Detection of Alpha-Rod Protein Repeats Using a Neural Network and Application to Huntingtin

A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel alpha-helices. Alpha-rods are flexible and expose a large surface, which makes them suitable for protein interaction. Although most likely origi...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 5; no. 3; p. e1000304
Main Authors Palidwor, Gareth A., Shcherbinin, Sergey, Huska, Matthew R., Rasko, Tamas, Stelzl, Ulrich, Arumughan, Anup, Foulle, Raphaele, Porras, Pablo, Sanchez-Pulido, Luis, Wanker, Erich E., Andrade-Navarro, Miguel A.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.03.2009
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel alpha-helices. Alpha-rods are flexible and expose a large surface, which makes them suitable for protein interaction. Although most likely originating by tandem duplication of a two-helix unit, their detection using sequence similarity between repeats is poor. Here, we show that alpha-rod repeats can be detected using a neural network. The network detects more repeats than are identified by domain databases using multiple profiles, with a low level of false positives (<10%). We identify alpha-rod repeats in approximately 0.4% of proteins in eukaryotic genomes. We then investigate the results for all human proteins, identifying alpha-rod repeats for the first time in six protein families, including proteins STAG1-3, SERAC1, and PSMD1-2 & 5. We also characterize a short version of these repeats in eight protein families of Archaeal, Bacterial, and Fungal species. Finally, we demonstrate the utility of these predictions in directing experimental work to demarcate three alpha-rods in huntingtin, a protein mutated in Huntington's disease. Using yeast two hybrid analysis and an immunoprecipitation technique, we show that the huntingtin fragments containing alpha-rods associate with each other. This is the first definition of domains in huntingtin and the first validation of predicted interactions between fragments of huntingtin, which sets up directions toward functional characterization of this protein. An implementation of the repeat detection algorithm is available as a Web server with a simple graphical output: http://www.ogic.ca/projects/ard. This can be further visualized using BiasViz, a graphic tool for representation of multiple sequence alignments.
AbstractList   A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel alpha-helices. Alpha-rods are flexible and expose a large surface, which makes them suitable for protein interaction. Although most likely originating by tandem duplication of a two-helix unit, their detection using sequence similarity between repeats is poor. Here, we show that alpha-rod repeats can be detected using a neural network. The network detects more repeats than are identified by domain databases using multiple profiles, with a low level of false positives (<10%). We identify alpha-rod repeats in approximately 0.4% of proteins in eukaryotic genomes. We then investigate the results for all human proteins, identifying alpha-rod repeats for the first time in six protein families, including proteins STAG1-3, SERAC1, and PSMD1-2 & 5. We also characterize a short version of these repeats in eight protein families of Archaeal, Bacterial, and Fungal species. Finally, we demonstrate the utility of these predictions in directing experimental work to demarcate three alpha-rods in huntingtin, a protein mutated in Huntington's disease. Using yeast two hybrid analysis and an immunoprecipitation technique, we show that the huntingtin fragments containing alpha-rods associate with each other. This is the first definition of domains in huntingtin and the first validation of predicted interactions between fragments of huntingtin, which sets up directions toward functional characterization of this protein. An implementation of the repeat detection algorithm is available as a Web server with a simple graphical output: http://www.ogic.ca/projects/ard. This can be further visualized using BiasViz, a graphic tool for representation of multiple sequence alignments.
A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel alpha-helices. Alpha-rods are flexible and expose a large surface, which makes them suitable for protein interaction. Although most likely originating by tandem duplication of a two-helix unit, their detection using sequence similarity between repeats is poor. Here, we show that alpha-rod repeats can be detected using a neural network. The network detects more repeats than are identified by domain databases using multiple profiles, with a low level of false positives (<10%). We identify alpha-rod repeats in approximately 0.4% of proteins in eukaryotic genomes. We then investigate the results for all human proteins, identifying alpha-rod repeats for the first time in six protein families, including proteins STAG1-3, SERAC1, and PSMD1-2 & 5. We also characterize a short version of these repeats in eight protein families of Archaeal, Bacterial, and Fungal species. Finally, we demonstrate the utility of these predictions in directing experimental work to demarcate three alpha-rods in huntingtin, a protein mutated in Huntington's disease. Using yeast two hybrid analysis and an immunoprecipitation technique, we show that the huntingtin fragments containing alpha-rods associate with each other. This is the first definition of domains in huntingtin and the first validation of predicted interactions between fragments of huntingtin, which sets up directions toward functional characterization of this protein. An implementation of the repeat detection algorithm is available as a Web server with a simple graphical output: http://www.ogic.ca/projects/ard. This can be further visualized using BiasViz, a graphic tool for representation of multiple sequence alignments.A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel alpha-helices. Alpha-rods are flexible and expose a large surface, which makes them suitable for protein interaction. Although most likely originating by tandem duplication of a two-helix unit, their detection using sequence similarity between repeats is poor. Here, we show that alpha-rod repeats can be detected using a neural network. The network detects more repeats than are identified by domain databases using multiple profiles, with a low level of false positives (<10%). We identify alpha-rod repeats in approximately 0.4% of proteins in eukaryotic genomes. We then investigate the results for all human proteins, identifying alpha-rod repeats for the first time in six protein families, including proteins STAG1-3, SERAC1, and PSMD1-2 & 5. We also characterize a short version of these repeats in eight protein families of Archaeal, Bacterial, and Fungal species. Finally, we demonstrate the utility of these predictions in directing experimental work to demarcate three alpha-rods in huntingtin, a protein mutated in Huntington's disease. Using yeast two hybrid analysis and an immunoprecipitation technique, we show that the huntingtin fragments containing alpha-rods associate with each other. This is the first definition of domains in huntingtin and the first validation of predicted interactions between fragments of huntingtin, which sets up directions toward functional characterization of this protein. An implementation of the repeat detection algorithm is available as a Web server with a simple graphical output: http://www.ogic.ca/projects/ard. This can be further visualized using BiasViz, a graphic tool for representation of multiple sequence alignments.
A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel alpha-helices. Alpha-rods are flexible and expose a large surface, which makes them suitable for protein interaction. Although most likely originating by tandem duplication of a two-helix unit, their detection using sequence similarity between repeats is poor. Here, we show that alpha-rod repeats can be detected using a neural network. The network detects more repeats than are identified by domain databases using multiple profiles, with a low level of false positives (<10%). We identify alpha-rod repeats in approximately 0.4% of proteins in eukaryotic genomes. We then investigate the results for all human proteins, identifying alpha-rod repeats for the first time in six protein families, including proteins STAG1-3, SERAC1, and PSMD1-2 & 5. We also characterize a short version of these repeats in eight protein families of Archaeal, Bacterial, and Fungal species. Finally, we demonstrate the utility of these predictions in directing experimental work to demarcate three alpha-rods in huntingtin, a protein mutated in Huntington's disease. Using yeast two hybrid analysis and an immunoprecipitation technique, we show that the huntingtin fragments containing alpha-rods associate with each other. This is the first definition of domains in huntingtin and the first validation of predicted interactions between fragments of huntingtin, which sets up directions toward functional characterization of this protein. An implementation of the repeat detection algorithm is available as a Web server with a simple graphical output: http://www.ogic.ca/projects/ard. This can be further visualized using BiasViz, a graphic tool for representation of multiple sequence alignments.
A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel alpha-helices. Alpha-rods are flexible and expose a large surface, which makes them suitable for protein interaction. Although most likely originating by tandem duplication of a two-helix unit, their detection using sequence similarity between repeats is poor. Here, we show that alpha-rod repeats can be detected using a neural network. The network detects more repeats than are identified by domain databases using multiple profiles, with a low level of false positives (<10%). We identify alpha-rod repeats in approximately 0.4% of proteins in eukaryotic genomes. We then investigate the results for all human proteins, identifying alpha-rod repeats for the first time in six protein families, including proteins STAG1-3, SERAC1, and PSMD1-2 & 5. We also characterize a short version of these repeats in eight protein families of Archaeal, Bacterial, and Fungal species. Finally, we demonstrate the utility of these predictions in directing experimental work to demarcate three alpha-rods in huntingtin, a protein mutated in Huntington's disease. Using yeast two hybrid analysis and an immunoprecipitation technique, we show that the huntingtin fragments containing alpha-rods associate with each other. This is the first definition of domains in huntingtin and the first validation of predicted interactions between fragments of huntingtin, which sets up directions toward functional characterization of this protein. An implementation of the repeat detection algorithm is available as a Web server with a simple graphical output: http://www.ogic.ca/projects/ard . This can be further visualized using BiasViz, a graphic tool for representation of multiple sequence alignments. Many proteins have an elongated structural domain formed by a stack of alpha helices (alpha-rod), often found to interact with other proteins. The identification of an alpha-rod in a protein can therefore tell something about both the function and the structure of that protein. Though alpha-rods can be readily identified from the structure of proteins, for the vast majority of known proteins this is unavailable, and we have to use their amino acid sequence. Because alpha-rods have highly variable sequences, commonly used methods of domain identification by sequence similarity have difficulty detecting them. However, alpha-rods do have specific patterns of amino acid properties along their sequences, so we used a computational method based on a neural network to learn these patterns. We illustrate how this method finds novel instances of the domain in proteins from a wide range of organisms. We performed detailed analysis of huntingtin, the protein mutated in Huntington's chorea, a neurodegenerative disease. The function of huntingtin remains a mystery partially due to the lack of knowledge about its structure. Therefore, we defined three alpha-rods in this protein and experimentally verified how they interact with each other, a novel result that opens new avenues for huntingtin research.
Author Huska, Matthew R.
Rasko, Tamas
Arumughan, Anup
Porras, Pablo
Sanchez-Pulido, Luis
Stelzl, Ulrich
Foulle, Raphaele
Shcherbinin, Sergey
Wanker, Erich E.
Palidwor, Gareth A.
Andrade-Navarro, Miguel A.
AuthorAffiliation 5 Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
4 Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
University of California San Diego, United States of America
3 Max-Delbrück Center for Molecular Medicine, Berlin, Germany
2 Medical Imaging Research Group, The University of British Columbia, Vancouver General Hospital, Vancouver, British Columbia, Canada
1 Ottawa Health Research Institute, Ottawa, Ontario, Canada
AuthorAffiliation_xml – name: 4 Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
– name: 3 Max-Delbrück Center for Molecular Medicine, Berlin, Germany
– name: University of California San Diego, United States of America
– name: 2 Medical Imaging Research Group, The University of British Columbia, Vancouver General Hospital, Vancouver, British Columbia, Canada
– name: 5 Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
– name: 1 Ottawa Health Research Institute, Ottawa, Ontario, Canada
Author_xml – sequence: 1
  givenname: Gareth A.
  surname: Palidwor
  fullname: Palidwor, Gareth A.
– sequence: 2
  givenname: Sergey
  surname: Shcherbinin
  fullname: Shcherbinin, Sergey
– sequence: 3
  givenname: Matthew R.
  surname: Huska
  fullname: Huska, Matthew R.
– sequence: 4
  givenname: Tamas
  surname: Rasko
  fullname: Rasko, Tamas
– sequence: 5
  givenname: Ulrich
  surname: Stelzl
  fullname: Stelzl, Ulrich
– sequence: 6
  givenname: Anup
  surname: Arumughan
  fullname: Arumughan, Anup
– sequence: 7
  givenname: Raphaele
  surname: Foulle
  fullname: Foulle, Raphaele
– sequence: 8
  givenname: Pablo
  surname: Porras
  fullname: Porras, Pablo
– sequence: 9
  givenname: Luis
  surname: Sanchez-Pulido
  fullname: Sanchez-Pulido, Luis
– sequence: 10
  givenname: Erich E.
  surname: Wanker
  fullname: Wanker, Erich E.
– sequence: 11
  givenname: Miguel A.
  surname: Andrade-Navarro
  fullname: Andrade-Navarro, Miguel A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19282972$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URD_gHyDIiVsWf8RxwgFpVQqtVAGq6ImD5TiTrRevHWyHin-PdzetWg5wsMay33nm1cwcowPnHSD0kuAFYYK8XfspOGUXo-7MgmCMGa6eoCPCOSsF483Bg_shOo5xnSW8aetn6JC0tKGtoEfo-wdIoJPxrvBDsbTjjSqvfF98DT6BccUVjKBSLK6jcatCFZ9hCsrmkG59-FEo1xfLcbRGqx0j-eJ8cilr83mOng7KRngxxxN0_fHs2-l5efnl08Xp8rLUnIpUMq17IC3uNNQEU6jbWkPbV101CNoo3DZMQYc7MXDocYvboapbpoiGphYUM3aCXu-5o_VRzn2JkjBCK5FL4Ky42Ct6r9ZyDGajwm_plZG7Bx9WUoVktAUJHGMiKq4JHSohGkWAN2qAAQuSXW1Z7-dqU7eBXoNLuSOPoI9_nLmRK_9L0jrzqi3gzQwI_ucEMcmNiRqsVQ78FGWdDRPK6H-FFPOmxoRn4auHlu693I05C97tBTr4GAMMUpu0m1h2aKwkWG536q53crtTct6pnFz9lXzP_1faH7Bp08Y
CitedBy_id crossref_primary_10_1016_j_jmb_2012_01_030
crossref_primary_10_1038_emboj_2012_11
crossref_primary_10_1093_bib_bbt003
crossref_primary_10_1038_nature25502
crossref_primary_10_1002_pro_4810
crossref_primary_10_1016_j_jmb_2021_166895
crossref_primary_10_1038_nmeth_2397
crossref_primary_10_1186_1471_2105_13_S3_S8
crossref_primary_10_3233_JHD_220543
crossref_primary_10_1186_s13046_022_02321_5
crossref_primary_10_1007_s12035_016_0337_x
crossref_primary_10_1038_nn_3080
crossref_primary_10_1080_07391102_2017_1381646
crossref_primary_10_1093_bioinformatics_btr419
crossref_primary_10_1371_journal_pone_0050300
crossref_primary_10_1261_rna_054296_115
crossref_primary_10_1093_nar_gks1329
crossref_primary_10_3390_ijms22063214
crossref_primary_10_1515_sagmb_2015_0079
crossref_primary_10_3233_JHD_240028
crossref_primary_10_3389_fbioe_2015_00143
crossref_primary_10_3390_ijms22041727
crossref_primary_10_1016_j_jsb_2010_01_002
crossref_primary_10_3390_ijms241613021
crossref_primary_10_1093_hmg_ddaa001
crossref_primary_10_1038_s41598_018_26255_1
crossref_primary_10_1080_15257770_2020_1815769
crossref_primary_10_1073_pnas_1114502109
crossref_primary_10_1093_bib_bbz007
crossref_primary_10_1128_MCB_00687_10
crossref_primary_10_2174_0929867326666190621101909
crossref_primary_10_1152_physrev_00041_2009
crossref_primary_10_3390_cells8090962
crossref_primary_10_23868_201707026
crossref_primary_10_1371_journal_pone_0090669
crossref_primary_10_1016_j_molmet_2020_101151
crossref_primary_10_1186_s12967_024_06025_6
crossref_primary_10_1093_hmg_ddw036
crossref_primary_10_1186_1756_6606_3_17
crossref_primary_10_1242_bio_20149761
crossref_primary_10_1093_hmg_ddu137
crossref_primary_10_1038_s41582_020_0389_4
crossref_primary_10_1007_s10571_014_0087_0
crossref_primary_10_1016_j_neuropharm_2018_03_009
crossref_primary_10_1371_journal_pone_0121055
crossref_primary_10_15252_embj_201490808
crossref_primary_10_1016_j_neuron_2016_02_003
crossref_primary_10_1093_hmg_ddp524
crossref_primary_10_1016_j_jmb_2015_08_003
crossref_primary_10_1016_j_neuron_2010_06_027
crossref_primary_10_3389_fphys_2023_1086112
crossref_primary_10_1371_journal_pone_0079894
crossref_primary_10_3233_JHD_220538
Cites_doi 10.1093/nar/gkm458
10.1016/j.jsb.2004.01.013
10.1523/JNEUROSCI.22-18-07862.2002
10.1091/mbc.E03-07-0544
10.1101/gr.406902
10.1074/jbc.M204982200
10.1083/jcb.200511010
10.1016/0092-8674(95)90542-1
10.1016/j.cell.2005.08.029
10.1016/j.cub.2006.01.060
10.1006/jsbi.2001.4392
10.1083/jcb.150.3.405
10.1074/jbc.M511007200
10.1016/j.cell.2005.08.019
10.1002/1097-0169(200007)46:3<157::AID-CM1>3.0.CO;2-D
10.1371/journal.pbio.0030069
10.1016/j.molcel.2006.04.013
10.1038/ng1095-115
10.1002/prot.340200303
10.1126/science.1084155
10.1101/gr.147400
10.1016/j.molcel.2007.01.034
10.1016/j.molcel.2007.05.040
10.1126/science.1105776
10.1016/j.yexcr.2007.02.026
10.1016/S0169-328X(97)00205-2
10.1016/S0968-0004(00)01561-9
10.1016/0092-8674(94)90353-0
10.1016/S0968-0004(97)01058-X
10.1095/biolreprod62.3.511
10.1074/jbc.M103364200
10.1016/S0968-0004(97)01156-0
10.1016/j.jsb.2006.03.009
10.1101/gad.285604
10.1242/jcs.030221
10.1093/bioinformatics/btm489
10.1073/pnas.131192798
10.1002/bies.20032
10.1016/j.str.2007.01.012
10.1523/JNEUROSCI.21-06-01830.2001
10.1093/nar/25.17.3389
10.1242/jcs.115.5.941
10.1006/jmbi.2000.3684
10.1186/1471-2105-8-S4-S2
10.1038/nature03144
10.1016/S0092-8674(00)80680-7
10.1006/jmbi.2000.4315
10.1016/S0092-8674(02)00735-3
10.1247/csf.06030
10.1016/j.dnarep.2006.05.007
10.1529/biophysj.108.129759
10.1371/journal.pbio.0030086
10.1016/S0968-0004(03)00168-3
10.1002/pro.5560040318
10.1002/dvdy.10342
10.1006/jmbi.1993.1413
10.1093/bioinformatics/btg097
10.1242/jcs.02583
10.1083/jcb.200405094
10.1006/jmbi.2001.4624
10.1093/nar/gkj079
10.1083/jcb.128.6.1131
10.1038/emboj.2008.61
10.1093/nar/gkn238
10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q
10.1038/nrm2369
10.1093/nar/gkj149
10.1073/pnas.0406102101
ContentType Journal Article
Copyright Palidwor et al. 2009
2009 Palidwor et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Palidwor GA, Shcherbinin S, Huska MR, Rasko T, Stelzl U, et al. (2009) Detection of Alpha-Rod Protein Repeats Using a Neural Network and Application to Huntingtin. PLoS Comput Biol 5(3): e1000304. doi:10.1371/journal.pcbi.1000304
Copyright_xml – notice: Palidwor et al. 2009
– notice: 2009 Palidwor et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Palidwor GA, Shcherbinin S, Huska MR, Rasko T, Stelzl U, et al. (2009) Detection of Alpha-Rod Protein Repeats Using a Neural Network and Application to Huntingtin. PLoS Comput Biol 5(3): e1000304. doi:10.1371/journal.pcbi.1000304
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1000304
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Detection of Alpha-Rod Protein Repeats
EISSN 1553-7358
EndPage e1000304
ExternalDocumentID 1312475270
oai_doaj_org_article_e5001745c12f4778a1e58afef071e9d0
PMC2647740
19282972
10_1371_journal_pcbi_1000304
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_U137761446
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
IPNFZ
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
H13
NPM
PJZUB
PPXIY
PQGLB
PV9
RZL
WOQ
7QO
7TK
8FD
FR3
P64
7X8
5PM
PUEGO
3V.
AAPBV
ABPTK
M0N
M~E
ID FETCH-LOGICAL-c527t-3ccde190bce6102e696ce9d4b4f728a0983aeb0b7f5ed0909f4693a1ce8672033
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun Oct 01 00:20:32 EDT 2023
Wed Aug 27 01:27:31 EDT 2025
Thu Aug 21 18:30:07 EDT 2025
Thu Jul 10 23:05:17 EDT 2025
Fri Jul 11 03:26:46 EDT 2025
Mon Jul 21 05:29:03 EDT 2025
Tue Jul 01 04:23:34 EDT 2025
Thu Apr 24 22:50:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Amino Acid Sequence
Models, Chemical
Models, Molecular
Molecular Sequence Data
Nerve Tissue Proteins
Nuclear Proteins
Sequence Analysis, Protein
Repetitive Sequences, Amino Acid
Algorithms
Computer Simulation
Protein Binding
Pattern Recognition, Automated
Binding Sites
Neural Networks (Computer)
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-3ccde190bce6102e696ce9d4b4f728a0983aeb0b7f5ed0909f4693a1ce8672033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: EEW MAAN. Performed the experiments: GAP TR US AA RF PP. Analyzed the data: GAP TR US LSP. Contributed reagents/materials/analysis tools: GAP SS MRH. Wrote the paper: MAAN.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1000304
PMID 19282972
PQID 20586015
PQPubID 23462
ParticipantIDs plos_journals_1312475270
doaj_primary_oai_doaj_org_article_e5001745c12f4778a1e58afef071e9d0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2647740
proquest_miscellaneous_67031232
proquest_miscellaneous_20586015
pubmed_primary_19282972
crossref_citationtrail_10_1371_journal_pcbi_1000304
crossref_primary_10_1371_journal_pcbi_1000304
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03-01
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2009
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References MA Andrade (ref2) 2001; 134
M Barrios-Rodiles (ref49) 2005; 307
Y Matsuura (ref52) 2004; 432
T Tukamoto (ref58) 1997; 51
M Yao (ref61) 2008; 121
AF Neuwald (ref31) 2000; 10
HC Gregson (ref60) 2001; 276
MA Andrade (ref4) 2001; 309
BE McGuinness (ref20) 2005; 3
M Nakayama (ref34) 2002; 12
E Sontag (ref55) 1995; 128
SF Altschul (ref19) 1997; 25
Y Shomura (ref43) 2005; 17
Y Bai (ref50) 2007; 25
B Rost (ref15) 1993; 232
G Hoffner (ref59) 2002; 115
EF Smith (ref57) 2000; 46
Y Mao (ref8) 2000; 100
JA Cuff (ref16) 2000; 40
A Adami (ref41) 2007; 27
A Cena (ref24) 2007; 32
L Chelysheva (ref23) 2005; 118
A Lupas (ref25) 1997; 22
J Nasir (ref44) 1995; 81
MD Hatfield (ref40) 2006; 5
A Krogh (ref13) 2001; 305
W Li (ref66) 2006; 281
US Tulu (ref62) 2006; 16
D Baillat (ref33) 2005; 123
MA Andrade (ref3) 1995; 11
L Smith (ref30) 2003; 227
LM Mende-Mueller (ref63) 2001; 21
Y Wang (ref70) 2000; 25
A Akhmanova (ref38) 2008; 9
LJ McGuffin (ref47) 2003; 19
AV Kajava (ref27) 2002; 277
I Letunic (ref11) 2006; 34
M Gruber (ref12) 2006; 155
SY Lee (ref48) 2008; 95
E Staub (ref29) 2004; 26
R Sapiro (ref56) 2000; 62
J Al-Bassam (ref36) 2007; 15
B Falkowska-Hansen (ref54) 2007; 313
PJ Preker (ref6) 1998; 23
B Rost (ref18) 1994; 20
NC Turner (ref32) 2008; 27
Y Mimori-Kiyosue (ref37) 2005; 168
A Losada (ref22) 2000; 150
F Rosenblatt (ref14) 1962
B Rost (ref17) 1995; 4
M Peifer (ref5) 1994; 76
L Cassimeris (ref35) 2004; 15
EE Heldwein (ref65) 2004; 101
C Cole (ref26) 2008; 36
CL Wellington (ref64) 2002; 22
S Hauf (ref21) 2005; 3
L Spagnolo (ref67) 2006; 22
MA Andrade (ref1) 2000; 298
BM Collins (ref69) 2002; 109
P Legrand (ref51) 2007; 35
AV Kajava (ref39) 2004; 146
I Melvin (ref46) 2007; 8
M Sagermann (ref9) 2001; 98
P Harjes (ref45) 2003; 28
M Oeffinger (ref28) 2004; 18
MR Huska (ref71) 2007; 23
U Stelzl (ref68) 2005; 122
MS Boguski (ref7) 1992; 4
RD Finn (ref10) 2006; 34
MM Golas (ref42) 2003; 300
J Al-Bassam (ref53) 2006; 172
References_xml – volume: 35
  start-page: 4515
  year: 2007
  ident: ref51
  article-title: The structure of the CstF-77 homodimer provides insights into CstF assembly.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm458
– volume: 146
  start-page: 425
  year: 2004
  ident: ref39
  article-title: New HEAT-like repeat motifs in proteins regulating proteasome structure and function.
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2004.01.013
– volume: 22
  start-page: 7862
  year: 2002
  ident: ref64
  article-title: Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-18-07862.2002
– volume: 15
  start-page: 1580
  year: 2004
  ident: ref35
  article-title: TOGp, the human homolog of XMAP215/Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly.
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E03-07-0544
– volume: 12
  start-page: 1773
  year: 2002
  ident: ref34
  article-title: Protein–protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs.
  publication-title: Genome Res
  doi: 10.1101/gr.406902
– volume: 277
  start-page: 49791
  year: 2002
  ident: ref27
  article-title: What curves α-solenoids? Evidence for an α-helical toroid structure of Rpn1 and Rpn2 proteins of the 26 S proteasome.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M204982200
– volume: 172
  start-page: 1009
  year: 2006
  ident: ref53
  article-title: Stu2p binds tubulin and undergoes an open-to-closed conformational change.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200511010
– volume: 17
  start-page: 367
  year: 2005
  ident: ref43
  article-title: Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange.
  publication-title: Mol Cell
– volume: 81
  start-page: 811
  year: 1995
  ident: ref44
  article-title: Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes.
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90542-1
– volume: 122
  start-page: 957
  year: 2005
  ident: ref68
  article-title: A human protein-protein interaction network: a resource for annotating the proteome.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.029
– volume: 16
  start-page: 536
  year: 2006
  ident: ref62
  article-title: Molecular requirements for kinetochore-associated microtubule formation in mammalian cells.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2006.01.060
– volume: 134
  start-page: 117
  year: 2001
  ident: ref2
  article-title: Protein repeats: structures, functions, and evolution.
  publication-title: J Struct Biol
  doi: 10.1006/jsbi.2001.4392
– volume: 150
  start-page: 405
  year: 2000
  ident: ref22
  article-title: Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.150.3.405
– volume: 4
  start-page: 408
  year: 1992
  ident: ref7
  article-title: Novel repetitive sequence motifs in the alpha and beta subunits of prenyl-protein transferases and homology of the alpha subunit to the MAD2 gene product of yeast.
  publication-title: New Biol
– volume: 281
  start-page: 15916
  year: 2006
  ident: ref66
  article-title: Expression and characterization of full-length human huntingtin, an elongated HEAT repeat protein.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M511007200
– volume: 123
  start-page: 265
  year: 2005
  ident: ref33
  article-title: Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.019
– volume: 46
  start-page: 157
  year: 2000
  ident: ref57
  article-title: Defining functional domains within PF16: a central apparatus component required for flagellar motility.
  publication-title: Cell Motil Cytoskeleton
  doi: 10.1002/1097-0169(200007)46:3<157::AID-CM1>3.0.CO;2-D
– volume: 3
  start-page: e69
  year: 2005
  ident: ref21
  article-title: Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0030069
– volume: 22
  start-page: 511
  year: 2006
  ident: ref67
  article-title: Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.04.013
– volume: 11
  start-page: 115
  year: 1995
  ident: ref3
  article-title: HEAT repeats in the Huntington's disease protein.
  publication-title: Nat Genet
  doi: 10.1038/ng1095-115
– volume: 20
  start-page: 216
  year: 1994
  ident: ref18
  article-title: Conservation and prediction of solvent accessibility in protein families.
  publication-title: Proteins
  doi: 10.1002/prot.340200303
– volume: 300
  start-page: 980
  year: 2003
  ident: ref42
  article-title: Molecular architecture of the multiprotein splicing factor SF3b.
  publication-title: Science
  doi: 10.1126/science.1084155
– volume: 10
  start-page: 1445
  year: 2000
  ident: ref31
  article-title: HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions.
  publication-title: Genome Res
  doi: 10.1101/gr.147400
– volume: 25
  start-page: 863
  year: 2007
  ident: ref50
  article-title: Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.01.034
– volume: 27
  start-page: 509
  year: 2007
  ident: ref41
  article-title: Structure of TOR and its complex with KOG1.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.05.040
– volume: 307
  start-page: 1621
  year: 2005
  ident: ref49
  article-title: High-throughput mapping of a dynamic signaling network in mammalian cells.
  publication-title: Science
  doi: 10.1126/science.1105776
– volume: 313
  start-page: 1745
  year: 2007
  ident: ref54
  article-title: Clathrin-coated vesicles form a unique net-like structure in liver sinusoidal endothelial cells by assembling along undisrupted microtubules.
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2007.02.026
– volume: 51
  start-page: 8
  year: 1997
  ident: ref58
  article-title: Huntington's disease gene product, huntingtin, associates with microtubules in vitro.
  publication-title: Brain Res Mol Brain Res
  doi: 10.1016/S0169-328X(97)00205-2
– volume: 25
  start-page: 300
  year: 2000
  ident: ref70
  article-title: Cn3D: sequence and structure views for Entrez.
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(00)01561-9
– volume: 76
  start-page: 789
  year: 1994
  ident: ref5
  article-title: A repeating amino acid motif shared by proteins with diverse cellular roles.
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90353-0
– volume: 22
  start-page: 195
  year: 1997
  ident: ref25
  article-title: A repetitive sequence in subunits of the 26S proteasome and 20S cyclosome (anaphase-promoting complex).
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(97)01058-X
– volume: 62
  start-page: 511
  year: 2000
  ident: ref56
  article-title: Sperm antigen 6 is the murine homologue of the Chlamydomonas reinhardtii central apparatus protein encoded by the PF16 locus.
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod62.3.511
– volume: 276
  start-page: 47575
  year: 2001
  ident: ref60
  article-title: A potential role for human cohesin in mitotic spindle aster assembly.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M103364200
– volume: 23
  start-page: 15
  year: 1998
  ident: ref6
  article-title: The HAT helix, a repetitive motif implicated in RNA processing.
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(97)01156-0
– volume: 155
  start-page: 140
  year: 2006
  ident: ref12
  article-title: Comparative analysis of coiled-coil prediction methods.
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2006.03.009
– volume: 18
  start-page: 196
  year: 2004
  ident: ref28
  article-title: A pre-ribosome-associated HEAT-repeat protein is required for export of both ribosomal subunits.
  publication-title: Genes Dev
  doi: 10.1101/gad.285604
– volume: 121
  start-page: 2372
  year: 2008
  ident: ref61
  article-title: Arabidopsis SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics.
  publication-title: J Cell Sci
  doi: 10.1242/jcs.030221
– volume: 23
  start-page: 3093
  year: 2007
  ident: ref71
  article-title: BiasViz: visualization of amino acid biased regions in protein alignments.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm489
– volume: 98
  start-page: 7134
  year: 2001
  ident: ref9
  article-title: Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.131192798
– volume: 26
  start-page: 567
  year: 2004
  ident: ref29
  article-title: Insights into the evolution of the nucleolus by an analysis of its protein domain repertoire.
  publication-title: Bioessays
  doi: 10.1002/bies.20032
– volume: 15
  start-page: 355
  year: 2007
  ident: ref36
  article-title: Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding.
  publication-title: Structure
  doi: 10.1016/j.str.2007.01.012
– volume: 21
  start-page: 1830
  year: 2001
  ident: ref63
  article-title: Tissue-specific proteolysis of Huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in Huntington's disease striatum.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-06-01830.2001
– volume: 25
  start-page: 3389
  year: 1997
  ident: ref19
  article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.17.3389
– volume: 115
  start-page: 941
  year: 2002
  ident: ref59
  article-title: Perinuclear localization of huntingtin as a consequence of its binding to microtubules through an interaction with beta-tubulin: relevance to Huntington's disease.
  publication-title: J Cell Sci
  doi: 10.1242/jcs.115.5.941
– volume: 298
  start-page: 521
  year: 2000
  ident: ref1
  article-title: Homology-based method for identification of protein repeats using statistical significance estimates.
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.3684
– volume: 8
  start-page: S2
  year: 2007
  ident: ref46
  article-title: SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-S4-S2
– volume: 432
  start-page: 872
  year: 2004
  ident: ref52
  article-title: Structural basis for the assembly of a nuclear export complex.
  publication-title: Nature
  doi: 10.1038/nature03144
– volume: 100
  start-page: 447
  year: 2000
  ident: ref8
  article-title: Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction.
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80680-7
– volume: 305
  start-page: 567
  year: 2001
  ident: ref13
  article-title: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.4315
– volume: 109
  start-page: 523
  year: 2002
  ident: ref69
  article-title: Molecular architecture and functional model of the endocytic AP2 complex.
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00735-3
– volume: 32
  start-page: 1
  year: 2007
  ident: ref24
  article-title: Substitution F659G in the Irr1p/Scc3p cohesin influences the cell wall of Saccharomyces cerevisiae.
  publication-title: Cell Struct Funct
  doi: 10.1247/csf.06030
– volume: 5
  start-page: 914
  year: 2006
  ident: ref40
  article-title: Identification of MMS19 domains with distinct functions in NER and transcription.
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2006.05.007
– volume: 95
  start-page: 1956
  year: 2008
  ident: ref48
  article-title: Benchmarking of TASSER_2.0: an improved protein structure prediction algorithm with more accurate predicted contact restraints.
  publication-title: Biophys J
  doi: 10.1529/biophysj.108.129759
– volume: 3
  start-page: e86
  year: 2005
  ident: ref20
  article-title: Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0030086
– volume: 28
  start-page: 425
  year: 2003
  ident: ref45
  article-title: The hunt for huntingtin function: interaction partners tell many different stories.
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(03)00168-3
– volume: 4
  start-page: 521
  year: 1995
  ident: ref17
  article-title: Transmembrane helices predicted at 95% accuracy.
  publication-title: Protein Sci
  doi: 10.1002/pro.5560040318
– volume: 227
  start-page: 600
  year: 2003
  ident: ref30
  article-title: Candidate testis-determining gene, Maestro (Mro), encodes a novel HEAT repeat protein.
  publication-title: Dev Dyn
  doi: 10.1002/dvdy.10342
– volume: 232
  start-page: 584
  year: 1993
  ident: ref15
  article-title: Prediction of protein secondary structure at better than 70% accuracy.
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1993.1413
– volume: 19
  start-page: 874
  year: 2003
  ident: ref47
  article-title: Improvement of the GenTHREADER method for genomic fold recognition.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg097
– volume: 118
  start-page: 4621
  year: 2005
  ident: ref23
  article-title: AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis.
  publication-title: J Cell Sci
  doi: 10.1242/jcs.02583
– volume: 168
  start-page: 141
  year: 2005
  ident: ref37
  article-title: CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200405094
– volume: 309
  start-page: 1
  year: 2001
  ident: ref4
  article-title: Comparison of ARM and HEAT protein repeats.
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.4624
– volume: 34
  start-page: D257
  year: 2006
  ident: ref11
  article-title: SMART 5: domains in the context of genomes and networks.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj079
– volume: 128
  start-page: 1131
  year: 1995
  ident: ref55
  article-title: A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.128.6.1131
– volume: 27
  start-page: 1368
  year: 2008
  ident: ref32
  article-title: A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor.
  publication-title: EMBO J
  doi: 10.1038/emboj.2008.61
– year: 1962
  ident: ref14
  article-title: Principles of Neurodynamics
– volume: 36
  start-page: W197
  year: 2008
  ident: ref26
  article-title: The Jpred 3 secondary structure prediction server.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn238
– volume: 40
  start-page: 502
  year: 2000
  ident: ref16
  article-title: Application of multiple sequence alignment profiles to improve protein secondary structure prediction.
  publication-title: Proteins
  doi: 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q
– volume: 9
  start-page: 309
  year: 2008
  ident: ref38
  article-title: Tracking the ends: a dynamic protein network controls the fate of microtubule tips.
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2369
– volume: 34
  start-page: D247
  year: 2006
  ident: ref10
  article-title: Pfam: clans, web tools and services.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj149
– volume: 101
  start-page: 14108
  year: 2004
  ident: ref65
  article-title: Crystal structure of the clathrin adaptor protein 1 core.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0406102101
SSID ssj0035896
Score 2.1747053
Snippet A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel...
A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel...
  A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel...
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000304
SubjectTerms Algorithms
Amino Acid Sequence
Binding Sites
Biochemistry/Macromolecular Assemblies and Machines
Cell culture
Cloning
Colleges & universities
Computational Biology/Macromolecular Sequence Analysis
Computational Biology/Protein Structure Prediction
Computer Simulation
Huntingtin Protein
Models, Chemical
Models, Molecular
Molecular Biology/Bioinformatics
Molecular Sequence Data
Nerve Tissue Proteins - analysis
Nerve Tissue Proteins - chemistry
Neural Networks, Computer
Nuclear Proteins - analysis
Nuclear Proteins - chemistry
Pattern Recognition, Automated - methods
Protein Binding
Proteins
Repetitive Sequences, Amino Acid
Sequence Analysis, Protein - methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCMqjW9riA1fTrB9xfCzQqkKCE5VW4hDFzpiuVDmrbnrg3zNjZ8suAvXCIZfYTjQPe2Y0428YexcCWq0evFA-SqFr6IWzUguJulxLH73NifYvX-vLK_15YRZbrb6oJqzAAxfGnYKhg1SbMJdRW9t0czBNFyGibQTX52gdbd4mmCpnsDJN7sxFTXGEVXoxXZpTdn46yej9Kvgl1QhQbnDHKGXsfsI6vRnWf_M7_yyf3LJHF8_Y08mR5GeFgOfsEaR99ri0lvz5gn3_BGOuskp8iDzfqBV4VvKMy7BM_BZWeAqvOdW9_-AdJ1xL_FwqVeG8Sz3fym3zceDXpakEPi_Z1cX5t4-XYmqkIIKRdhQqhB7Q8vsA6C1JqF0dkHfa62hl01WuUR34yttooK9c5SIGzaqbB2hqStOqV2wvDQkOGPfeoQBrHRSuNg04XO-8i1b1KFsZZ0xtONmGCWWcml3ctDl1ZjHaKPxpif_txP8ZE_erVgVl44H5H0hI93MJIzu_QM1pJ81pH9KcGTsgEW9-sMbfobNjkWM49HYj9ha3G-VQugTD3bqVlWkwhjX_nlFTRwD0U2fsdVGT3xQ5SltbHLE7CrRDxu5IWl5nyG9J94V1dfg_6H7DnpSUGBXSHbG98fYOjtGzGv1J3kS_AFeUIto
  priority: 102
  providerName: Directory of Open Access Journals
Title Detection of Alpha-Rod Protein Repeats Using a Neural Network and Application to Huntingtin
URI https://www.ncbi.nlm.nih.gov/pubmed/19282972
https://www.proquest.com/docview/20586015
https://www.proquest.com/docview/67031232
https://pubmed.ncbi.nlm.nih.gov/PMC2647740
https://doaj.org/article/e5001745c12f4778a1e58afef071e9d0
http://dx.doi.org/10.1371/journal.pcbi.1000304
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBf9YLCXse-m2zI97FXFkSXLehgjWZuFQUMpCwT2YCxZ2gLB7mIX2v9-d7KdLqOlD0kgkuzoTuc75Xe6HyGfrAWvVTjDYuM5E4krmFZcMA5rOeHGGxWA9vN5MluI70u53CM9Z2snwPrerR3ySS0265ObP7dfwOA_B9YGNeoHnVxZs0LUH9G-fXIIvkmhqZ6LLa4QyzQwdiFZDlOxWHaH6R66yo6zCjX9sQbquqrvi0f_T6v8x09Nn5NnXYBJx-2KeEH2XPmSPGkpJ29fkZ-nrgnZVyWtPB3jSVt2WRX0Aus1rEoKATk8nWsaUgloTrF4B1xu3maL07ws6PgO86ZNRWct2QS8XpPF9OzH1xnrCBaYlVw1LLa2cBARGOsgiuIu0Yl1uhBGeMXTPNJpnDsTGeWlKyIdaQ-b6TgfWZcmCN_Gb8hBWZXuiFBjNCg2ETaG0TJ1GsZro72KC9A59wMS95LMbFd9HEkw1lmA1BTsQlr5ZCj_rJP_gLDtqKu2-sYj_SeopG1frJ0dvqg2v7LOFDMn0TULaUfcC6XSfORkmnvnIdqC2UcDcoQq7m9Qw-0gCFIgMWj62Ks9AzNEbCUvXXVdZzySKext5cM9EmQKgPh1QN62y-RuRhrhbAUtamcB7Uxjt6Vc_Q6lwDmeIxbR8aO_6x152uJgmD33nhw0m2v3AcKpxgzJvloqeE-n34bkcDw5nUzhc3I2v7gchr8ohsGG_gLxziaa
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Alpha-Rod+Protein+Repeats+Using+a+Neural+Network+and+Application+to+Huntingtin&rft.jtitle=PLoS+computational+biology&rft.au=Palidwor%2C+Gareth+A&rft.au=Shcherbinin%2C+Sergey&rft.au=Huska%2C+Matthew+R&rft.au=Rasko%2C+Tamas&rft.date=2009-03-01&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=5&rft.issue=3&rft.spage=e1000304&rft.epage=e1000304&rft_id=info:doi/10.1371%2Fjournal.pcbi.1000304&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon