Relating Retinotopic and Object-Selective Responses in Human Lateral Occipital Cortex
1 Neurosciences Institute and 2 Department of Psychology, Stanford University, Stanford, California Submitted 21 December 2007; accepted in final form 2 May 2008 What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic res...
Saved in:
Published in | Journal of neurophysiology Vol. 100; no. 1; pp. 249 - 267 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Am Phys Soc
01.07.2008
American Physiological Society |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3077 1522-1598 |
DOI | 10.1152/jn.01383.2007 |
Cover
Abstract | 1 Neurosciences Institute and 2 Department of Psychology, Stanford University, Stanford, California
Submitted 21 December 2007;
accepted in final form 2 May 2008
What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic resonance imaging (fMRI) to examine sensitivity to retinal position and category in LO, an object-selective region positioned posterior to MT along the lateral cortical surface. Six subjects participated in phase-encoded retinotopic mapping experiments as well as block-design experiments in which objects from six different categories were presented at six distinct positions in the visual field. We found substantial position modulation in LO using standard nonobject retinotopic mapping stimuli; this modulation extended beyond the boundaries of visual field maps LO-1 and LO-2. Further, LO showed a pronounced lower visual field bias: more LO voxels represented the lower contralateral visual field, and the mean LO response was higher to objects presented below fixation than above fixation. However, eccentricity effects produced by retinotopic mapping stimuli and objects differed. Whereas LO voxels preferred a range of eccentricities lying mostly outside the fovea in the retinotopic mapping experiment, LO responses were strongest to foveally presented objects. Finally, we found a stronger effect of position than category on both the mean LO response, as well as the distributed response across voxels. Overall these results demonstrate that retinal position exhibits strong effects on neural response in LO and indicates that these position effects may be explained by retinotopic organization.
Address for reprint requests and other correspondence: R. Sayres, Psychology Dept., Stanford University, Stanford, CA 94305 (E-mail: sayres{at}psych.stanford.edu ) |
---|---|
AbstractList | What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic resonance imaging (fMRI) to examine sensitivity to retinal position and category in LO, an object-selective region positioned posterior to MT along the lateral cortical surface. Six subjects participated in phase-encoded retinotopic mapping experiments as well as block-design experiments in which objects from six different categories were presented at six distinct positions in the visual field. We found substantial position modulation in LO using standard nonobject retinotopic mapping stimuli; this modulation extended beyond the boundaries of visual field maps LO-1 and LO-2. Further, LO showed a pronounced lower visual field bias: more LO voxels represented the lower contralateral visual field, and the mean LO response was higher to objects presented below fixation than above fixation. However, eccentricity effects produced by retinotopic mapping stimuli and objects differed. Whereas LO voxels preferred a range of eccentricities lying mostly outside the fovea in the retinotopic mapping experiment, LO responses were strongest to foveally presented objects. Finally, we found a stronger effect of position than category on both the mean LO response, as well as the distributed response across voxels. Overall these results demonstrate that retinal position exhibits strong effects on neural response in LO and indicates that these position effects may be explained by retinotopic organization.What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic resonance imaging (fMRI) to examine sensitivity to retinal position and category in LO, an object-selective region positioned posterior to MT along the lateral cortical surface. Six subjects participated in phase-encoded retinotopic mapping experiments as well as block-design experiments in which objects from six different categories were presented at six distinct positions in the visual field. We found substantial position modulation in LO using standard nonobject retinotopic mapping stimuli; this modulation extended beyond the boundaries of visual field maps LO-1 and LO-2. Further, LO showed a pronounced lower visual field bias: more LO voxels represented the lower contralateral visual field, and the mean LO response was higher to objects presented below fixation than above fixation. However, eccentricity effects produced by retinotopic mapping stimuli and objects differed. Whereas LO voxels preferred a range of eccentricities lying mostly outside the fovea in the retinotopic mapping experiment, LO responses were strongest to foveally presented objects. Finally, we found a stronger effect of position than category on both the mean LO response, as well as the distributed response across voxels. Overall these results demonstrate that retinal position exhibits strong effects on neural response in LO and indicates that these position effects may be explained by retinotopic organization. What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic resonance imaging (fMRI) to examine sensitivity to retinal position and category in LO, an object-selective region positioned posterior to MT along the lateral cortical surface. Six subjects participated in phase-encoded retinotopic mapping experiments as well as block-design experiments in which objects from six different categories were presented at six distinct positions in the visual field. We found substantial position modulation in LO using standard nonobject retinotopic mapping stimuli; this modulation extended beyond the boundaries of visual field maps LO-1 and LO-2. Further, LO showed a pronounced lower visual field bias: more LO voxels represented the lower contralateral visual field, and the mean LO response was higher to objects presented below fixation than above fixation. However, eccentricity effects produced by retinotopic mapping stimuli and objects differed. Whereas LO voxels preferred a range of eccentricities lying mostly outside the fovea in the retinotopic mapping experiment, LO responses were strongest to foveally presented objects. Finally, we found a stronger effect of position than category on both the mean LO response, as well as the distributed response across voxels. Overall these results demonstrate that retinal position exhibits strong effects on neural response in LO and indicates that these position effects may be explained by retinotopic organization. 1 Neurosciences Institute and 2 Department of Psychology, Stanford University, Stanford, California Submitted 21 December 2007; accepted in final form 2 May 2008 What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic resonance imaging (fMRI) to examine sensitivity to retinal position and category in LO, an object-selective region positioned posterior to MT along the lateral cortical surface. Six subjects participated in phase-encoded retinotopic mapping experiments as well as block-design experiments in which objects from six different categories were presented at six distinct positions in the visual field. We found substantial position modulation in LO using standard nonobject retinotopic mapping stimuli; this modulation extended beyond the boundaries of visual field maps LO-1 and LO-2. Further, LO showed a pronounced lower visual field bias: more LO voxels represented the lower contralateral visual field, and the mean LO response was higher to objects presented below fixation than above fixation. However, eccentricity effects produced by retinotopic mapping stimuli and objects differed. Whereas LO voxels preferred a range of eccentricities lying mostly outside the fovea in the retinotopic mapping experiment, LO responses were strongest to foveally presented objects. Finally, we found a stronger effect of position than category on both the mean LO response, as well as the distributed response across voxels. Overall these results demonstrate that retinal position exhibits strong effects on neural response in LO and indicates that these position effects may be explained by retinotopic organization. Address for reprint requests and other correspondence: R. Sayres, Psychology Dept., Stanford University, Stanford, CA 94305 (E-mail: sayres{at}psych.stanford.edu ) |
Author | Grill-Spector, Kalanit Sayres, Rory |
AuthorAffiliation | 1 Neurosciences Institute and 2 Department of Psychology, Stanford University, Stanford, California |
AuthorAffiliation_xml | – name: 1 Neurosciences Institute and 2 Department of Psychology, Stanford University, Stanford, California |
Author_xml | – sequence: 1 fullname: Sayres, Rory – sequence: 2 fullname: Grill-Spector, Kalanit |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18463186$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1P4zAQxa0Vq6V8HPe6yglOKf5I7OSChKoFVqpUiYWz5TjT1pVrh9hh6X-PC90KkDjNyP699-yZI3TgvAOEfhI8JqSkFys3xoRVbEwxFt_QKJ3RnJR1dYBGGKeeYSEO0VEIK5yIEtMf6JBUBWek4iP0cAdWReMW2R2k4qPvjM6Ua7NZswId879gUzFPkIDQeRcgZMZlt8NauWyqIvTKZjOtTWdi6ia-j_B8gr7PlQ1wuqvH6OH69_3kNp_Obv5Mrqa5LqmIedHWmjKhFGlLgZkgDS-JwgU0hOlaUSoKXTLFKIeKNbXAGpNSi4ZrXHAAzo7R5ZtvNzRraDW4mJ4ju96sVb-RXhn58caZpVz4J0mLmhWiSgZnO4PePw4QolyboMFa5cAPQfKaEVpzkcBf75P2Ef8nmQD2Bujeh9DDXOo0kGj8NthYSbDc7kuunHzdl9zuK6nyT6q98Rf8LmVpFst_pgfZLTfBeOsXG3k9WHsPzzFpCE7y7S9l186T6vxrVQrY0-wFa9a3uA |
CitedBy_id | crossref_primary_10_1093_cercor_bht092 crossref_primary_10_1093_cercor_bhv030 crossref_primary_10_1162_jocn_a_00190 crossref_primary_10_1016_j_neuroimage_2012_12_023 crossref_primary_10_3389_fnhum_2016_00412 crossref_primary_10_1371_journal_pcbi_1012161 crossref_primary_10_1016_j_neuroimage_2017_03_062 crossref_primary_10_3389_fnhum_2015_00327 crossref_primary_10_1016_j_neuropsychologia_2017_04_014 crossref_primary_10_1016_j_neuroimage_2019_04_025 crossref_primary_10_1093_cercor_bhr106 crossref_primary_10_3389_fnhum_2019_00248 crossref_primary_10_1093_cercor_bhs278 crossref_primary_10_1101_lm_045765_117 crossref_primary_10_1016_j_cortex_2022_04_020 crossref_primary_10_1016_j_neuroimage_2012_08_043 crossref_primary_10_1016_j_neuropsychologia_2016_12_014 crossref_primary_10_1016_j_cortex_2017_06_011 crossref_primary_10_1016_j_neuroimage_2010_04_262 crossref_primary_10_1002_hbm_24211 crossref_primary_10_1038_s41467_023_43146_w crossref_primary_10_1016_j_neuroimage_2022_119635 crossref_primary_10_3389_fnbot_2020_597471 crossref_primary_10_1007_s00429_020_02112_8 crossref_primary_10_1371_journal_pone_0072728 crossref_primary_10_1016_j_cortex_2012_12_014 crossref_primary_10_1016_j_neuroimage_2016_04_012 crossref_primary_10_1523_JNEUROSCI_3352_13_2014 crossref_primary_10_1016_j_neuroimage_2012_06_053 crossref_primary_10_1073_pnas_1612862114 crossref_primary_10_1093_cercor_bhq042 crossref_primary_10_1016_j_neulet_2019_134344 crossref_primary_10_5334_joc_104 crossref_primary_10_1016_j_brainres_2011_02_022 crossref_primary_10_1016_j_cogpsych_2019_101224 crossref_primary_10_2139_ssrn_4060229 crossref_primary_10_1162_jocn_2009_21391 crossref_primary_10_1002_hbm_21367 crossref_primary_10_1007_s00429_021_02411_8 crossref_primary_10_1016_j_neuroimage_2011_02_071 crossref_primary_10_1167_19_5_15 crossref_primary_10_1016_j_neuropsychologia_2018_05_026 crossref_primary_10_1111_opo_12121 crossref_primary_10_1016_j_neuroimage_2018_11_056 crossref_primary_10_1007_s10827_010_0239_2 crossref_primary_10_1007_s00221_024_06989_3 crossref_primary_10_1016_j_schres_2020_09_015 crossref_primary_10_1152_jn_00462_2010 crossref_primary_10_1371_journal_pone_0024470 crossref_primary_10_1016_j_neuroimage_2008_11_009 crossref_primary_10_1523_JNEUROSCI_5079_14_2015 crossref_primary_10_1371_journal_pone_0232551 crossref_primary_10_1162_jocn_a_01156 crossref_primary_10_1093_cercor_bhr357 crossref_primary_10_1152_jn_01108_2009 crossref_primary_10_1371_journal_pone_0223166 crossref_primary_10_1016_j_neuron_2012_04_036 crossref_primary_10_1016_j_neuroimage_2018_02_040 crossref_primary_10_1016_j_neuroimage_2010_09_044 crossref_primary_10_1523_JNEUROSCI_4588_10_2011 crossref_primary_10_1038_s41562_022_01302_0 crossref_primary_10_1073_pnas_1704877114 crossref_primary_10_1123_mc_2017_0095 crossref_primary_10_1523_JNEUROSCI_1993_20_2021 crossref_primary_10_1162_jocn_a_00790 crossref_primary_10_1038_nn_2903 crossref_primary_10_3389_fnhum_2016_00054 crossref_primary_10_1093_cercor_bhw287 crossref_primary_10_1017_S0952523815000127 crossref_primary_10_1016_j_tics_2012_10_011 crossref_primary_10_1162_jocn_a_00672 crossref_primary_10_1016_j_neuropsychologia_2021_107956 crossref_primary_10_3758_s13414_019_01896_0 crossref_primary_10_1093_cercor_bhaa110 crossref_primary_10_1162_jocn_a_01408 crossref_primary_10_1371_journal_pone_0024450 crossref_primary_10_1016_j_neuron_2018_06_038 crossref_primary_10_1016_j_jneumeth_2013_01_021 crossref_primary_10_1371_journal_pone_0036859 crossref_primary_10_1016_j_neuroimage_2012_07_046 crossref_primary_10_1523_JNEUROSCI_3766_10_2011 crossref_primary_10_1016_j_neuroimage_2022_118900 crossref_primary_10_1038_nn_4247 crossref_primary_10_1007_s00429_015_1009_8 crossref_primary_10_1162_jocn_a_01778 crossref_primary_10_1038_s44271_023_00002_3 crossref_primary_10_1098_rstb_2016_0102 crossref_primary_10_1016_j_neubiorev_2022_104994 crossref_primary_10_1002_hbm_22020 crossref_primary_10_1523_JNEUROSCI_2378_14_2015 crossref_primary_10_3389_fnint_2016_00037 crossref_primary_10_1007_s00221_016_4562_3 crossref_primary_10_1016_j_neuroimage_2016_05_052 crossref_primary_10_1016_j_tins_2023_03_006 crossref_primary_10_1016_j_neuroimage_2011_03_041 crossref_primary_10_1016_j_brainres_2015_01_024 crossref_primary_10_1016_j_neuroimage_2011_07_051 crossref_primary_10_1093_cercor_bhq113 crossref_primary_10_1167_jov_22_11_7 crossref_primary_10_1186_s12984_024_01306_z crossref_primary_10_1002_hbm_23348 crossref_primary_10_1038_nrn3747 crossref_primary_10_1093_cercor_bhac399 crossref_primary_10_1093_ons_opy263 crossref_primary_10_1167_jov_23_4_8 crossref_primary_10_1162_jocn_2010_21559 crossref_primary_10_1523_JNEUROSCI_3156_13_2014 crossref_primary_10_1523_JNEUROSCI_3603_15_2016 crossref_primary_10_1371_journal_pone_0018705 crossref_primary_10_1016_j_neuropsychologia_2016_05_022 crossref_primary_10_1016_j_neuropsychologia_2017_04_003 crossref_primary_10_1016_j_neuroimage_2009_02_047 crossref_primary_10_1016_j_visres_2022_108049 crossref_primary_10_1016_j_neuroimage_2013_05_128 crossref_primary_10_1162_jocn_a_01995 |
Cites_doi | 10.1016/j.visres.2005.02.021 10.1016/S0893-6080(96)00045-7 10.1038/87490 10.1146/annurev.neuro.27.070203.144220 10.1073/pnas.92.18.8135 10.1167/6.11.12 10.1093/cercor/bhh134 10.1146/annurev.ne.19.030196.000545 10.1016/S0960-9822(00)00655-2 10.1093/cercor/11.4.298 10.1080/14640748908402393 10.1371/journal.pone.0000574 10.1523/JNEUROSCI.17-11-04302.1997 10.1002/1096-9861(20001030)426:4<505::AID-CNE1>3.0.CO;2-M 10.1002/(SICI)1522-2594(199908)42:2<412::AID-MRM25>3.0.CO;2-U 10.1093/cercor/7.2.181 10.1016/j.neuroimage.2007.09.034 10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R 10.1002/(SICI)1097-0193(1998)6:4<316::AID-HBM9>3.0.CO;2-6 10.1152/jn.00500.2005 10.1016/S0896-6273(00)00030-1 10.1016/S0042-6989(02)00039-1 10.1073/pnas.0800431105 10.1126/science.271.5249.651 10.1068/p200585 10.1038/nn780 10.1093/cercor/bhl027 10.1038/nn1507 10.1126/science.1063736 10.1126/science.1119983 10.1093/cercor/bhl138 10.1002/hbm.20010 10.1109/42.650881 10.1016/S0896-6273(00)80832-6 10.1523/JNEUROSCI.17-18-07060.1997 10.1093/cercor/bhl053 10.1109/42.563664 10.1016/j.neuron.2007.10.012 10.1523/JNEUROSCI.18-10-03816.1998 10.1126/science.1117593 10.1163/156856800741072 10.1152/jn.1995.73.1.218 10.1152/jn.00024.2007 10.1152/jn.1994.71.3.856 10.1068/p2953 10.1098/rstb.2005.1628 10.1016/S0959-4388(03)00040-0 10.1523/JNEUROSCI.2991-07.2007 10.1046/j.0953-816x.2001.01717.x 10.1038/383334a0 10.1016/j.visres.2005.04.001 10.1016/S0960-9822(95)00108-4 10.1126/science.1063414 10.1038/77754 10.1016/j.neuroimage.2006.08.020 10.1016/j.tics.2007.06.010 10.1152/jn.00358.2002 10.1016/S0896-6273(03)00144-2 10.1038/33402 10.1126/science.7754376 10.1016/S0042-6989(01)00073-6 10.1016/S1053-8119(03)00049-1 10.1038/nn1224 10.1016/S0896-6273(01)00224-0 10.1523/JNEUROSCI.1657-06.2006 10.1016/S0960-9822(00)00089-0 10.1016/j.jneumeth.2004.02.025 10.1111/j.0956-7976.2005.00796.x |
ContentType | Journal Article |
Copyright | Copyright © 2008, American Physiological Society |
Copyright_xml | – notice: Copyright © 2008, American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/jn.01383.2007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 267 |
ExternalDocumentID | PMC2493478 18463186 10_1152_jn_01383_2007 jn_100_1_249 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: 5 R21 EY-016199-02 – fundername: NEI NIH HHS grantid: R21 EY016199 – fundername: NEI NIH HHS grantid: 5 F31 EY-015937 |
GroupedDBID | - 0VX 29L 2WC 39C 3O- 4.4 41 53G 55 5GY 5VS AALRV ABFLS ABIVO ABPTK ABUFD ABZEH ACGFS ACNCT ADACO ADBBV ADKLL AENEX AETEA AFFNX ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FH7 FRP GX1 H~9 KQ8 L7B NEJ O0- OK1 P2P RAP RHF RHI RPL SJN UHB UPT UQL WH7 WOQ WOW X X7M ZA5 --- -DZ -~X .55 .GJ 18M 1CY 1Z7 41~ 8M5 AAYXX ABCQX ABHWK ABJNI ABKWE ACGFO ADFNX ADHGD ADIYS AFOSN AI. AIZAD BKKCC BTFSW CITATION EMOBN H13 ITBOX MVM OHT RPRKH TR2 VH1 W8F XJT XOL XSW YBH YQT YSK ZGI ZXP ZY4 ABTAH CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c527t-4d9c237aa1d570371b651a04eb13c9a2274c53a326e83b970c015c7b6c046ee63 |
ISSN | 0022-3077 |
IngestDate | Thu Aug 21 14:30:46 EDT 2025 Fri Sep 05 06:12:59 EDT 2025 Thu Apr 03 07:06:28 EDT 2025 Thu Apr 24 23:03:27 EDT 2025 Tue Jul 01 01:17:05 EDT 2025 Tue Jan 05 17:53:03 EST 2021 Mon May 06 11:52:32 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c527t-4d9c237aa1d570371b651a04eb13c9a2274c53a326e83b970c015c7b6c046ee63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Address for reprint requests and other correspondence: R. Sayres, Psychology Dept., Stanford University, Stanford, CA 94305 (E-mail: sayres@psych.stanford.edu) The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. |
OpenAccessLink | http://doi.org/10.1152/jn.01383.2007 |
PMID | 18463186 |
PQID | 69312967 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2493478 crossref_primary_10_1152_jn_01383_2007 crossref_citationtrail_10_1152_jn_01383_2007 highwire_physiology_jn_100_1_249 pubmed_primary_18463186 proquest_miscellaneous_69312967 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-07-01 |
PublicationDateYYYYMMDD | 2008-07-01 |
PublicationDate_xml | – month: 07 year: 2008 text: 2008-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2008 |
Publisher | Am Phys Soc American Physiological Society |
Publisher_xml | – name: Am Phys Soc – name: American Physiological Society |
References | R61 R60 R63 R62 R21 R65 R20 R64 R23 R67 R22 R66 R25 R24 R68 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R54 R53 R12 R56 R11 R55 R14 R58 R13 R57 R16 R15 R59 R18 R17 R19 2587798 - Q J Exp Psychol A. 1989 Nov;41(4):775-96 7667258 - Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8135-9 7583105 - Curr Biol. 1995 May 1;5(5):552-63 11577239 - Science. 2001 Sep 28;293(5539):2470-3 12744968 - Curr Opin Neurobiol. 2003 Apr;13(2):159-66 1806902 - Perception. 1991;20(5):585-93 9151747 - J Neurosci. 1997 Jun 1;17(11):4302-11 15083523 - Hum Brain Mapp. 2004 May;22(1):15-26 11319563 - Nat Neurosci. 2001 May;4(5):533-9 16236787 - J Neurophysiol. 2006 Feb;95(2):995-1007 15686582 - Psychol Sci. 2005 Feb;16(2):152-60 10800036 - Magn Reson Med. 2000 May;43(5):705-15 15937008 - Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):693-707 7922354 - Curr Biol. 1994 May 1;4(5):401-14 10440968 - Magn Reson Med. 1999 Aug;42(2):412-5 8571128 - Science. 1996 Feb 2;271(5249):651-3 11239441 - Neuron. 2001 Feb;29(2):529-35 17978030 - J Neurosci. 2007 Oct 31;27(44):11896-911 9278542 - J Neurosci. 1997 Sep 15;17(18):7060-78 16456083 - Science. 2006 Feb 3;311(5761):670-4 10903579 - Nat Neurosci. 2000 Aug;3(8):837-43 8833438 - Annu Rev Neurosci. 1996;19:109-39 11740503 - Nat Neurosci. 2002 Jan;5(1):17-8 11027395 - J Comp Neurol. 2000 Oct 30;426(4):505-18 11322983 - Vision Res. 2001;41(10-11):1409-22 10996068 - Curr Biol. 2000 Sep 7;10(17):1017-24 16905593 - Cereb Cortex. 2007 Jun;17(6):1402-11 9704268 - Hum Brain Mapp. 1998;6(4):316-28 17964252 - Neuron. 2007 Oct 25;56(2):366-83 11198236 - Spat Vis. 2000;13(2-3):255-64 17977024 - Neuroimage. 2008 Jan 15;39(2):647-60 9533585 - IEEE Trans Med Imaging. 1997 Dec;16(6):852-63 15217346 - Annu Rev Neurosci. 2004;27:649-77 16051308 - Vision Res. 2005 Oct;45(21):2820-30 10985342 - Neuron. 2000 Aug;27(2):205-18 9101328 - IEEE Trans Med Imaging. 1997 Apr;16(2):187-98 8201425 - J Neurophysiol. 1994 Mar;71(3):856-67 17011213 - Neuroimage. 2007 Jan 1;34(1):74-84 17209736 - J Vis. 2006;6(11):1294-306 11934448 - Vision Res. 2002 Apr;42(8):949-67 15845239 - Vision Res. 2005 Jul;45(16):2065-80 11576191 - Eur J Neurosci. 2001 Sep;14(5):869-76 16025108 - Nat Neurosci. 2005 Aug;8(8):1102-9 17428910 - J Neurophysiol. 2007 Jun;97(6):4296-309 17182764 - J Neurosci. 2006 Dec 20;26(51):13128-42 7754376 - Science. 1995 May 12;268(5212):889-93 10677037 - Neuron. 1999 Sep;24(1):187-203 17172632 - Cereb Cortex. 2007 Oct;17(10):2293-302 15126041 - J Neurosci Methods. 2004 Jun 15;136(1):1-21 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92 12670430 - Neuron. 2003 Mar 27;37(6):1027-41 18326624 - Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4447-52 9570811 - J Neurosci. 1998 May 15;18(10):3816-30 15269109 - Cereb Cortex. 2005 Mar;15(3):325-31 11278193 - Cereb Cortex. 2001 Apr;11(4):298-311 11464559 - Perception. 2001;30(6):707-24 8848045 - Nature. 1996 Sep 26;383(6598):334-7 16818474 - Cereb Cortex. 2007 May;17(5):1164-72 17631409 - Trends Cogn Sci. 2007 Aug;11(8):333-41 7714567 - J Neurophysiol. 1995 Jan;73(1):218-26 12814577 - Neuroimage. 2003 Jun;19(2 Pt 1):261-70 11577229 - Science. 2001 Sep 28;293(5539):2425-30 12662545 - Neural Netw. 1996 Nov;9(8):1459-1475 17593973 - PLoS One. 2007;2(6):e574 15077112 - Nat Neurosci. 2004 May;7(5):555-62 12783959 - J Neurophysiol. 2003 Jun;89(6):3264-78 16272124 - Science. 2005 Nov 4;310(5749):863-6 9560155 - Nature. 1998 Apr 9;392(6676):598-601 |
References_xml | – ident: R48 doi: 10.1016/j.visres.2005.02.021 – ident: R59 doi: 10.1016/S0893-6080(96)00045-7 – ident: R39 doi: 10.1038/87490 – ident: R24 doi: 10.1146/annurev.neuro.27.070203.144220 – ident: R45 doi: 10.1073/pnas.92.18.8135 – ident: R41 doi: 10.1167/6.11.12 – ident: R49 doi: 10.1093/cercor/bhh134 – ident: R58 doi: 10.1146/annurev.ne.19.030196.000545 – ident: R32 doi: 10.1016/S0960-9822(00)00655-2 – ident: R62 doi: 10.1093/cercor/11.4.298 – ident: R12 doi: 10.1080/14640748908402393 – ident: R29 doi: 10.1371/journal.pone.0000574 – ident: R33 doi: 10.1523/JNEUROSCI.17-11-04302.1997 – ident: R50 doi: 10.1002/1096-9861(20001030)426:4<505::AID-CNE1>3.0.CO;2-M – ident: R16 doi: 10.1002/(SICI)1522-2594(199908)42:2<412::AID-MRM25>3.0.CO;2-U – ident: R13 doi: 10.1093/cercor/7.2.181 – ident: R10 doi: 10.1016/j.neuroimage.2007.09.034 – ident: R47 doi: 10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R – ident: R22 doi: 10.1002/(SICI)1097-0193(1998)6:4<316::AID-HBM9>3.0.CO;2-6 – ident: R54 doi: 10.1152/jn.00500.2005 – ident: R52 doi: 10.1016/S0896-6273(00)00030-1 – ident: R4 doi: 10.1016/S0042-6989(02)00039-1 – ident: R55 doi: 10.1073/pnas.0800431105 – ident: R53 doi: 10.1126/science.271.5249.651 – ident: R2 doi: 10.1068/p200585 – ident: R36 doi: 10.1038/nn780 – ident: R46 doi: 10.1093/cercor/bhl027 – ident: R3 doi: 10.1038/nn1507 – ident: R27 doi: 10.1126/science.1063736 – ident: R64 doi: 10.1126/science.1119983 – ident: R67 doi: 10.1093/cercor/bhl138 – ident: R40 doi: 10.1002/hbm.20010 – ident: R60 doi: 10.1109/42.650881 – ident: R21 doi: 10.1016/S0896-6273(00)80832-6 – ident: R63 doi: 10.1523/JNEUROSCI.17-18-07060.1997 – ident: R15 doi: 10.1093/cercor/bhl053 – ident: R44 doi: 10.1109/42.563664 – ident: R66 doi: 10.1016/j.neuron.2007.10.012 – ident: R57 doi: 10.1523/JNEUROSCI.18-10-03816.1998 – ident: R30 doi: 10.1126/science.1117593 – ident: R11 doi: 10.1163/156856800741072 – ident: R31 doi: 10.1152/jn.1995.73.1.218 – ident: R34 doi: 10.1152/jn.00024.2007 – ident: R35 doi: 10.1152/jn.1994.71.3.856 – ident: R8 doi: 10.1068/p2953 – ident: R65 doi: 10.1098/rstb.2005.1628 – ident: R17 doi: 10.1016/S0959-4388(03)00040-0 – ident: R25 doi: 10.1523/JNEUROSCI.2991-07.2007 – ident: R61 doi: 10.1046/j.0953-816x.2001.01717.x – ident: R28 doi: 10.1038/383334a0 – ident: R38 doi: 10.1016/j.visres.2005.04.001 – ident: R43 doi: 10.1016/S0960-9822(95)00108-4 – ident: R9 doi: 10.1126/science.1063414 – ident: R23 doi: 10.1038/77754 – ident: R51 doi: 10.1016/j.neuroimage.2006.08.020 – ident: R6 doi: 10.1016/j.tics.2007.06.010 – ident: R7 doi: 10.1152/jn.00358.2002 – ident: R26 doi: 10.1016/S0896-6273(03)00144-2 – ident: R14 doi: 10.1038/33402 – ident: R56 doi: 10.1126/science.7754376 – ident: R20 doi: 10.1016/S0042-6989(01)00073-6 – ident: R5 doi: 10.1016/S1053-8119(03)00049-1 – ident: R19 doi: 10.1038/nn1224 – ident: R1 doi: 10.1016/S0896-6273(01)00224-0 – ident: R37 doi: 10.1523/JNEUROSCI.1657-06.2006 – ident: R42 doi: 10.1016/S0960-9822(00)00089-0 – ident: R68 doi: 10.1016/j.jneumeth.2004.02.025 – ident: R18 doi: 10.1111/j.0956-7976.2005.00796.x – reference: 16905593 - Cereb Cortex. 2007 Jun;17(6):1402-11 – reference: 10985342 - Neuron. 2000 Aug;27(2):205-18 – reference: 11740503 - Nat Neurosci. 2002 Jan;5(1):17-8 – reference: 17978030 - J Neurosci. 2007 Oct 31;27(44):11896-911 – reference: 17964252 - Neuron. 2007 Oct 25;56(2):366-83 – reference: 15269109 - Cereb Cortex. 2005 Mar;15(3):325-31 – reference: 11319563 - Nat Neurosci. 2001 May;4(5):533-9 – reference: 10677037 - Neuron. 1999 Sep;24(1):187-203 – reference: 9278542 - J Neurosci. 1997 Sep 15;17(18):7060-78 – reference: 12744968 - Curr Opin Neurobiol. 2003 Apr;13(2):159-66 – reference: 10996068 - Curr Biol. 2000 Sep 7;10(17):1017-24 – reference: 7714567 - J Neurophysiol. 1995 Jan;73(1):218-26 – reference: 16051308 - Vision Res. 2005 Oct;45(21):2820-30 – reference: 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92 – reference: 1806902 - Perception. 1991;20(5):585-93 – reference: 9704268 - Hum Brain Mapp. 1998;6(4):316-28 – reference: 2587798 - Q J Exp Psychol A. 1989 Nov;41(4):775-96 – reference: 10903579 - Nat Neurosci. 2000 Aug;3(8):837-43 – reference: 8848045 - Nature. 1996 Sep 26;383(6598):334-7 – reference: 10440968 - Magn Reson Med. 1999 Aug;42(2):412-5 – reference: 12670430 - Neuron. 2003 Mar 27;37(6):1027-41 – reference: 9533585 - IEEE Trans Med Imaging. 1997 Dec;16(6):852-63 – reference: 15937008 - Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):693-707 – reference: 16456083 - Science. 2006 Feb 3;311(5761):670-4 – reference: 17172632 - Cereb Cortex. 2007 Oct;17(10):2293-302 – reference: 11278193 - Cereb Cortex. 2001 Apr;11(4):298-311 – reference: 11464559 - Perception. 2001;30(6):707-24 – reference: 11027395 - J Comp Neurol. 2000 Oct 30;426(4):505-18 – reference: 12662545 - Neural Netw. 1996 Nov;9(8):1459-1475 – reference: 9570811 - J Neurosci. 1998 May 15;18(10):3816-30 – reference: 16236787 - J Neurophysiol. 2006 Feb;95(2):995-1007 – reference: 11198236 - Spat Vis. 2000;13(2-3):255-64 – reference: 15217346 - Annu Rev Neurosci. 2004;27:649-77 – reference: 17593973 - PLoS One. 2007;2(6):e574 – reference: 16272124 - Science. 2005 Nov 4;310(5749):863-6 – reference: 15126041 - J Neurosci Methods. 2004 Jun 15;136(1):1-21 – reference: 18326624 - Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4447-52 – reference: 12783959 - J Neurophysiol. 2003 Jun;89(6):3264-78 – reference: 15686582 - Psychol Sci. 2005 Feb;16(2):152-60 – reference: 16025108 - Nat Neurosci. 2005 Aug;8(8):1102-9 – reference: 15845239 - Vision Res. 2005 Jul;45(16):2065-80 – reference: 9101328 - IEEE Trans Med Imaging. 1997 Apr;16(2):187-98 – reference: 8571128 - Science. 1996 Feb 2;271(5249):651-3 – reference: 8201425 - J Neurophysiol. 1994 Mar;71(3):856-67 – reference: 17977024 - Neuroimage. 2008 Jan 15;39(2):647-60 – reference: 7754376 - Science. 1995 May 12;268(5212):889-93 – reference: 17182764 - J Neurosci. 2006 Dec 20;26(51):13128-42 – reference: 11934448 - Vision Res. 2002 Apr;42(8):949-67 – reference: 12814577 - Neuroimage. 2003 Jun;19(2 Pt 1):261-70 – reference: 10800036 - Magn Reson Med. 2000 May;43(5):705-15 – reference: 16818474 - Cereb Cortex. 2007 May;17(5):1164-72 – reference: 9151747 - J Neurosci. 1997 Jun 1;17(11):4302-11 – reference: 8833438 - Annu Rev Neurosci. 1996;19:109-39 – reference: 11322983 - Vision Res. 2001;41(10-11):1409-22 – reference: 17428910 - J Neurophysiol. 2007 Jun;97(6):4296-309 – reference: 17209736 - J Vis. 2006;6(11):1294-306 – reference: 9560155 - Nature. 1998 Apr 9;392(6676):598-601 – reference: 7667258 - Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8135-9 – reference: 17011213 - Neuroimage. 2007 Jan 1;34(1):74-84 – reference: 15083523 - Hum Brain Mapp. 2004 May;22(1):15-26 – reference: 11576191 - Eur J Neurosci. 2001 Sep;14(5):869-76 – reference: 11239441 - Neuron. 2001 Feb;29(2):529-35 – reference: 7922354 - Curr Biol. 1994 May 1;4(5):401-14 – reference: 7583105 - Curr Biol. 1995 May 1;5(5):552-63 – reference: 11577229 - Science. 2001 Sep 28;293(5539):2425-30 – reference: 17631409 - Trends Cogn Sci. 2007 Aug;11(8):333-41 – reference: 15077112 - Nat Neurosci. 2004 May;7(5):555-62 – reference: 11577239 - Science. 2001 Sep 28;293(5539):2470-3 |
SSID | ssj0007502 |
Score | 2.3233428 |
Snippet | 1 Neurosciences Institute and 2 Department of Psychology, Stanford University, Stanford, California
Submitted 21 December 2007;
accepted in final form 2 May... What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic resonance imaging (fMRI)... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 249 |
SubjectTerms | Adult Analysis of Variance Brain Mapping Dominance, Ocular Female Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Occipital Lobe - blood supply Occipital Lobe - physiology Oxygen - blood Pattern Recognition, Visual - physiology Photic Stimulation - methods Reaction Time - physiology Retina - physiology Visual Fields - physiology Visual Pathways - blood supply Visual Pathways - physiology |
Title | Relating Retinotopic and Object-Selective Responses in Human Lateral Occipital Cortex |
URI | http://jn.physiology.org/cgi/content/abstract/100/1/249 https://www.ncbi.nlm.nih.gov/pubmed/18463186 https://www.proquest.com/docview/69312967 https://pubmed.ncbi.nlm.nih.gov/PMC2493478 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQeOEFAeMSrn5Ae1qGGzt28jghYOLO1kp7s2zX0zqFpCqZxPj1HF-SLF0nDV7SKnWTpufLOV-Oj7-D0GtigHSUWqWaMZ0yyk_S0roEvCpLiL8QsfxamC9f-cGMfTzOj4cidr-6pNV75s_GdSX_Y1XYB3Z1q2T_wbL9QWEHvAf7whYsDNsb2ThUsvn6OXhp2mYZ1Ve_aZdeSY98kxtXG3QYSmF99VVM3H9WbvFx5XSGF751CPiGVWt_X0NXvfClz4OMEvFH6mIVPM1hM1QUf1gtqip1ve3bJhZtVE5nY5RjKPp61FHNP4kNV2x0lbAPyFAx8qWEXAFN9IxBmTQG2Sz04Ljqv3OnB3tW77kJVOqFAoZA1U3Or8WvvqrQP8_kmTyrpf-6DDoDtzMh_Az-px-DkDwQpUFIHi6sk1_Nszejs4_pSichvelxZL2q9hJNmd5Dd6PB8H4Ay310y9YP0PZ-rdrm5wXewd97C26jWYcffAk_GPCD1_GDe_zgRY09fnDED-7xgwN-HqLZ-3fTtwdpbLORmjwTbcrmpcmoUGoyd3JsYqJ5PlGEQRSnplRZJpjJqQKebwuqS0EMUEgjNDeEcWs5fYS26qa2TxAWwMed3CWhhWWl0UoVihpg5PB1PScsQbvdvylN1KB3rVAqudF2Cdrphy-D-Mp1A3c708jhTpAuizMFjMBgAKacSAChXM5PEoQ3DYdD9sMS9KqzsASH62bRVG2b81-SlxQ4ModzPg72Hn4acHkIkTxBYoSEfoCTch9_Ui9OvaQ7nJEyUTy96QU_Q3eG-_Q52mpX5_YFsONWv_Q4_wvcR7tj |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relating+Retinotopic+and+Object-Selective+Responses+in+Human+Lateral+Occipital+Cortex&rft.jtitle=Journal+of+neurophysiology&rft.au=Sayres%2C+Rory&rft.au=Grill-Spector%2C+Kalanit&rft.date=2008-07-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=100&rft.issue=1&rft.spage=249&rft.epage=267&rft_id=info:doi/10.1152%2Fjn.01383.2007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_01383_2007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |