Characterization of a membrane enzymatic complex for heterologous production of poly-γ-glutamate in E. coli
Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. El...
Saved in:
Published in | Metabolic engineering communications Vol. 11; p. e00144 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2214-0301 2214-0301 |
DOI | 10.1016/j.mec.2020.e00144 |
Cover
Abstract | Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts.
•Successfully expressed active poly-γ-glutamate synthetase (PGS) in E. coli.•Confirmed PGS localization at inner membrane of E. coli.•Elucidated topology of PGS components in E. coli membrane.•Culture and expression in microplates might allow future screening of a high number of samples.•Faster production of poly-γ-glutamate in E. coli supernatant compared to B. subtilis. |
---|---|
AbstractList | Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts.
•Successfully expressed active poly-γ-glutamate synthetase (PGS) in E. coli.•Confirmed PGS localization at inner membrane of E. coli.•Elucidated topology of PGS components in E. coli membrane.•Culture and expression in microplates might allow future screening of a high number of samples.•Faster production of poly-γ-glutamate in E. coli supernatant compared to B. subtilis. Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts.Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts. Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts. Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli, we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts. Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit enzymatic complex responsible for its synthesis, PGA Synthetase (PGS), has not been well characterized yet, in native nor in recombinant contexts. Elucidating structural and functional properties are crucial for future engineering efforts aimed at altering the catalytic properties of this enzyme. This study focuses on expressing the enzyme heterologously in the Escherichia coli membrane and characterizing localization, orientation, and activity of this heterooligomeric enzyme complex. In E. coli , we were able to produce high molecular weight PGA polymers with minimal degradation at titers of approximately 13 mg/L in deep-well microtiter batch cultures. Using fusion proteins, we observed, for the first time, the association and orientation of the different subunits with the inner cell membrane. These results provide fundamental structural information on this poorly studied enzyme complex and will aid future fundamental studies and engineering efforts. • Successfully expressed active poly-γ-glutamate synthetase (PGS) in E. coli. • Confirmed PGS localization at inner membrane of E. coli. • Elucidated topology of PGS components in E. coli membrane. • Culture and expression in microplates might allow future screening of a high number of samples. • Faster production of poly-γ-glutamate in E. coli supernatant compared to B. subtilis. |
ArticleNumber | e00144 |
Author | Motta Nascimento, Bruno Nair, Nikhil U. |
Author_xml | – sequence: 1 givenname: Bruno surname: Motta Nascimento fullname: Motta Nascimento, Bruno – sequence: 2 givenname: Nikhil U. surname: Nair fullname: Nair, Nikhil U. email: nikhil.nair@tufts.edu |
BookMark | eNqFkk9u1DAUxiNUREvpAdh5ySbB_5MREhIaFahUiQ2srRfnZcYjJw5OUjE9Te_ADTgAZ8IzaSXKoqxs-X2_z37P38vspA89ZtlrRgtGmX67Kzq0BaecFkgpk_JZdsY5kzkVlJ38tT_NLsZxR5NGaCYZe5GdCr7SYqXpWdattxDBThjdLUwu9CS0BEiHXR2hR4L97b5LBUts6AaPP0gbItliAoIPmzCPZIihme0DOwS_z3__zDd-niCRSFxPLotfdzZ49yp73oIf8eJ-Pc--fbz8uv6cX3_5dLX-cJ1bxcspl1RBoxTT2gIqxqqKQ810yUXbcMCqKStsbA2trkUJlCJaW0JZ16xBsFaK8-xq8W0C7MwQXQdxbwI4czwIcWMgpqY8GqHaBlaa1VII2XAEBZWkaaJai7ZUNHm9X7yGue7StdhPEfwj08eV3m3NJtyYUq5odTR4c28Qw_cZx8l0brTofZpvmp_hikvBmRLy_1IpleRClQdpuUhtDOMYsTXWTccfTI9w3jBqDjExO5NiYg4xMUtMEsn-IR96eYp5tzCYfu3GYTSjddhbbFxEO6WxuifoP0wP2a4 |
CitedBy_id | crossref_primary_10_1271_kagakutoseibutsu_59_549 crossref_primary_10_1007_s12010_023_04837_8 |
Cites_doi | 10.1016/j.jmb.2006.07.066 10.1128/AEM.02649-10 10.1016/j.procbio.2019.04.001 10.1263/jbb.100.443 10.1016/j.ab.2011.10.048 10.1016/j.biortech.2010.12.065 10.1016/j.molcatb.2010.07.014 10.1128/JB.184.2.337-343.2002 10.1016/j.ymben.2019.07.009 10.1073/pnas.120163297 10.5936/csbj.201210013 10.1002/jctb.4261 10.1111/1751-7915.12075 10.1039/c3np70025a 10.1016/j.molcatb.2005.06.007 10.1016/j.ymben.2015.09.011 10.1073/pnas.052018199 10.1002/btpr.370 10.1007/s00253-002-0984-x 10.1006/bbrc.1999.1298 10.1111/1751-7915.12072 10.1002/bit.24846 10.1128/JB.00864-15 10.1128/AEM.02043-10 10.1099/mic.0.081448-0 10.1093/nar/gkv451 10.1046/j.0014-2956.2001.02475.x 10.1093/nar/gkg520 10.1186/s12934-017-0704-y 10.1016/j.ymben.2019.08.011 10.1007/s10529-006-9080-0 10.1111/jam.14552 10.1016/j.jbiotec.2019.08.003 10.1016/j.plasmid.2013.03.008 10.1038/msb.2011.75 10.1134/S0003683811040193 10.1002/bit.22913 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) 2020 The Author(s). 2020 The Author(s) 2020 |
Copyright_xml | – notice: 2020 The Author(s) – notice: 2020 The Author(s). – notice: 2020 The Author(s) 2020 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.mec.2020.e00144 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-0301 |
ExternalDocumentID | oai_doaj_org_article_35fda961b4334d2ea5a840e00663f750 PMC7490850 10_1016_j_mec_2020_e00144 S2214030120300444 |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c527t-405ad55166cae511882ab16723fd2ae8d78edcbaf6b37a00eecc7a7bb1deacc43 |
IEDL.DBID | DOA |
ISSN | 2214-0301 |
IngestDate | Wed Aug 27 01:30:28 EDT 2025 Thu Aug 21 14:06:56 EDT 2025 Fri Jul 11 15:25:00 EDT 2025 Thu Jul 10 23:08:26 EDT 2025 Tue Jul 01 04:03:42 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Tue Jul 16 04:30:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Synthetase Membrane Poly-gamma-glutamate Localization Heterologous Biopolymer |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-405ad55166cae511882ab16723fd2ae8d78edcbaf6b37a00eecc7a7bb1deacc43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Website: https://sites.tufts.edu/nairlab. Present/permanent address: Science and Technology Center #276, 4 Colby St., Medford, MA 02155. |
OpenAccessLink | https://doaj.org/article/35fda961b4334d2ea5a840e00663f750 |
PMID | 32963960 |
PQID | 2445423574 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_35fda961b4334d2ea5a840e00663f750 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7490850 proquest_miscellaneous_2524321534 proquest_miscellaneous_2445423574 crossref_citationtrail_10_1016_j_mec_2020_e00144 crossref_primary_10_1016_j_mec_2020_e00144 elsevier_sciencedirect_doi_10_1016_j_mec_2020_e00144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Metabolic engineering communications |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Ke, Landgraf, Paulsson, Berkmen (bib21) 2016; 198 Liu, Dong, Xue, Yang, Liu, Cai, Liu, Yang, Bai (bib23) 2019; 128 Feng, Quan, Gu, Liu, Huang, Shen, Dang, Cao, Gao, Lu, Wang, Song, Wang (bib16) 2017; 16 Smith (bib32) 2006; 362 Kino, Arai, Arimura (bib22) 2011; 77 Ashiuchi, Nawa, Kamei, Song, Hong, Sung, Soda, Yagi, Misono (bib5) 2001; 268 Yamashiro, Yoshioka, Ashiuchi (bib42) 2011; 108 Ashiuchi (bib2) 2013; 6 Scoffone, Dondi, Biino, Borghese, Pasini, Galizzi, Calvio (bib30) 2013; 110 Halmschlag, Steurer, Putri, Fukusaki, Blank (bib17) 2019; 55 Drew, Sjöstrand, Nilsson, Urbig, Chin, De Gier, Von Heijne (bib14) 2002; 99 Jiang, Shang, Yoon, Lee, Yu (bib19) 2006; 28 Soto, Draper (bib33) 2012; 421 Tarui, Iida, Ono, Miki, Hirasawa, Fujita, Tanaka, Taniguchi (bib34) 2005; 100 Ashiuchi, Soda, Misono (bib6) 1999; 263 Cao, Song, Jin, Liu, Liu, Xie, Guo, Wang (bib10) 2010; 67 Hamano, Arai, Ashiuchi, Kino (bib18) 2013; 30 Ogunleye, Bhat, Irorere, Hill, Williams, Radecka (bib25) 2015; 161 Sievers, Wilm, Dineen, Gibson, Karplus, Li, Lopez, McWilliam, Remmert, Söding, Thompson, Higgins (bib31) 2011; 7 Park, Choi, Choi, Nakamura, Shimanouchi, Horiuchi, Misono, Sewaki, Soda, Ashiuchi, Sung (bib27) 2005; 35 Ashiuchi, Misono (bib3) 2003 Urushibata, Tokuyama, Tahara (bib36) 2002; 184 Abelson, Simon (bib1) 2009 Cao, Geng, Liu, Song, Xie, Guo, Jin, Wang (bib8) 2011; 102 Dammeyer, Tinnefeld (bib11) 2012; 3 Tian, Fu, Wei, Ji, Ma, Qi, Chen (bib35) 2014; 89 Xavier, Madhan Kumarr, Natarajan, Ramana, Semwal (bib39) 2019 Manocha, Margaritis (bib24) 2010; 26 Wang, Yang, Che, Liu (bib37) 2011; 47 Datsenko, Wanner (bib12) 2000; 97 Yuan, Ran, Chang, Gao, Jia (bib44) 2019; 82 Sambrook, Russell (bib28) 2001; 1, vols. 2 and 3 Schwede, Kopp, Guex, Peitsch (bib29) 2003; 31 Yoon, Do, Lee, Chang (bib43) 2000 Xu, Zha, Cheng, Ibrahim, Yang, Dalton, Cao, Zhu, Fang, Chi, Zheng, Zhang, Shi, Xu, Gross, Koffas (bib40) 2019; 56 Dobson, Reményi, Tusnády (bib13) 2015; 43 Yamashiro, Minouchi, Ashiuchi (bib41) 2011; 77 Cao, Geng, Zhang, Sun, Wang, Feng, Zheng, Jiang, Song (bib9) 2013; 6 Ojima, Kobayashi, Doi, Azuma (bib26) 2019; 304 Wang, Wei, Chen (bib38) 2017 Ashiuchi, Misono (bib4) 2002; 59 Karimova, Ladant (bib20) 2017; vol. 1615 Feng, Gu, Quan, Cao, Gao, Zhang, Wang, Yang, Song (bib15) 2015; 32 Ashiuchi, Yamashiro, Yamamoto (bib7) 2013; 70 Sambrook (10.1016/j.mec.2020.e00144_bib28) 2001; 1, vols. 2 and 3 Wang (10.1016/j.mec.2020.e00144_bib38) 2017 Xavier (10.1016/j.mec.2020.e00144_bib39) 2019 Ashiuchi (10.1016/j.mec.2020.e00144_bib7) 2013; 70 Karimova (10.1016/j.mec.2020.e00144_bib20) 2017; vol. 1615 Yuan (10.1016/j.mec.2020.e00144_bib44) 2019; 82 Ashiuchi (10.1016/j.mec.2020.e00144_bib2) 2013; 6 Ogunleye (10.1016/j.mec.2020.e00144_bib25) 2015; 161 Feng (10.1016/j.mec.2020.e00144_bib16) 2017; 16 Halmschlag (10.1016/j.mec.2020.e00144_bib17) 2019; 55 Scoffone (10.1016/j.mec.2020.e00144_bib30) 2013; 110 Ashiuchi (10.1016/j.mec.2020.e00144_bib6) 1999; 263 Drew (10.1016/j.mec.2020.e00144_bib14) 2002; 99 Liu (10.1016/j.mec.2020.e00144_bib23) 2019; 128 Ojima (10.1016/j.mec.2020.e00144_bib26) 2019; 304 Sievers (10.1016/j.mec.2020.e00144_bib31) 2011; 7 Hamano (10.1016/j.mec.2020.e00144_bib18) 2013; 30 Dobson (10.1016/j.mec.2020.e00144_bib13) 2015; 43 Smith (10.1016/j.mec.2020.e00144_bib32) 2006; 362 Wang (10.1016/j.mec.2020.e00144_bib37) 2011; 47 Xu (10.1016/j.mec.2020.e00144_bib40) 2019; 56 Tian (10.1016/j.mec.2020.e00144_bib35) 2014; 89 Yamashiro (10.1016/j.mec.2020.e00144_bib42) 2011; 108 Park (10.1016/j.mec.2020.e00144_bib27) 2005; 35 Ke (10.1016/j.mec.2020.e00144_bib21) 2016; 198 Yoon (10.1016/j.mec.2020.e00144_bib43) 2000 Ashiuchi (10.1016/j.mec.2020.e00144_bib5) 2001; 268 Dammeyer (10.1016/j.mec.2020.e00144_bib11) 2012; 3 Datsenko (10.1016/j.mec.2020.e00144_bib12) 2000; 97 Yamashiro (10.1016/j.mec.2020.e00144_bib41) 2011; 77 Soto (10.1016/j.mec.2020.e00144_bib33) 2012; 421 Cao (10.1016/j.mec.2020.e00144_bib10) 2010; 67 Tarui (10.1016/j.mec.2020.e00144_bib34) 2005; 100 Ashiuchi (10.1016/j.mec.2020.e00144_bib3) 2003 Ashiuchi (10.1016/j.mec.2020.e00144_bib4) 2002; 59 Schwede (10.1016/j.mec.2020.e00144_bib29) 2003; 31 Feng (10.1016/j.mec.2020.e00144_bib15) 2015; 32 Abelson (10.1016/j.mec.2020.e00144_bib1) 2009 Cao (10.1016/j.mec.2020.e00144_bib9) 2013; 6 Cao (10.1016/j.mec.2020.e00144_bib8) 2011; 102 Manocha (10.1016/j.mec.2020.e00144_bib24) 2010; 26 Urushibata (10.1016/j.mec.2020.e00144_bib36) 2002; 184 Kino (10.1016/j.mec.2020.e00144_bib22) 2011; 77 Jiang (10.1016/j.mec.2020.e00144_bib19) 2006; 28 |
References_xml | – volume: 110 start-page: 2006 year: 2013 end-page: 2012 ident: bib30 article-title: Knockout of publication-title: Biotechnol. Bioeng. – volume: 47 start-page: 381 year: 2011 end-page: 385 ident: bib37 article-title: Heterogenous expression of poly-γ-glutamic acid synthetase complex gene of publication-title: Appl. Biochem. Microbiol. – volume: 6 start-page: 664 year: 2013 end-page: 674 ident: bib2 article-title: Microbial production and chemical transformation of poly-γ-glutamate publication-title: J. Microb. Biotechnol. – start-page: 1 year: 2019 end-page: 12 ident: bib39 article-title: Optimized production of poly (γ-glutamic acid) (γ-PGA) using publication-title: Biotechnol. Appl. Biochem. – volume: 16 start-page: 1 year: 2017 end-page: 12 ident: bib16 article-title: Enhancing poly-γ-glutamic acid production in publication-title: Microb. Cell Factories – volume: 268 start-page: 5321 year: 2001 end-page: 5328 ident: bib5 article-title: Physiological and biochemical characteristics of poly γ-glutamate synthetase complex of publication-title: Eur. J. Biochem. – volume: 1, vols. 2 and 3 year: 2001 ident: bib28 publication-title: Molecular Cloning - A Laboratory Manual - – volume: 184 start-page: 337 year: 2002 end-page: 343 ident: bib36 article-title: Characterization of the publication-title: J. Bacteriol. – volume: 28 start-page: 1241 year: 2006 end-page: 1246 ident: bib19 article-title: Optimal production of poly-gamma-glutamic acid by metabolically engineered publication-title: Biotechnol. Lett. – volume: 77 start-page: 2796 year: 2011 end-page: 2798 ident: bib41 article-title: Moonlighting role of a poly-γ-glutamate synthetase component from publication-title: Appl. Environ. Microbiol. – volume: 30 start-page: 1087 year: 2013 end-page: 1097 ident: bib18 article-title: NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s publication-title: Nat. Prod. Rep. – volume: 108 start-page: 226 year: 2011 end-page: 230 ident: bib42 article-title: (formerly publication-title: Biotechnol. Bioeng. – volume: 43 start-page: W408 year: 2015 end-page: W412 ident: bib13 article-title: CCTOP: a Consensus Constrained TOPology prediction web server publication-title: Nucleic Acids Res. – volume: 89 start-page: 1825 year: 2014 end-page: 1832 ident: bib35 article-title: Enhanced expression of publication-title: J. Chem. Technol. Biotechnol. – volume: 7 year: 2011 ident: bib31 article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega publication-title: Mol. Syst. Biol. – volume: 362 start-page: 640 year: 2006 end-page: 655 ident: bib32 article-title: Structure, function and dynamics in the publication-title: J. Mol. Biol. – volume: 100 start-page: 443 year: 2005 end-page: 448 ident: bib34 article-title: Biosynthesis of poly-γ-glutamic acid in plants: transient expression of poly-γ-glutamate synthetase complex in tobacco leaves publication-title: J. Biosci. Bioeng. – volume: 59 start-page: 9 year: 2002 end-page: 14 ident: bib4 article-title: Biochemistry and molecular genetics of poly-γ-glutamate synthesis publication-title: Appl. Microbiol. Biotechnol. – volume: 97 start-page: 6640 year: 2000 end-page: 6645 ident: bib12 article-title: One-step inactivation of chromosomal genes in publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 99 start-page: 2690 year: 2002 end-page: 2695 ident: bib14 article-title: Rapid topology mapping of publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 31 start-page: 3381 year: 2003 end-page: 3385 ident: bib29 article-title: SWISS-MODEL: an automated protein homology-modeling server publication-title: Nucleic Acids Res. – volume: 32 start-page: 106 year: 2015 end-page: 115 ident: bib15 article-title: Improved poly-γ-glutamic acid production in publication-title: Metab. Eng. – volume: 421 start-page: 345 year: 2012 end-page: 346 ident: bib33 article-title: White gels: an easy way to preserve methylene blue stained gels publication-title: Anal. Biochem. – volume: 55 start-page: 239 year: 2019 end-page: 248 ident: bib17 article-title: Tailor-made poly-γ-glutamic acid production publication-title: Metab. Eng. – year: 2017 ident: bib38 article-title: Production and Application of Poly-γ-glutamic Acid, Current Developments in Biotechnology and Bioengineering – start-page: 585 year: 2000 end-page: 588 ident: bib43 article-title: Production of poly-γ-glutamic acid by fed-batch culture of publication-title: Time – volume: 82 start-page: 215 year: 2019 end-page: 221 ident: bib44 article-title: Recovery of low-molecular-weight γ-PGA by metal cation from the fermentation broth publication-title: Process Biochem. – volume: 6 start-page: 675 year: 2013 end-page: 684 ident: bib9 article-title: Engineering of recombinant publication-title: J. Microb. Biotechnol. – volume: 128 start-page: 1390 year: 2019 end-page: 1399 ident: bib23 article-title: Biosynthesis of poly-γ-glutamic acid in publication-title: J. Appl. Microbiol. – volume: 198 start-page: 1035 year: 2016 end-page: 1043 ident: bib21 article-title: Visualization of periplasmic and cytoplasmic proteins with a self-labeling protein tag publication-title: J. Bacteriol. – volume: 56 start-page: 39 year: 2019 end-page: 49 ident: bib40 article-title: Engineering publication-title: Metab. Eng. – volume: 26 start-page: 734 year: 2010 end-page: 742 ident: bib24 article-title: A novel method for the selective recovery and purification of γ-polyglutamic acid from publication-title: Biotechnol. Prog. – volume: 161 start-page: 1 year: 2015 end-page: 17 ident: bib25 article-title: Poly-γ-glutamic acid: production, properties and applications publication-title: Microbiology – volume: 304 start-page: 57 year: 2019 end-page: 62 ident: bib26 article-title: Knockout of publication-title: J. Biotechnol. – start-page: 123 year: 2003 end-page: 173 ident: bib3 article-title: Poly-γ-glutamic acid publication-title: Biopolymers: Volume 7 - Polyamides and Complex Proteinaceous Materials I – volume: vol. 1615 start-page: 129 year: 2017 end-page: 142 ident: bib20 article-title: Defining membrane protein topology using publication-title: Bacterial Protein Secretion Systems. Methods in Molecular Biology – volume: 102 start-page: 4251 year: 2011 end-page: 4257 ident: bib8 article-title: Glutamic acid independent production of poly-γ-glutamic acid by publication-title: Bioresour. Technol. – year: 2009 ident: bib1 article-title: Methods in Enzymology - Guide to Protein Purification – volume: 77 start-page: 2019 year: 2011 end-page: 2025 ident: bib22 article-title: Poly-α-glutamic acid synthesis using a novel catalytic activity of RimK from publication-title: Appl. Environ. Microbiol. – volume: 67 start-page: 111 year: 2010 end-page: 116 ident: bib10 article-title: Synthesis of poly (γ-glutamic acid) and heterologous expression of publication-title: J. Mol. Catal. B Enzym. – volume: 70 start-page: 209 year: 2013 end-page: 215 ident: bib7 article-title: EdmS (formerly PgsE) participates in the maintenance of episomes publication-title: Plasmid – volume: 3 year: 2012 ident: bib11 article-title: Engineered fluorescent proteins illuminate the bacterial periplasm publication-title: Comput. Struct. Biotechnol. J. – volume: 35 start-page: 128 year: 2005 end-page: 133 ident: bib27 article-title: Synthesis of super-high-molecular-weight poly-γ-glutamic acid by publication-title: J. Mol. Catal. B Enzym. – volume: 263 start-page: 6 year: 1999 end-page: 12 ident: bib6 article-title: A poly-γ-glutamate synthetic System of publication-title: Biochem. Biophys. Res. Commun. – start-page: 123 year: 2003 ident: 10.1016/j.mec.2020.e00144_bib3 article-title: Poly-γ-glutamic acid – year: 2017 ident: 10.1016/j.mec.2020.e00144_bib38 – volume: 362 start-page: 640 year: 2006 ident: 10.1016/j.mec.2020.e00144_bib32 article-title: Structure, function and dynamics in the mur family of bacterial cell wall ligases publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.07.066 – volume: 77 start-page: 2796 year: 2011 ident: 10.1016/j.mec.2020.e00144_bib41 article-title: Moonlighting role of a poly-γ-glutamate synthetase component from Bacillus subtilis: insight into novel extrachromosomal DNA maintenance publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02649-10 – volume: 82 start-page: 215 year: 2019 ident: 10.1016/j.mec.2020.e00144_bib44 article-title: Recovery of low-molecular-weight γ-PGA by metal cation from the fermentation broth publication-title: Process Biochem. doi: 10.1016/j.procbio.2019.04.001 – volume: 100 start-page: 443 year: 2005 ident: 10.1016/j.mec.2020.e00144_bib34 article-title: Biosynthesis of poly-γ-glutamic acid in plants: transient expression of poly-γ-glutamate synthetase complex in tobacco leaves publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.100.443 – volume: 421 start-page: 345 year: 2012 ident: 10.1016/j.mec.2020.e00144_bib33 article-title: White gels: an easy way to preserve methylene blue stained gels publication-title: Anal. Biochem. doi: 10.1016/j.ab.2011.10.048 – volume: 102 start-page: 4251 year: 2011 ident: 10.1016/j.mec.2020.e00144_bib8 article-title: Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.12.065 – volume: 67 start-page: 111 year: 2010 ident: 10.1016/j.mec.2020.e00144_bib10 article-title: Synthesis of poly (γ-glutamic acid) and heterologous expression of pgsBCA genes publication-title: J. Mol. Catal. B Enzym. doi: 10.1016/j.molcatb.2010.07.014 – volume: 184 start-page: 337 year: 2002 ident: 10.1016/j.mec.2020.e00144_bib36 article-title: Characterization of the Bacillus subtilis ywsC gene, involved in γ-polyglutamic acid production publication-title: J. Bacteriol. doi: 10.1128/JB.184.2.337-343.2002 – volume: 55 start-page: 239 year: 2019 ident: 10.1016/j.mec.2020.e00144_bib17 article-title: Tailor-made poly-γ-glutamic acid production publication-title: Metab. Eng. doi: 10.1016/j.ymben.2019.07.009 – volume: 97 start-page: 6640 year: 2000 ident: 10.1016/j.mec.2020.e00144_bib12 article-title: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.120163297 – volume: 3 year: 2012 ident: 10.1016/j.mec.2020.e00144_bib11 article-title: Engineered fluorescent proteins illuminate the bacterial periplasm publication-title: Comput. Struct. Biotechnol. J. doi: 10.5936/csbj.201210013 – volume: 89 start-page: 1825 year: 2014 ident: 10.1016/j.mec.2020.e00144_bib35 article-title: Enhanced expression of pgdS gene for high production of poly-γ-glutamic acid with lower molecular weight in Bacillus licheniformis WX-02 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4261 – volume: 6 start-page: 675 year: 2013 ident: 10.1016/j.mec.2020.e00144_bib9 article-title: Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA publication-title: J. Microb. Biotechnol. doi: 10.1111/1751-7915.12075 – volume: 30 start-page: 1087 year: 2013 ident: 10.1016/j.mec.2020.e00144_bib18 article-title: NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s publication-title: Nat. Prod. Rep. doi: 10.1039/c3np70025a – volume: 35 start-page: 128 year: 2005 ident: 10.1016/j.mec.2020.e00144_bib27 article-title: Synthesis of super-high-molecular-weight poly-γ-glutamic acid by Bacillus subtilis subsp. chungkookjang publication-title: J. Mol. Catal. B Enzym. doi: 10.1016/j.molcatb.2005.06.007 – volume: 32 start-page: 106 year: 2015 ident: 10.1016/j.mec.2020.e00144_bib15 article-title: Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering publication-title: Metab. Eng. doi: 10.1016/j.ymben.2015.09.011 – volume: 99 start-page: 2690 year: 2002 ident: 10.1016/j.mec.2020.e00144_bib14 article-title: Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.052018199 – start-page: 585 year: 2000 ident: 10.1016/j.mec.2020.e00144_bib43 article-title: Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis publication-title: Time – volume: 26 start-page: 734 year: 2010 ident: 10.1016/j.mec.2020.e00144_bib24 article-title: A novel method for the selective recovery and purification of γ-polyglutamic acid from Bacillus licheniformis fermentation broth publication-title: Biotechnol. Prog. doi: 10.1002/btpr.370 – volume: 59 start-page: 9 year: 2002 ident: 10.1016/j.mec.2020.e00144_bib4 article-title: Biochemistry and molecular genetics of poly-γ-glutamate synthesis publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-002-0984-x – volume: vol. 1615 start-page: 129 year: 2017 ident: 10.1016/j.mec.2020.e00144_bib20 article-title: Defining membrane protein topology using pho-lac reporter fusions – volume: 263 start-page: 6 year: 1999 ident: 10.1016/j.mec.2020.e00144_bib6 article-title: A poly-γ-glutamate synthetic System of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1999.1298 – volume: 6 start-page: 664 year: 2013 ident: 10.1016/j.mec.2020.e00144_bib2 article-title: Microbial production and chemical transformation of poly-γ-glutamate publication-title: J. Microb. Biotechnol. doi: 10.1111/1751-7915.12072 – start-page: 1 year: 2019 ident: 10.1016/j.mec.2020.e00144_bib39 article-title: Optimized production of poly (γ-glutamic acid) (γ-PGA) using Bacillus licheniformis and its application as cryoprotectant for probiotics publication-title: Biotechnol. Appl. Biochem. – volume: 110 start-page: 2006 year: 2013 ident: 10.1016/j.mec.2020.e00144_bib30 article-title: Knockout of pgdS and ggt genes improves γ-PGA yield in B. subtilis publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24846 – volume: 198 start-page: 1035 year: 2016 ident: 10.1016/j.mec.2020.e00144_bib21 article-title: Visualization of periplasmic and cytoplasmic proteins with a self-labeling protein tag publication-title: J. Bacteriol. doi: 10.1128/JB.00864-15 – volume: 77 start-page: 2019 year: 2011 ident: 10.1016/j.mec.2020.e00144_bib22 article-title: Poly-α-glutamic acid synthesis using a novel catalytic activity of RimK from Escherichia coli K-12 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02043-10 – volume: 161 start-page: 1 year: 2015 ident: 10.1016/j.mec.2020.e00144_bib25 article-title: Poly-γ-glutamic acid: production, properties and applications publication-title: Microbiology doi: 10.1099/mic.0.081448-0 – volume: 43 start-page: W408 year: 2015 ident: 10.1016/j.mec.2020.e00144_bib13 article-title: CCTOP: a Consensus Constrained TOPology prediction web server publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv451 – volume: 268 start-page: 5321 year: 2001 ident: 10.1016/j.mec.2020.e00144_bib5 article-title: Physiological and biochemical characteristics of poly γ-glutamate synthetase complex of Bacillus subtilis publication-title: Eur. J. Biochem. doi: 10.1046/j.0014-2956.2001.02475.x – volume: 1, vols. 2 and 3 year: 2001 ident: 10.1016/j.mec.2020.e00144_bib28 – volume: 31 start-page: 3381 year: 2003 ident: 10.1016/j.mec.2020.e00144_bib29 article-title: SWISS-MODEL: an automated protein homology-modeling server publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg520 – volume: 16 start-page: 1 year: 2017 ident: 10.1016/j.mec.2020.e00144_bib16 article-title: Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum publication-title: Microb. Cell Factories doi: 10.1186/s12934-017-0704-y – volume: 56 start-page: 39 year: 2019 ident: 10.1016/j.mec.2020.e00144_bib40 article-title: Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-γ-glutamic acid publication-title: Metab. Eng. doi: 10.1016/j.ymben.2019.08.011 – year: 2009 ident: 10.1016/j.mec.2020.e00144_bib1 – volume: 28 start-page: 1241 year: 2006 ident: 10.1016/j.mec.2020.e00144_bib19 article-title: Optimal production of poly-gamma-glutamic acid by metabolically engineered Escherichia coli publication-title: Biotechnol. Lett. doi: 10.1007/s10529-006-9080-0 – volume: 128 start-page: 1390 year: 2019 ident: 10.1016/j.mec.2020.e00144_bib23 article-title: Biosynthesis of poly-γ-glutamic acid in Escherichia coli by heterologous expression of pgsBCAE operon from Bacillus publication-title: J. Appl. Microbiol. doi: 10.1111/jam.14552 – volume: 304 start-page: 57 year: 2019 ident: 10.1016/j.mec.2020.e00144_bib26 article-title: Knockout of pgdS and ggt gene changes poly-γ-glutamic acid production in Bacillus licheniformis RK14-46 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2019.08.003 – volume: 70 start-page: 209 year: 2013 ident: 10.1016/j.mec.2020.e00144_bib7 article-title: Bacillus subtilis EdmS (formerly PgsE) participates in the maintenance of episomes publication-title: Plasmid doi: 10.1016/j.plasmid.2013.03.008 – volume: 7 year: 2011 ident: 10.1016/j.mec.2020.e00144_bib31 article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2011.75 – volume: 47 start-page: 381 year: 2011 ident: 10.1016/j.mec.2020.e00144_bib37 article-title: Heterogenous expression of poly-γ-glutamic acid synthetase complex gene of Bacillus licheniformis WBL-3 publication-title: Appl. Biochem. Microbiol. doi: 10.1134/S0003683811040193 – volume: 108 start-page: 226 year: 2011 ident: 10.1016/j.mec.2020.e00144_bib42 article-title: Bacillus subtilis pgsE (formerly ywtC) stimulates poly-γ-glutamate production in the presence of zinc publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22913 |
SSID | ssj0001361411 |
Score | 2.1784866 |
Snippet | Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit... Poly-γ-glutamic acid (PGA) produced by many Bacillus species is a polymer with many distinct and desirable characteristics. However, the multi-subunit... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00144 |
SubjectTerms | Biopolymer cell membranes enzymes Escherichia coli Heterologous Localization Membrane molecular weight Poly-gamma-glutamate Special issue on Model chassis cells edited by Long Liu and Rodrigo Ledesma- Amaro Synthetase |
Title | Characterization of a membrane enzymatic complex for heterologous production of poly-γ-glutamate in E. coli |
URI | https://dx.doi.org/10.1016/j.mec.2020.e00144 https://www.proquest.com/docview/2445423574 https://www.proquest.com/docview/2524321534 https://pubmed.ncbi.nlm.nih.gov/PMC7490850 https://doaj.org/article/35fda961b4334d2ea5a840e00663f750 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYQvdBDRf_UBYpcqadKoYl_4vhIEQgVtQcEKjfLTsZiKza7ahcJeBreoW_QB-gzdWwnq-SyvfSajJOMZ5z5Jp58Q8h7V2rQNTRZ5RueoVNAZjUvMo_Rx1baax3bdH75Wp5eis9X8mrQ6ivUhCV64DRxH7n0jdVl4QTnomFgpcWcBGKo9Cpl67nOB8lU_LrCMezE5ruMFSILuL_f0ozFXTMI9IUsP4CQI4hRUIrc_aPYNMCe48rJQSg62SbPOgxJD9OzPycb0L4gTwfMgi_J7GhFxJz-s6RzTy2dwQyz4xYotA_3kayVxppyuKMIXul1qI0Jb8P57U-6SFyw3djF_OY--_MrlLgvLY4EOm3p8cHvR3Sk6StyeXJ8cXSadZ0VsloytcSkUdombJGVtYWQY1TMuqJUjPuGWagaVaGOzvrScWXzHNDQyirnigZf1LXgr8lmO2_hDaF1JaTLrfK40IXkoJWrmUNJ67wXwk1I3k-tqTva8dD94sb09WXfDVrDBGuYZI0J-bAaskicG-uEPwV7rQQDXXY8gE5kOicy_3KiCRG9tU2HPBKiwEtN1937Xe8ZBldl2GpBE6KJDIImKQKT0DoZyQRHxMVRRo3caqTM-Ew7vY4c4Cps2Mp8539ov0u2glKpSGePbC5_3MJbhFpLt0-eHJ6dfzvbj6vrLzcwK6o |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+a+membrane+enzymatic+complex+for+heterologous+production+of+poly-%CE%B3-glutamate+in+E.+coli&rft.jtitle=Metabolic+engineering+communications&rft.au=Motta+Nascimento%2C+Bruno&rft.au=Nair%2C+Nikhil+U&rft.date=2020-12-01&rft.issn=2214-0301&rft.eissn=2214-0301&rft.volume=11+p.e00144-&rft_id=info:doi/10.1016%2Fj.mec.2020.e00144&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-0301&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-0301&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-0301&client=summon |