Relating Retinotopic and Object-Selective Responses in Human Lateral Occipital Cortex

1 Neurosciences Institute and 2 Department of Psychology, Stanford University, Stanford, California Submitted 21 December 2007; accepted in final form 2 May 2008 What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic res...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 100; no. 1; pp. 249 - 267
Main Authors Sayres, Rory, Grill-Spector, Kalanit
Format Journal Article
LanguageEnglish
Published United States Am Phys Soc 01.07.2008
American Physiological Society
Subjects
Online AccessGet full text
ISSN0022-3077
1522-1598
DOI10.1152/jn.01383.2007

Cover

Abstract 1 Neurosciences Institute and 2 Department of Psychology, Stanford University, Stanford, California Submitted 21 December 2007; accepted in final form 2 May 2008 What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic resonance imaging (fMRI) to examine sensitivity to retinal position and category in LO, an object-selective region positioned posterior to MT along the lateral cortical surface. Six subjects participated in phase-encoded retinotopic mapping experiments as well as block-design experiments in which objects from six different categories were presented at six distinct positions in the visual field. We found substantial position modulation in LO using standard nonobject retinotopic mapping stimuli; this modulation extended beyond the boundaries of visual field maps LO-1 and LO-2. Further, LO showed a pronounced lower visual field bias: more LO voxels represented the lower contralateral visual field, and the mean LO response was higher to objects presented below fixation than above fixation. However, eccentricity effects produced by retinotopic mapping stimuli and objects differed. Whereas LO voxels preferred a range of eccentricities lying mostly outside the fovea in the retinotopic mapping experiment, LO responses were strongest to foveally presented objects. Finally, we found a stronger effect of position than category on both the mean LO response, as well as the distributed response across voxels. Overall these results demonstrate that retinal position exhibits strong effects on neural response in LO and indicates that these position effects may be explained by retinotopic organization. Address for reprint requests and other correspondence: R. Sayres, Psychology Dept., Stanford University, Stanford, CA 94305 (E-mail: sayres{at}psych.stanford.edu )
AbstractList What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic resonance imaging (fMRI) to examine sensitivity to retinal position and category in LO, an object-selective region positioned posterior to MT along the lateral cortical surface. Six subjects participated in phase-encoded retinotopic mapping experiments as well as block-design experiments in which objects from six different categories were presented at six distinct positions in the visual field. We found substantial position modulation in LO using standard nonobject retinotopic mapping stimuli; this modulation extended beyond the boundaries of visual field maps LO-1 and LO-2. Further, LO showed a pronounced lower visual field bias: more LO voxels represented the lower contralateral visual field, and the mean LO response was higher to objects presented below fixation than above fixation. However, eccentricity effects produced by retinotopic mapping stimuli and objects differed. Whereas LO voxels preferred a range of eccentricities lying mostly outside the fovea in the retinotopic mapping experiment, LO responses were strongest to foveally presented objects. Finally, we found a stronger effect of position than category on both the mean LO response, as well as the distributed response across voxels. Overall these results demonstrate that retinal position exhibits strong effects on neural response in LO and indicates that these position effects may be explained by retinotopic organization.What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic resonance imaging (fMRI) to examine sensitivity to retinal position and category in LO, an object-selective region positioned posterior to MT along the lateral cortical surface. Six subjects participated in phase-encoded retinotopic mapping experiments as well as block-design experiments in which objects from six different categories were presented at six distinct positions in the visual field. We found substantial position modulation in LO using standard nonobject retinotopic mapping stimuli; this modulation extended beyond the boundaries of visual field maps LO-1 and LO-2. Further, LO showed a pronounced lower visual field bias: more LO voxels represented the lower contralateral visual field, and the mean LO response was higher to objects presented below fixation than above fixation. However, eccentricity effects produced by retinotopic mapping stimuli and objects differed. Whereas LO voxels preferred a range of eccentricities lying mostly outside the fovea in the retinotopic mapping experiment, LO responses were strongest to foveally presented objects. Finally, we found a stronger effect of position than category on both the mean LO response, as well as the distributed response across voxels. Overall these results demonstrate that retinal position exhibits strong effects on neural response in LO and indicates that these position effects may be explained by retinotopic organization.
What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic resonance imaging (fMRI) to examine sensitivity to retinal position and category in LO, an object-selective region positioned posterior to MT along the lateral cortical surface. Six subjects participated in phase-encoded retinotopic mapping experiments as well as block-design experiments in which objects from six different categories were presented at six distinct positions in the visual field. We found substantial position modulation in LO using standard nonobject retinotopic mapping stimuli; this modulation extended beyond the boundaries of visual field maps LO-1 and LO-2. Further, LO showed a pronounced lower visual field bias: more LO voxels represented the lower contralateral visual field, and the mean LO response was higher to objects presented below fixation than above fixation. However, eccentricity effects produced by retinotopic mapping stimuli and objects differed. Whereas LO voxels preferred a range of eccentricities lying mostly outside the fovea in the retinotopic mapping experiment, LO responses were strongest to foveally presented objects. Finally, we found a stronger effect of position than category on both the mean LO response, as well as the distributed response across voxels. Overall these results demonstrate that retinal position exhibits strong effects on neural response in LO and indicates that these position effects may be explained by retinotopic organization.
1 Neurosciences Institute and 2 Department of Psychology, Stanford University, Stanford, California Submitted 21 December 2007; accepted in final form 2 May 2008 What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic resonance imaging (fMRI) to examine sensitivity to retinal position and category in LO, an object-selective region positioned posterior to MT along the lateral cortical surface. Six subjects participated in phase-encoded retinotopic mapping experiments as well as block-design experiments in which objects from six different categories were presented at six distinct positions in the visual field. We found substantial position modulation in LO using standard nonobject retinotopic mapping stimuli; this modulation extended beyond the boundaries of visual field maps LO-1 and LO-2. Further, LO showed a pronounced lower visual field bias: more LO voxels represented the lower contralateral visual field, and the mean LO response was higher to objects presented below fixation than above fixation. However, eccentricity effects produced by retinotopic mapping stimuli and objects differed. Whereas LO voxels preferred a range of eccentricities lying mostly outside the fovea in the retinotopic mapping experiment, LO responses were strongest to foveally presented objects. Finally, we found a stronger effect of position than category on both the mean LO response, as well as the distributed response across voxels. Overall these results demonstrate that retinal position exhibits strong effects on neural response in LO and indicates that these position effects may be explained by retinotopic organization. Address for reprint requests and other correspondence: R. Sayres, Psychology Dept., Stanford University, Stanford, CA 94305 (E-mail: sayres{at}psych.stanford.edu )
Author Grill-Spector, Kalanit
Sayres, Rory
AuthorAffiliation 1 Neurosciences Institute and 2 Department of Psychology, Stanford University, Stanford, California
AuthorAffiliation_xml – name: 1 Neurosciences Institute and 2 Department of Psychology, Stanford University, Stanford, California
Author_xml – sequence: 1
  fullname: Sayres, Rory
– sequence: 2
  fullname: Grill-Spector, Kalanit
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18463186$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1P4zAQxa0Vq6V8HPe6yglOKf5I7OSChKoFVqpUiYWz5TjT1pVrh9hh6X-PC90KkDjNyP699-yZI3TgvAOEfhI8JqSkFys3xoRVbEwxFt_QKJ3RnJR1dYBGGKeeYSEO0VEIK5yIEtMf6JBUBWek4iP0cAdWReMW2R2k4qPvjM6Ua7NZswId879gUzFPkIDQeRcgZMZlt8NauWyqIvTKZjOtTWdi6ia-j_B8gr7PlQ1wuqvH6OH69_3kNp_Obv5Mrqa5LqmIedHWmjKhFGlLgZkgDS-JwgU0hOlaUSoKXTLFKIeKNbXAGpNSi4ZrXHAAzo7R5ZtvNzRraDW4mJ4ju96sVb-RXhn58caZpVz4J0mLmhWiSgZnO4PePw4QolyboMFa5cAPQfKaEVpzkcBf75P2Ef8nmQD2Bujeh9DDXOo0kGj8NthYSbDc7kuunHzdl9zuK6nyT6q98Rf8LmVpFst_pgfZLTfBeOsXG3k9WHsPzzFpCE7y7S9l186T6vxrVQrY0-wFa9a3uA
CitedBy_id crossref_primary_10_1093_cercor_bht092
crossref_primary_10_1093_cercor_bhv030
crossref_primary_10_1162_jocn_a_00190
crossref_primary_10_1016_j_neuroimage_2012_12_023
crossref_primary_10_3389_fnhum_2016_00412
crossref_primary_10_1371_journal_pcbi_1012161
crossref_primary_10_1016_j_neuroimage_2017_03_062
crossref_primary_10_3389_fnhum_2015_00327
crossref_primary_10_1016_j_neuropsychologia_2017_04_014
crossref_primary_10_1016_j_neuroimage_2019_04_025
crossref_primary_10_1093_cercor_bhr106
crossref_primary_10_3389_fnhum_2019_00248
crossref_primary_10_1093_cercor_bhs278
crossref_primary_10_1101_lm_045765_117
crossref_primary_10_1016_j_cortex_2022_04_020
crossref_primary_10_1016_j_neuroimage_2012_08_043
crossref_primary_10_1016_j_neuropsychologia_2016_12_014
crossref_primary_10_1016_j_cortex_2017_06_011
crossref_primary_10_1016_j_neuroimage_2010_04_262
crossref_primary_10_1002_hbm_24211
crossref_primary_10_1038_s41467_023_43146_w
crossref_primary_10_1016_j_neuroimage_2022_119635
crossref_primary_10_3389_fnbot_2020_597471
crossref_primary_10_1007_s00429_020_02112_8
crossref_primary_10_1371_journal_pone_0072728
crossref_primary_10_1016_j_cortex_2012_12_014
crossref_primary_10_1016_j_neuroimage_2016_04_012
crossref_primary_10_1523_JNEUROSCI_3352_13_2014
crossref_primary_10_1016_j_neuroimage_2012_06_053
crossref_primary_10_1073_pnas_1612862114
crossref_primary_10_1093_cercor_bhq042
crossref_primary_10_1016_j_neulet_2019_134344
crossref_primary_10_5334_joc_104
crossref_primary_10_1016_j_brainres_2011_02_022
crossref_primary_10_1016_j_cogpsych_2019_101224
crossref_primary_10_2139_ssrn_4060229
crossref_primary_10_1162_jocn_2009_21391
crossref_primary_10_1002_hbm_21367
crossref_primary_10_1007_s00429_021_02411_8
crossref_primary_10_1016_j_neuroimage_2011_02_071
crossref_primary_10_1167_19_5_15
crossref_primary_10_1016_j_neuropsychologia_2018_05_026
crossref_primary_10_1111_opo_12121
crossref_primary_10_1016_j_neuroimage_2018_11_056
crossref_primary_10_1007_s10827_010_0239_2
crossref_primary_10_1007_s00221_024_06989_3
crossref_primary_10_1016_j_schres_2020_09_015
crossref_primary_10_1152_jn_00462_2010
crossref_primary_10_1371_journal_pone_0024470
crossref_primary_10_1016_j_neuroimage_2008_11_009
crossref_primary_10_1523_JNEUROSCI_5079_14_2015
crossref_primary_10_1371_journal_pone_0232551
crossref_primary_10_1162_jocn_a_01156
crossref_primary_10_1093_cercor_bhr357
crossref_primary_10_1152_jn_01108_2009
crossref_primary_10_1371_journal_pone_0223166
crossref_primary_10_1016_j_neuron_2012_04_036
crossref_primary_10_1016_j_neuroimage_2018_02_040
crossref_primary_10_1016_j_neuroimage_2010_09_044
crossref_primary_10_1523_JNEUROSCI_4588_10_2011
crossref_primary_10_1038_s41562_022_01302_0
crossref_primary_10_1073_pnas_1704877114
crossref_primary_10_1123_mc_2017_0095
crossref_primary_10_1523_JNEUROSCI_1993_20_2021
crossref_primary_10_1162_jocn_a_00790
crossref_primary_10_1038_nn_2903
crossref_primary_10_3389_fnhum_2016_00054
crossref_primary_10_1093_cercor_bhw287
crossref_primary_10_1017_S0952523815000127
crossref_primary_10_1016_j_tics_2012_10_011
crossref_primary_10_1162_jocn_a_00672
crossref_primary_10_1016_j_neuropsychologia_2021_107956
crossref_primary_10_3758_s13414_019_01896_0
crossref_primary_10_1093_cercor_bhaa110
crossref_primary_10_1162_jocn_a_01408
crossref_primary_10_1371_journal_pone_0024450
crossref_primary_10_1016_j_neuron_2018_06_038
crossref_primary_10_1016_j_jneumeth_2013_01_021
crossref_primary_10_1371_journal_pone_0036859
crossref_primary_10_1016_j_neuroimage_2012_07_046
crossref_primary_10_1523_JNEUROSCI_3766_10_2011
crossref_primary_10_1016_j_neuroimage_2022_118900
crossref_primary_10_1038_nn_4247
crossref_primary_10_1007_s00429_015_1009_8
crossref_primary_10_1162_jocn_a_01778
crossref_primary_10_1038_s44271_023_00002_3
crossref_primary_10_1098_rstb_2016_0102
crossref_primary_10_1016_j_neubiorev_2022_104994
crossref_primary_10_1002_hbm_22020
crossref_primary_10_1523_JNEUROSCI_2378_14_2015
crossref_primary_10_3389_fnint_2016_00037
crossref_primary_10_1007_s00221_016_4562_3
crossref_primary_10_1016_j_neuroimage_2016_05_052
crossref_primary_10_1016_j_tins_2023_03_006
crossref_primary_10_1016_j_neuroimage_2011_03_041
crossref_primary_10_1016_j_brainres_2015_01_024
crossref_primary_10_1016_j_neuroimage_2011_07_051
crossref_primary_10_1093_cercor_bhq113
crossref_primary_10_1167_jov_22_11_7
crossref_primary_10_1186_s12984_024_01306_z
crossref_primary_10_1002_hbm_23348
crossref_primary_10_1038_nrn3747
crossref_primary_10_1093_cercor_bhac399
crossref_primary_10_1093_ons_opy263
crossref_primary_10_1167_jov_23_4_8
crossref_primary_10_1162_jocn_2010_21559
crossref_primary_10_1523_JNEUROSCI_3156_13_2014
crossref_primary_10_1523_JNEUROSCI_3603_15_2016
crossref_primary_10_1371_journal_pone_0018705
crossref_primary_10_1016_j_neuropsychologia_2016_05_022
crossref_primary_10_1016_j_neuropsychologia_2017_04_003
crossref_primary_10_1016_j_neuroimage_2009_02_047
crossref_primary_10_1016_j_visres_2022_108049
crossref_primary_10_1016_j_neuroimage_2013_05_128
crossref_primary_10_1162_jocn_a_01995
Cites_doi 10.1016/j.visres.2005.02.021
10.1016/S0893-6080(96)00045-7
10.1038/87490
10.1146/annurev.neuro.27.070203.144220
10.1073/pnas.92.18.8135
10.1167/6.11.12
10.1093/cercor/bhh134
10.1146/annurev.ne.19.030196.000545
10.1016/S0960-9822(00)00655-2
10.1093/cercor/11.4.298
10.1080/14640748908402393
10.1371/journal.pone.0000574
10.1523/JNEUROSCI.17-11-04302.1997
10.1002/1096-9861(20001030)426:4<505::AID-CNE1>3.0.CO;2-M
10.1002/(SICI)1522-2594(199908)42:2<412::AID-MRM25>3.0.CO;2-U
10.1093/cercor/7.2.181
10.1016/j.neuroimage.2007.09.034
10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R
10.1002/(SICI)1097-0193(1998)6:4<316::AID-HBM9>3.0.CO;2-6
10.1152/jn.00500.2005
10.1016/S0896-6273(00)00030-1
10.1016/S0042-6989(02)00039-1
10.1073/pnas.0800431105
10.1126/science.271.5249.651
10.1068/p200585
10.1038/nn780
10.1093/cercor/bhl027
10.1038/nn1507
10.1126/science.1063736
10.1126/science.1119983
10.1093/cercor/bhl138
10.1002/hbm.20010
10.1109/42.650881
10.1016/S0896-6273(00)80832-6
10.1523/JNEUROSCI.17-18-07060.1997
10.1093/cercor/bhl053
10.1109/42.563664
10.1016/j.neuron.2007.10.012
10.1523/JNEUROSCI.18-10-03816.1998
10.1126/science.1117593
10.1163/156856800741072
10.1152/jn.1995.73.1.218
10.1152/jn.00024.2007
10.1152/jn.1994.71.3.856
10.1068/p2953
10.1098/rstb.2005.1628
10.1016/S0959-4388(03)00040-0
10.1523/JNEUROSCI.2991-07.2007
10.1046/j.0953-816x.2001.01717.x
10.1038/383334a0
10.1016/j.visres.2005.04.001
10.1016/S0960-9822(95)00108-4
10.1126/science.1063414
10.1038/77754
10.1016/j.neuroimage.2006.08.020
10.1016/j.tics.2007.06.010
10.1152/jn.00358.2002
10.1016/S0896-6273(03)00144-2
10.1038/33402
10.1126/science.7754376
10.1016/S0042-6989(01)00073-6
10.1016/S1053-8119(03)00049-1
10.1038/nn1224
10.1016/S0896-6273(01)00224-0
10.1523/JNEUROSCI.1657-06.2006
10.1016/S0960-9822(00)00089-0
10.1016/j.jneumeth.2004.02.025
10.1111/j.0956-7976.2005.00796.x
ContentType Journal Article
Copyright Copyright © 2008, American Physiological Society
Copyright_xml – notice: Copyright © 2008, American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.01383.2007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 267
ExternalDocumentID PMC2493478
18463186
10_1152_jn_01383_2007
jn_100_1_249
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: 5 R21 EY-016199-02
– fundername: NEI NIH HHS
  grantid: R21 EY016199
– fundername: NEI NIH HHS
  grantid: 5 F31 EY-015937
GroupedDBID -
0VX
29L
2WC
39C
3O-
4.4
41
53G
55
5GY
5VS
AALRV
ABFLS
ABIVO
ABPTK
ABUFD
ABZEH
ACGFS
ACNCT
ADACO
ADBBV
ADKLL
AENEX
AETEA
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FH7
FRP
GX1
H~9
KQ8
L7B
NEJ
O0-
OK1
P2P
RAP
RHF
RHI
RPL
SJN
UHB
UPT
UQL
WH7
WOQ
WOW
X
X7M
ZA5
---
-DZ
-~X
.55
.GJ
18M
1CY
1Z7
41~
8M5
AAYXX
ABCQX
ABHWK
ABJNI
ABKWE
ACGFO
ADFNX
ADHGD
ADIYS
AFOSN
AI.
AIZAD
BKKCC
BTFSW
CITATION
EMOBN
H13
ITBOX
MVM
OHT
RPRKH
TR2
VH1
W8F
XJT
XOL
XSW
YBH
YQT
YSK
ZGI
ZXP
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c527t-4d9c237aa1d570371b651a04eb13c9a2274c53a326e83b970c015c7b6c046ee63
ISSN 0022-3077
IngestDate Thu Aug 21 14:30:46 EDT 2025
Fri Sep 05 06:12:59 EDT 2025
Thu Apr 03 07:06:28 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
Tue Jul 01 01:17:05 EDT 2025
Tue Jan 05 17:53:03 EST 2021
Mon May 06 11:52:32 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c527t-4d9c237aa1d570371b651a04eb13c9a2274c53a326e83b970c015c7b6c046ee63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Address for reprint requests and other correspondence: R. Sayres, Psychology Dept., Stanford University, Stanford, CA 94305 (E-mail: sayres@psych.stanford.edu)
The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
OpenAccessLink http://doi.org/10.1152/jn.01383.2007
PMID 18463186
PQID 69312967
PQPubID 23479
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2493478
crossref_primary_10_1152_jn_01383_2007
crossref_citationtrail_10_1152_jn_01383_2007
highwire_physiology_jn_100_1_249
pubmed_primary_18463186
proquest_miscellaneous_69312967
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-07-01
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-07-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2008
Publisher Am Phys Soc
American Physiological Society
Publisher_xml – name: Am Phys Soc
– name: American Physiological Society
References R61
R60
R63
R62
R21
R65
R20
R64
R23
R67
R22
R66
R25
R24
R68
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R58
R13
R57
R16
R15
R59
R18
R17
R19
2587798 - Q J Exp Psychol A. 1989 Nov;41(4):775-96
7667258 - Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8135-9
7583105 - Curr Biol. 1995 May 1;5(5):552-63
11577239 - Science. 2001 Sep 28;293(5539):2470-3
12744968 - Curr Opin Neurobiol. 2003 Apr;13(2):159-66
1806902 - Perception. 1991;20(5):585-93
9151747 - J Neurosci. 1997 Jun 1;17(11):4302-11
15083523 - Hum Brain Mapp. 2004 May;22(1):15-26
11319563 - Nat Neurosci. 2001 May;4(5):533-9
16236787 - J Neurophysiol. 2006 Feb;95(2):995-1007
15686582 - Psychol Sci. 2005 Feb;16(2):152-60
10800036 - Magn Reson Med. 2000 May;43(5):705-15
15937008 - Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):693-707
7922354 - Curr Biol. 1994 May 1;4(5):401-14
10440968 - Magn Reson Med. 1999 Aug;42(2):412-5
8571128 - Science. 1996 Feb 2;271(5249):651-3
11239441 - Neuron. 2001 Feb;29(2):529-35
17978030 - J Neurosci. 2007 Oct 31;27(44):11896-911
9278542 - J Neurosci. 1997 Sep 15;17(18):7060-78
16456083 - Science. 2006 Feb 3;311(5761):670-4
10903579 - Nat Neurosci. 2000 Aug;3(8):837-43
8833438 - Annu Rev Neurosci. 1996;19:109-39
11740503 - Nat Neurosci. 2002 Jan;5(1):17-8
11027395 - J Comp Neurol. 2000 Oct 30;426(4):505-18
11322983 - Vision Res. 2001;41(10-11):1409-22
10996068 - Curr Biol. 2000 Sep 7;10(17):1017-24
16905593 - Cereb Cortex. 2007 Jun;17(6):1402-11
9704268 - Hum Brain Mapp. 1998;6(4):316-28
17964252 - Neuron. 2007 Oct 25;56(2):366-83
11198236 - Spat Vis. 2000;13(2-3):255-64
17977024 - Neuroimage. 2008 Jan 15;39(2):647-60
9533585 - IEEE Trans Med Imaging. 1997 Dec;16(6):852-63
15217346 - Annu Rev Neurosci. 2004;27:649-77
16051308 - Vision Res. 2005 Oct;45(21):2820-30
10985342 - Neuron. 2000 Aug;27(2):205-18
9101328 - IEEE Trans Med Imaging. 1997 Apr;16(2):187-98
8201425 - J Neurophysiol. 1994 Mar;71(3):856-67
17011213 - Neuroimage. 2007 Jan 1;34(1):74-84
17209736 - J Vis. 2006;6(11):1294-306
11934448 - Vision Res. 2002 Apr;42(8):949-67
15845239 - Vision Res. 2005 Jul;45(16):2065-80
11576191 - Eur J Neurosci. 2001 Sep;14(5):869-76
16025108 - Nat Neurosci. 2005 Aug;8(8):1102-9
17428910 - J Neurophysiol. 2007 Jun;97(6):4296-309
17182764 - J Neurosci. 2006 Dec 20;26(51):13128-42
7754376 - Science. 1995 May 12;268(5212):889-93
10677037 - Neuron. 1999 Sep;24(1):187-203
17172632 - Cereb Cortex. 2007 Oct;17(10):2293-302
15126041 - J Neurosci Methods. 2004 Jun 15;136(1):1-21
9087826 - Cereb Cortex. 1997 Mar;7(2):181-92
12670430 - Neuron. 2003 Mar 27;37(6):1027-41
18326624 - Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4447-52
9570811 - J Neurosci. 1998 May 15;18(10):3816-30
15269109 - Cereb Cortex. 2005 Mar;15(3):325-31
11278193 - Cereb Cortex. 2001 Apr;11(4):298-311
11464559 - Perception. 2001;30(6):707-24
8848045 - Nature. 1996 Sep 26;383(6598):334-7
16818474 - Cereb Cortex. 2007 May;17(5):1164-72
17631409 - Trends Cogn Sci. 2007 Aug;11(8):333-41
7714567 - J Neurophysiol. 1995 Jan;73(1):218-26
12814577 - Neuroimage. 2003 Jun;19(2 Pt 1):261-70
11577229 - Science. 2001 Sep 28;293(5539):2425-30
12662545 - Neural Netw. 1996 Nov;9(8):1459-1475
17593973 - PLoS One. 2007;2(6):e574
15077112 - Nat Neurosci. 2004 May;7(5):555-62
12783959 - J Neurophysiol. 2003 Jun;89(6):3264-78
16272124 - Science. 2005 Nov 4;310(5749):863-6
9560155 - Nature. 1998 Apr 9;392(6676):598-601
References_xml – ident: R48
  doi: 10.1016/j.visres.2005.02.021
– ident: R59
  doi: 10.1016/S0893-6080(96)00045-7
– ident: R39
  doi: 10.1038/87490
– ident: R24
  doi: 10.1146/annurev.neuro.27.070203.144220
– ident: R45
  doi: 10.1073/pnas.92.18.8135
– ident: R41
  doi: 10.1167/6.11.12
– ident: R49
  doi: 10.1093/cercor/bhh134
– ident: R58
  doi: 10.1146/annurev.ne.19.030196.000545
– ident: R32
  doi: 10.1016/S0960-9822(00)00655-2
– ident: R62
  doi: 10.1093/cercor/11.4.298
– ident: R12
  doi: 10.1080/14640748908402393
– ident: R29
  doi: 10.1371/journal.pone.0000574
– ident: R33
  doi: 10.1523/JNEUROSCI.17-11-04302.1997
– ident: R50
  doi: 10.1002/1096-9861(20001030)426:4<505::AID-CNE1>3.0.CO;2-M
– ident: R16
  doi: 10.1002/(SICI)1522-2594(199908)42:2<412::AID-MRM25>3.0.CO;2-U
– ident: R13
  doi: 10.1093/cercor/7.2.181
– ident: R10
  doi: 10.1016/j.neuroimage.2007.09.034
– ident: R47
  doi: 10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R
– ident: R22
  doi: 10.1002/(SICI)1097-0193(1998)6:4<316::AID-HBM9>3.0.CO;2-6
– ident: R54
  doi: 10.1152/jn.00500.2005
– ident: R52
  doi: 10.1016/S0896-6273(00)00030-1
– ident: R4
  doi: 10.1016/S0042-6989(02)00039-1
– ident: R55
  doi: 10.1073/pnas.0800431105
– ident: R53
  doi: 10.1126/science.271.5249.651
– ident: R2
  doi: 10.1068/p200585
– ident: R36
  doi: 10.1038/nn780
– ident: R46
  doi: 10.1093/cercor/bhl027
– ident: R3
  doi: 10.1038/nn1507
– ident: R27
  doi: 10.1126/science.1063736
– ident: R64
  doi: 10.1126/science.1119983
– ident: R67
  doi: 10.1093/cercor/bhl138
– ident: R40
  doi: 10.1002/hbm.20010
– ident: R60
  doi: 10.1109/42.650881
– ident: R21
  doi: 10.1016/S0896-6273(00)80832-6
– ident: R63
  doi: 10.1523/JNEUROSCI.17-18-07060.1997
– ident: R15
  doi: 10.1093/cercor/bhl053
– ident: R44
  doi: 10.1109/42.563664
– ident: R66
  doi: 10.1016/j.neuron.2007.10.012
– ident: R57
  doi: 10.1523/JNEUROSCI.18-10-03816.1998
– ident: R30
  doi: 10.1126/science.1117593
– ident: R11
  doi: 10.1163/156856800741072
– ident: R31
  doi: 10.1152/jn.1995.73.1.218
– ident: R34
  doi: 10.1152/jn.00024.2007
– ident: R35
  doi: 10.1152/jn.1994.71.3.856
– ident: R8
  doi: 10.1068/p2953
– ident: R65
  doi: 10.1098/rstb.2005.1628
– ident: R17
  doi: 10.1016/S0959-4388(03)00040-0
– ident: R25
  doi: 10.1523/JNEUROSCI.2991-07.2007
– ident: R61
  doi: 10.1046/j.0953-816x.2001.01717.x
– ident: R28
  doi: 10.1038/383334a0
– ident: R38
  doi: 10.1016/j.visres.2005.04.001
– ident: R43
  doi: 10.1016/S0960-9822(95)00108-4
– ident: R9
  doi: 10.1126/science.1063414
– ident: R23
  doi: 10.1038/77754
– ident: R51
  doi: 10.1016/j.neuroimage.2006.08.020
– ident: R6
  doi: 10.1016/j.tics.2007.06.010
– ident: R7
  doi: 10.1152/jn.00358.2002
– ident: R26
  doi: 10.1016/S0896-6273(03)00144-2
– ident: R14
  doi: 10.1038/33402
– ident: R56
  doi: 10.1126/science.7754376
– ident: R20
  doi: 10.1016/S0042-6989(01)00073-6
– ident: R5
  doi: 10.1016/S1053-8119(03)00049-1
– ident: R19
  doi: 10.1038/nn1224
– ident: R1
  doi: 10.1016/S0896-6273(01)00224-0
– ident: R37
  doi: 10.1523/JNEUROSCI.1657-06.2006
– ident: R42
  doi: 10.1016/S0960-9822(00)00089-0
– ident: R68
  doi: 10.1016/j.jneumeth.2004.02.025
– ident: R18
  doi: 10.1111/j.0956-7976.2005.00796.x
– reference: 16905593 - Cereb Cortex. 2007 Jun;17(6):1402-11
– reference: 10985342 - Neuron. 2000 Aug;27(2):205-18
– reference: 11740503 - Nat Neurosci. 2002 Jan;5(1):17-8
– reference: 17978030 - J Neurosci. 2007 Oct 31;27(44):11896-911
– reference: 17964252 - Neuron. 2007 Oct 25;56(2):366-83
– reference: 15269109 - Cereb Cortex. 2005 Mar;15(3):325-31
– reference: 11319563 - Nat Neurosci. 2001 May;4(5):533-9
– reference: 10677037 - Neuron. 1999 Sep;24(1):187-203
– reference: 9278542 - J Neurosci. 1997 Sep 15;17(18):7060-78
– reference: 12744968 - Curr Opin Neurobiol. 2003 Apr;13(2):159-66
– reference: 10996068 - Curr Biol. 2000 Sep 7;10(17):1017-24
– reference: 7714567 - J Neurophysiol. 1995 Jan;73(1):218-26
– reference: 16051308 - Vision Res. 2005 Oct;45(21):2820-30
– reference: 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92
– reference: 1806902 - Perception. 1991;20(5):585-93
– reference: 9704268 - Hum Brain Mapp. 1998;6(4):316-28
– reference: 2587798 - Q J Exp Psychol A. 1989 Nov;41(4):775-96
– reference: 10903579 - Nat Neurosci. 2000 Aug;3(8):837-43
– reference: 8848045 - Nature. 1996 Sep 26;383(6598):334-7
– reference: 10440968 - Magn Reson Med. 1999 Aug;42(2):412-5
– reference: 12670430 - Neuron. 2003 Mar 27;37(6):1027-41
– reference: 9533585 - IEEE Trans Med Imaging. 1997 Dec;16(6):852-63
– reference: 15937008 - Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):693-707
– reference: 16456083 - Science. 2006 Feb 3;311(5761):670-4
– reference: 17172632 - Cereb Cortex. 2007 Oct;17(10):2293-302
– reference: 11278193 - Cereb Cortex. 2001 Apr;11(4):298-311
– reference: 11464559 - Perception. 2001;30(6):707-24
– reference: 11027395 - J Comp Neurol. 2000 Oct 30;426(4):505-18
– reference: 12662545 - Neural Netw. 1996 Nov;9(8):1459-1475
– reference: 9570811 - J Neurosci. 1998 May 15;18(10):3816-30
– reference: 16236787 - J Neurophysiol. 2006 Feb;95(2):995-1007
– reference: 11198236 - Spat Vis. 2000;13(2-3):255-64
– reference: 15217346 - Annu Rev Neurosci. 2004;27:649-77
– reference: 17593973 - PLoS One. 2007;2(6):e574
– reference: 16272124 - Science. 2005 Nov 4;310(5749):863-6
– reference: 15126041 - J Neurosci Methods. 2004 Jun 15;136(1):1-21
– reference: 18326624 - Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4447-52
– reference: 12783959 - J Neurophysiol. 2003 Jun;89(6):3264-78
– reference: 15686582 - Psychol Sci. 2005 Feb;16(2):152-60
– reference: 16025108 - Nat Neurosci. 2005 Aug;8(8):1102-9
– reference: 15845239 - Vision Res. 2005 Jul;45(16):2065-80
– reference: 9101328 - IEEE Trans Med Imaging. 1997 Apr;16(2):187-98
– reference: 8571128 - Science. 1996 Feb 2;271(5249):651-3
– reference: 8201425 - J Neurophysiol. 1994 Mar;71(3):856-67
– reference: 17977024 - Neuroimage. 2008 Jan 15;39(2):647-60
– reference: 7754376 - Science. 1995 May 12;268(5212):889-93
– reference: 17182764 - J Neurosci. 2006 Dec 20;26(51):13128-42
– reference: 11934448 - Vision Res. 2002 Apr;42(8):949-67
– reference: 12814577 - Neuroimage. 2003 Jun;19(2 Pt 1):261-70
– reference: 10800036 - Magn Reson Med. 2000 May;43(5):705-15
– reference: 16818474 - Cereb Cortex. 2007 May;17(5):1164-72
– reference: 9151747 - J Neurosci. 1997 Jun 1;17(11):4302-11
– reference: 8833438 - Annu Rev Neurosci. 1996;19:109-39
– reference: 11322983 - Vision Res. 2001;41(10-11):1409-22
– reference: 17428910 - J Neurophysiol. 2007 Jun;97(6):4296-309
– reference: 17209736 - J Vis. 2006;6(11):1294-306
– reference: 9560155 - Nature. 1998 Apr 9;392(6676):598-601
– reference: 7667258 - Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8135-9
– reference: 17011213 - Neuroimage. 2007 Jan 1;34(1):74-84
– reference: 15083523 - Hum Brain Mapp. 2004 May;22(1):15-26
– reference: 11576191 - Eur J Neurosci. 2001 Sep;14(5):869-76
– reference: 11239441 - Neuron. 2001 Feb;29(2):529-35
– reference: 7922354 - Curr Biol. 1994 May 1;4(5):401-14
– reference: 7583105 - Curr Biol. 1995 May 1;5(5):552-63
– reference: 11577229 - Science. 2001 Sep 28;293(5539):2425-30
– reference: 17631409 - Trends Cogn Sci. 2007 Aug;11(8):333-41
– reference: 15077112 - Nat Neurosci. 2004 May;7(5):555-62
– reference: 11577239 - Science. 2001 Sep 28;293(5539):2470-3
SSID ssj0007502
Score 2.3233428
Snippet 1 Neurosciences Institute and 2 Department of Psychology, Stanford University, Stanford, California Submitted 21 December 2007; accepted in final form 2 May...
What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic resonance imaging (fMRI)...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 249
SubjectTerms Adult
Analysis of Variance
Brain Mapping
Dominance, Ocular
Female
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Occipital Lobe - blood supply
Occipital Lobe - physiology
Oxygen - blood
Pattern Recognition, Visual - physiology
Photic Stimulation - methods
Reaction Time - physiology
Retina - physiology
Visual Fields - physiology
Visual Pathways - blood supply
Visual Pathways - physiology
Title Relating Retinotopic and Object-Selective Responses in Human Lateral Occipital Cortex
URI http://jn.physiology.org/cgi/content/abstract/100/1/249
https://www.ncbi.nlm.nih.gov/pubmed/18463186
https://www.proquest.com/docview/69312967
https://pubmed.ncbi.nlm.nih.gov/PMC2493478
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQeOEFAeMSrn5Ae1qGGzt28jghYOLO1kp7s2zX0zqFpCqZxPj1HF-SLF0nDV7SKnWTpufLOV-Oj7-D0GtigHSUWqWaMZ0yyk_S0roEvCpLiL8QsfxamC9f-cGMfTzOj4cidr-6pNV75s_GdSX_Y1XYB3Z1q2T_wbL9QWEHvAf7whYsDNsb2ThUsvn6OXhp2mYZ1Ve_aZdeSY98kxtXG3QYSmF99VVM3H9WbvFx5XSGF751CPiGVWt_X0NXvfClz4OMEvFH6mIVPM1hM1QUf1gtqip1ve3bJhZtVE5nY5RjKPp61FHNP4kNV2x0lbAPyFAx8qWEXAFN9IxBmTQG2Sz04Ljqv3OnB3tW77kJVOqFAoZA1U3Or8WvvqrQP8_kmTyrpf-6DDoDtzMh_Az-px-DkDwQpUFIHi6sk1_Nszejs4_pSichvelxZL2q9hJNmd5Dd6PB8H4Ay310y9YP0PZ-rdrm5wXewd97C26jWYcffAk_GPCD1_GDe_zgRY09fnDED-7xgwN-HqLZ-3fTtwdpbLORmjwTbcrmpcmoUGoyd3JsYqJ5PlGEQRSnplRZJpjJqQKebwuqS0EMUEgjNDeEcWs5fYS26qa2TxAWwMed3CWhhWWl0UoVihpg5PB1PScsQbvdvylN1KB3rVAqudF2Cdrphy-D-Mp1A3c708jhTpAuizMFjMBgAKacSAChXM5PEoQ3DYdD9sMS9KqzsASH62bRVG2b81-SlxQ4ModzPg72Hn4acHkIkTxBYoSEfoCTch9_Ui9OvaQ7nJEyUTy96QU_Q3eG-_Q52mpX5_YFsONWv_Q4_wvcR7tj
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relating+Retinotopic+and+Object-Selective+Responses+in+Human+Lateral+Occipital+Cortex&rft.jtitle=Journal+of+neurophysiology&rft.au=Sayres%2C+Rory&rft.au=Grill-Spector%2C+Kalanit&rft.date=2008-07-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=100&rft.issue=1&rft.spage=249&rft.epage=267&rft_id=info:doi/10.1152%2Fjn.01383.2007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_01383_2007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon