Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review

Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Poly...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 11; no. 51; pp. 32158 - 3222
Main Authors Jassas, Rabab S, Mughal, Ehsan Ullah, Sadiq, Amina, Alsantali, Reem I, Al-Rooqi, Munirah M, Naeem, Nafeesa, Moussa, Ziad, Ahmed, Saleh A
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 29.09.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C-C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf) 2 /AlCl 3 , FeCl 3 , MoCl 5 , PIFA/BF 3 -Et 2 O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein. Nanographenes have been attracting increasing attention owing to their widespread applications in organic electronics. Polycyclic aromatic hydrocarbons are popular research subjects due to their high stability, planar structure and optical spectra.
AbstractList Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C–C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf)₂/AlCl₃, FeCl₃, MoCl₅, PIFA/BF₃–Et₂O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein.
Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C–C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf) 2 /AlCl 3 , FeCl 3 , MoCl 5 , PIFA/BF 3 –Et 2 O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein. Nanographenes have been attracting increasing attention owing to their widespread applications in organic electronics. Polycyclic aromatic hydrocarbons are popular research subjects due to their high stability, planar structure and optical spectra.
Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C-C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf)2/AlCl3, FeCl3, MoCl5, PIFA/BF3-Et2O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein.Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C-C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf)2/AlCl3, FeCl3, MoCl5, PIFA/BF3-Et2O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein.
Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C–C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf) 2 /AlCl 3 , FeCl 3 , MoCl 5 , PIFA/BF 3 –Et 2 O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein.
Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C–C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf)2/AlCl3, FeCl3, MoCl5, PIFA/BF3–Et2O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein.
Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C-C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf) /AlCl , FeCl , MoCl , PIFA/BF -Et O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein.
Author Naeem, Nafeesa
Sadiq, Amina
Mughal, Ehsan Ullah
Ahmed, Saleh A
Moussa, Ziad
Alsantali, Reem I
Al-Rooqi, Munirah M
Jassas, Rabab S
AuthorAffiliation Department of Pharmaceutical Chemistry
United Arab Emirates University
Assiut University
Jamoum University College
College of Science
Faculty of Science
College of Pharmacy
Govt. College Women University
Department of Chemistry
University of Gujrat
Faculty of Applied Science
Chemistry Department
Umm Al-Qura University
Taif University
Research Laboratories Unit
AuthorAffiliation_xml – name: Department of Chemistry
– name: Faculty of Applied Science
– name: Research Laboratories Unit
– name: Assiut University
– name: Umm Al-Qura University
– name: College of Pharmacy
– name: United Arab Emirates University
– name: Faculty of Science
– name: Taif University
– name: Govt. College Women University
– name: Department of Pharmaceutical Chemistry
– name: Chemistry Department
– name: Jamoum University College
– name: College of Science
– name: University of Gujrat
Author_xml – sequence: 1
  givenname: Rabab S
  surname: Jassas
  fullname: Jassas, Rabab S
– sequence: 2
  givenname: Ehsan Ullah
  surname: Mughal
  fullname: Mughal, Ehsan Ullah
– sequence: 3
  givenname: Amina
  surname: Sadiq
  fullname: Sadiq, Amina
– sequence: 4
  givenname: Reem I
  surname: Alsantali
  fullname: Alsantali, Reem I
– sequence: 5
  givenname: Munirah M
  surname: Al-Rooqi
  fullname: Al-Rooqi, Munirah M
– sequence: 6
  givenname: Nafeesa
  surname: Naeem
  fullname: Naeem, Nafeesa
– sequence: 7
  givenname: Ziad
  surname: Moussa
  fullname: Moussa, Ziad
– sequence: 8
  givenname: Saleh A
  surname: Ahmed
  fullname: Ahmed, Saleh A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35495486$$D View this record in MEDLINE/PubMed
BookMark eNqNks9rVDEQx4NUbF178a4EvIiwmry8JC8ehNJaWygI_rh4CbPZSTflbbIm77Xsf9-02661eDAEZiCf-TKT-T4nOzFFJOQlZ-85E-bDnGdg0nDmn5C9hrVq2jBldh7ku2S_lAtWj5K8UfwZ2RWyNbLt1B759d0tUt_TjOCGkCKFQoGu0hVmP_Z0SKmnPmU6LJCWdayhhEKTpxFiOs-wWmDE8rHWlHUZcAlDcFXsMuDVC_LUQ19w_y5OyM_jzz8OT6ZnX7-cHh6cTZ1s9DAVjZ5pnEPnvMeZUA0HbBk32nHRKQ6Mac3BM98pxRs0Ws6MqsMAqrmWgGJCPm10V-NsiXOHccjQ21UOS8hrmyDYv19iWNjzdGkNa7kWogq8vRPI6feIZbDLUBz2PURMY7GNkp1qtW7_BxWqVUzUOyFvHqEXacyx_oRtpJGmM6YqTsjrh81vu77fUAXebQCXUykZ_RbhzN44wB7xbwe3DjiuMHsEuzDAzV7r4KH_d8mrTUkubiv9x1TiGgosvB0
CitedBy_id crossref_primary_10_1002_adma_202212064
crossref_primary_10_1002_adma_202300760
crossref_primary_10_1016_j_molstruc_2024_138757
crossref_primary_10_1002_ejoc_202201208
crossref_primary_10_1039_D4SC06062H
crossref_primary_10_1002_chem_202302876
crossref_primary_10_1021_jacs_4c09224
crossref_primary_10_3390_molecules29173999
crossref_primary_10_3390_molecules29020296
crossref_primary_10_1007_s11224_024_02445_8
crossref_primary_10_1039_D4QO00029C
crossref_primary_10_1038_s44160_024_00595_5
crossref_primary_10_1021_acs_chemrev_2c00186
crossref_primary_10_1039_D4SC02458C
crossref_primary_10_1002_chem_202303539
crossref_primary_10_1002_anie_202311770
crossref_primary_10_1002_asia_202200114
crossref_primary_10_1002_ejoc_202400991
crossref_primary_10_1002_cplu_202300692
crossref_primary_10_1002_anie_202218719
crossref_primary_10_1021_acsnano_3c05246
crossref_primary_10_1002_ange_202215655
crossref_primary_10_1021_acs_orglett_1c04161
crossref_primary_10_1021_acs_orglett_4c00445
crossref_primary_10_1007_s10593_023_03183_1
crossref_primary_10_1007_s11172_024_4281_z
crossref_primary_10_3390_en16010480
crossref_primary_10_1002_chem_202404325
crossref_primary_10_1016_j_chempr_2024_04_002
crossref_primary_10_1002_chem_202300793
crossref_primary_10_1002_ajoc_202400748
crossref_primary_10_1021_jacs_4c12819
crossref_primary_10_1016_j_chempr_2023_05_028
crossref_primary_10_1002_ajoc_202300104
crossref_primary_10_1021_acsomega_2c01024
crossref_primary_10_1007_s10800_023_02047_y
crossref_primary_10_1007_s10904_023_02918_z
crossref_primary_10_1246_cl_230340
crossref_primary_10_1002_ange_202311770
crossref_primary_10_1002_macp_202200441
crossref_primary_10_1002_chem_202404679
crossref_primary_10_1039_D4CC01627K
crossref_primary_10_1021_acs_orglett_4c04770
crossref_primary_10_1039_D4CC00979G
crossref_primary_10_1002_ange_202218719
crossref_primary_10_1039_D2QO01712A
crossref_primary_10_1002_anie_202215655
crossref_primary_10_1021_acs_joc_2c03103
crossref_primary_10_1021_jacsau_2c00147
crossref_primary_10_5059_yukigoseikyokaishi_80_930
crossref_primary_10_1039_D4RA06592A
crossref_primary_10_3390_catal13050912
crossref_primary_10_1039_D4GC03448A
crossref_primary_10_1080_26941112_2021_2013716
crossref_primary_10_1038_s44160_023_00348_w
crossref_primary_10_1021_acs_joc_2c02202
crossref_primary_10_1002_aoc_7621
crossref_primary_10_1039_D1CC06561K
crossref_primary_10_1002_ajoc_202400126
crossref_primary_10_1002_chem_202403456
crossref_primary_10_1021_jacs_3c01185
Cites_doi 10.1002/anie.201500392
10.1021/acs.joc.7b01377
10.1021/acs.orglett.8b02979
10.1021/jo501790d
10.1021/jo061515x
10.1039/D0RA04213G
10.1063/1.4742331
10.1016/j.electacta.2019.02.041
10.1021/jacs.5b00403
10.1002/ange.201915327
10.1021/ol101498r
10.1021/jacs.9b03554
10.1002/ejoc.201402995
10.1021/ol202058r
10.1039/c3nj00359k
10.1002/chem.200902466
10.1016/S0040-4039(00)70494-1
10.1016/S0040-4039(00)94569-6
10.1039/c0jm02827d
10.1038/s41467-020-20314-w
10.1021/ol102969k
10.1039/D0SC01054E
10.1021/jacs.7b02258
10.1002/anie.201707505
10.1055/s-0033-1339044
10.1039/c2cc33892k
10.1016/j.micromeso.2020.110596
10.1021/jacs.6b05820
10.1039/JR9500000994
10.1002/hlca.19710540302
10.1021/acs.joc.5b01520
10.1002/ange.201309324
10.1351/PAC-CON-09-07-07
10.1021/acs.orglett.8b00223
10.1021/jo100611k
10.1021/acsnano.7b07077
10.1002/anie.201201084
10.1021/ja00541a020
10.1038/nchem.1819
10.1021/jacs.8b03711
10.1002/poc.1644
10.1039/b516264e
10.1039/c2jm34394k
10.1021/acs.joc.6b01785
10.1021/jo401001k
10.1021/jo00128a020
10.1002/anie.201210238
10.1038/nchem.985
10.1080/1536383X.2010.494787
10.1002/ange.19951071523
10.1021/acs.accounts.9b00322
10.1007/s11224-019-01368-z
10.1002/ange.201914716
10.1002/anie.201808461
10.1016/j.chempr.2019.01.004
10.1055/s-2001-10821
10.1021/ja00802a038
10.1021/jacs.0c05504
10.1021/nl080649i
10.1002/jlac.19123940202
10.1021/cm301190c
10.1080/026782999203508
10.1021/acs.orglett.5b00300
10.1021/cr068010r
10.1002/ange.201303143
10.1021/jo980704f
10.1002/anie.201300625
10.1039/C7NJ02299A
10.1021/jo00082a022
10.1039/b717585j
10.1055/s-0029-1219237
10.1039/D0OB00182A
10.1002/cber.191004302175
10.1021/ar500355d
10.1021/jacs.9b10203
10.1021/jacs.7b10026
10.1021/jo3027752
10.2174/138527210793351616
10.1039/C4CC09812A
10.1021/ol0708018
10.1039/C9SC03404H
10.1039/jr9350000303
10.1021/ar7001446
10.1080/02678290601119617
10.1039/C5NJ00808E
10.1126/science.1157996
10.1021/jacs.0c13298
10.1039/c2cc34245f
10.1126/science.1102896
10.1002/asia.201300560
10.1002/jlac.19636690104
10.1021/ol060333m
10.1002/ange.202100260
10.1021/jo00814a005
10.1021/jo980407a
10.1021/acs.orglett.7b01341
10.1021/nn503283d
10.1021/jo00032a055
10.1002/1521-3765(20020315)8:6<1424::AID-CHEM1424>3.0.CO;2-Z
10.1039/C8CC01993B
10.1002/anie.202105427
10.1038/nature09211
10.1039/B302462H
10.1021/ja107467c
10.1021/ol901331p
10.1038/nature17151
10.1039/C7QM00319F
10.1021/jo00921a037
10.1080/00397911003707105
10.1039/C7OB00987A
10.1038/s41467-016-0009-6
10.1055/s-1994-25505
10.1021/ol3015573
10.1021/ja402371f
10.1002/ange.200353597
10.1021/ol801321f
10.1021/ja046513d
10.1002/ange.202100343
10.1248/cpb.57.710
10.1002/anie.201904934
10.1021/jo00087a036
10.1038/nchem.1704
10.1002/anie.201701058
10.1021/acs.joc.6b01798
10.1021/jo0526744
10.1021/acssuschemeng.0c02223
10.1002/chem.201604649
10.1002/ange.201709124
10.1002/ange.201610374
10.1002/cber.19100430288
10.1080/00397919908086164
10.1002/anie.201610434
10.1021/ja9537888
10.1039/a704130f
10.1021/jo501185f
10.1039/C5QO00361J
10.1021/acs.orglett.5b02135
10.2533/chimia.2009.44
10.1021/acs.joc.6b01072
10.1021/acs.jpcc.8b00469
10.1021/jacs.6b04426
10.1021/acs.joc.1c00059
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/d1ra05910f
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
CrossRef
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 3222
ExternalDocumentID PMC9041733
35495486
10_1039_D1RA05910F
d1ra05910f
Genre Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: NRPU-6484
– fundername: ;
  grantid: TURSP-2020/312
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7G
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AHGCF
AKBGW
APEMP
CITATION
H13
HZ~
M~E
PGMZT
RPM
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c527t-327b7eda8cffeb3621ae40197c13861a00771af0f86612e975b96000ae6d75ae3
ISSN 2046-2069
IngestDate Thu Aug 21 17:37:41 EDT 2025
Fri Jul 11 00:53:21 EDT 2025
Fri Jul 11 03:29:56 EDT 2025
Mon Jun 30 13:00:39 EDT 2025
Thu Apr 03 07:00:09 EDT 2025
Tue Jul 01 04:06:13 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Mon Apr 18 07:58:25 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c527t-327b7eda8cffeb3621ae40197c13861a00771af0f86612e975b96000ae6d75ae3
Notes Saleh A. Ahmed was born in Assiut, Egypt in 1968 where is undertook undergraduate and postgraduate studies. He received his Bachelor and MSc from Assiut University, Egypt and PhD in photochemistry (photochromism) under the supervision of Prof. Heinz Dürr in Saarland University, Saarbrücken, Germany. He worked as postdoctoral fellow, senior researcher and visiting professor in France (CNRS fellow), Japan (JSPS fellow), Germany (AvH, DFG and DAAD fellows), Italy (TEMPUS fellow) and USA (Arab fund fellow). His current research interests include synthesis and photophysical properties of novel organic compounds, electronic devices and solar energy conversion, fluorophores with unique applications.
Ehsan Ullah Mughal was born in Wazirabad, Pakistan, in 1978 and obtained his Master's degree from Quaid-e-Azam University, Islamabad, Pakistan, in organic chemistry. He obtained his PhD in 2013 from Bielefeld University, Germany, under the supervision of Prof. Dr Dietmar Kuck. For postdoctoral studies, he joined the group of Prof. Dr Xinliang Feng, Max Planck Institute for Polymer Research, Mainz, Germany. In 2015, he started his independent research group at the Department of Chemistry, University of Gujrat, Gujrat, Pakistan. His current research interests focus on the design and synthesis of bioactive heterocycles, synthetic flavonoids, transition metals-based terpyridine complexes, and their fabrication in DSSCs and organic functional materials for applications in organic electronics.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Review-3
ORCID 0000-0001-9463-9398
0000-0002-3365-0451
0000-0002-6647-9697
OpenAccessLink http://dx.doi.org/10.1039/d1ra05910f
PMID 35495486
PQID 2595989974
PQPubID 2047525
PageCount 45
ParticipantIDs proquest_miscellaneous_2636460360
rsc_primary_d1ra05910f
crossref_primary_10_1039_D1RA05910F
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9041733
crossref_citationtrail_10_1039_D1RA05910F
proquest_miscellaneous_2658647743
proquest_journals_2595989974
pubmed_primary_35495486
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-29
PublicationDateYYYYMMDD 2021-09-29
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Rahman (D1RA05910F/cit14) 2013; 37
Quernheim (D1RA05910F/cit64) 2015; 54
Novoselov (D1RA05910F/cit18) 2004; 306
Wöhrle (D1RA05910F/cit62) 2014; 79
Depken (D1RA05910F/cit103) 2016; 3
Dohi (D1RA05910F/cit116) 2008; 10
Hackeloer (D1RA05910F/cit92) 2011; 13
He (D1RA05910F/cit51) 2018; 122
Agranat (D1RA05910F/cit52) 2019; 30
Cheung (D1RA05910F/cit74) 2015; 137
Smrčina (D1RA05910F/cit39) 1992; 57
Hovorka (D1RA05910F/cit38) 1990; 31
Müllen (D1RA05910F/cit5) 2008; 41
Mughal (D1RA05910F/cit47b) 2014
Rathore (D1RA05910F/cit30c) 1995; 60
Zhi (D1RA05910F/cit3) 2008; 18
Takase (D1RA05910F/cit60) 2013; 135
Hu (D1RA05910F/cit80) 2017; 56
Li (D1RA05910F/cit59) 2011; 13
Kawasumi (D1RA05910F/cit72) 2013; 5
Shan (D1RA05910F/cit117) 2012; 14
Ito (D1RA05910F/cit108) 2017; 56
Feng (D1RA05910F/cit22) 2009; 81
Zuzak (D1RA05910F/cit131) 2019; 10
Müllen (D1RA05910F/cit28b) 2014; 8
Yang (D1RA05910F/cit106) 2015; 17
Wegner (D1RA05910F/cit124) 2009; 63
Fujikawa (D1RA05910F/cit95) 2017; 15
Dohi (D1RA05910F/cit100) 2009; 57
Van Loon (D1RA05910F/cit102) 2014; 79
Zhai (D1RA05910F/cit29) 2009; 11
Liu (D1RA05910F/cit76) 2016; 138
Saha (D1RA05910F/cit68) 2018; 20
Dohi (D1RA05910F/cit99) 2006; 8
Lee (D1RA05910F/cit9) 2008; 321
Morita (D1RA05910F/cit28h) 2011; 3
Debad (D1RA05910F/cit112) 1996; 118
Rieger (D1RA05910F/cit8) 2010; 23
Wick (D1RA05910F/cit37) 1971; 54
Evrard (D1RA05910F/cit122a) 1994
Wang (D1RA05910F/cit129) 2017; 139
Ronlan (D1RA05910F/cit30a) 1973; 95
Rathore (D1RA05910F/cit113) 1998; 63
Grätz (D1RA05910F/cit121) 2020; 8
Reinhard (D1RA05910F/cit75) 2015; 80
Balaban (D1RA05910F/cit17) 1964; 2
Baddeley (D1RA05910F/cit23b) 1950
Swager (D1RA05910F/cit15) 2014; 10
King (D1RA05910F/cit25) 2007; 72
Kumar (D1RA05910F/cit114) 1999; 26
Ajayakumar (D1RA05910F/cit81) 2018; 140
Zhao (D1RA05910F/cit2) 2012; 101
Wong (D1RA05910F/cit78) 2017; 56
Cai (D1RA05910F/cit125) 2010; 466
Geim (D1RA05910F/cit19) 2010
Ozaki (D1RA05910F/cit107) 2017; 129
Jones (D1RA05910F/cit21) 2012; 48
Smrčina (D1RA05910F/cit40) 1994; 59
Urieta-Mora (D1RA05910F/cit69) 2019; 142
Simpson (D1RA05910F/cit42) 2002; 8
Borner (D1RA05910F/cit57) 2006; 33
Shen (D1RA05910F/cit20b) 2021; 12
Sun (D1RA05910F/cit28i) 2013; 8
Scholl (D1RA05910F/cit32) 1910; 43
Markoulides (D1RA05910F/cit49) 2015; 39
Ruffieux (D1RA05910F/cit126) 2016; 531
Cooke (D1RA05910F/cit56) 1999; 29
Ip (D1RA05910F/cit77) 2016; 138
Maddala (D1RA05910F/cit109) 2017; 82
Di Giovannantonio (D1RA05910F/cit130) 2018; 12
Beil (D1RA05910F/cit96) 2019; 302
Yang (D1RA05910F/cit16) 2016; 22
Dou (D1RA05910F/cit20a) 2007; 9
Nobusue (D1RA05910F/cit79) 2017; 19
Takada (D1RA05910F/cit97) 1998; 63
Liu (D1RA05910F/cit128) 2017
Quernheim (D1RA05910F/cit10) 2015; 54
Grzybowski (D1RA05910F/cit24) 2020; 59
Murata (D1RA05910F/cit66) 2017; 129
Rempala (D1RA05910F/cit27) 2004; 126
Rathore (D1RA05910F/cit122b) 1995; 60
Morimoto (D1RA05910F/cit119) 2010; 12
Scholl (D1RA05910F/cit36) 1971; 36
Kumar (D1RA05910F/cit115) 2001; 1
Faggi (D1RA05910F/cit13) 2010; 132
Oded (D1RA05910F/cit50) 2016; 81
Zhai (D1RA05910F/cit70) 2009; 11
Magiera (D1RA05910F/cit83) 2020; 18
Chen (D1RA05910F/cit1) 2012; 51
Ip (D1RA05910F/cit88) 2021; 86
Zhang (D1RA05910F/cit20e) 2017; 8
Grzybowski (D1RA05910F/cit11) 2013; 52
Zou (D1RA05910F/cit86) 2021; 60
Narita (D1RA05910F/cit61) 2014; 6
Mughal (D1RA05910F/cit47a) 2012; 48
Xu (D1RA05910F/cit132) 2019; 141
Wong (D1RA05910F/cit28g) 2012; 22
Truax (D1RA05910F/cit104) 2016; 81
Lakshminarayana (D1RA05910F/cit63) 2015; 51
Tadano (D1RA05910F/cit93) 2013; 125
Baldridge (D1RA05910F/cit28e) 2013; 52
Sanchez-Sanchez (D1RA05910F/cit127) 2017; 139
Drummer (D1RA05910F/cit6) 2021
Yan (D1RA05910F/cit28d) 2011; 21
Kumar (D1RA05910F/cit89) 1997
Naarmann (D1RA05910F/cit55) 1994
Kovacic (D1RA05910F/cit34) 1962; 3
Grätz (D1RA05910F/cit67) 2018; 54
Han (D1RA05910F/cit84) 2020; 132
Spurg (D1RA05910F/cit91) 2009; 15
Xia (D1RA05910F/cit87a) 2021; 133
Budniak (D1RA05910F/cit120) 2017; 41
Blake (D1RA05910F/cit7) 2008; 8
Ball (D1RA05910F/cit28f) 2015; 48
Müller (D1RA05910F/cit41) 1995; 107
Zeng (D1RA05910F/cit123) 2021; 143
Ronlan (D1RA05910F/cit30b) 1974; 39
McKillop (D1RA05910F/cit110) 1980; 102
Krzeszewski (D1RA05910F/cit20d) 2018; 20
Scholl (D1RA05910F/cit31) 1910; 43
Jiao (D1RA05910F/cit45) 2010; 14
Labella (D1RA05910F/cit133) 2020; 11
Tohma (D1RA05910F/cit98) 2003; 1
Wang (D1RA05910F/cit118) 2010; 10
Solórzano (D1RA05910F/cit53) 2020; 10
Baddeley (D1RA05910F/cit23a) 1935
Pradhan (D1RA05910F/cit20f) 2013; 78
Mohr (D1RA05910F/cit111) 1994; 59
Pola (D1RA05910F/cit48) 2012; 24
Avlasevich (D1RA05910F/cit43) 2006; 16
Guo (D1RA05910F/cit101) 2013; 78
Wiener (D1RA05910F/cit33) 1941; 35
Kramer (D1RA05910F/cit90) 2004; 116
Scholl (D1RA05910F/cit12) 1912; 394
Wu (D1RA05910F/cit28a) 2007; 107
Ma (D1RA05910F/cit85) 2020; 132
Schlütter (D1RA05910F/cit73) 2014; 126
Boyd (D1RA05910F/cit94) 2015; 17
Wang (D1RA05910F/cit4) 2019; 52
Zhai (D1RA05910F/cit26) 2010; 75
Chaolumen (D1RA05910F/cit134) 2021; 133
Wang (D1RA05910F/cit54) 2021; 310
Bai (D1RA05910F/cit58) 2011; 41
Rempala (D1RA05910F/cit44) 2006; 71
Jones (D1RA05910F/cit71) 2012; 48
Chen (D1RA05910F/cit28c) 2012; 51
Cataldo (D1RA05910F/cit46) 2011; 19
Vollmann (D1RA05910F/cit35) 1963; 669
Ye (D1RA05910F/cit65) 2016; 81
Cheung (D1RA05910F/cit87b) 2019; 5
He (D1RA05910F/cit82) 2018; 57
Jia (D1RA05910F/cit105) 2017; 1
Qiu (D1RA05910F/cit20c) 2020; 142
References_xml – issn: 1994
  publication-title: Studies toward a biomimetic oxidative macrocyclization approach to the synthesis of the vancomycin family of antibiotics
  doi: Evrard
– issn: 2010
  end-page: p 11-19
  publication-title: Nanoscience and technology: a collection of reviews from nature journals
  doi: Geim Novoselov
– issn: 2017
  end-page: p 1-32
  publication-title: From Polyphenylenes to Nanographenes and Graphene Nanoribbons
  doi: Liu Berger Müllen Feng
– volume: 54
  start-page: 10341
  year: 2015
  ident: D1RA05910F/cit64
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201500392
– volume: 82
  start-page: 8958
  year: 2017
  ident: D1RA05910F/cit109
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.7b01377
– volume: 20
  start-page: 6855
  year: 2018
  ident: D1RA05910F/cit68
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b02979
– volume: 79
  start-page: 10143
  year: 2014
  ident: D1RA05910F/cit62
  publication-title: J. Org. Chem.
  doi: 10.1021/jo501790d
– volume: 72
  start-page: 2279
  year: 2007
  ident: D1RA05910F/cit25
  publication-title: J. Org. Chem.
  doi: 10.1021/jo061515x
– volume: 10
  start-page: 21974
  year: 2020
  ident: D1RA05910F/cit53
  publication-title: RSC Adv.
  doi: 10.1039/D0RA04213G
– volume: 101
  start-page: 063112
  year: 2012
  ident: D1RA05910F/cit2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4742331
– volume: 302
  start-page: 310
  year: 2019
  ident: D1RA05910F/cit96
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.02.041
– volume: 137
  start-page: 3910
  year: 2015
  ident: D1RA05910F/cit74
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00403
– volume: 132
  start-page: 9111
  year: 2020
  ident: D1RA05910F/cit84
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201915327
– volume: 12
  start-page: 3804
  year: 2010
  ident: D1RA05910F/cit119
  publication-title: Org. Lett.
  doi: 10.1021/ol101498r
– volume: 141
  start-page: 7726
  year: 2019
  ident: D1RA05910F/cit132
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03554
– start-page: 7469
  year: 2014
  ident: D1RA05910F/cit47b
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201402995
– volume: 13
  start-page: 4950
  year: 2011
  ident: D1RA05910F/cit59
  publication-title: Org. Lett.
  doi: 10.1021/ol202058r
– volume: 37
  start-page: 2460
  issue: 8
  year: 2013
  ident: D1RA05910F/cit14
  publication-title: New J. Chem.
  doi: 10.1039/c3nj00359k
– volume: 15
  start-page: 13313
  year: 2009
  ident: D1RA05910F/cit91
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.200902466
– volume: 3
  start-page: 467
  year: 1962
  ident: D1RA05910F/cit34
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)70494-1
– volume: 31
  start-page: 413
  year: 1990
  ident: D1RA05910F/cit38
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)94569-6
– start-page: 1
  year: 2021
  ident: D1RA05910F/cit6
  publication-title: Photosynth. Res.
– volume: 21
  start-page: 3295
  year: 2011
  ident: D1RA05910F/cit28d
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm02827d
– volume: 12
  start-page: 1
  year: 2021
  ident: D1RA05910F/cit20b
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20314-w
– volume: 13
  start-page: 916
  year: 2011
  ident: D1RA05910F/cit92
  publication-title: Org. Lett.
  doi: 10.1021/ol102969k
– volume: 11
  start-page: 10778
  year: 2020
  ident: D1RA05910F/cit133
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC01054E
– volume: 139
  start-page: 4671
  year: 2017
  ident: D1RA05910F/cit129
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02258
– volume: 56
  start-page: 12356
  year: 2017
  ident: D1RA05910F/cit78
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201707505
– volume: 10
  start-page: 0581
  year: 2014
  ident: D1RA05910F/cit15
  publication-title: Synfacts
  doi: 10.1055/s-0033-1339044
– volume: 48
  start-page: 8066
  year: 2012
  ident: D1RA05910F/cit21
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc33892k
– volume: 310
  start-page: 110596
  year: 2021
  ident: D1RA05910F/cit54
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2020.110596
– volume: 138
  start-page: 13778
  year: 2016
  ident: D1RA05910F/cit77
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05820
– start-page: 994
  year: 1950
  ident: D1RA05910F/cit23b
  publication-title: J. Chem. Soc.
  doi: 10.1039/JR9500000994
– volume: 54
  start-page: 769
  year: 1971
  ident: D1RA05910F/cit37
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.19710540302
– start-page: 1
  volume-title: From Polyphenylenes to Nanographenes and Graphene Nanoribbons
  year: 2017
  ident: D1RA05910F/cit128
– volume: 80
  start-page: 9342
  year: 2015
  ident: D1RA05910F/cit75
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.5b01520
– volume: 126
  start-page: 1564
  year: 2014
  ident: D1RA05910F/cit73
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201309324
– volume: 81
  start-page: 2203
  year: 2009
  ident: D1RA05910F/cit22
  publication-title: Pure Appl. Chem.
  doi: 10.1351/PAC-CON-09-07-07
– volume: 20
  start-page: 1517
  year: 2018
  ident: D1RA05910F/cit20d
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b00223
– volume: 75
  start-page: 4748
  year: 2010
  ident: D1RA05910F/cit26
  publication-title: J. Org. Chem.
  doi: 10.1021/jo100611k
– volume: 12
  start-page: 74
  year: 2018
  ident: D1RA05910F/cit130
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07077
– volume: 51
  start-page: 7640
  year: 2012
  ident: D1RA05910F/cit1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201201084
– volume: 102
  start-page: 6504
  year: 1980
  ident: D1RA05910F/cit110
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00541a020
– volume: 6
  start-page: 126
  year: 2014
  ident: D1RA05910F/cit61
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1819
– volume: 140
  start-page: 6240
  year: 2018
  ident: D1RA05910F/cit81
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b03711
– start-page: 11
  volume-title: Nanoscience and technology: a collection of reviews from nature journals
  year: 2010
  ident: D1RA05910F/cit19
– volume: 23
  start-page: 315
  year: 2010
  ident: D1RA05910F/cit8
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/poc.1644
– volume: 16
  start-page: 1053
  year: 2006
  ident: D1RA05910F/cit43
  publication-title: J. Mater. Chem.
  doi: 10.1039/b516264e
– volume: 22
  start-page: 21131
  year: 2012
  ident: D1RA05910F/cit28g
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm34394k
– volume: 81
  start-page: 9219
  year: 2016
  ident: D1RA05910F/cit65
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.6b01785
– volume: 48
  start-page: 8066
  year: 2012
  ident: D1RA05910F/cit71
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc33892k
– volume: 78
  start-page: 8169
  year: 2013
  ident: D1RA05910F/cit101
  publication-title: J. Org. Chem.
  doi: 10.1021/jo401001k
– volume: 60
  start-page: 7479
  year: 1995
  ident: D1RA05910F/cit122b
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00128a020
– volume: 52
  start-page: 9900
  year: 2013
  ident: D1RA05910F/cit11
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201210238
– volume: 3
  start-page: 197
  year: 2011
  ident: D1RA05910F/cit28h
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.985
– volume: 19
  start-page: 713
  year: 2011
  ident: D1RA05910F/cit46
  publication-title: Fullerenes, Nanotubes, Carbon Nanostruct.
  doi: 10.1080/1536383X.2010.494787
– volume: 107
  start-page: 1751
  year: 1995
  ident: D1RA05910F/cit41
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.19951071523
– volume: 52
  start-page: 2491
  year: 2019
  ident: D1RA05910F/cit4
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00322
– volume: 54
  start-page: 10341
  year: 2015
  ident: D1RA05910F/cit10
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201500392
– volume: 30
  start-page: 1579
  year: 2019
  ident: D1RA05910F/cit52
  publication-title: Struct. Chem.
  doi: 10.1007/s11224-019-01368-z
– volume: 132
  start-page: 5686
  year: 2020
  ident: D1RA05910F/cit85
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201914716
– volume: 57
  start-page: 13635
  year: 2018
  ident: D1RA05910F/cit82
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808461
– volume: 5
  start-page: 838
  year: 2019
  ident: D1RA05910F/cit87b
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.01.004
– volume: 1
  start-page: 0305
  year: 2001
  ident: D1RA05910F/cit115
  publication-title: Synthesis
  doi: 10.1055/s-2001-10821
– volume: 95
  start-page: 7132
  year: 1973
  ident: D1RA05910F/cit30a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00802a038
– volume: 142
  start-page: 14814
  year: 2020
  ident: D1RA05910F/cit20c
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05504
– volume: 8
  start-page: 1704
  year: 2008
  ident: D1RA05910F/cit7
  publication-title: Nano Lett.
  doi: 10.1021/nl080649i
– volume: 394
  start-page: 111
  year: 1912
  ident: D1RA05910F/cit12
  publication-title: Justus Liebigs Ann. Chem.
  doi: 10.1002/jlac.19123940202
– volume: 24
  start-page: 2566
  year: 2012
  ident: D1RA05910F/cit48
  publication-title: Chem. Mater.
  doi: 10.1021/cm301190c
– volume: 26
  start-page: 1841
  year: 1999
  ident: D1RA05910F/cit114
  publication-title: Liq. Cryst.
  doi: 10.1080/026782999203508
– volume: 17
  start-page: 1344
  year: 2015
  ident: D1RA05910F/cit94
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b00300
– volume: 107
  start-page: 718
  year: 2007
  ident: D1RA05910F/cit28a
  publication-title: Chem. Rev.
  doi: 10.1021/cr068010r
– volume: 125
  start-page: 8148
  year: 2013
  ident: D1RA05910F/cit93
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201303143
– volume: 63
  start-page: 7698
  year: 1998
  ident: D1RA05910F/cit97
  publication-title: J. Org. Chem.
  doi: 10.1021/jo980704f
– volume: 52
  start-page: 5436
  year: 2013
  ident: D1RA05910F/cit28e
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201300625
– volume: 41
  start-page: 10742
  year: 2017
  ident: D1RA05910F/cit120
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ02299A
– volume: 59
  start-page: 635
  year: 1994
  ident: D1RA05910F/cit111
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00082a022
– volume: 18
  start-page: 1472
  year: 2008
  ident: D1RA05910F/cit3
  publication-title: J. Mater. Chem.
  doi: 10.1039/b717585j
– volume: 10
  start-page: 1083
  year: 2010
  ident: D1RA05910F/cit118
  publication-title: Synthesis
  doi: 10.1055/s-0029-1219237
– volume: 18
  start-page: 2372
  year: 2020
  ident: D1RA05910F/cit83
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D0OB00182A
– volume: 43
  start-page: 2202
  year: 1910
  ident: D1RA05910F/cit32
  publication-title: Ber. Dtsch. Chem. Ges. A
  doi: 10.1002/cber.191004302175
– volume: 48
  start-page: 267
  year: 2015
  ident: D1RA05910F/cit28f
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500355d
– volume: 35
  start-page: 1240
  year: 1941
  ident: D1RA05910F/cit33
  publication-title: CA
– volume: 142
  start-page: 4162
  year: 2019
  ident: D1RA05910F/cit69
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10203
– volume: 139
  start-page: 17617
  year: 2017
  ident: D1RA05910F/cit127
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10026
– volume: 78
  start-page: 2266
  year: 2013
  ident: D1RA05910F/cit20f
  publication-title: J. Org. Chem.
  doi: 10.1021/jo3027752
– volume: 14
  start-page: 2145
  year: 2010
  ident: D1RA05910F/cit45
  publication-title: Curr. Org. Chem.
  doi: 10.2174/138527210793351616
– volume: 51
  start-page: 3604
  year: 2015
  ident: D1RA05910F/cit63
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC09812A
– volume: 9
  start-page: 2485
  year: 2007
  ident: D1RA05910F/cit20a
  publication-title: Org. Lett.
  doi: 10.1021/ol0708018
– volume: 10
  start-page: 10143
  year: 2019
  ident: D1RA05910F/cit131
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03404H
– start-page: 303
  year: 1935
  ident: D1RA05910F/cit23a
  publication-title: J. Chem. Soc.
  doi: 10.1039/jr9350000303
– volume: 41
  start-page: 511
  year: 2008
  ident: D1RA05910F/cit5
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar7001446
– volume: 33
  start-page: 1439
  year: 2006
  ident: D1RA05910F/cit57
  publication-title: Liq. Cryst.
  doi: 10.1080/02678290601119617
– volume: 39
  start-page: 6498
  year: 2015
  ident: D1RA05910F/cit49
  publication-title: New J. Chem.
  doi: 10.1039/C5NJ00808E
– volume: 321
  start-page: 385
  year: 2008
  ident: D1RA05910F/cit9
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 143
  start-page: 2682
  year: 2021
  ident: D1RA05910F/cit123
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c13298
– volume: 48
  start-page: 8880
  year: 2012
  ident: D1RA05910F/cit47a
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc34245f
– volume: 306
  start-page: 666
  year: 2004
  ident: D1RA05910F/cit18
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 8
  start-page: 2894
  year: 2013
  ident: D1RA05910F/cit28i
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.201300560
– volume: 669
  start-page: 22
  year: 1963
  ident: D1RA05910F/cit35
  publication-title: Justus Liebigs Ann. Chem.
  doi: 10.1002/jlac.19636690104
– volume: 8
  start-page: 2007
  year: 2006
  ident: D1RA05910F/cit99
  publication-title: Org. Lett.
  doi: 10.1021/ol060333m
– volume: 133
  start-page: 2
  year: 2021
  ident: D1RA05910F/cit134
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202100260
– volume: 36
  start-page: 2053
  year: 1971
  ident: D1RA05910F/cit36
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00814a005
– volume: 63
  start-page: 5847
  year: 1998
  ident: D1RA05910F/cit113
  publication-title: J. Org. Chem.
  doi: 10.1021/jo980407a
– volume: 2
  start-page: 979
  year: 1964
  ident: D1RA05910F/cit17
  publication-title: Friedel-Crafts Relat. React.
– volume: 19
  start-page: 3227
  year: 2017
  ident: D1RA05910F/cit79
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b01341
– volume: 8
  start-page: 6531
  year: 2014
  ident: D1RA05910F/cit28b
  publication-title: ACS Nano
  doi: 10.1021/nn503283d
– volume: 57
  start-page: 1917
  year: 1992
  ident: D1RA05910F/cit39
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00032a055
– volume: 8
  start-page: 1424
  year: 2002
  ident: D1RA05910F/cit42
  publication-title: Chem.–Eur. J.
  doi: 10.1002/1521-3765(20020315)8:6<1424::AID-CHEM1424>3.0.CO;2-Z
– volume: 54
  start-page: 5307
  year: 2018
  ident: D1RA05910F/cit67
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC01993B
– volume: 60
  start-page: 17654
  issue: 32
  year: 2021
  ident: D1RA05910F/cit86
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202105427
– volume: 466
  start-page: 470
  year: 2010
  ident: D1RA05910F/cit125
  publication-title: Nature
  doi: 10.1038/nature09211
– volume: 1
  start-page: 1647
  year: 2003
  ident: D1RA05910F/cit98
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/B302462H
– volume: 132
  start-page: 17980
  year: 2010
  ident: D1RA05910F/cit13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja107467c
– volume: 11
  start-page: 3474
  year: 2009
  ident: D1RA05910F/cit70
  publication-title: Org. Lett.
  doi: 10.1021/ol901331p
– volume: 531
  start-page: 489
  year: 2016
  ident: D1RA05910F/cit126
  publication-title: Nature
  doi: 10.1038/nature17151
– volume: 60
  start-page: 7479
  year: 1995
  ident: D1RA05910F/cit30c
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00128a020
– volume: 1
  start-page: 2261
  year: 2017
  ident: D1RA05910F/cit105
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00319F
– volume: 39
  start-page: 1014
  year: 1974
  ident: D1RA05910F/cit30b
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00921a037
– volume: 41
  start-page: 903
  year: 2011
  ident: D1RA05910F/cit58
  publication-title: Synth. Commun.
  doi: 10.1080/00397911003707105
– volume: 15
  start-page: 4697
  year: 2017
  ident: D1RA05910F/cit95
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C7OB00987A
– volume: 8
  start-page: 1
  year: 2017
  ident: D1RA05910F/cit20e
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-016-0009-6
– start-page: 477
  year: 1994
  ident: D1RA05910F/cit55
  publication-title: Synthesis
  doi: 10.1055/s-1994-25505
– volume: 14
  start-page: 3712
  year: 2012
  ident: D1RA05910F/cit117
  publication-title: Org. Lett.
  doi: 10.1021/ol3015573
– volume: 135
  start-page: 8031
  year: 2013
  ident: D1RA05910F/cit60
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402371f
– volume: 116
  start-page: 2501
  year: 2004
  ident: D1RA05910F/cit90
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.200353597
– volume: 10
  start-page: 3559
  year: 2008
  ident: D1RA05910F/cit116
  publication-title: Org. Lett.
  doi: 10.1021/ol801321f
– volume: 126
  start-page: 15002
  year: 2004
  ident: D1RA05910F/cit27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja046513d
– volume: 133
  start-page: 10399
  year: 2021
  ident: D1RA05910F/cit87a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202100343
– volume: 51
  start-page: 7640
  year: 2012
  ident: D1RA05910F/cit28c
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201201084
– volume: 57
  start-page: 710
  year: 2009
  ident: D1RA05910F/cit100
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.57.710
– volume: 59
  start-page: 2998
  year: 2020
  ident: D1RA05910F/cit24
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904934
– volume: 59
  start-page: 2156
  year: 1994
  ident: D1RA05910F/cit40
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00087a036
– volume: 5
  start-page: 739
  year: 2013
  ident: D1RA05910F/cit72
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1704
– volume-title: Studies toward a biomimetic oxidative macrocyclization approach to the synthesis of the vancomycin family of antibiotics
  year: 1994
  ident: D1RA05910F/cit122a
– volume: 56
  start-page: 11144
  year: 2017
  ident: D1RA05910F/cit108
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201701058
– volume: 81
  start-page: 11389
  year: 2016
  ident: D1RA05910F/cit50
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.6b01798
– volume: 71
  start-page: 5067
  year: 2006
  ident: D1RA05910F/cit44
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0526744
– volume: 8
  start-page: 7569
  year: 2020
  ident: D1RA05910F/cit121
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c02223
– volume: 22
  start-page: 18620
  year: 2016
  ident: D1RA05910F/cit16
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201604649
– volume: 129
  start-page: 5164
  year: 2017
  ident: D1RA05910F/cit66
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201709124
– volume: 11
  start-page: 3474
  year: 2009
  ident: D1RA05910F/cit29
  publication-title: Org. Lett.
  doi: 10.1021/ol901331p
– volume: 129
  start-page: 1381
  year: 2017
  ident: D1RA05910F/cit107
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201610374
– volume: 43
  start-page: 1734
  year: 1910
  ident: D1RA05910F/cit31
  publication-title: Ber. Dtsch. Chem. Ges. A
  doi: 10.1002/cber.19100430288
– volume: 29
  start-page: 1767
  year: 1999
  ident: D1RA05910F/cit56
  publication-title: Synth. Commun.
  doi: 10.1080/00397919908086164
– volume: 56
  start-page: 3374
  year: 2017
  ident: D1RA05910F/cit80
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201610434
– volume: 118
  start-page: 2374
  year: 1996
  ident: D1RA05910F/cit112
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9537888
– start-page: 1615
  year: 1997
  ident: D1RA05910F/cit89
  publication-title: Chem. Commun.
  doi: 10.1039/a704130f
– volume: 79
  start-page: 8049
  year: 2014
  ident: D1RA05910F/cit102
  publication-title: J. Org. Chem.
  doi: 10.1021/jo501185f
– volume: 3
  start-page: 314
  year: 2016
  ident: D1RA05910F/cit103
  publication-title: Org. Chem. Front.
  doi: 10.1039/C5QO00361J
– volume: 17
  start-page: 4316
  year: 2015
  ident: D1RA05910F/cit106
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b02135
– volume: 63
  start-page: 44
  year: 2009
  ident: D1RA05910F/cit124
  publication-title: Chimia
  doi: 10.2533/chimia.2009.44
– volume: 81
  start-page: 6808
  year: 2016
  ident: D1RA05910F/cit104
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.6b01072
– volume: 122
  start-page: 8933
  year: 2018
  ident: D1RA05910F/cit51
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b00469
– volume: 138
  start-page: 8364
  year: 2016
  ident: D1RA05910F/cit76
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04426
– volume: 86
  start-page: 5546
  year: 2021
  ident: D1RA05910F/cit88
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.1c00059
SSID ssj0000651261
Score 2.549799
SecondaryResourceType review_article
Snippet Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 32158
SubjectTerms Aluminum chloride
Analogs
Chemical synthesis
Chemistry
Chemists
Covalent bonds
electronics
Ferric chloride
Graphene
heterocyclic compounds
Organic chemistry
oxidants
Oxidizing agents
Planar structures
Polycyclic aromatic hydrocarbons
Reagents
systematic review
Title Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review
URI https://www.ncbi.nlm.nih.gov/pubmed/35495486
https://www.proquest.com/docview/2595989974
https://www.proquest.com/docview/2636460360
https://www.proquest.com/docview/2658647743
https://pubmed.ncbi.nlm.nih.gov/PMC9041733
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l7QEuiFdpoFSL4IIiB6_f5laFVgUJDkmDCpdo116TSqlT8hCCK3-cb9feddJEqHBxInu8sj2fxzO7M98Q8kp4Xp7nbuAUqRBOIBLuJFwwR9VUZm6WhpKrFd2Pn6KzYfDhIrxotX6vZC0tF6Kb_dpaV_I_WsU-6FVVyf6DZu2g2IH_0C-20DC2t9KxotCcKGJ-0_B73uGda9X3TGUeLxS9pskinP8s8VOzj5S8rJiqlaGryp1vMjr_WPVa-4OeSRZoMg7hdVfFYH0uuOgMuo3uvo11G4HOyXgO8zEE0uyk84Dnl9-1QbqqG3druE0gqLgYK43Lq8777up8hMdU8kQ9aaHNloeIG1qqGrB05ZZ9xu6yFXzVrLOVFfXhhyQrn2QYHV2WvWnvXV_Rpb5j_WO4icw9bb5qZiX_xsfOpiDqxXc_HTXn7pA9D7EGjOVe__Pw4oudqoOXxjzNvGvvwxDd-umbZoB112YjXtlMu92ZmS4z2ps5v0_u1WEIPa4w9YC0ZPmQ3OmZ7n-PyNcKW9Rgi_I55dRgiypsUWCLAlTUYotOC7qGrbc4p0EWrZD1mAxPT857Z07dh8PJQi9eOL4Xi1jmPMmKQgp4PIxLhOVpnDE_iRhXlFCMF26RwNnzZBqHAnGx63IZ5XHIpb9PdstpKQ8IhblncOBFIooQoYDgeN55gjF5HGRwjtvktXmEo6wmqVe9UiajTX21yUsre11Rs2yVOjSaGNWv7nyEmD9MkxSxdJu8sIfxhNVqGS_ldAmZyI-CCA6e-zeZMFGV3OrCn1TKtZfih4EiU4zaJF5TuxVQxO7rR8rLsSZ4T92AxT7G3AdArHzOZlzfU_H0Vnf-jNxt3s9DsruYLeVzeNALcaRnno5qnP8Bc5jGKw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scholl+reaction+as+a+powerful+tool+for+the+synthesis+of+nanographenes%3A+a+systematic+review&rft.jtitle=RSC+advances&rft.au=Jassas%2C+Rabab+S.&rft.au=Mughal%2C+Ehsan+Ullah&rft.au=Sadiq%2C+Amina&rft.au=Alsantali%2C+Reem+I.&rft.date=2021-09-29&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=11&rft.issue=51&rft.spage=32158&rft.epage=32202&rft_id=info:doi/10.1039%2FD1RA05910F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1RA05910F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon