Characterization of a membrane enzymatic complex for heterologous production of poly-γ-glutamate in E. coli

Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. El...

Full description

Saved in:
Bibliographic Details
Published inMetabolic engineering communications Vol. 11; p. e00144
Main Authors Motta Nascimento, Bruno, Nair, Nikhil U.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Elsevier
Subjects
Online AccessGet full text
ISSN2214-0301
2214-0301
DOI10.1016/j.mec.2020.e00144

Cover

Abstract Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 ​mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts. •Successfully expressed active poly-γ-glutamate synthetase (PGS) in E. coli.•Confirmed PGS localization at inner membrane of E. coli.•Elucidated topology of PGS components in E. coli membrane.•Culture and expression in microplates might allow future screening of a high number of samples.•Faster production of poly-γ-glutamate in E. coli supernatant compared to B. subtilis.
AbstractList Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 ​mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts. •Successfully expressed active poly-γ-glutamate synthetase (PGS) in E. coli.•Confirmed PGS localization at inner membrane of E. coli.•Elucidated topology of PGS components in E. coli membrane.•Culture and expression in microplates might allow future screening of a high number of samples.•Faster production of poly-γ-glutamate in E. coli supernatant compared to B. subtilis.
Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 ​mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts.Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 ​mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts.
Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 ​mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts.
Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 ​mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts.
Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli , we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 ​mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts. • Successfully expressed active poly-γ-glutamate synthetase (PGS) in E. coli. • Confirmed PGS localization at inner membrane of E. coli. • Elucidated topology of PGS components in E. coli membrane. • Culture and expression in microplates might allow future screening of a high number of samples. • Faster production of poly-γ-glutamate in E. coli supernatant compared to B. subtilis.
ArticleNumber e00144
Author Motta Nascimento, Bruno
Nair, Nikhil U.
Author_xml – sequence: 1
  givenname: Bruno
  surname: Motta Nascimento
  fullname: Motta Nascimento, Bruno
– sequence: 2
  givenname: Nikhil U.
  surname: Nair
  fullname: Nair, Nikhil U.
  email: nikhil.nair@tufts.edu
BookMark eNqFkk9u1DAUxiNUREvpAdh5ySbB_5MREhIaFahUiQ2srRfnZcYjJw5OUjE9Te_ADTgAZ8IzaSXKoqxs-X2_z37P38vspA89ZtlrRgtGmX67Kzq0BaecFkgpk_JZdsY5kzkVlJ38tT_NLsZxR5NGaCYZe5GdCr7SYqXpWdattxDBThjdLUwu9CS0BEiHXR2hR4L97b5LBUts6AaPP0gbItliAoIPmzCPZIihme0DOwS_z3__zDd-niCRSFxPLotfdzZ49yp73oIf8eJ-Pc--fbz8uv6cX3_5dLX-cJ1bxcspl1RBoxTT2gIqxqqKQ810yUXbcMCqKStsbA2trkUJlCJaW0JZ16xBsFaK8-xq8W0C7MwQXQdxbwI4czwIcWMgpqY8GqHaBlaa1VII2XAEBZWkaaJai7ZUNHm9X7yGue7StdhPEfwj08eV3m3NJtyYUq5odTR4c28Qw_cZx8l0brTofZpvmp_hikvBmRLy_1IpleRClQdpuUhtDOMYsTXWTccfTI9w3jBqDjExO5NiYg4xMUtMEsn-IR96eYp5tzCYfu3GYTSjddhbbFxEO6WxuifoP0wP2a4
CitedBy_id crossref_primary_10_1271_kagakutoseibutsu_59_549
crossref_primary_10_1007_s12010_023_04837_8
Cites_doi 10.1016/j.jmb.2006.07.066
10.1128/AEM.02649-10
10.1016/j.procbio.2019.04.001
10.1263/jbb.100.443
10.1016/j.ab.2011.10.048
10.1016/j.biortech.2010.12.065
10.1016/j.molcatb.2010.07.014
10.1128/JB.184.2.337-343.2002
10.1016/j.ymben.2019.07.009
10.1073/pnas.120163297
10.5936/csbj.201210013
10.1002/jctb.4261
10.1111/1751-7915.12075
10.1039/c3np70025a
10.1016/j.molcatb.2005.06.007
10.1016/j.ymben.2015.09.011
10.1073/pnas.052018199
10.1002/btpr.370
10.1007/s00253-002-0984-x
10.1006/bbrc.1999.1298
10.1111/1751-7915.12072
10.1002/bit.24846
10.1128/JB.00864-15
10.1128/AEM.02043-10
10.1099/mic.0.081448-0
10.1093/nar/gkv451
10.1046/j.0014-2956.2001.02475.x
10.1093/nar/gkg520
10.1186/s12934-017-0704-y
10.1016/j.ymben.2019.08.011
10.1007/s10529-006-9080-0
10.1111/jam.14552
10.1016/j.jbiotec.2019.08.003
10.1016/j.plasmid.2013.03.008
10.1038/msb.2011.75
10.1134/S0003683811040193
10.1002/bit.22913
ContentType Journal Article
Copyright 2020 The Author(s)
2020 The Author(s).
2020 The Author(s) 2020
Copyright_xml – notice: 2020 The Author(s)
– notice: 2020 The Author(s).
– notice: 2020 The Author(s) 2020
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.mec.2020.e00144
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic

AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-0301
ExternalDocumentID oai_doaj_org_article_35fda961b4334d2ea5a840e00663f750
PMC7490850
10_1016_j_mec_2020_e00144
S2214030120300444
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c527t-405ad55166cae511882ab16723fd2ae8d78edcbaf6b37a00eecc7a7bb1deacc43
IEDL.DBID DOA
ISSN 2214-0301
IngestDate Wed Aug 27 01:30:28 EDT 2025
Thu Aug 21 14:06:56 EDT 2025
Fri Jul 11 15:25:00 EDT 2025
Thu Jul 10 23:08:26 EDT 2025
Tue Jul 01 04:03:42 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 16 04:30:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Synthetase
Membrane
Poly-gamma-glutamate
Localization
Heterologous
Biopolymer
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-405ad55166cae511882ab16723fd2ae8d78edcbaf6b37a00eecc7a7bb1deacc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Website: https://sites.tufts.edu/nairlab.
Present/permanent address: Science and Technology Center #276, 4 Colby St., Medford, MA 02155.
OpenAccessLink https://doaj.org/article/35fda961b4334d2ea5a840e00663f750
PMID 32963960
PQID 2445423574
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_35fda961b4334d2ea5a840e00663f750
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7490850
proquest_miscellaneous_2524321534
proquest_miscellaneous_2445423574
crossref_citationtrail_10_1016_j_mec_2020_e00144
crossref_primary_10_1016_j_mec_2020_e00144
elsevier_sciencedirect_doi_10_1016_j_mec_2020_e00144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Metabolic engineering communications
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ke, Landgraf, Paulsson, Berkmen (bib21) 2016; 198
Liu, Dong, Xue, Yang, Liu, Cai, Liu, Yang, Bai (bib23) 2019; 128
Feng, Quan, Gu, Liu, Huang, Shen, Dang, Cao, Gao, Lu, Wang, Song, Wang (bib16) 2017; 16
Smith (bib32) 2006; 362
Kino, Arai, Arimura (bib22) 2011; 77
Ashiuchi, Nawa, Kamei, Song, Hong, Sung, Soda, Yagi, Misono (bib5) 2001; 268
Yamashiro, Yoshioka, Ashiuchi (bib42) 2011; 108
Ashiuchi (bib2) 2013; 6
Scoffone, Dondi, Biino, Borghese, Pasini, Galizzi, Calvio (bib30) 2013; 110
Halmschlag, Steurer, Putri, Fukusaki, Blank (bib17) 2019; 55
Drew, Sjöstrand, Nilsson, Urbig, Chin, De Gier, Von Heijne (bib14) 2002; 99
Jiang, Shang, Yoon, Lee, Yu (bib19) 2006; 28
Soto, Draper (bib33) 2012; 421
Tarui, Iida, Ono, Miki, Hirasawa, Fujita, Tanaka, Taniguchi (bib34) 2005; 100
Ashiuchi, Soda, Misono (bib6) 1999; 263
Cao, Song, Jin, Liu, Liu, Xie, Guo, Wang (bib10) 2010; 67
Hamano, Arai, Ashiuchi, Kino (bib18) 2013; 30
Ogunleye, Bhat, Irorere, Hill, Williams, Radecka (bib25) 2015; 161
Sievers, Wilm, Dineen, Gibson, Karplus, Li, Lopez, McWilliam, Remmert, Söding, Thompson, Higgins (bib31) 2011; 7
Park, Choi, Choi, Nakamura, Shimanouchi, Horiuchi, Misono, Sewaki, Soda, Ashiuchi, Sung (bib27) 2005; 35
Ashiuchi, Misono (bib3) 2003
Urushibata, Tokuyama, Tahara (bib36) 2002; 184
Abelson, Simon (bib1) 2009
Cao, Geng, Liu, Song, Xie, Guo, Jin, Wang (bib8) 2011; 102
Dammeyer, Tinnefeld (bib11) 2012; 3
Tian, Fu, Wei, Ji, Ma, Qi, Chen (bib35) 2014; 89
Xavier, Madhan Kumarr, Natarajan, Ramana, Semwal (bib39) 2019
Manocha, Margaritis (bib24) 2010; 26
Wang, Yang, Che, Liu (bib37) 2011; 47
Datsenko, Wanner (bib12) 2000; 97
Yuan, Ran, Chang, Gao, Jia (bib44) 2019; 82
Sambrook, Russell (bib28) 2001; 1, vols. 2 and 3
Schwede, Kopp, Guex, Peitsch (bib29) 2003; 31
Yoon, Do, Lee, Chang (bib43) 2000
Xu, Zha, Cheng, Ibrahim, Yang, Dalton, Cao, Zhu, Fang, Chi, Zheng, Zhang, Shi, Xu, Gross, Koffas (bib40) 2019; 56
Dobson, Reményi, Tusnády (bib13) 2015; 43
Yamashiro, Minouchi, Ashiuchi (bib41) 2011; 77
Cao, Geng, Zhang, Sun, Wang, Feng, Zheng, Jiang, Song (bib9) 2013; 6
Ojima, Kobayashi, Doi, Azuma (bib26) 2019; 304
Wang, Wei, Chen (bib38) 2017
Ashiuchi, Misono (bib4) 2002; 59
Karimova, Ladant (bib20) 2017; vol. 1615
Feng, Gu, Quan, Cao, Gao, Zhang, Wang, Yang, Song (bib15) 2015; 32
Ashiuchi, Yamashiro, Yamamoto (bib7) 2013; 70
Sambrook (10.1016/j.mec.2020.e00144_bib28) 2001; 1, vols. 2 and 3
Wang (10.1016/j.mec.2020.e00144_bib38) 2017
Xavier (10.1016/j.mec.2020.e00144_bib39) 2019
Ashiuchi (10.1016/j.mec.2020.e00144_bib7) 2013; 70
Karimova (10.1016/j.mec.2020.e00144_bib20) 2017; vol. 1615
Yuan (10.1016/j.mec.2020.e00144_bib44) 2019; 82
Ashiuchi (10.1016/j.mec.2020.e00144_bib2) 2013; 6
Ogunleye (10.1016/j.mec.2020.e00144_bib25) 2015; 161
Feng (10.1016/j.mec.2020.e00144_bib16) 2017; 16
Halmschlag (10.1016/j.mec.2020.e00144_bib17) 2019; 55
Scoffone (10.1016/j.mec.2020.e00144_bib30) 2013; 110
Ashiuchi (10.1016/j.mec.2020.e00144_bib6) 1999; 263
Drew (10.1016/j.mec.2020.e00144_bib14) 2002; 99
Liu (10.1016/j.mec.2020.e00144_bib23) 2019; 128
Ojima (10.1016/j.mec.2020.e00144_bib26) 2019; 304
Sievers (10.1016/j.mec.2020.e00144_bib31) 2011; 7
Hamano (10.1016/j.mec.2020.e00144_bib18) 2013; 30
Dobson (10.1016/j.mec.2020.e00144_bib13) 2015; 43
Smith (10.1016/j.mec.2020.e00144_bib32) 2006; 362
Wang (10.1016/j.mec.2020.e00144_bib37) 2011; 47
Xu (10.1016/j.mec.2020.e00144_bib40) 2019; 56
Tian (10.1016/j.mec.2020.e00144_bib35) 2014; 89
Yamashiro (10.1016/j.mec.2020.e00144_bib42) 2011; 108
Park (10.1016/j.mec.2020.e00144_bib27) 2005; 35
Ke (10.1016/j.mec.2020.e00144_bib21) 2016; 198
Yoon (10.1016/j.mec.2020.e00144_bib43) 2000
Ashiuchi (10.1016/j.mec.2020.e00144_bib5) 2001; 268
Dammeyer (10.1016/j.mec.2020.e00144_bib11) 2012; 3
Datsenko (10.1016/j.mec.2020.e00144_bib12) 2000; 97
Yamashiro (10.1016/j.mec.2020.e00144_bib41) 2011; 77
Soto (10.1016/j.mec.2020.e00144_bib33) 2012; 421
Cao (10.1016/j.mec.2020.e00144_bib10) 2010; 67
Tarui (10.1016/j.mec.2020.e00144_bib34) 2005; 100
Ashiuchi (10.1016/j.mec.2020.e00144_bib3) 2003
Ashiuchi (10.1016/j.mec.2020.e00144_bib4) 2002; 59
Schwede (10.1016/j.mec.2020.e00144_bib29) 2003; 31
Feng (10.1016/j.mec.2020.e00144_bib15) 2015; 32
Abelson (10.1016/j.mec.2020.e00144_bib1) 2009
Cao (10.1016/j.mec.2020.e00144_bib9) 2013; 6
Cao (10.1016/j.mec.2020.e00144_bib8) 2011; 102
Manocha (10.1016/j.mec.2020.e00144_bib24) 2010; 26
Urushibata (10.1016/j.mec.2020.e00144_bib36) 2002; 184
Kino (10.1016/j.mec.2020.e00144_bib22) 2011; 77
Jiang (10.1016/j.mec.2020.e00144_bib19) 2006; 28
References_xml – volume: 110
  start-page: 2006
  year: 2013
  end-page: 2012
  ident: bib30
  article-title: Knockout of
  publication-title: Biotechnol. Bioeng.
– volume: 47
  start-page: 381
  year: 2011
  end-page: 385
  ident: bib37
  article-title: Heterogenous expression of poly-γ-glutamic acid synthetase complex gene of
  publication-title: Appl. Biochem. Microbiol.
– volume: 6
  start-page: 664
  year: 2013
  end-page: 674
  ident: bib2
  article-title: Microbial production and chemical transformation of poly-γ-glutamate
  publication-title: J. Microb. Biotechnol.
– start-page: 1
  year: 2019
  end-page: 12
  ident: bib39
  article-title: Optimized production of poly (γ-glutamic acid) (γ-PGA) using
  publication-title: Biotechnol. Appl. Biochem.
– volume: 16
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib16
  article-title: Enhancing poly-γ-glutamic acid production in
  publication-title: Microb. Cell Factories
– volume: 268
  start-page: 5321
  year: 2001
  end-page: 5328
  ident: bib5
  article-title: Physiological and biochemical characteristics of poly γ-glutamate synthetase complex of
  publication-title: Eur. J. Biochem.
– volume: 1, vols. 2 and 3
  year: 2001
  ident: bib28
  publication-title: Molecular Cloning - A Laboratory Manual -
– volume: 184
  start-page: 337
  year: 2002
  end-page: 343
  ident: bib36
  article-title: Characterization of the
  publication-title: J. Bacteriol.
– volume: 28
  start-page: 1241
  year: 2006
  end-page: 1246
  ident: bib19
  article-title: Optimal production of poly-gamma-glutamic acid by metabolically engineered
  publication-title: Biotechnol. Lett.
– volume: 77
  start-page: 2796
  year: 2011
  end-page: 2798
  ident: bib41
  article-title: Moonlighting role of a poly-γ-glutamate synthetase component from
  publication-title: Appl. Environ. Microbiol.
– volume: 30
  start-page: 1087
  year: 2013
  end-page: 1097
  ident: bib18
  article-title: NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s
  publication-title: Nat. Prod. Rep.
– volume: 108
  start-page: 226
  year: 2011
  end-page: 230
  ident: bib42
  article-title: (formerly
  publication-title: Biotechnol. Bioeng.
– volume: 43
  start-page: W408
  year: 2015
  end-page: W412
  ident: bib13
  article-title: CCTOP: a Consensus Constrained TOPology prediction web server
  publication-title: Nucleic Acids Res.
– volume: 89
  start-page: 1825
  year: 2014
  end-page: 1832
  ident: bib35
  article-title: Enhanced expression of
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 7
  year: 2011
  ident: bib31
  article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
  publication-title: Mol. Syst. Biol.
– volume: 362
  start-page: 640
  year: 2006
  end-page: 655
  ident: bib32
  article-title: Structure, function and dynamics in the
  publication-title: J. Mol. Biol.
– volume: 100
  start-page: 443
  year: 2005
  end-page: 448
  ident: bib34
  article-title: Biosynthesis of poly-γ-glutamic acid in plants: transient expression of poly-γ-glutamate synthetase complex in tobacco leaves
  publication-title: J. Biosci. Bioeng.
– volume: 59
  start-page: 9
  year: 2002
  end-page: 14
  ident: bib4
  article-title: Biochemistry and molecular genetics of poly-γ-glutamate synthesis
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 97
  start-page: 6640
  year: 2000
  end-page: 6645
  ident: bib12
  article-title: One-step inactivation of chromosomal genes in
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 99
  start-page: 2690
  year: 2002
  end-page: 2695
  ident: bib14
  article-title: Rapid topology mapping of
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 31
  start-page: 3381
  year: 2003
  end-page: 3385
  ident: bib29
  article-title: SWISS-MODEL: an automated protein homology-modeling server
  publication-title: Nucleic Acids Res.
– volume: 32
  start-page: 106
  year: 2015
  end-page: 115
  ident: bib15
  article-title: Improved poly-γ-glutamic acid production in
  publication-title: Metab. Eng.
– volume: 421
  start-page: 345
  year: 2012
  end-page: 346
  ident: bib33
  article-title: White gels: an easy way to preserve methylene blue stained gels
  publication-title: Anal. Biochem.
– volume: 55
  start-page: 239
  year: 2019
  end-page: 248
  ident: bib17
  article-title: Tailor-made poly-γ-glutamic acid production
  publication-title: Metab. Eng.
– year: 2017
  ident: bib38
  article-title: Production and Application of Poly-γ-glutamic Acid, Current Developments in Biotechnology and Bioengineering
– start-page: 585
  year: 2000
  end-page: 588
  ident: bib43
  article-title: Production of poly-γ-glutamic acid by fed-batch culture of
  publication-title: Time
– volume: 82
  start-page: 215
  year: 2019
  end-page: 221
  ident: bib44
  article-title: Recovery of low-molecular-weight γ-PGA by metal cation from the fermentation broth
  publication-title: Process Biochem.
– volume: 6
  start-page: 675
  year: 2013
  end-page: 684
  ident: bib9
  article-title: Engineering of recombinant
  publication-title: J. Microb. Biotechnol.
– volume: 128
  start-page: 1390
  year: 2019
  end-page: 1399
  ident: bib23
  article-title: Biosynthesis of poly-γ-glutamic acid in
  publication-title: J. Appl. Microbiol.
– volume: 198
  start-page: 1035
  year: 2016
  end-page: 1043
  ident: bib21
  article-title: Visualization of periplasmic and cytoplasmic proteins with a self-labeling protein tag
  publication-title: J. Bacteriol.
– volume: 56
  start-page: 39
  year: 2019
  end-page: 49
  ident: bib40
  article-title: Engineering
  publication-title: Metab. Eng.
– volume: 26
  start-page: 734
  year: 2010
  end-page: 742
  ident: bib24
  article-title: A novel method for the selective recovery and purification of γ-polyglutamic acid from
  publication-title: Biotechnol. Prog.
– volume: 161
  start-page: 1
  year: 2015
  end-page: 17
  ident: bib25
  article-title: Poly-γ-glutamic acid: production, properties and applications
  publication-title: Microbiology
– volume: 304
  start-page: 57
  year: 2019
  end-page: 62
  ident: bib26
  article-title: Knockout of
  publication-title: J. Biotechnol.
– start-page: 123
  year: 2003
  end-page: 173
  ident: bib3
  article-title: Poly-γ-glutamic acid
  publication-title: Biopolymers: Volume 7 - Polyamides and Complex Proteinaceous Materials I
– volume: vol. 1615
  start-page: 129
  year: 2017
  end-page: 142
  ident: bib20
  article-title: Defining membrane protein topology using
  publication-title: Bacterial Protein Secretion Systems. Methods in Molecular Biology
– volume: 102
  start-page: 4251
  year: 2011
  end-page: 4257
  ident: bib8
  article-title: Glutamic acid independent production of poly-γ-glutamic acid by
  publication-title: Bioresour. Technol.
– year: 2009
  ident: bib1
  article-title: Methods in Enzymology - Guide to Protein Purification
– volume: 77
  start-page: 2019
  year: 2011
  end-page: 2025
  ident: bib22
  article-title: Poly-α-glutamic acid synthesis using a novel catalytic activity of RimK from
  publication-title: Appl. Environ. Microbiol.
– volume: 67
  start-page: 111
  year: 2010
  end-page: 116
  ident: bib10
  article-title: Synthesis of poly (γ-glutamic acid) and heterologous expression of
  publication-title: J. Mol. Catal. B Enzym.
– volume: 70
  start-page: 209
  year: 2013
  end-page: 215
  ident: bib7
  article-title: EdmS (formerly PgsE) participates in the maintenance of episomes
  publication-title: Plasmid
– volume: 3
  year: 2012
  ident: bib11
  article-title: Engineered fluorescent proteins illuminate the bacterial periplasm
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 35
  start-page: 128
  year: 2005
  end-page: 133
  ident: bib27
  article-title: Synthesis of super-high-molecular-weight poly-γ-glutamic acid by
  publication-title: J. Mol. Catal. B Enzym.
– volume: 263
  start-page: 6
  year: 1999
  end-page: 12
  ident: bib6
  article-title: A poly-γ-glutamate synthetic System of
  publication-title: Biochem. Biophys. Res. Commun.
– start-page: 123
  year: 2003
  ident: 10.1016/j.mec.2020.e00144_bib3
  article-title: Poly-γ-glutamic acid
– year: 2017
  ident: 10.1016/j.mec.2020.e00144_bib38
– volume: 362
  start-page: 640
  year: 2006
  ident: 10.1016/j.mec.2020.e00144_bib32
  article-title: Structure, function and dynamics in the mur family of bacterial cell wall ligases
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.07.066
– volume: 77
  start-page: 2796
  year: 2011
  ident: 10.1016/j.mec.2020.e00144_bib41
  article-title: Moonlighting role of a poly-γ-glutamate synthetase component from Bacillus subtilis: insight into novel extrachromosomal DNA maintenance
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02649-10
– volume: 82
  start-page: 215
  year: 2019
  ident: 10.1016/j.mec.2020.e00144_bib44
  article-title: Recovery of low-molecular-weight γ-PGA by metal cation from the fermentation broth
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2019.04.001
– volume: 100
  start-page: 443
  year: 2005
  ident: 10.1016/j.mec.2020.e00144_bib34
  article-title: Biosynthesis of poly-γ-glutamic acid in plants: transient expression of poly-γ-glutamate synthetase complex in tobacco leaves
  publication-title: J. Biosci. Bioeng.
  doi: 10.1263/jbb.100.443
– volume: 421
  start-page: 345
  year: 2012
  ident: 10.1016/j.mec.2020.e00144_bib33
  article-title: White gels: an easy way to preserve methylene blue stained gels
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2011.10.048
– volume: 102
  start-page: 4251
  year: 2011
  ident: 10.1016/j.mec.2020.e00144_bib8
  article-title: Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.12.065
– volume: 67
  start-page: 111
  year: 2010
  ident: 10.1016/j.mec.2020.e00144_bib10
  article-title: Synthesis of poly (γ-glutamic acid) and heterologous expression of pgsBCA genes
  publication-title: J. Mol. Catal. B Enzym.
  doi: 10.1016/j.molcatb.2010.07.014
– volume: 184
  start-page: 337
  year: 2002
  ident: 10.1016/j.mec.2020.e00144_bib36
  article-title: Characterization of the Bacillus subtilis ywsC gene, involved in γ-polyglutamic acid production
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.184.2.337-343.2002
– volume: 55
  start-page: 239
  year: 2019
  ident: 10.1016/j.mec.2020.e00144_bib17
  article-title: Tailor-made poly-γ-glutamic acid production
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2019.07.009
– volume: 97
  start-page: 6640
  year: 2000
  ident: 10.1016/j.mec.2020.e00144_bib12
  article-title: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.120163297
– volume: 3
  year: 2012
  ident: 10.1016/j.mec.2020.e00144_bib11
  article-title: Engineered fluorescent proteins illuminate the bacterial periplasm
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.5936/csbj.201210013
– volume: 89
  start-page: 1825
  year: 2014
  ident: 10.1016/j.mec.2020.e00144_bib35
  article-title: Enhanced expression of pgdS gene for high production of poly-γ-glutamic acid with lower molecular weight in Bacillus licheniformis WX-02
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.4261
– volume: 6
  start-page: 675
  year: 2013
  ident: 10.1016/j.mec.2020.e00144_bib9
  article-title: Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA
  publication-title: J. Microb. Biotechnol.
  doi: 10.1111/1751-7915.12075
– volume: 30
  start-page: 1087
  year: 2013
  ident: 10.1016/j.mec.2020.e00144_bib18
  article-title: NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/c3np70025a
– volume: 35
  start-page: 128
  year: 2005
  ident: 10.1016/j.mec.2020.e00144_bib27
  article-title: Synthesis of super-high-molecular-weight poly-γ-glutamic acid by Bacillus subtilis subsp. chungkookjang
  publication-title: J. Mol. Catal. B Enzym.
  doi: 10.1016/j.molcatb.2005.06.007
– volume: 32
  start-page: 106
  year: 2015
  ident: 10.1016/j.mec.2020.e00144_bib15
  article-title: Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2015.09.011
– volume: 99
  start-page: 2690
  year: 2002
  ident: 10.1016/j.mec.2020.e00144_bib14
  article-title: Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.052018199
– start-page: 585
  year: 2000
  ident: 10.1016/j.mec.2020.e00144_bib43
  article-title: Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis
  publication-title: Time
– volume: 26
  start-page: 734
  year: 2010
  ident: 10.1016/j.mec.2020.e00144_bib24
  article-title: A novel method for the selective recovery and purification of γ-polyglutamic acid from Bacillus licheniformis fermentation broth
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.370
– volume: 59
  start-page: 9
  year: 2002
  ident: 10.1016/j.mec.2020.e00144_bib4
  article-title: Biochemistry and molecular genetics of poly-γ-glutamate synthesis
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-002-0984-x
– volume: vol. 1615
  start-page: 129
  year: 2017
  ident: 10.1016/j.mec.2020.e00144_bib20
  article-title: Defining membrane protein topology using pho-lac reporter fusions
– volume: 263
  start-page: 6
  year: 1999
  ident: 10.1016/j.mec.2020.e00144_bib6
  article-title: A poly-γ-glutamate synthetic System of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1999.1298
– volume: 6
  start-page: 664
  year: 2013
  ident: 10.1016/j.mec.2020.e00144_bib2
  article-title: Microbial production and chemical transformation of poly-γ-glutamate
  publication-title: J. Microb. Biotechnol.
  doi: 10.1111/1751-7915.12072
– start-page: 1
  year: 2019
  ident: 10.1016/j.mec.2020.e00144_bib39
  article-title: Optimized production of poly (γ-glutamic acid) (γ-PGA) using Bacillus licheniformis and its application as cryoprotectant for probiotics
  publication-title: Biotechnol. Appl. Biochem.
– volume: 110
  start-page: 2006
  year: 2013
  ident: 10.1016/j.mec.2020.e00144_bib30
  article-title: Knockout of pgdS and ggt genes improves γ-PGA yield in B. subtilis
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24846
– volume: 198
  start-page: 1035
  year: 2016
  ident: 10.1016/j.mec.2020.e00144_bib21
  article-title: Visualization of periplasmic and cytoplasmic proteins with a self-labeling protein tag
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00864-15
– volume: 77
  start-page: 2019
  year: 2011
  ident: 10.1016/j.mec.2020.e00144_bib22
  article-title: Poly-α-glutamic acid synthesis using a novel catalytic activity of RimK from Escherichia coli K-12
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02043-10
– volume: 161
  start-page: 1
  year: 2015
  ident: 10.1016/j.mec.2020.e00144_bib25
  article-title: Poly-γ-glutamic acid: production, properties and applications
  publication-title: Microbiology
  doi: 10.1099/mic.0.081448-0
– volume: 43
  start-page: W408
  year: 2015
  ident: 10.1016/j.mec.2020.e00144_bib13
  article-title: CCTOP: a Consensus Constrained TOPology prediction web server
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv451
– volume: 268
  start-page: 5321
  year: 2001
  ident: 10.1016/j.mec.2020.e00144_bib5
  article-title: Physiological and biochemical characteristics of poly γ-glutamate synthetase complex of Bacillus subtilis
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.0014-2956.2001.02475.x
– volume: 1, vols. 2 and 3
  year: 2001
  ident: 10.1016/j.mec.2020.e00144_bib28
– volume: 31
  start-page: 3381
  year: 2003
  ident: 10.1016/j.mec.2020.e00144_bib29
  article-title: SWISS-MODEL: an automated protein homology-modeling server
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg520
– volume: 16
  start-page: 1
  year: 2017
  ident: 10.1016/j.mec.2020.e00144_bib16
  article-title: Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-017-0704-y
– volume: 56
  start-page: 39
  year: 2019
  ident: 10.1016/j.mec.2020.e00144_bib40
  article-title: Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-γ-glutamic acid
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2019.08.011
– year: 2009
  ident: 10.1016/j.mec.2020.e00144_bib1
– volume: 28
  start-page: 1241
  year: 2006
  ident: 10.1016/j.mec.2020.e00144_bib19
  article-title: Optimal production of poly-gamma-glutamic acid by metabolically engineered Escherichia coli
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-006-9080-0
– volume: 128
  start-page: 1390
  year: 2019
  ident: 10.1016/j.mec.2020.e00144_bib23
  article-title: Biosynthesis of poly-γ-glutamic acid in Escherichia coli by heterologous expression of pgsBCAE operon from Bacillus
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.14552
– volume: 304
  start-page: 57
  year: 2019
  ident: 10.1016/j.mec.2020.e00144_bib26
  article-title: Knockout of pgdS and ggt gene changes poly-γ-glutamic acid production in Bacillus licheniformis RK14-46
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2019.08.003
– volume: 70
  start-page: 209
  year: 2013
  ident: 10.1016/j.mec.2020.e00144_bib7
  article-title: Bacillus subtilis EdmS (formerly PgsE) participates in the maintenance of episomes
  publication-title: Plasmid
  doi: 10.1016/j.plasmid.2013.03.008
– volume: 7
  year: 2011
  ident: 10.1016/j.mec.2020.e00144_bib31
  article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2011.75
– volume: 47
  start-page: 381
  year: 2011
  ident: 10.1016/j.mec.2020.e00144_bib37
  article-title: Heterogenous expression of poly-γ-glutamic acid synthetase complex gene of Bacillus licheniformis WBL-3
  publication-title: Appl. Biochem. Microbiol.
  doi: 10.1134/S0003683811040193
– volume: 108
  start-page: 226
  year: 2011
  ident: 10.1016/j.mec.2020.e00144_bib42
  article-title: Bacillus subtilis pgsE (formerly ywtC) stimulates poly-γ-glutamate production in the presence of zinc
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22913
SSID ssj0001361411
Score 2.1784866
Snippet Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit...
Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00144
SubjectTerms Biopolymer
cell membranes
enzymes
Escherichia coli
Heterologous
Localization
Membrane
molecular weight
Poly-gamma-glutamate
Special issue on Model chassis cells edited by Long Liu and Rodrigo Ledesma- Amaro
Synthetase
Title Characterization of a membrane enzymatic complex for heterologous production of poly-γ-glutamate in E. coli
URI https://dx.doi.org/10.1016/j.mec.2020.e00144
https://www.proquest.com/docview/2445423574
https://www.proquest.com/docview/2524321534
https://pubmed.ncbi.nlm.nih.gov/PMC7490850
https://doaj.org/article/35fda961b4334d2ea5a840e00663f750
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYQvdBDRf_UBYpcqadKoYl_4vhIEQgVtQcEKjfLTsZiKza7ahcJeBreoW_QB-gzdWwnq-SyvfSajJOMZ5z5Jp58Q8h7V2rQNTRZ5RueoVNAZjUvMo_Rx1baax3bdH75Wp5eis9X8mrQ6ivUhCV64DRxH7n0jdVl4QTnomFgpcWcBGKo9Cpl67nOB8lU_LrCMezE5ruMFSILuL_f0ozFXTMI9IUsP4CQI4hRUIrc_aPYNMCe48rJQSg62SbPOgxJD9OzPycb0L4gTwfMgi_J7GhFxJz-s6RzTy2dwQyz4xYotA_3kayVxppyuKMIXul1qI0Jb8P57U-6SFyw3djF_OY--_MrlLgvLY4EOm3p8cHvR3Sk6StyeXJ8cXSadZ0VsloytcSkUdombJGVtYWQY1TMuqJUjPuGWagaVaGOzvrScWXzHNDQyirnigZf1LXgr8lmO2_hDaF1JaTLrfK40IXkoJWrmUNJ67wXwk1I3k-tqTva8dD94sb09WXfDVrDBGuYZI0J-bAaskicG-uEPwV7rQQDXXY8gE5kOicy_3KiCRG9tU2HPBKiwEtN1937Xe8ZBldl2GpBE6KJDIImKQKT0DoZyQRHxMVRRo3caqTM-Ew7vY4c4Cps2Mp8539ov0u2glKpSGePbC5_3MJbhFpLt0-eHJ6dfzvbj6vrLzcwK6o
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+a+membrane+enzymatic+complex+for+heterologous+production+of+poly-%CE%B3-glutamate+in+E.+coli&rft.jtitle=Metabolic+engineering+communications&rft.au=Motta+Nascimento%2C+Bruno&rft.au=Nair%2C+Nikhil+U&rft.date=2020-12-01&rft.issn=2214-0301&rft.eissn=2214-0301&rft.volume=11+p.e00144-&rft_id=info:doi/10.1016%2Fj.mec.2020.e00144&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-0301&client=summon