Pir1p Mediates Translocation of the Yeast Apn1p Endonuclease into the Mitochondria To Maintain Genomic Stability

Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from...

Full description

Saved in:
Bibliographic Details
Published inMolecular and Cellular Biology Vol. 21; no. 5; pp. 1647 - 1655
Main Authors Vongsamphanh, Ratsavarinh, Fortier, Pierre-Karl, Ramotar, Dindial
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.03.2001
Taylor & Francis
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to MCB .asm.org, visit: MCB       
AbstractList The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Delta mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Delta mutants displayed a striking (approximately 3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Delta and apn1 Delta mutants. pir1 Delta and apn1 Delta mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA.
Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to MCB .asm.org, visit: MCB       
The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Delta mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Delta mutants displayed a striking (approximately 3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Delta and apn1 Delta mutants. pir1 Delta and apn1 Delta mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA.The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Delta mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Delta mutants displayed a striking (approximately 3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Delta and apn1 Delta mutants. pir1 Delta and apn1 Delta mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA.
The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Δ mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1Δ mutants displayed a striking (∼3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1Δ and apn1Δ mutants.pir1Δ and apn1Δ mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA.
The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Delta mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p initially isolated as a cell wall constituent of unknown function interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Delta mutants displayed a striking (~3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Delta and apn1 Delta mutants. pir1 Delta and apn1 Delta mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA.
The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Δ mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Δ mutants displayed a striking (∼3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Δ and apn1 Δ mutants. pir1 Δ and apn1 Δ mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA.
Author Pierre-Karl Fortier
Dindial Ramotar
Ratsavarinh Vongsamphanh
AuthorAffiliation Guy-Bernier Research Centre, University of Montreal, Montreal, Quebec, Canada H1T 2M4
AuthorAffiliation_xml – name: Guy-Bernier Research Centre, University of Montreal, Montreal, Quebec, Canada H1T 2M4
Author_xml – sequence: 1
  givenname: Ratsavarinh
  surname: Vongsamphanh
  fullname: Vongsamphanh, Ratsavarinh
  organization: Guy-Bernier Research Centre, University of Montreal
– sequence: 2
  givenname: Pierre-Karl
  surname: Fortier
  fullname: Fortier, Pierre-Karl
  organization: Guy-Bernier Research Centre, University of Montreal
– sequence: 3
  givenname: Dindial
  surname: Ramotar
  fullname: Ramotar, Dindial
  email: dramotar@hmr.qc.ca
  organization: Guy-Bernier Research Centre, University of Montreal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11238901$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9vFCEchompsdvqV1C8eJsRhgVmEj20m_4x6UYT14MnwjDQwTCwAmuz3152t1r1Ug-EBJ73zY88nIAjH7wG4BVGNcZN-3a5OK8bXNMaszmvMKO0bhDCT8AMo66tKJ13R2CGGo4qThA7BicpfUMIsQ6RZ-C4dJC2Q3gG1p9sxGu41IOVWSe4itInF5TMNngYDMyjhl-1TBmerX0hL_wQ_Ea5cqSh9TnsiaXNQY3BD9FKuApwKctVWfBK-zBZBT9n2Vtn8_Y5eGqkS_rF_X4KvlxerBbX1c3Hqw-Ls5tK0YbnigySdkxy02Ns9NBi3WnTy0ZjwtqBkTnraauZogSjnpmGYdPPTdsT2vNBSkpOwbtD73rTT3pQ2uconVhHO8m4FUFa8feNt6O4DT9EyzhGJf7mPh7D941OWUw2Ke2c9DpskuCsoxyRx0HMOeVsD778c6Dfk_xyUQB-AFQMKUVtHhC0o1pRrIsGCyp21sXOuthZL8n3_ySVzXuD5WXW_Uf-_JC33oQ4ybsQ3SCy3LoQTfkQyiZBHi95fSgZ7e14Z6MWMk1iUv0DTX4Cp1jV3A
CitedBy_id crossref_primary_10_1186_gb_2009_10_9_r95
crossref_primary_10_1128_EC_4_11_1872_1881_2005
crossref_primary_10_1016_j_jmb_2011_03_045
crossref_primary_10_1016_j_bbabio_2013_10_005
crossref_primary_10_1016_j_mad_2011_05_002
crossref_primary_10_1002_yea_686
crossref_primary_10_1016_j_jbiotec_2013_03_003
crossref_primary_10_1186_s13068_016_0614_y
crossref_primary_10_1016_j_cmet_2014_01_010
crossref_primary_10_1016_j_dnarep_2016_12_010
crossref_primary_10_1002_bies_20609
crossref_primary_10_1186_1471_2199_11_92
crossref_primary_10_1371_journal_pone_0173318
crossref_primary_10_1038_s41467_024_45819_6
crossref_primary_10_1111_j_1567_1364_2007_00296_x
crossref_primary_10_1093_nar_gkn1087
crossref_primary_10_1111_j_1574_6968_2002_tb11046_x
crossref_primary_10_1016_j_freeradbiomed_2015_01_013
crossref_primary_10_1091_mbc_e03_04_0236
crossref_primary_10_1002_em_20462
crossref_primary_10_1038_s41467_024_54141_0
crossref_primary_10_1016_j_tplants_2009_01_005
crossref_primary_10_1371_journal_pone_0103141
crossref_primary_10_1046_j_1474_9728_2003_00041_x
crossref_primary_10_1016_j_dnarep_2006_04_002
crossref_primary_10_1371_journal_pgen_1009521
crossref_primary_10_1534_genetics_109_103796
crossref_primary_10_3390_ijms24086975
crossref_primary_10_1016_j_bbamcr_2010_10_002
crossref_primary_10_1016_j_dnarep_2012_06_009
crossref_primary_10_1016_j_mito_2005_02_002
crossref_primary_10_1016_S0006_291X_03_00410_8
crossref_primary_10_1158_0008_5472_CAN_03_2729
crossref_primary_10_1016_j_bbamem_2010_07_004
crossref_primary_10_1016_j_bbrc_2006_06_191
crossref_primary_10_1016_j_bbagen_2006_10_003
crossref_primary_10_1093_femsre_fuv028
crossref_primary_10_1016_j_mrrev_2010_07_003
crossref_primary_10_1016_j_dnarep_2003_10_002
crossref_primary_10_1016_j_bbabio_2006_01_003
crossref_primary_10_1016_j_dnarep_2012_06_008
crossref_primary_10_1016_j_dnarep_2005_02_005
crossref_primary_10_15252_embj_2019103889
crossref_primary_10_1074_jbc_M109_069591
crossref_primary_10_1128_MMBR_00032_07
crossref_primary_10_1093_nar_gks1088
crossref_primary_10_1101_cshperspect_a033944
crossref_primary_10_1093_hmg_ddi461
crossref_primary_10_1111_j_1742_4658_2011_08356_x
crossref_primary_10_1016_j_biochi_2012_11_003
crossref_primary_10_1016_j_dnarep_2005_10_003
crossref_primary_10_1073_pnas_192449499
crossref_primary_10_1074_jbc_M203902200
crossref_primary_10_1016_j_dnarep_2004_12_001
crossref_primary_10_1016_j_bbrc_2011_08_079
crossref_primary_10_1093_hmg_dds230
crossref_primary_10_1016_j_dnarep_2022_103359
crossref_primary_10_3389_fmolb_2014_00023
crossref_primary_10_1128_MCB_25_12_5196_5204_2005
crossref_primary_10_1016_j_gene_2014_10_016
crossref_primary_10_1016_j_dnarep_2008_11_004
crossref_primary_10_1074_jbc_M503071200
crossref_primary_10_1111_j_1471_4159_2007_04490_x
crossref_primary_10_1093_nar_gkv1136
crossref_primary_10_1016_j_jmb_2004_07_096
crossref_primary_10_1128_MCB_25_15_6380_6390_2005
crossref_primary_10_1016_j_mrfmmm_2009_05_008
crossref_primary_10_1016_j_mito_2004_02_002
crossref_primary_10_1038_sj_embor_7400394
crossref_primary_10_1128_MCB_22_12_4086_4093_2002
crossref_primary_10_1517_17425255_2010_503955
crossref_primary_10_1111_pce_15074
Cites_doi 10.1002/j.1460-2075.1996.tb00530.x
10.1016/S0021-9258(19)81317-0
10.1128/MCB.11.9.4537
10.1016/0003-2697(83)90128-8
10.1007/BF00422114
10.1074/jbc.271.13.7368
10.1128/MCB.19.2.1210
10.1016/S0092-8674(00)80774-6
10.1128/MCB.16.5.2091
10.1006/jmbi.1997.1420
10.1093/emboj/17.24.7416
10.1038/24898
10.1002/yea.320090504
10.1073/pnas.97.1.250
10.1002/yea.320101310
10.1093/nar/27.22.4510
10.1073/pnas.94.14.7429
10.1016/0921-8734(92)90029-O
10.1046/j.1365-2958.1999.01295.x
10.1016/0165-1161(93)90147-R
10.1139/o97-046
10.1093/nar/26.12.2917
10.1021/bi9824083
10.1016/S0092-8674(00)81419-1
10.1073/pnas.94.9.4526
10.1021/bi973042h
10.1074/jbc.273.34.21909
10.1074/jbc.272.43.27338
10.1016/0076-6879(91)94004-V
10.1021/bi991121i
10.1006/jmbi.1995.0430
10.1002/(SICI)1097-0061(199907)15:10A<813::AID-YEA421>3.0.CO;2-Y
10.1016/S0091-679X(08)60873-0
10.1128/MCB.18.3.1257
10.1093/emboj/17.15.4491
10.1126/science.283.5407.1482
10.1093/genetics/149.2.893
10.1038/35001009
10.1073/pnas.91.17.8165
10.1074/jbc.275.16.11824
10.1046/j.1365-2958.1997.3841748.x
10.1002/yea.320070307
10.1093/genetics/144.4.1425
10.1016/S0005-2728(98)00160-1
10.1007/s004150050082
10.1016/S0021-9258(20)80758-3
10.1073/pnas.74.12.5463
10.1093/nar/27.18.3712
ContentType Journal Article
Copyright Copyright © 2001 American Society for Microbiology 2001
Copyright © 2001, American Society for Microbiology 2001
Copyright_xml – notice: Copyright © 2001 American Society for Microbiology 2001
– notice: Copyright © 2001, American Society for Microbiology 2001
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
M7N
7X8
5PM
DOI 10.1128/MCB.21.5.1647-1655.2001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Algology Mycology and Protozoology Abstracts (Microbiology C)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1098-5549
EndPage 1655
ExternalDocumentID PMC86710
11238901
10_1128_MCB_21_5_1647_1655_2001
12266113
mcb_21_5_1647
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
18M
29M
2WC
39C
3O-
4.4
53G
5RE
5VS
9M8
ACGFO
ACKIV
ACNCT
ADBBV
ADIYS
AENEX
AEOZL
AFFNX
AGHSJ
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
HYE
HZ~
IH2
KQ8
L7B
M4Z
MVM
N9A
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TDBHL
TFL
TFW
TR2
UCJ
UDS
VQA
W8F
WH7
WHG
WOQ
X7M
Y6R
YYP
ZCA
ZGI
AAGFI
AAYXX
ABJNI
ADXHL
AMPGV
CITATION
ABRLO
CGR
CUY
CVF
ECM
EIF
EMOBN
NPM
TASJS
ZXP
ZY4
7TM
M7N
7X8
5PM
ID FETCH-LOGICAL-c527t-3da596a7fb11fed81e9efba2e1368d6346b58e6c5310b6f261fb4f8b35b7daa53
ISSN 0270-7306
1098-5549
IngestDate Thu Aug 21 13:44:37 EDT 2025
Fri Jul 11 04:14:56 EDT 2025
Thu Jul 10 23:07:36 EDT 2025
Mon Jul 21 05:45:05 EDT 2025
Thu Apr 24 23:05:48 EDT 2025
Tue Jul 01 01:05:29 EDT 2025
Wed Dec 25 09:06:06 EST 2024
Wed May 18 15:25:51 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c527t-3da596a7fb11fed81e9efba2e1368d6346b58e6c5310b6f261fb4f8b35b7daa53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Corresponding author. Mailing address: University of Montreal, Guy-Bernier Research Centre, 5415 de l'Assomption, Montreal, Quebec, Canada H1T 2M4. Phone: (514) 252-3400, ext. 4684. Fax: (514) 252-3430. E-mail: dramotar@hmr.qc.ca.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/86710
PMID 11238901
PQID 17757630
PQPubID 23462
PageCount 9
ParticipantIDs informaworld_taylorfrancis_310_1128_MCB_21_5_1647_1655_2001
proquest_miscellaneous_76957030
pubmed_primary_11238901
highwire_asm_mcb_21_5_1647
crossref_citationtrail_10_1128_MCB_21_5_1647_1655_2001
crossref_primary_10_1128_MCB_21_5_1647_1655_2001
pubmedcentral_primary_oai_pubmedcentral_nih_gov_86710
proquest_miscellaneous_17757630
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-03-01
PublicationDateYYYYMMDD 2001-03-01
PublicationDate_xml – month: 03
  year: 2001
  text: 2001-03-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular and Cellular Biology
PublicationTitleAlternate Mol Cell Biol
PublicationYear 2001
Publisher American Society for Microbiology
Taylor & Francis
Publisher_xml – name: American Society for Microbiology
– name: Taylor & Francis
References B20
B21
B24
B26
B27
Muller-Weeks S. (B25) 1998; 273
B29
Bandmann O. (B1) 1997; 244
Sambrook J. (B34) 1989
B30
Masson J. Y. (B22) 1996; 16
B31
B32
B35
B38
B39
Ramotar D. (B28) 1996; 271
B2
Schapira A. H. (B36) 1999; 1410
B3
B4
B5
B6
B8
B9
B40
B41
B42
B43
B44
B45
B46
Rotig A. (B33) 1996; 22
B47
Guthrie C. (B13) 1991; 194
Masson J. Y. (B23) 1998; 149
Yasuhira S. (B49) 2000; 275
B50
B51
B10
B11
B12
Jones M. E. (B18) 1993; 292
B14
B15
B16
B17
Dove J. E. (B7) 1998; 53
B19
Yang X. (B48) 1999; 38
Sherman F. (B37) 1983
References_xml – ident: B11
  doi: 10.1002/j.1460-2075.1996.tb00530.x
– ident: B17
  doi: 10.1016/S0021-9258(19)81317-0
– ident: B30
  doi: 10.1128/MCB.11.9.4537
– ident: B8
  doi: 10.1016/0003-2697(83)90128-8
– ident: B5
  doi: 10.1007/BF00422114
– volume: 271
  start-page: 7368
  year: 1996
  ident: B28
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.13.7368
– ident: B42
  doi: 10.1128/MCB.19.2.1210
– ident: B44
  doi: 10.1016/S0092-8674(00)80774-6
– volume: 16
  start-page: 2091
  year: 1996
  ident: B22
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.16.5.2091
– ident: B14
  doi: 10.1006/jmbi.1997.1420
– ident: B47
  doi: 10.1093/emboj/17.24.7416
– ident: B19
  doi: 10.1038/24898
– volume-title: Methods in yeast genetics.
  year: 1983
  ident: B37
– ident: B41
  doi: 10.1002/yea.320090504
– ident: B38
  doi: 10.1073/pnas.97.1.250
– ident: B45
  doi: 10.1002/yea.320101310
– ident: B12
  doi: 10.1093/nar/27.22.4510
– ident: B32
  doi: 10.1073/pnas.94.14.7429
– ident: B31
  doi: 10.1016/0921-8734(92)90029-O
– ident: B3
  doi: 10.1046/j.1365-2958.1999.01295.x
– volume: 292
  start-page: 191
  year: 1993
  ident: B18
  publication-title: Mutat. Res.
  doi: 10.1016/0165-1161(93)90147-R
– ident: B27
  doi: 10.1139/o97-046
– ident: B40
  doi: 10.1093/nar/26.12.2917
– volume: 38
  start-page: 3615
  year: 1999
  ident: B48
  publication-title: Biochemistry
  doi: 10.1021/bi9824083
– volume: 22
  start-page: 291
  year: 1996
  ident: B33
  publication-title: Diabetes Metab.
– ident: B2
  doi: 10.1016/S0092-8674(00)81419-1
– ident: B6
  doi: 10.1073/pnas.94.9.4526
– ident: B50
  doi: 10.1021/bi973042h
– volume: 273
  start-page: 21909
  year: 1998
  ident: B25
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.34.21909
– ident: B4
  doi: 10.1074/jbc.272.43.27338
– volume: 194
  start-page: 3
  year: 1991
  ident: B13
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(91)94004-V
– ident: B51
  doi: 10.1021/bi991121i
– ident: B9
  doi: 10.1006/jmbi.1995.0430
– volume-title: Molecular cloning: a laboratory manual.
  year: 1989
  ident: B34
– ident: B24
  doi: 10.1002/(SICI)1097-0061(199907)15:10A<813::AID-YEA421>3.0.CO;2-Y
– volume: 53
  start-page: 33
  year: 1998
  ident: B7
  publication-title: Methods Cell Biol.
  doi: 10.1016/S0091-679X(08)60873-0
– ident: B26
  doi: 10.1128/MCB.18.3.1257
– ident: B15
  doi: 10.1093/emboj/17.15.4491
– ident: B46
  doi: 10.1126/science.283.5407.1482
– volume: 149
  start-page: 893
  year: 1998
  ident: B23
  publication-title: Genetics
  doi: 10.1093/genetics/149.2.893
– ident: B43
  doi: 10.1038/35001009
– ident: B20
  doi: 10.1073/pnas.91.17.8165
– volume: 275
  start-page: 11824
  year: 2000
  ident: B49
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.16.11824
– ident: B21
  doi: 10.1046/j.1365-2958.1997.3841748.x
– ident: B10
  doi: 10.1002/yea.320070307
– ident: B16
  doi: 10.1093/genetics/144.4.1425
– volume: 1410
  start-page: 99
  year: 1999
  ident: B36
  publication-title: Biochim. Biophys Acta
  doi: 10.1016/S0005-2728(98)00160-1
– volume: 244
  start-page: 262
  year: 1997
  ident: B1
  publication-title: J. Neurol.
  doi: 10.1007/s004150050082
– ident: B29
  doi: 10.1016/S0021-9258(20)80758-3
– ident: B35
  doi: 10.1073/pnas.74.12.5463
– ident: B39
  doi: 10.1093/nar/27.18.3712
SSID ssj0006903
Score 1.9694688
Snippet Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1647
SubjectTerms Amino Acid Sequence
Apn1 protein
Cell Nucleus - metabolism
Cell Wall - chemistry
Cytoplasm - metabolism
DNA - metabolism
DNA Damage
DNA Repair Enzymes
Endodeoxyribonucleases - genetics
Endodeoxyribonucleases - metabolism
Fungal Proteins - genetics
Fungal Proteins - physiology
Genome, Fungal
Glutathione Transferase - metabolism
Glycoproteins
Green Fluorescent Proteins
Immunoblotting
Luminescent Proteins - metabolism
Methyl Methanesulfonate
Mitochondria - metabolism
Molecular Sequence Data
Mutagens
Mutation
Nucleocytoplasmic Communication
Pir1 protein
Plasmids - metabolism
Protein Binding
Protein Transport
Recombinant Fusion Proteins - metabolism
Saccharomyces cerevisiae Proteins
Sequence Analysis, DNA
Subcellular Fractions
Time Factors
Two-Hybrid System Techniques
Title Pir1p Mediates Translocation of the Yeast Apn1p Endonuclease into the Mitochondria To Maintain Genomic Stability
URI http://mcb.asm.org/content/21/5/1647.abstract
https://www.tandfonline.com/doi/abs/10.1128/MCB.21.5.1647-1655.2001
https://www.ncbi.nlm.nih.gov/pubmed/11238901
https://www.proquest.com/docview/17757630
https://www.proquest.com/docview/76957030
https://pubmed.ncbi.nlm.nih.gov/PMC86710
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIgQXBAVKy2sPXB28a-_aFicIrQo0paAE5bbatdc0UuJEjXMov54ZP2K7ShXgECtxxo9kvp2dWc98Q8jb0A-tZyLXiQ0g2PdS5uhQWycOANKGh66vsd55eC5Px_6XiZj0ep9bWUvr3PTj31vrSv5Hq7AP9IpVsv-g2c1JYQe8B_3CFjQM27_S8cX0ii3L4g9cPs1x3sHJqfYC0am8xuY84GxmIGmxdQcSGMPUhUQRpds5h0ENRjBL4I7RFZ1r-Ape2F0Za5ZxuaFIoe08AR7WfXXLyjg7mxUfKlKnWo8_F9mvlQbE6Oyyk56YT0usXDTrrD80wKbM9_7UWYxoZWNVNosHrgNGQ7YNLGctIImWtUQus-1mnGNpwnDwsc9ZX_RRzmFSCIznWTNz1U_rz7-pk_HZmRodT0Z3yF0OEQOavK_fG-J4GRVNsjf3V6X6wYXe3XKZrqNSk0ffYLTdFpfcTK9t-SujR-RhFWjQDyVqHpOezfbJvbL16PU-uT-oO_09IcsCR7TGEe3giC5SCiihBY5ogSPaxhFFHBUSbRxR2FfjiFY4ohscPSXjk-PR4NSpOnE4seBB7niJFpHUQWoYS20SMhvZ1GhumSfDRHq-NCK0MgaD7hqZQlSeGj8NjSdMkGgtvGdkL1tk9jmhsR8jm1aqRZD4sdGGazflsWDaDRJwbw-JrP92FVc09dgtZaaKcJWHCvSlOFNCob4U6gt7qcKB7ubAZcnUsvuQo1qvSq_mah6bRuyQvG9rWuXFClpatrtR3s5Tv6mBoUCbOAp1ZhfrlWJBADG-594uEcgIefFA4qAEUvN7wM8MIzy76EBsI4Bk8d1vsullQRqPPJbu0c5rviAPmnH9kuzlV2v7Ctzu3LwuBtQfTRfZWg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pir1p+mediates+translocation+of+the+yeast+Apn1p+endonuclease+into+the+mitochondria+to+maintain+genomic+stability&rft.jtitle=Molecular+and+cellular+biology&rft.au=Vongsamphanh%2C+R&rft.au=tier%2C+P+K&rft.au=Ramotar%2C+D&rft.date=2001-03-01&rft.issn=0270-7306&rft.volume=21&rft.issue=5&rft.spage=1647&rft_id=info:doi/10.1128%2FMCB.21.5.1647-1655.2001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-7306&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-7306&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-7306&client=summon