Realistic Modeling of Entorhinal Cortex Field Potentials and Interpretation of Epileptic Activity in the Guinea Pig Isolated Brain Preparation

1 Laboratoire Traitement du Signal et de L'Image, Institut National de la Santé et de la Recherche Médicale U642, Rennes University 1, Rennes, France; and 2 Department of Experimental Neurophysiology, Istituto Nazionale Neurologico, Milan, Italy Submitted 20 December 2005; accepted in final for...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 96; no. 1; pp. 363 - 377
Main Authors Labyt, E, Uva, L, de Curtis, M, Wendling, F
Format Journal Article
LanguageEnglish
Published United States Am Phys Soc 01.07.2006
American Physiological Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1 Laboratoire Traitement du Signal et de L'Image, Institut National de la Santé et de la Recherche Médicale U642, Rennes University 1, Rennes, France; and 2 Department of Experimental Neurophysiology, Istituto Nazionale Neurologico, Milan, Italy Submitted 20 December 2005; accepted in final form 30 March 2006 Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea pig isolated brain perfused with bicuculline). A macroscopic modeling approach representing synaptic interactions between cells subpopulations in the EC was chosen for its adequacy to mimic field potentials reflecting overall dynamics rising from interconnected cells populations. Therefore intrinsic properties of neurons were not included in the modeling design. Model parameters were adjusted from an identification procedure based on quantitative comparison between real and simulated signals. For both EC deep and superficial layers, results show that the model generates very realistic signals regarding temporal dynamics, spectral features, and cross-correlation values. These simulations allowed us to infer information about the evolution of synaptic transmission between principal cell and interneuronal populations and about connectivity between deep and superficial layers during the transition from background to ictal activity. In the model, this transition was obtained for increased excitation in deep versus superficial layers. Transitions between epileptiform activities [interictal spikes, fast onset activity (25 Hz), ictal bursting activity] were explained by changes of parameters mainly related to GABAergic interactions. Notably, the model predicted an important role of GABA a,fast - and GABA b -receptor–mediated inhibition in the generation of ictal fast onset and burst activities, respectively. These findings are discussed with respect to experimental data. Address for reprint requests and other correspondence: F. Wendling, Laboratoire de Traitement du Signal et de l'Image (LTSI), INSERM U642–Campus Beaulieu, Université de Rennes 1, 35042 Rennes cedex, France (E-mail: fabrice.wendling{at}univ-rennes1.fr )
AbstractList Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea pig isolated brain perfused with bicuculline). A macroscopic modeling approach representing synaptic interactions between cells subpopulations in the EC was chosen for its adequacy to mimic field potentials reflecting overall dynamics rising from interconnected cells populations. Therefore intrinsic properties of neurons were not included in the modeling design. Model parameters were adjusted from an identification procedure based on quantitative comparison between real and simulated signals. For both EC deep and superficial layers, results show that the model generates very realistic signals regarding temporal dynamics, spectral features, and cross-correlation values. These simulations allowed us to infer information about the evolution of synaptic transmission between principal cell and interneuronal populations and about connectivity between deep and superficial layers during the transition from background to ictal activity. In the model, this transition was obtained for increased excitation in deep versus superficial layers. Transitions between epileptiform activities [interictal spikes, fast onset activity (25 Hz), ictal bursting activity] were explained by changes of parameters mainly related to GABAergic interactions. Notably, the model predicted an important role of GABAa,fast- and GABAb-receptor-mediated inhibition in the generation of ictal fast onset and burst activities, respectively. These findings are discussed with respect to experimental data.
Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea pig isolated brain perfused with bicuculline). A macroscopic modeling approach representing synaptic interactions between cells subpopulations in the EC was chosen for its adequacy to mimic field potentials reflecting overall dynamics rising from interconnected cells populations. Therefore intrinsic properties of neurons were not included in the modeling design. Model parameters were adjusted from an identification procedure based on quantitative comparison between real and simulated signals. For both EC deep and superficial layers, results show that the model generates very realistic signals regarding temporal dynamics, spectral features, and cross-correlation values. These simulations allowed us to infer information about the evolution of synaptic transmission between principal cell and interneuronal populations and about connectivity between deep and superficial layers during the transition from background to ictal activity. In the model, this transition was obtained for increased excitation in deep versus superficial layers. Transitions between epileptiform activities [interictal spikes, fast onset activity (25 Hz), ictal bursting activity] were explained by changes of parameters mainly related to GABAergic interactions. Notably, the model predicted an important role of GABA sub(a,fast)- and GABA sub(b)-receptor-mediated inhibition in the generation of ictal fast onset and burst activities, respectively. These findings are discussed with respect to experimental data.
Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea pig isolated brain perfused with bicuculline). A macroscopic modeling approach representing synaptic interactions between cells subpopulations in the EC was chosen for its adequacy to mimic field potentials reflecting overall dynamics rising from interconnected cells populations. Therefore intrinsic properties of neurons were not included in the modeling design. Model parameters were adjusted from an identification procedure based on quantitative comparison between real and simulated signals. For both EC deep and superficial layers, results show that the model generates very realistic signals regarding temporal dynamics, spectral features, and cross-correlation values. These simulations allowed us to infer information about the evolution of synaptic transmission between principal cell and interneuronal populations and about connectivity between deep and superficial layers during the transition from background to ictal activity. In the model, this transition was obtained for increased excitation in deep versus superficial layers. Transitions between epileptiform activities [interictal spikes, fast onset activity (25 Hz), ictal bursting activity] were explained by changes of parameters mainly related to GABAergic interactions. Notably, the model predicted an important role of GABA a,fast - and GABA b -receptor–mediated inhibition in the generation of ictal fast onset and burst activities, respectively. These findings are discussed with respect to experimental data.
Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea-pig isolated brain perfused with bicuculline). A macroscopic modeling approach representing synaptic interactions between cells subpopulations in the EC was chosen for its adequacy to mimic field potentials reflecting overall dynamics rising from interconnected cells populations. Therefore, intrinsic properties of neurons were not included in the modeling design. Model parameters were adjusted from an identification procedure based on quantitative comparison between real and simulated signals. For both EC deep and superficial layers, results show that the model generates very realistic signals regarding temporal dynamics, spectral features and cross-correlation values. These simulations allowed us to infer information about the evolution of synaptic transmission between principal cell and interneuronal populations and about connectivity between deep and superficial layers during the transition from background to ictal activity. In the model, this transition was obtained for increased excitation in deep versus superficial layers. Transitions between epileptiform activities (interictal spikes, fast onset activity (25Hz), ictal bursting activity) were explained by changes of parameters mainly related to GABAergic interactions. Notably, the model predicted an important role of GABA a,fast and GABA b receptor-mediated inhibition in the generation of ictal fast onset and burst activities, respectively. These findings are discussed with respect to experimental data.
1 Laboratoire Traitement du Signal et de L'Image, Institut National de la Santé et de la Recherche Médicale U642, Rennes University 1, Rennes, France; and 2 Department of Experimental Neurophysiology, Istituto Nazionale Neurologico, Milan, Italy Submitted 20 December 2005; accepted in final form 30 March 2006 Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea pig isolated brain perfused with bicuculline). A macroscopic modeling approach representing synaptic interactions between cells subpopulations in the EC was chosen for its adequacy to mimic field potentials reflecting overall dynamics rising from interconnected cells populations. Therefore intrinsic properties of neurons were not included in the modeling design. Model parameters were adjusted from an identification procedure based on quantitative comparison between real and simulated signals. For both EC deep and superficial layers, results show that the model generates very realistic signals regarding temporal dynamics, spectral features, and cross-correlation values. These simulations allowed us to infer information about the evolution of synaptic transmission between principal cell and interneuronal populations and about connectivity between deep and superficial layers during the transition from background to ictal activity. In the model, this transition was obtained for increased excitation in deep versus superficial layers. Transitions between epileptiform activities [interictal spikes, fast onset activity (25 Hz), ictal bursting activity] were explained by changes of parameters mainly related to GABAergic interactions. Notably, the model predicted an important role of GABA a,fast - and GABA b -receptor–mediated inhibition in the generation of ictal fast onset and burst activities, respectively. These findings are discussed with respect to experimental data. Address for reprint requests and other correspondence: F. Wendling, Laboratoire de Traitement du Signal et de l'Image (LTSI), INSERM U642–Campus Beaulieu, Université de Rennes 1, 35042 Rennes cedex, France (E-mail: fabrice.wendling{at}univ-rennes1.fr )
Author de Curtis, M
Wendling, F
Labyt, E
Uva, L
AuthorAffiliation 2 Department Experimental Neurophysiology Istituto Nazionale Neurologico C. Besta via Celoria 11 20133 Milan,IT
1 LTSI, Laboratoire Traitement du Signal et de l'Image INSERM : U642 Université Rennes I Campus de Beaulieu, 263 Avenue du Général Leclerc - CS 74205 - 35042 Rennes Cedex,FR
AuthorAffiliation_xml – name: 1 LTSI, Laboratoire Traitement du Signal et de l'Image INSERM : U642 Université Rennes I Campus de Beaulieu, 263 Avenue du Général Leclerc - CS 74205 - 35042 Rennes Cedex,FR
– name: 2 Department Experimental Neurophysiology Istituto Nazionale Neurologico C. Besta via Celoria 11 20133 Milan,IT
Author_xml – sequence: 1
  fullname: Labyt, E
– sequence: 2
  fullname: Uva, L
– sequence: 3
  fullname: de Curtis, M
– sequence: 4
  fullname: Wendling, F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16598061$$D View this record in MEDLINE/PubMed
https://inserm.hal.science/inserm-00147359$$DView record in HAL
BookMark eNqFkkFv0zAUxyM0xLrBkSvyiRMtthM7yQWpq9atUhEVGmfLSV4aV64dbLesX4LPjNMWBgiJky2_3_v5Pel_lVwYayBJXhM8IYTR9xszwSTN6IRizJ4lo_hGx4SVxUUywjjeU5znl8mV9xuMcc4wfZFcEh4BzMko-f4ZpFY-qBp9tA1oZdbItujWBOs6ZaRGM-sCPKK5At2glQ1ggpLaI2katDABXO8gyKCsOTb2SkM_6KZ1UHsVDkgZFDpAdztlQKKVWqOFt1oGaNCNk7G6ctBLd1S8TJ63UQ6vzud18mV--zC7Hy8_3S1m0-W4ZjQPY8aLkjFcVAyTMmNNVhVlxqum5WXDaMHamlWcE16TsqwyCRlpqhTyvORF3ZCSpNfJh5O331VbaOq4lJNa9E5tpTsIK5X4s2JUJ9Z2L2hW8JQNgncnQfdX2_10KZTx4LYCY5LlKSv3A_72_J-zX3fgg9gqX4PW0oDdecELnEcv_S9IcspZmrMIjk9g7az3DtpfUxAshmSIjRHHZIghGZF_8_vGT_Q5ChGg543UuvumHIi-O3hltV0fxHyn9QM8higtuSAi5anom_Zp3H81xQF-wukPzp3Xng
CitedBy_id crossref_primary_10_1155_2016_3628247
crossref_primary_10_1002_ana_21519
crossref_primary_10_1007_s10827_013_0457_5
crossref_primary_10_1016_j_neuroimage_2010_12_074
crossref_primary_10_1586_14737175_8_6_889
crossref_primary_10_1016_j_neuroimage_2011_08_060
crossref_primary_10_1016_j_jneumeth_2015_03_027
crossref_primary_10_4103_2228_7477_83521
crossref_primary_10_1016_j_compbiomed_2013_08_022
crossref_primary_10_1109_JSSC_2015_2482498
crossref_primary_10_1016_j_pneurobio_2011_07_003
Cites_doi 10.1002/1096-9861(20000918)425:2<177::AID-CNE2>3.0.CO;2-G
10.1046/j.1460-9568.2002.01985.x
10.1016/j.tins.2004.11.011
10.1016/S0014-2999(97)01085-6
10.1007/BF01128839
10.1523/JNEUROSCI.23-30-09761.2003
10.1093/cercor/13.1.5
10.1002/(SICI)1096-9861(20000320)418:4<457::AID-CNE7>3.0.CO;2-L
10.1111/j.1460-9568.2004.03266.x
10.1111/j.1528-1167.2005.00342.x
10.1016/0304-3940(93)90341-H
10.1152/jn.1994.71.6.2463
10.1523/JNEUROSCI.20-20-07846.2000
10.1016/S0278-5846(01)00247-0
10.1016/0301-0082(89)90009-9
10.1016/j.neuroscience.2004.03.014
10.1016/S1388-2457(01)00547-8
10.1002/cne.903530306
10.1016/j.eplepsyres.2004.06.006
10.1002/(SICI)1098-1063(1997)7:5<571::AID-HIPO12>3.0.CO;2-Y
10.1523/JNEUROSCI.09-01-00216.1989
10.1152/jn.2002.88.4.1743
10.1016/j.neures.2005.06.009
10.1152/jn.2000.83.5.2562
10.1002/hipo.450010402
10.1002/(SICI)1098-1063(2000)10:1<77::AID-HIPO8>3.0.CO;2-P
10.1111/j.1460-9568.2004.03627.x
10.1016/S0248-4900(03)00081-9
10.1016/S0301-0082(02)00077-1
10.1002/(SICI)1096-9861(19980817)398:1<49::AID-CNE4>3.0.CO;2-9
10.1002/ana.410350604
10.1016/j.neuroscience.2003.11.013
10.1046/j.0953-816X.2000.01405.x
10.1016/0920-1211(90)90015-N
10.1152/jn.1998.80.1.230
10.1523/JNEUROSCI.1135-05.2005
10.1126/science.1082053
10.1085/jgp.114.4.491
10.1007/s004220000160
10.1002/hipo.20047
10.1007/BF00224863
10.1126/science.1076510
10.1016/S0306-4522(00)00455-3
10.1046/j.1528-1157.2003.01603.x
10.1007/BF01181556
10.1016/j.neuropharm.2003.07.001
10.1523/JNEUROSCI.17-02-00862.1997
10.1007/BF00243220
10.1002/ana.10471
10.1016/S0006-3495(72)86068-5
10.1113/jphysiol.1993.sp019600
10.1088/0954-898X_13_3_305
10.1001/archneur.1964.00460150003001
10.1002/(SICI)1098-1063(1997)7:2<146::AID-HIPO4>3.0.CO;2-L
10.1523/JNEUROSCI.18-18-07543.1998
10.1113/jphysiol.2002.037796
10.1007/BF00270757
10.1016/S0079-6123(08)60995-4
10.1111/j.1528-1167.2005.43804.x
10.1111/j.1460-9568.1993.tb00942.x
10.1002/hipo.10144
10.1016/j.pneurobio.2005.09.006
10.1073/pnas.82.5.1558
10.1016/0006-8993(95)01203-6
10.1073/pnas.100124097
10.1152/physrev.1995.75.4.689
10.1016/0920-1211(93)90043-7
10.1111/j.0013-9580.2004.17004.x
10.1523/JNEUROSCI.19-03-01088.1999
10.1152/jn.1997.78.5.2531
10.1002/cne.10472
10.1002/(SICI)1096-9861(19980817)398:1<25::AID-CNE3>3.0.CO;2-B
10.1016/j.neuroscience.2005.04.013
10.1002/(SICI)1098-2396(199701)25:1<62::AID-SYN8>3.0.CO;2-D
10.1152/jn.1996.76.2.1089
10.1016/0301-0082(95)00030-5
10.1093/jnen/59.10.907
10.1016/S0149-7634(97)00016-X
10.1016/j.pneurobio.2004.03.009
10.1002/cne.901990405
10.1103/PhysRevE.71.041902
10.1016/S0306-4522(96)00494-0
10.1002/(SICI)1096-9861(19971110)388:1<64::AID-CNE5>3.0.CO;2-M
10.1017/S031716710003287X
10.1016/j.brainres.2004.03.017
10.1085/jgp.20028676
10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P
10.1016/S0896-6273(00)80907-1
10.1016/j.neuroscience.2004.08.042
10.1152/jn.2000.83.4.1924
10.1016/S0006-8993(97)01384-X
10.1523/JNEUROSCI.18-01-00388.1998
10.1523/JNEUROSCI.20-03-00937.2000
10.1002/cne.10335
10.1007/BF00199471
10.1111/j.1528-1157.1994.tb02502.x
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
1XC
VOOES
5PM
DOI 10.1152/jn.01342.2005
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts
CrossRef
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 1522-1598
EndPage 377
ExternalDocumentID oai_HAL_inserm_00147359v1
10_1152_jn_01342_2005
16598061
jn_96_1_363
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
0VX
29L
2WC
39C
3O-
4.4
41
53G
55
5GY
5VS
AALRV
ABFLS
ABIVO
ABPTK
ABUFD
ABZEH
ACGFS
ACNCT
ADACO
ADBBV
ADKLL
AENEX
AETEA
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FH7
FRP
GJ
GX1
H13
H~9
KQ8
L7B
MVM
NEJ
O0-
OHT
OK1
P2P
RAP
RHF
RHI
RPL
SJN
UHB
UPT
UQL
WH7
WOQ
WOW
X
X7M
ZA5
ZY4
---
-DZ
-~X
.55
.GJ
18M
1CY
1Z7
41~
476
8M5
ABCQX
ABJNI
ABKWE
ABTAH
ACGFO
ADFNX
ADIYS
AFOSN
AI.
AIZAD
BKKCC
BTFSW
CGR
CUY
CVF
ECM
EIF
EMOBN
ITBOX
NPM
RPRKH
TR2
VH1
W8F
XJT
XOL
XSW
YBH
YQT
YSK
ZGI
ZXP
AAYXX
CITATION
7TK
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c527t-56895508b501945d4b8946bdf69d5285fc5b6616c199b4ae41db3e77968cd1913
ISSN 0022-3077
IngestDate Tue Sep 17 21:12:29 EDT 2024
Fri Oct 18 06:52:08 EDT 2024
Fri Oct 25 09:54:35 EDT 2024
Sun Sep 29 08:43:20 EDT 2024
Thu Sep 26 19:24:18 EDT 2024
Sat Sep 28 07:48:18 EDT 2024
Mon May 06 11:55:24 EDT 2019
Tue Jan 05 17:54:14 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords epilepsy
computational model
entorhinal cortex
synaptic transmission
field potential
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c527t-56895508b501945d4b8946bdf69d5285fc5b6616c199b4ae41db3e77968cd1913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2428-9665
0000-0002-8680-7213
OpenAccessLink https://inserm.hal.science/inserm-00147359
PMID 16598061
PQID 17265375
PQPubID 23462
PageCount 15
ParticipantIDs pubmed_primary_16598061
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2486351
proquest_miscellaneous_68076352
crossref_primary_10_1152_jn_01342_2005
proquest_miscellaneous_17265375
hal_primary_oai_HAL_inserm_00147359v1
highwire_physiology_jn_96_1_363
PublicationCentury 2000
PublicationDate 2006-07-01
PublicationDateYYYYMMDD 2006-07-01
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2006
Publisher Am Phys Soc
American Physiological Society
Publisher_xml – name: Am Phys Soc
– name: American Physiological Society
References 7745443 - J Neurocytol. 1995 Feb;24(2):135-53
12209840 - J Comp Neurol. 2002 Sep 9;451(1):45-61
9136047 - Hippocampus. 1997;7(2):146-83
10954838 - J Comp Neurol. 2000 Sep 18;425(2):177-92
9347353 - Hippocampus. 1997;7(5):571-83
9658044 - J Neurophysiol. 1998 Jul;80(1):230-40
285858 - Electroencephalogr Clin Neurophysiol Suppl. 1978;(34):9-18
9412515 - J Neurosci. 1998 Jan 1;18(1):388-98
16039740 - Neurosci Res. 2005 Oct;53(2):140-6
2913203 - J Neurosci. 1989 Jan;9(1):216-28
6168668 - J Comp Neurol. 1981 Jul 10;199(4):495-512
2641479 - Brain Topogr. 1989 Fall-Winter;2(1-2):9-18
8281302 - Eur J Neurosci. 1993 Jul 1;5(7):915-26
14751281 - Neuroscience. 2004;123(4):875-86
9364239 - J Comp Neurol. 1997 Nov 10;388(1):64-88
10706219 - Hippocampus. 2000;10(1):77-86
15329064 - Epilepsia. 2004 Sep;45(9):1017-23
1669314 - Hippocampus. 1991 Oct;1(4):341-54
15903696 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 1):041902
9703026 - J Comp Neurol. 1998 Aug 17;398(1):25-48
8082614 - Epilepsia. 1994 Jul-Aug;35(4):721-7
15951123 - Neuroscience. 2005;134(2):691-704
7843307 - Exp Brain Res. 1994;101(1):93-108
9518538 - Brain Res. 1998 Mar 16;787(1):19-33
12919385 - Epilepsia. 2003 Sep;44(9):1145-52
9356403 - J Neurophysiol. 1997 Nov;78(5):2531-45
12222817 - Network. 2002 Aug;13(3):327-42
16033887 - J Neurosci. 2005 Jul 20;25(29):6775-86
10758103 - J Neurophysiol. 2000 Apr;83(4):1924-31
4332108 - Biophys J. 1972 Jan;12(1):1-24
12450487 - Prog Neurobiol. 2002 Oct;68(3):167-207
7578475 - Biol Cybern. 1995 Sep;73(4):357-66
14654095 - Neuropharmacology. 2004 Jan;46(1):31-42
9703027 - J Comp Neurol. 1998 Aug 17;398(1):49-82
15857433 - Epilepsia. 2005 May;46(5):677-87
11039701 - Biol Cybern. 2000 Oct;83(4):367-78
9300256 - Eur J Pharmacol. 1997 Aug 13;332(3):245-55
11027250 - J Neurosci. 2000 Oct 15;20(20):7846-54
8469376 - Neurosci Lett. 1993 Jan 4;149(1):35-9
15380011 - Eur J Neurosci. 2004 Oct;20(7):1897-905
15078573 - Eur J Neurosci. 2004 Apr;19(7):1987-91
15386594 - Hippocampus. 2005;15(2):232-45
11516732 - Clin Neurophysiol. 2001 Jul;112(7):1201-18
8871222 - J Neurophysiol. 1996 Aug;76(2):1089-100
7480159 - Physiol Rev. 1995 Oct;75(4):689-723
16393157 - Epilepsia. 2005 Dec;46(12):1914-25
2983351 - Proc Natl Acad Sci U S A. 1985 Mar;82(5):1558-62
7538515 - J Comp Neurol. 1995 Mar 13;353(3):379-90
9736672 - J Neurosci. 1998 Sep 15;18(18):7543-51
11168548 - Eur J Neurosci. 2001 Jan;13(2):413-20
8987807 - J Neurosci. 1997 Jan 15;17(2):862-74
15207365 - Neuroscience. 2004;126(2):467-84
16307840 - Prog Neurobiol. 2005 Oct;77(3):166-200
12649485 - Science. 2003 Mar 21;299(5614):1902-5
12454982 - J Comp Neurol. 2003 Jan 6;455(2):156-71
8210220 - Ann Neurol. 1994 Jun;35(6):640-54
12601706 - Ann Neurol. 2003 Mar;53(3):382-9
15196963 - Brain Res. 2004 Jul 2;1013(1):1-12
7931528 - J Neurophysiol. 1994 Jun;71(6):2463-76
8987149 - Synapse. 1997 Jan;25(1):62-72
8504790 - Epilepsy Res. 1993 Mar;14(3):183-93
10719898 - Neuron. 2000 Feb;25(2):449-57
1705225 - Epilepsy Res. 1990 Dec;7(3):197-204
14519549 - Biol Cell. 2003 Sep;95(6):329-33
8720498 - Brain Res. 1996 Jan 8;706(1):113-22
9579320 - Neurosci Biobehav Rev. 1998 Mar;22(2):303-10
9886046 - J Comp Neurol. 1999 Jan 11;403(2):229-60
1777886 - Can J Neurol Sci. 1991 Nov;18(4 Suppl):645-8
11226669 - Neuroscience. 2001;102(1):53-64
9070741 - Neuroscience. 1997 Apr;77(3):629-48
10648698 - J Neurosci. 2000 Feb 1;20(3):937-48
14106980 - Arch Neurol. 1964 Mar;10:233-48
8787032 - Prog Neurobiol. 1995 Dec;47(6):477-511
2682783 - Prog Neurobiol. 1989;33(3):161-253
8452897 - Biol Cybern. 1993;68(3):275-83
15667934 - Trends Neurosci. 2005 Feb;28(2):108-15
11817519 - Prog Neuropsychopharmacol Biol Psychiatry. 2002 Feb;26(2):393-6
12466210 - Cereb Cortex. 2003 Jan;13(1):5-14
15193778 - Prog Neurobiol. 2004 May;73(1):1-60
1013341 - Prog Brain Res. 1976;45:281-308
12434059 - Science. 2002 Nov 15;298(5597):1418-21
12028360 - Eur J Neurosci. 2002 May;15(9):1499-508
9920671 - J Neurosci. 1999 Feb 1;19(3):1088-105
4853232 - Kybernetik. 1974 May 31;15(1):27-37
12451054 - J Gen Physiol. 2002 Dec;120(6):855-73
10869419 - Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8128-33
14586003 - J Neurosci. 2003 Oct 29;23(30):9761-9
15561441 - Neuroscience. 2005;130(1):249-58
15451011 - Epilepsy Res. 2004 Sep-Oct;61(1-3):89-104
8246190 - J Physiol. 1993 Apr;463:391-407
12364503 - J Neurophysiol. 2002 Oct;88(4):1743-52
10713573 - J Comp Neurol. 2000 Mar 20;418(4):457-72
10498669 - J Gen Physiol. 1999 Oct;114(4):491-509
10805658 - J Neurophysiol. 2000 May;83(5):2562-79
14750656 - Hippocampus. 2003;13(8):943-52
11079781 - J Neuropathol Exp Neurol. 2000 Oct;59(10):907-20
12679369 - J Physiol. 2003 Jun 1;549(Pt 2):361-74
R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R54
R53
R56
R55
R58
R57
R59
R61
R60
R63
R62
R65
R64
R67
R66
R69
R68
R70
R72
R71
R74
R73
R76
R75
R78
R77
R79
R81
R80
R83
R82
R85
R84
R87
R86
R89
R88
R90
R92
R91
R94
R93
R96
R95
R10
R98
R97
R12
R11
R99
R14
R13
R16
R15
R18
R17
R19
References_xml – ident: R94
  doi: 10.1002/1096-9861(20000918)425:2<177::AID-CNE2>3.0.CO;2-G
– ident: R85
  doi: 10.1046/j.1460-9568.2002.01985.x
– ident: R22
  doi: 10.1016/j.tins.2004.11.011
– ident: R83
  doi: 10.1016/S0014-2999(97)01085-6
– ident: R55
  doi: 10.1007/BF01128839
– ident: R24
  doi: 10.1523/JNEUROSCI.23-30-09761.2003
– ident: R77
  doi: 10.1093/cercor/13.1.5
– ident: R43
  doi: 10.1002/(SICI)1096-9861(20000320)418:4<457::AID-CNE7>3.0.CO;2-L
– ident: R16
  doi: 10.1111/j.1460-9568.2004.03266.x
– ident: R80
  doi: 10.1111/j.1528-1167.2005.00342.x
– ident: R48
  doi: 10.1016/0304-3940(93)90341-H
– ident: R25
  doi: 10.1152/jn.1994.71.6.2463
– ident: R30
  doi: 10.1523/JNEUROSCI.20-20-07846.2000
– ident: R62
  doi: 10.1016/S0278-5846(01)00247-0
– ident: R90
  doi: 10.1016/0301-0082(89)90009-9
– ident: R74
  doi: 10.1016/j.neuroscience.2004.03.014
– ident: R84
  doi: 10.1016/S1388-2457(01)00547-8
– ident: R75
  doi: 10.1002/cne.903530306
– ident: R9
  doi: 10.1016/j.eplepsyres.2004.06.006
– ident: R36
– ident: R51
  doi: 10.1002/(SICI)1098-1063(1997)7:5<571::AID-HIPO12>3.0.CO;2-Y
– ident: R89
  doi: 10.1523/JNEUROSCI.09-01-00216.1989
– ident: R72
  doi: 10.1152/jn.2002.88.4.1743
– ident: R23
  doi: 10.1016/j.neures.2005.06.009
– ident: R31
  doi: 10.1152/jn.2000.83.5.2562
– ident: R67
– ident: R27
  doi: 10.1002/hipo.450010402
– ident: R93
  doi: 10.1002/(SICI)1098-1063(2000)10:1<77::AID-HIPO8>3.0.CO;2-P
– ident: R41
  doi: 10.1111/j.1460-9568.2004.03627.x
– ident: R20
  doi: 10.1016/S0248-4900(03)00081-9
– ident: R3
  doi: 10.1016/S0301-0082(02)00077-1
– ident: R33
  doi: 10.1002/(SICI)1096-9861(19980817)398:1<49::AID-CNE4>3.0.CO;2-9
– ident: R70
  doi: 10.1002/ana.410350604
– ident: R28
  doi: 10.1016/j.neuroscience.2003.11.013
– ident: R39
  doi: 10.1046/j.0953-816X.2000.01405.x
– ident: R73
  doi: 10.1016/0920-1211(90)90015-N
– ident: R35
  doi: 10.1152/jn.1998.80.1.230
– ident: R69
  doi: 10.1523/JNEUROSCI.1135-05.2005
– ident: R76
  doi: 10.1126/science.1082053
– ident: R58
  doi: 10.1085/jgp.114.4.491
– ident: R86
  doi: 10.1007/s004220000160
– ident: R91
  doi: 10.1002/hipo.20047
– ident: R46
  doi: 10.1007/BF00224863
– ident: R21
  doi: 10.1126/science.1076510
– ident: R1
  doi: 10.1016/S0306-4522(00)00455-3
– ident: R50
  doi: 10.1046/j.1528-1157.2003.01603.x
– ident: R92
  doi: 10.1007/BF01181556
– ident: R5
  doi: 10.1016/j.neuropharm.2003.07.001
– ident: R82
  doi: 10.1523/JNEUROSCI.17-02-00862.1997
– ident: R17
  doi: 10.1007/BF00243220
– ident: R54
  doi: 10.1002/ana.10471
– ident: R88
  doi: 10.1016/S0006-3495(72)86068-5
– ident: R66
  doi: 10.1113/jphysiol.1993.sp019600
– ident: R96
  doi: 10.1088/0954-898X_13_3_305
– ident: R34
  doi: 10.1001/archneur.1964.00460150003001
– ident: R44
  doi: 10.1002/(SICI)1098-1063(1997)7:2<146::AID-HIPO4>3.0.CO;2-L
– ident: R26
  doi: 10.1523/JNEUROSCI.18-18-07543.1998
– ident: R53
  doi: 10.1113/jphysiol.2002.037796
– ident: R56
  doi: 10.1007/BF00270757
– ident: R57
  doi: 10.1016/S0079-6123(08)60995-4
– ident: R8
  doi: 10.1111/j.1528-1167.2005.43804.x
– ident: R64
  doi: 10.1111/j.1460-9568.1993.tb00942.x
– ident: R81
  doi: 10.1002/hipo.10144
– ident: R2
  doi: 10.1016/j.pneurobio.2005.09.006
– ident: R38
  doi: 10.1073/pnas.82.5.1558
– ident: R60
  doi: 10.1016/0006-8993(95)01203-6
– ident: R87
  doi: 10.1073/pnas.100124097
– ident: R47
  doi: 10.1152/physrev.1995.75.4.689
– ident: R10
  doi: 10.1016/0920-1211(93)90043-7
– ident: R15
  doi: 10.1111/j.0013-9580.2004.17004.x
– ident: R78
  doi: 10.1523/JNEUROSCI.19-03-01088.1999
– ident: R49
  doi: 10.1152/jn.1997.78.5.2531
– ident: R52
  doi: 10.1002/cne.10472
– ident: R32
  doi: 10.1002/(SICI)1096-9861(19980817)398:1<25::AID-CNE3>3.0.CO;2-B
– ident: R65
  doi: 10.1016/j.neuroscience.2005.04.013
– ident: R29
  doi: 10.1002/(SICI)1098-2396(199701)25:1<62::AID-SYN8>3.0.CO;2-D
– ident: R11
  doi: 10.1152/jn.1996.76.2.1089
– ident: R14
  doi: 10.1016/0301-0082(95)00030-5
– ident: R99
  doi: 10.1093/jnen/59.10.907
– ident: R18
  doi: 10.1016/S0149-7634(97)00016-X
– ident: R63
  doi: 10.1016/j.pneurobio.2004.03.009
– ident: R98
  doi: 10.1002/cne.901990405
– ident: R13
  doi: 10.1103/PhysRevE.71.041902
– ident: R40
  doi: 10.1016/S0306-4522(96)00494-0
– ident: R61
  doi: 10.1002/(SICI)1096-9861(19971110)388:1<64::AID-CNE5>3.0.CO;2-M
– ident: R4
  doi: 10.1017/S031716710003287X
– ident: R95
  doi: 10.1016/j.brainres.2004.03.017
– ident: R59
  doi: 10.1085/jgp.20028676
– ident: R68
  doi: 10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P
– ident: R7
  doi: 10.1016/S0896-6273(00)80907-1
– ident: R79
  doi: 10.1016/j.neuroscience.2004.08.042
– ident: R12
  doi: 10.1152/jn.2000.83.4.1924
– ident: R97
– ident: R37
  doi: 10.1016/S0006-8993(97)01384-X
– ident: R19
  doi: 10.1523/JNEUROSCI.18-01-00388.1998
– ident: R6
  doi: 10.1523/JNEUROSCI.20-03-00937.2000
– ident: R42
  doi: 10.1002/cne.10335
– ident: R45
  doi: 10.1007/BF00199471
– ident: R71
  doi: 10.1111/j.1528-1157.1994.tb02502.x
SSID ssj0007502
Score 1.9505371
Snippet 1 Laboratoire Traitement du Signal et de L'Image, Institut National de la Santé et de la Recherche Médicale U642, Rennes University 1, Rennes, France; and 2...
Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 363
SubjectTerms Action Potentials
Action Potentials - physiology
Animals
Bicuculline
Bicuculline - pharmacology
Bioengineering
Cognitive science
Computer Science
Computer Simulation
Electrophysiology
Engineering Sciences
Entorhinal Cortex
Entorhinal Cortex - physiology
Epilepsy
Epilepsy - physiopathology
GABA Antagonists
GABA Antagonists - pharmacology
Guinea Pigs
Interneurons
Interneurons - physiology
Life Sciences
Models, Theoretical
Neuroscience
Receptors, GABA-A
Receptors, GABA-A - physiology
Receptors, GABA-B
Receptors, GABA-B - physiology
Signal and Image Processing
Synaptic Transmission
Synaptic Transmission - physiology
Title Realistic Modeling of Entorhinal Cortex Field Potentials and Interpretation of Epileptic Activity in the Guinea Pig Isolated Brain Preparation
URI http://jn.physiology.org/cgi/content/abstract/96/1/363
https://www.ncbi.nlm.nih.gov/pubmed/16598061
https://search.proquest.com/docview/17265375
https://search.proquest.com/docview/68076352
https://inserm.hal.science/inserm-00147359
https://pubmed.ncbi.nlm.nih.gov/PMC2486351
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLU6w4YNAoZHeHoBs6k6NImdxMtSTSkwoIJaMbsoThza0TStIB0xfAQfxZdxr_N0p4jHJqpS14l1Tm6u3eNzCXkWKHjMEtftuSyGCQrjSS-CLKIXSwnpBwsSIXCj8Lv33njG3pzy007nZ0u1tMnlUfx9576S_0EVzgGuuEv2H5CtO4UT8BnwhSMgDMe_wvijQvtCtFzFkmbnpYD5OIN59FxXuxqilPZbd4Qyte5klaM0CP2SCxGwITfEH64hRKyxu0FcFpUoVZCvNpCMRt3J4nP3NQwpwjT1JRaXQAlH4R5ewns1z9WOmXoBxVjBP4nkZW5shZhdRM02iEJbO9xgsWhj0faTypLzshDLaHvNwjf0H0td2QeFqe3YjPsK-mVRF1WGYzgHCVfQjtdFBVyDl0XwdYtQefWlwNFk9iw7gnSXafNR3m4HmK6XmiG2B5fqF-bwpjX31iuzFjKeZaHwQjuES--Raw4EO5QVvv3QONZDRtY41sPoKp9X7rww7gjda8vLGynS3hwFurV59a6J0Laet5UgTW-SGyXidFDQ9BbpqOw2ORhkUb5aXtJDOqkpcEB-1MylFXPpKqUNc2nBXKqZSxvmUmAuNZmrf1gxl1bMpYuMAnNpwVwKzKUVc6lmLm0x9w6ZjY6nw3GvrAzSi7nj5z3uBQKm1oHkMEOB-MJkIJgnk9QTCXcCnsZcQuLpxbYQkkWK2Yl0le8LL4gTW9juXbKfrTJ1n1AvjrDuXpxK7jMlY8jXWd9NGY-VJzhTFjmswAjXhQFMqCfO3AkBfQ0g1nLlFnkOUNVt0LZ9PDgJFxkEnCVKR7HIt7iwLdKtwAybhy_EFacpkAs6rRgVrpPUIk93tW7xDlpUjAjh1YD_90WZWm2-hjA38bjr89-38II-GlI6FrlXMKgZYslFi_gGt4zxmd9ki7m2p3dYAH3aD_545w_J9SY4PCL7-ZeNegwpfi6f6GfoFwSSAUc
link.rule.ids 230,315,783,787,888,27938,27939
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realistic+Modeling+of+Entorhinal+Cortex+Field+Potentials+and+Interpretation+of+Epileptic+Activity+in+the+Guinea+Pig+Isolated+Brain+Preparation&rft.jtitle=Journal+of+neurophysiology&rft.au=Labyt%2C+E&rft.au=Uva%2C+L&rft.au=de+Curtis%2C+M&rft.au=Wendling%2C+F&rft.date=2006-07-01&rft.pub=Am+Phys+Soc&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=96&rft.issue=1&rft.spage=363&rft_id=info:doi/10.1152%2Fjn.01342.2005&rft_id=info%3Apmid%2F16598061&rft.externalDBID=n%2Fa&rft.externalDocID=jn_96_1_363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon