Pir1p Mediates Translocation of the Yeast Apn1p Endonuclease into the Mitochondria To Maintain Genomic Stability
Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from...
Saved in:
Published in | Molecular and Cellular Biology Vol. 21; no. 5; pp. 1647 - 1655 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.03.2001
Taylor & Francis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
MCB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
MCB
About
MCB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
MCB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0270-7306
Online ISSN:
1098-5549
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
MCB
.asm.org, visit:
MCB
|
---|---|
AbstractList | The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Delta mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Delta mutants displayed a striking (approximately 3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Delta and apn1 Delta mutants. pir1 Delta and apn1 Delta mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA. Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2014 by the American Society for Microbiology. For an alternate route to MCB .asm.org, visit: MCB The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Delta mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Delta mutants displayed a striking (approximately 3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Delta and apn1 Delta mutants. pir1 Delta and apn1 Delta mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA.The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Delta mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Delta mutants displayed a striking (approximately 3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Delta and apn1 Delta mutants. pir1 Delta and apn1 Delta mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA. The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Δ mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1Δ mutants displayed a striking (∼3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1Δ and apn1Δ mutants.pir1Δ and apn1Δ mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA. The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Delta mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p initially isolated as a cell wall constituent of unknown function interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Delta mutants displayed a striking (~3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Delta and apn1 Delta mutants. pir1 Delta and apn1 Delta mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA. The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Δ mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Δ mutants displayed a striking (∼3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Δ and apn1 Δ mutants. pir1 Δ and apn1 Δ mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA. |
Author | Pierre-Karl Fortier Dindial Ramotar Ratsavarinh Vongsamphanh |
AuthorAffiliation | Guy-Bernier Research Centre, University of Montreal, Montreal, Quebec, Canada H1T 2M4 |
AuthorAffiliation_xml | – name: Guy-Bernier Research Centre, University of Montreal, Montreal, Quebec, Canada H1T 2M4 |
Author_xml | – sequence: 1 givenname: Ratsavarinh surname: Vongsamphanh fullname: Vongsamphanh, Ratsavarinh organization: Guy-Bernier Research Centre, University of Montreal – sequence: 2 givenname: Pierre-Karl surname: Fortier fullname: Fortier, Pierre-Karl organization: Guy-Bernier Research Centre, University of Montreal – sequence: 3 givenname: Dindial surname: Ramotar fullname: Ramotar, Dindial email: dramotar@hmr.qc.ca organization: Guy-Bernier Research Centre, University of Montreal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11238901$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9vFCEchompsdvqV1C8eJsRhgVmEj20m_4x6UYT14MnwjDQwTCwAmuz3152t1r1Ug-EBJ73zY88nIAjH7wG4BVGNcZN-3a5OK8bXNMaszmvMKO0bhDCT8AMo66tKJ13R2CGGo4qThA7BicpfUMIsQ6RZ-C4dJC2Q3gG1p9sxGu41IOVWSe4itInF5TMNngYDMyjhl-1TBmerX0hL_wQ_Ea5cqSh9TnsiaXNQY3BD9FKuApwKctVWfBK-zBZBT9n2Vtn8_Y5eGqkS_rF_X4KvlxerBbX1c3Hqw-Ls5tK0YbnigySdkxy02Ns9NBi3WnTy0ZjwtqBkTnraauZogSjnpmGYdPPTdsT2vNBSkpOwbtD73rTT3pQ2uconVhHO8m4FUFa8feNt6O4DT9EyzhGJf7mPh7D941OWUw2Ke2c9DpskuCsoxyRx0HMOeVsD778c6Dfk_xyUQB-AFQMKUVtHhC0o1pRrIsGCyp21sXOuthZL8n3_ySVzXuD5WXW_Uf-_JC33oQ4ybsQ3SCy3LoQTfkQyiZBHi95fSgZ7e14Z6MWMk1iUv0DTX4Cp1jV3A |
CitedBy_id | crossref_primary_10_1186_gb_2009_10_9_r95 crossref_primary_10_1128_EC_4_11_1872_1881_2005 crossref_primary_10_1016_j_jmb_2011_03_045 crossref_primary_10_1016_j_bbabio_2013_10_005 crossref_primary_10_1016_j_mad_2011_05_002 crossref_primary_10_1002_yea_686 crossref_primary_10_1016_j_jbiotec_2013_03_003 crossref_primary_10_1186_s13068_016_0614_y crossref_primary_10_1016_j_cmet_2014_01_010 crossref_primary_10_1016_j_dnarep_2016_12_010 crossref_primary_10_1002_bies_20609 crossref_primary_10_1186_1471_2199_11_92 crossref_primary_10_1371_journal_pone_0173318 crossref_primary_10_1038_s41467_024_45819_6 crossref_primary_10_1111_j_1567_1364_2007_00296_x crossref_primary_10_1093_nar_gkn1087 crossref_primary_10_1111_j_1574_6968_2002_tb11046_x crossref_primary_10_1016_j_freeradbiomed_2015_01_013 crossref_primary_10_1091_mbc_e03_04_0236 crossref_primary_10_1002_em_20462 crossref_primary_10_1038_s41467_024_54141_0 crossref_primary_10_1016_j_tplants_2009_01_005 crossref_primary_10_1371_journal_pone_0103141 crossref_primary_10_1046_j_1474_9728_2003_00041_x crossref_primary_10_1016_j_dnarep_2006_04_002 crossref_primary_10_1371_journal_pgen_1009521 crossref_primary_10_1534_genetics_109_103796 crossref_primary_10_3390_ijms24086975 crossref_primary_10_1016_j_bbamcr_2010_10_002 crossref_primary_10_1016_j_dnarep_2012_06_009 crossref_primary_10_1016_j_mito_2005_02_002 crossref_primary_10_1016_S0006_291X_03_00410_8 crossref_primary_10_1158_0008_5472_CAN_03_2729 crossref_primary_10_1016_j_bbamem_2010_07_004 crossref_primary_10_1016_j_bbrc_2006_06_191 crossref_primary_10_1016_j_bbagen_2006_10_003 crossref_primary_10_1093_femsre_fuv028 crossref_primary_10_1016_j_mrrev_2010_07_003 crossref_primary_10_1016_j_dnarep_2003_10_002 crossref_primary_10_1016_j_bbabio_2006_01_003 crossref_primary_10_1016_j_dnarep_2012_06_008 crossref_primary_10_1016_j_dnarep_2005_02_005 crossref_primary_10_15252_embj_2019103889 crossref_primary_10_1074_jbc_M109_069591 crossref_primary_10_1128_MMBR_00032_07 crossref_primary_10_1093_nar_gks1088 crossref_primary_10_1101_cshperspect_a033944 crossref_primary_10_1093_hmg_ddi461 crossref_primary_10_1111_j_1742_4658_2011_08356_x crossref_primary_10_1016_j_biochi_2012_11_003 crossref_primary_10_1016_j_dnarep_2005_10_003 crossref_primary_10_1073_pnas_192449499 crossref_primary_10_1074_jbc_M203902200 crossref_primary_10_1016_j_dnarep_2004_12_001 crossref_primary_10_1016_j_bbrc_2011_08_079 crossref_primary_10_1093_hmg_dds230 crossref_primary_10_1016_j_dnarep_2022_103359 crossref_primary_10_3389_fmolb_2014_00023 crossref_primary_10_1128_MCB_25_12_5196_5204_2005 crossref_primary_10_1016_j_gene_2014_10_016 crossref_primary_10_1016_j_dnarep_2008_11_004 crossref_primary_10_1074_jbc_M503071200 crossref_primary_10_1111_j_1471_4159_2007_04490_x crossref_primary_10_1093_nar_gkv1136 crossref_primary_10_1016_j_jmb_2004_07_096 crossref_primary_10_1128_MCB_25_15_6380_6390_2005 crossref_primary_10_1016_j_mrfmmm_2009_05_008 crossref_primary_10_1016_j_mito_2004_02_002 crossref_primary_10_1038_sj_embor_7400394 crossref_primary_10_1128_MCB_22_12_4086_4093_2002 crossref_primary_10_1517_17425255_2010_503955 crossref_primary_10_1111_pce_15074 |
Cites_doi | 10.1002/j.1460-2075.1996.tb00530.x 10.1016/S0021-9258(19)81317-0 10.1128/MCB.11.9.4537 10.1016/0003-2697(83)90128-8 10.1007/BF00422114 10.1074/jbc.271.13.7368 10.1128/MCB.19.2.1210 10.1016/S0092-8674(00)80774-6 10.1128/MCB.16.5.2091 10.1006/jmbi.1997.1420 10.1093/emboj/17.24.7416 10.1038/24898 10.1002/yea.320090504 10.1073/pnas.97.1.250 10.1002/yea.320101310 10.1093/nar/27.22.4510 10.1073/pnas.94.14.7429 10.1016/0921-8734(92)90029-O 10.1046/j.1365-2958.1999.01295.x 10.1016/0165-1161(93)90147-R 10.1139/o97-046 10.1093/nar/26.12.2917 10.1021/bi9824083 10.1016/S0092-8674(00)81419-1 10.1073/pnas.94.9.4526 10.1021/bi973042h 10.1074/jbc.273.34.21909 10.1074/jbc.272.43.27338 10.1016/0076-6879(91)94004-V 10.1021/bi991121i 10.1006/jmbi.1995.0430 10.1002/(SICI)1097-0061(199907)15:10A<813::AID-YEA421>3.0.CO;2-Y 10.1016/S0091-679X(08)60873-0 10.1128/MCB.18.3.1257 10.1093/emboj/17.15.4491 10.1126/science.283.5407.1482 10.1093/genetics/149.2.893 10.1038/35001009 10.1073/pnas.91.17.8165 10.1074/jbc.275.16.11824 10.1046/j.1365-2958.1997.3841748.x 10.1002/yea.320070307 10.1093/genetics/144.4.1425 10.1016/S0005-2728(98)00160-1 10.1007/s004150050082 10.1016/S0021-9258(20)80758-3 10.1073/pnas.74.12.5463 10.1093/nar/27.18.3712 |
ContentType | Journal Article |
Copyright | Copyright © 2001 American Society for Microbiology 2001 Copyright © 2001, American Society for Microbiology 2001 |
Copyright_xml | – notice: Copyright © 2001 American Society for Microbiology 2001 – notice: Copyright © 2001, American Society for Microbiology 2001 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM M7N 7X8 5PM |
DOI | 10.1128/MCB.21.5.1647-1655.2001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1098-5549 |
EndPage | 1655 |
ExternalDocumentID | PMC86710 11238901 10_1128_MCB_21_5_1647_1655_2001 12266113 mcb_21_5_1647 |
Genre | Research Article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 18M 29M 2WC 39C 3O- 4.4 53G 5RE 5VS 9M8 ACGFO ACKIV ACNCT ADBBV ADIYS AENEX AEOZL AFFNX AGHSJ AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HH5 HYE HZ~ IH2 KQ8 L7B M4Z MVM N9A O9- OK1 P2P RHF RHI RNS RPM RSF TDBHL TFL TFW TR2 UCJ UDS VQA W8F WH7 WHG WOQ X7M Y6R YYP ZCA ZGI AAGFI AAYXX ABJNI ADXHL AMPGV CITATION ABRLO CGR CUY CVF ECM EIF EMOBN NPM TASJS ZXP ZY4 7TM M7N 7X8 5PM |
ID | FETCH-LOGICAL-c527t-3da596a7fb11fed81e9efba2e1368d6346b58e6c5310b6f261fb4f8b35b7daa53 |
ISSN | 0270-7306 1098-5549 |
IngestDate | Thu Aug 21 13:44:37 EDT 2025 Fri Jul 11 04:14:56 EDT 2025 Thu Jul 10 23:07:36 EDT 2025 Mon Jul 21 05:45:05 EDT 2025 Thu Apr 24 23:05:48 EDT 2025 Tue Jul 01 01:05:29 EDT 2025 Wed Dec 25 09:06:06 EST 2024 Wed May 18 15:25:51 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c527t-3da596a7fb11fed81e9efba2e1368d6346b58e6c5310b6f261fb4f8b35b7daa53 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Corresponding author. Mailing address: University of Montreal, Guy-Bernier Research Centre, 5415 de l'Assomption, Montreal, Quebec, Canada H1T 2M4. Phone: (514) 252-3400, ext. 4684. Fax: (514) 252-3430. E-mail: dramotar@hmr.qc.ca. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/86710 |
PMID | 11238901 |
PQID | 17757630 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | informaworld_taylorfrancis_310_1128_MCB_21_5_1647_1655_2001 proquest_miscellaneous_76957030 pubmed_primary_11238901 highwire_asm_mcb_21_5_1647 crossref_citationtrail_10_1128_MCB_21_5_1647_1655_2001 crossref_primary_10_1128_MCB_21_5_1647_1655_2001 pubmedcentral_primary_oai_pubmedcentral_nih_gov_86710 proquest_miscellaneous_17757630 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-03-01 |
PublicationDateYYYYMMDD | 2001-03-01 |
PublicationDate_xml | – month: 03 year: 2001 text: 2001-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular and Cellular Biology |
PublicationTitleAlternate | Mol Cell Biol |
PublicationYear | 2001 |
Publisher | American Society for Microbiology Taylor & Francis |
Publisher_xml | – name: American Society for Microbiology – name: Taylor & Francis |
References | B20 B21 B24 B26 B27 Muller-Weeks S. (B25) 1998; 273 B29 Bandmann O. (B1) 1997; 244 Sambrook J. (B34) 1989 B30 Masson J. Y. (B22) 1996; 16 B31 B32 B35 B38 B39 Ramotar D. (B28) 1996; 271 B2 Schapira A. H. (B36) 1999; 1410 B3 B4 B5 B6 B8 B9 B40 B41 B42 B43 B44 B45 B46 Rotig A. (B33) 1996; 22 B47 Guthrie C. (B13) 1991; 194 Masson J. Y. (B23) 1998; 149 Yasuhira S. (B49) 2000; 275 B50 B51 B10 B11 B12 Jones M. E. (B18) 1993; 292 B14 B15 B16 B17 Dove J. E. (B7) 1998; 53 B19 Yang X. (B48) 1999; 38 Sherman F. (B37) 1983 |
References_xml | – ident: B11 doi: 10.1002/j.1460-2075.1996.tb00530.x – ident: B17 doi: 10.1016/S0021-9258(19)81317-0 – ident: B30 doi: 10.1128/MCB.11.9.4537 – ident: B8 doi: 10.1016/0003-2697(83)90128-8 – ident: B5 doi: 10.1007/BF00422114 – volume: 271 start-page: 7368 year: 1996 ident: B28 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.13.7368 – ident: B42 doi: 10.1128/MCB.19.2.1210 – ident: B44 doi: 10.1016/S0092-8674(00)80774-6 – volume: 16 start-page: 2091 year: 1996 ident: B22 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.5.2091 – ident: B14 doi: 10.1006/jmbi.1997.1420 – ident: B47 doi: 10.1093/emboj/17.24.7416 – ident: B19 doi: 10.1038/24898 – volume-title: Methods in yeast genetics. year: 1983 ident: B37 – ident: B41 doi: 10.1002/yea.320090504 – ident: B38 doi: 10.1073/pnas.97.1.250 – ident: B45 doi: 10.1002/yea.320101310 – ident: B12 doi: 10.1093/nar/27.22.4510 – ident: B32 doi: 10.1073/pnas.94.14.7429 – ident: B31 doi: 10.1016/0921-8734(92)90029-O – ident: B3 doi: 10.1046/j.1365-2958.1999.01295.x – volume: 292 start-page: 191 year: 1993 ident: B18 publication-title: Mutat. Res. doi: 10.1016/0165-1161(93)90147-R – ident: B27 doi: 10.1139/o97-046 – ident: B40 doi: 10.1093/nar/26.12.2917 – volume: 38 start-page: 3615 year: 1999 ident: B48 publication-title: Biochemistry doi: 10.1021/bi9824083 – volume: 22 start-page: 291 year: 1996 ident: B33 publication-title: Diabetes Metab. – ident: B2 doi: 10.1016/S0092-8674(00)81419-1 – ident: B6 doi: 10.1073/pnas.94.9.4526 – ident: B50 doi: 10.1021/bi973042h – volume: 273 start-page: 21909 year: 1998 ident: B25 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.34.21909 – ident: B4 doi: 10.1074/jbc.272.43.27338 – volume: 194 start-page: 3 year: 1991 ident: B13 publication-title: Methods Enzymol. doi: 10.1016/0076-6879(91)94004-V – ident: B51 doi: 10.1021/bi991121i – ident: B9 doi: 10.1006/jmbi.1995.0430 – volume-title: Molecular cloning: a laboratory manual. year: 1989 ident: B34 – ident: B24 doi: 10.1002/(SICI)1097-0061(199907)15:10A<813::AID-YEA421>3.0.CO;2-Y – volume: 53 start-page: 33 year: 1998 ident: B7 publication-title: Methods Cell Biol. doi: 10.1016/S0091-679X(08)60873-0 – ident: B26 doi: 10.1128/MCB.18.3.1257 – ident: B15 doi: 10.1093/emboj/17.15.4491 – ident: B46 doi: 10.1126/science.283.5407.1482 – volume: 149 start-page: 893 year: 1998 ident: B23 publication-title: Genetics doi: 10.1093/genetics/149.2.893 – ident: B43 doi: 10.1038/35001009 – ident: B20 doi: 10.1073/pnas.91.17.8165 – volume: 275 start-page: 11824 year: 2000 ident: B49 publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.16.11824 – ident: B21 doi: 10.1046/j.1365-2958.1997.3841748.x – ident: B10 doi: 10.1002/yea.320070307 – ident: B16 doi: 10.1093/genetics/144.4.1425 – volume: 1410 start-page: 99 year: 1999 ident: B36 publication-title: Biochim. Biophys Acta doi: 10.1016/S0005-2728(98)00160-1 – volume: 244 start-page: 262 year: 1997 ident: B1 publication-title: J. Neurol. doi: 10.1007/s004150050082 – ident: B29 doi: 10.1016/S0021-9258(20)80758-3 – ident: B35 doi: 10.1073/pnas.74.12.5463 – ident: B39 doi: 10.1093/nar/27.18.3712 |
SSID | ssj0006903 |
Score | 1.9694688 |
Snippet | Article Usage Stats
Services
MCB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a... |
SourceID | pubmedcentral proquest pubmed crossref informaworld highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1647 |
SubjectTerms | Amino Acid Sequence Apn1 protein Cell Nucleus - metabolism Cell Wall - chemistry Cytoplasm - metabolism DNA - metabolism DNA Damage DNA Repair Enzymes Endodeoxyribonucleases - genetics Endodeoxyribonucleases - metabolism Fungal Proteins - genetics Fungal Proteins - physiology Genome, Fungal Glutathione Transferase - metabolism Glycoproteins Green Fluorescent Proteins Immunoblotting Luminescent Proteins - metabolism Methyl Methanesulfonate Mitochondria - metabolism Molecular Sequence Data Mutagens Mutation Nucleocytoplasmic Communication Pir1 protein Plasmids - metabolism Protein Binding Protein Transport Recombinant Fusion Proteins - metabolism Saccharomyces cerevisiae Proteins Sequence Analysis, DNA Subcellular Fractions Time Factors Two-Hybrid System Techniques |
Title | Pir1p Mediates Translocation of the Yeast Apn1p Endonuclease into the Mitochondria To Maintain Genomic Stability |
URI | http://mcb.asm.org/content/21/5/1647.abstract https://www.tandfonline.com/doi/abs/10.1128/MCB.21.5.1647-1655.2001 https://www.ncbi.nlm.nih.gov/pubmed/11238901 https://www.proquest.com/docview/17757630 https://www.proquest.com/docview/76957030 https://pubmed.ncbi.nlm.nih.gov/PMC86710 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIgQXBAVKy2sPXB28a-_aFicIrQo0paAE5bbatdc0UuJEjXMov54ZP2K7ShXgECtxxo9kvp2dWc98Q8jb0A-tZyLXiQ0g2PdS5uhQWycOANKGh66vsd55eC5Px_6XiZj0ep9bWUvr3PTj31vrSv5Hq7AP9IpVsv-g2c1JYQe8B_3CFjQM27_S8cX0ii3L4g9cPs1x3sHJqfYC0am8xuY84GxmIGmxdQcSGMPUhUQRpds5h0ENRjBL4I7RFZ1r-Ape2F0Za5ZxuaFIoe08AR7WfXXLyjg7mxUfKlKnWo8_F9mvlQbE6Oyyk56YT0usXDTrrD80wKbM9_7UWYxoZWNVNosHrgNGQ7YNLGctIImWtUQus-1mnGNpwnDwsc9ZX_RRzmFSCIznWTNz1U_rz7-pk_HZmRodT0Z3yF0OEQOavK_fG-J4GRVNsjf3V6X6wYXe3XKZrqNSk0ffYLTdFpfcTK9t-SujR-RhFWjQDyVqHpOezfbJvbL16PU-uT-oO_09IcsCR7TGEe3giC5SCiihBY5ogSPaxhFFHBUSbRxR2FfjiFY4ohscPSXjk-PR4NSpOnE4seBB7niJFpHUQWoYS20SMhvZ1GhumSfDRHq-NCK0MgaD7hqZQlSeGj8NjSdMkGgtvGdkL1tk9jmhsR8jm1aqRZD4sdGGazflsWDaDRJwbw-JrP92FVc09dgtZaaKcJWHCvSlOFNCob4U6gt7qcKB7ubAZcnUsvuQo1qvSq_mah6bRuyQvG9rWuXFClpatrtR3s5Tv6mBoUCbOAp1ZhfrlWJBADG-594uEcgIefFA4qAEUvN7wM8MIzy76EBsI4Bk8d1vsullQRqPPJbu0c5rviAPmnH9kuzlV2v7Ctzu3LwuBtQfTRfZWg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pir1p+mediates+translocation+of+the+yeast+Apn1p+endonuclease+into+the+mitochondria+to+maintain+genomic+stability&rft.jtitle=Molecular+and+cellular+biology&rft.au=Vongsamphanh%2C+R&rft.au=tier%2C+P+K&rft.au=Ramotar%2C+D&rft.date=2001-03-01&rft.issn=0270-7306&rft.volume=21&rft.issue=5&rft.spage=1647&rft_id=info:doi/10.1128%2FMCB.21.5.1647-1655.2001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-7306&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-7306&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-7306&client=summon |