdKtwAybhy_EFacpkAs6rRgVrpPUIk93tW7xDlpUjAjh1YD_90WZWm2-hjA38bjr89-38II-GlI6FrlXMKgZYslFi_gGt4zxmd9ki7m2p3dYAH3aD_545w_J9SY4PCL7-ZeNegwpfi6f6GfoFwSSAUc |
link.rule.ids | 230,315,783,787,888,27938,27939 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realistic+Modeling+of+Entorhinal+Cortex+Field+Potentials+and+Interpretation+of+Epileptic+Activity+in+the+Guinea+Pig+Isolated+Brain+Preparation&rft.jtitle=Journal+of+neurophysiology&rft.au=Labyt%2C+E&rft.au=Uva%2C+L&rft.au=de+Curtis%2C+M&rft.au=Wendling%2C+F&rft.date=2006-07-01&rft.pub=Am+Phys+Soc&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=96&rft.issue=1&rft.spage=363&rft_id=info:doi/10.1152%2Fjn.01342.2005&rft_id=info%3Apmid%2F16598061&rft.externalDBID=n%2Fa&rft.externalDocID=jn_96_1_363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |