Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review
Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Poly...
Saved in:
Published in | RSC advances Vol. 11; no. 51; pp. 32158 - 3222 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
29.09.2021
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C-C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf)
2
/AlCl
3
, FeCl
3
, MoCl
5
, PIFA/BF
3
-Et
2
O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein.
Nanographenes have been attracting increasing attention owing to their widespread applications in organic electronics. Polycyclic aromatic hydrocarbons are popular research subjects due to their high stability, planar structure and optical spectra. |
---|---|
AbstractList | Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C–C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf)₂/AlCl₃, FeCl₃, MoCl₅, PIFA/BF₃–Et₂O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein. Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C–C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf) 2 /AlCl 3 , FeCl 3 , MoCl 5 , PIFA/BF 3 –Et 2 O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein. Nanographenes have been attracting increasing attention owing to their widespread applications in organic electronics. Polycyclic aromatic hydrocarbons are popular research subjects due to their high stability, planar structure and optical spectra. Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C-C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf)2/AlCl3, FeCl3, MoCl5, PIFA/BF3-Et2O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein.Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C-C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf)2/AlCl3, FeCl3, MoCl5, PIFA/BF3-Et2O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein. Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C–C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf) 2 /AlCl 3 , FeCl 3 , MoCl 5 , PIFA/BF 3 –Et 2 O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein. Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C–C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf)2/AlCl3, FeCl3, MoCl5, PIFA/BF3–Et2O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein. Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C-C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf) /AlCl , FeCl , MoCl , PIFA/BF -Et O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein. |
Author | Naeem, Nafeesa Sadiq, Amina Mughal, Ehsan Ullah Ahmed, Saleh A Moussa, Ziad Alsantali, Reem I Al-Rooqi, Munirah M Jassas, Rabab S |
AuthorAffiliation | Department of Pharmaceutical Chemistry United Arab Emirates University Assiut University Jamoum University College College of Science Faculty of Science College of Pharmacy Govt. College Women University Department of Chemistry University of Gujrat Faculty of Applied Science Chemistry Department Umm Al-Qura University Taif University Research Laboratories Unit |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Faculty of Applied Science – name: Research Laboratories Unit – name: Assiut University – name: Umm Al-Qura University – name: College of Pharmacy – name: United Arab Emirates University – name: Faculty of Science – name: Taif University – name: Govt. College Women University – name: Department of Pharmaceutical Chemistry – name: Chemistry Department – name: Jamoum University College – name: College of Science – name: University of Gujrat |
Author_xml | – sequence: 1 givenname: Rabab S surname: Jassas fullname: Jassas, Rabab S – sequence: 2 givenname: Ehsan Ullah surname: Mughal fullname: Mughal, Ehsan Ullah – sequence: 3 givenname: Amina surname: Sadiq fullname: Sadiq, Amina – sequence: 4 givenname: Reem I surname: Alsantali fullname: Alsantali, Reem I – sequence: 5 givenname: Munirah M surname: Al-Rooqi fullname: Al-Rooqi, Munirah M – sequence: 6 givenname: Nafeesa surname: Naeem fullname: Naeem, Nafeesa – sequence: 7 givenname: Ziad surname: Moussa fullname: Moussa, Ziad – sequence: 8 givenname: Saleh A surname: Ahmed fullname: Ahmed, Saleh A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35495486$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9rVDEQx4NUbF178a4EvIiwmry8JC8ehNJaWygI_rh4CbPZSTflbbIm77Xsf9-02661eDAEZiCf-TKT-T4nOzFFJOQlZ-85E-bDnGdg0nDmn5C9hrVq2jBldh7ku2S_lAtWj5K8UfwZ2RWyNbLt1B759d0tUt_TjOCGkCKFQoGu0hVmP_Z0SKmnPmU6LJCWdayhhEKTpxFiOs-wWmDE8rHWlHUZcAlDcFXsMuDVC_LUQ19w_y5OyM_jzz8OT6ZnX7-cHh6cTZ1s9DAVjZ5pnEPnvMeZUA0HbBk32nHRKQ6Mac3BM98pxRs0Ws6MqsMAqrmWgGJCPm10V-NsiXOHccjQ21UOS8hrmyDYv19iWNjzdGkNa7kWogq8vRPI6feIZbDLUBz2PURMY7GNkp1qtW7_BxWqVUzUOyFvHqEXacyx_oRtpJGmM6YqTsjrh81vu77fUAXebQCXUykZ_RbhzN44wB7xbwe3DjiuMHsEuzDAzV7r4KH_d8mrTUkubiv9x1TiGgosvB0 |
CitedBy_id | crossref_primary_10_1002_adma_202212064 crossref_primary_10_1002_adma_202300760 crossref_primary_10_1016_j_molstruc_2024_138757 crossref_primary_10_1002_ejoc_202201208 crossref_primary_10_1039_D4SC06062H crossref_primary_10_1002_chem_202302876 crossref_primary_10_1021_jacs_4c09224 crossref_primary_10_3390_molecules29173999 crossref_primary_10_3390_molecules29020296 crossref_primary_10_1007_s11224_024_02445_8 crossref_primary_10_1039_D4QO00029C crossref_primary_10_1038_s44160_024_00595_5 crossref_primary_10_1021_acs_chemrev_2c00186 crossref_primary_10_1039_D4SC02458C crossref_primary_10_1002_chem_202303539 crossref_primary_10_1002_anie_202311770 crossref_primary_10_1002_asia_202200114 crossref_primary_10_1002_ejoc_202400991 crossref_primary_10_1002_cplu_202300692 crossref_primary_10_1002_anie_202218719 crossref_primary_10_1021_acsnano_3c05246 crossref_primary_10_1002_ange_202215655 crossref_primary_10_1021_acs_orglett_1c04161 crossref_primary_10_1021_acs_orglett_4c00445 crossref_primary_10_1007_s10593_023_03183_1 crossref_primary_10_1007_s11172_024_4281_z crossref_primary_10_3390_en16010480 crossref_primary_10_1002_chem_202404325 crossref_primary_10_1016_j_chempr_2024_04_002 crossref_primary_10_1002_chem_202300793 crossref_primary_10_1002_ajoc_202400748 crossref_primary_10_1021_jacs_4c12819 crossref_primary_10_1016_j_chempr_2023_05_028 crossref_primary_10_1002_ajoc_202300104 crossref_primary_10_1021_acsomega_2c01024 crossref_primary_10_1007_s10800_023_02047_y crossref_primary_10_1007_s10904_023_02918_z crossref_primary_10_1246_cl_230340 crossref_primary_10_1002_ange_202311770 crossref_primary_10_1002_macp_202200441 crossref_primary_10_1002_chem_202404679 crossref_primary_10_1039_D4CC01627K crossref_primary_10_1021_acs_orglett_4c04770 crossref_primary_10_1039_D4CC00979G crossref_primary_10_1002_ange_202218719 crossref_primary_10_1039_D2QO01712A crossref_primary_10_1002_anie_202215655 crossref_primary_10_1021_acs_joc_2c03103 crossref_primary_10_1021_jacsau_2c00147 crossref_primary_10_5059_yukigoseikyokaishi_80_930 crossref_primary_10_1039_D4RA06592A crossref_primary_10_3390_catal13050912 crossref_primary_10_1039_D4GC03448A crossref_primary_10_1080_26941112_2021_2013716 crossref_primary_10_1038_s44160_023_00348_w crossref_primary_10_1021_acs_joc_2c02202 crossref_primary_10_1002_aoc_7621 crossref_primary_10_1039_D1CC06561K crossref_primary_10_1002_ajoc_202400126 crossref_primary_10_1002_chem_202403456 crossref_primary_10_1021_jacs_3c01185 |
Cites_doi | 10.1002/anie.201500392 10.1021/acs.joc.7b01377 10.1021/acs.orglett.8b02979 10.1021/jo501790d 10.1021/jo061515x 10.1039/D0RA04213G 10.1063/1.4742331 10.1016/j.electacta.2019.02.041 10.1021/jacs.5b00403 10.1002/ange.201915327 10.1021/ol101498r 10.1021/jacs.9b03554 10.1002/ejoc.201402995 10.1021/ol202058r 10.1039/c3nj00359k 10.1002/chem.200902466 10.1016/S0040-4039(00)70494-1 10.1016/S0040-4039(00)94569-6 10.1039/c0jm02827d 10.1038/s41467-020-20314-w 10.1021/ol102969k 10.1039/D0SC01054E 10.1021/jacs.7b02258 10.1002/anie.201707505 10.1055/s-0033-1339044 10.1039/c2cc33892k 10.1016/j.micromeso.2020.110596 10.1021/jacs.6b05820 10.1039/JR9500000994 10.1002/hlca.19710540302 10.1021/acs.joc.5b01520 10.1002/ange.201309324 10.1351/PAC-CON-09-07-07 10.1021/acs.orglett.8b00223 10.1021/jo100611k 10.1021/acsnano.7b07077 10.1002/anie.201201084 10.1021/ja00541a020 10.1038/nchem.1819 10.1021/jacs.8b03711 10.1002/poc.1644 10.1039/b516264e 10.1039/c2jm34394k 10.1021/acs.joc.6b01785 10.1021/jo401001k 10.1021/jo00128a020 10.1002/anie.201210238 10.1038/nchem.985 10.1080/1536383X.2010.494787 10.1002/ange.19951071523 10.1021/acs.accounts.9b00322 10.1007/s11224-019-01368-z 10.1002/ange.201914716 10.1002/anie.201808461 10.1016/j.chempr.2019.01.004 10.1055/s-2001-10821 10.1021/ja00802a038 10.1021/jacs.0c05504 10.1021/nl080649i 10.1002/jlac.19123940202 10.1021/cm301190c 10.1080/026782999203508 10.1021/acs.orglett.5b00300 10.1021/cr068010r 10.1002/ange.201303143 10.1021/jo980704f 10.1002/anie.201300625 10.1039/C7NJ02299A 10.1021/jo00082a022 10.1039/b717585j 10.1055/s-0029-1219237 10.1039/D0OB00182A 10.1002/cber.191004302175 10.1021/ar500355d 10.1021/jacs.9b10203 10.1021/jacs.7b10026 10.1021/jo3027752 10.2174/138527210793351616 10.1039/C4CC09812A 10.1021/ol0708018 10.1039/C9SC03404H 10.1039/jr9350000303 10.1021/ar7001446 10.1080/02678290601119617 10.1039/C5NJ00808E 10.1126/science.1157996 10.1021/jacs.0c13298 10.1039/c2cc34245f 10.1126/science.1102896 10.1002/asia.201300560 10.1002/jlac.19636690104 10.1021/ol060333m 10.1002/ange.202100260 10.1021/jo00814a005 10.1021/jo980407a 10.1021/acs.orglett.7b01341 10.1021/nn503283d 10.1021/jo00032a055 10.1002/1521-3765(20020315)8:6<1424::AID-CHEM1424>3.0.CO;2-Z 10.1039/C8CC01993B 10.1002/anie.202105427 10.1038/nature09211 10.1039/B302462H 10.1021/ja107467c 10.1021/ol901331p 10.1038/nature17151 10.1039/C7QM00319F 10.1021/jo00921a037 10.1080/00397911003707105 10.1039/C7OB00987A 10.1038/s41467-016-0009-6 10.1055/s-1994-25505 10.1021/ol3015573 10.1021/ja402371f 10.1002/ange.200353597 10.1021/ol801321f 10.1021/ja046513d 10.1002/ange.202100343 10.1248/cpb.57.710 10.1002/anie.201904934 10.1021/jo00087a036 10.1038/nchem.1704 10.1002/anie.201701058 10.1021/acs.joc.6b01798 10.1021/jo0526744 10.1021/acssuschemeng.0c02223 10.1002/chem.201604649 10.1002/ange.201709124 10.1002/ange.201610374 10.1002/cber.19100430288 10.1080/00397919908086164 10.1002/anie.201610434 10.1021/ja9537888 10.1039/a704130f 10.1021/jo501185f 10.1039/C5QO00361J 10.1021/acs.orglett.5b02135 10.2533/chimia.2009.44 10.1021/acs.joc.6b01072 10.1021/acs.jpcc.8b00469 10.1021/jacs.6b04426 10.1021/acs.joc.1c00059 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1039/d1ra05910f |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 3222 |
ExternalDocumentID | PMC9041733 35495486 10_1039_D1RA05910F d1ra05910f |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: ; grantid: NRPU-6484 – fundername: ; grantid: TURSP-2020/312 |
GroupedDBID | 0-7 0R AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BCNDV BLAPV BSQNT C6K CKLOX EBS EE0 EF- GROUPED_DOAJ HZ H~N J3I JG O9- OK1 R7C R7G RCNCU RPMJG RRC RSCEA RVUXY SLH SMJ ZCN 0R~ 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AHGCF AKBGW APEMP CITATION H13 HZ~ M~E PGMZT RPM NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c527t-327b7eda8cffeb3621ae40197c13861a00771af0f86612e975b96000ae6d75ae3 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 17:37:41 EDT 2025 Fri Jul 11 00:53:21 EDT 2025 Fri Jul 11 03:29:56 EDT 2025 Mon Jun 30 13:00:39 EDT 2025 Thu Apr 03 07:00:09 EDT 2025 Tue Jul 01 04:06:13 EDT 2025 Thu Apr 24 23:03:43 EDT 2025 Mon Apr 18 07:58:25 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c527t-327b7eda8cffeb3621ae40197c13861a00771af0f86612e975b96000ae6d75ae3 |
Notes | Saleh A. Ahmed was born in Assiut, Egypt in 1968 where is undertook undergraduate and postgraduate studies. He received his Bachelor and MSc from Assiut University, Egypt and PhD in photochemistry (photochromism) under the supervision of Prof. Heinz Dürr in Saarland University, Saarbrücken, Germany. He worked as postdoctoral fellow, senior researcher and visiting professor in France (CNRS fellow), Japan (JSPS fellow), Germany (AvH, DFG and DAAD fellows), Italy (TEMPUS fellow) and USA (Arab fund fellow). His current research interests include synthesis and photophysical properties of novel organic compounds, electronic devices and solar energy conversion, fluorophores with unique applications. Ehsan Ullah Mughal was born in Wazirabad, Pakistan, in 1978 and obtained his Master's degree from Quaid-e-Azam University, Islamabad, Pakistan, in organic chemistry. He obtained his PhD in 2013 from Bielefeld University, Germany, under the supervision of Prof. Dr Dietmar Kuck. For postdoctoral studies, he joined the group of Prof. Dr Xinliang Feng, Max Planck Institute for Polymer Research, Mainz, Germany. In 2015, he started his independent research group at the Department of Chemistry, University of Gujrat, Gujrat, Pakistan. His current research interests focus on the design and synthesis of bioactive heterocycles, synthetic flavonoids, transition metals-based terpyridine complexes, and their fabrication in DSSCs and organic functional materials for applications in organic electronics. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Review-3 |
ORCID | 0000-0001-9463-9398 0000-0002-3365-0451 0000-0002-6647-9697 |
OpenAccessLink | http://dx.doi.org/10.1039/d1ra05910f |
PMID | 35495486 |
PQID | 2595989974 |
PQPubID | 2047525 |
PageCount | 45 |
ParticipantIDs | proquest_miscellaneous_2636460360 rsc_primary_d1ra05910f crossref_primary_10_1039_D1RA05910F pubmedcentral_primary_oai_pubmedcentral_nih_gov_9041733 crossref_citationtrail_10_1039_D1RA05910F proquest_miscellaneous_2658647743 proquest_journals_2595989974 pubmed_primary_35495486 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-29 |
PublicationDateYYYYMMDD | 2021-09-29 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Rahman (D1RA05910F/cit14) 2013; 37 Quernheim (D1RA05910F/cit64) 2015; 54 Novoselov (D1RA05910F/cit18) 2004; 306 Wöhrle (D1RA05910F/cit62) 2014; 79 Depken (D1RA05910F/cit103) 2016; 3 Dohi (D1RA05910F/cit116) 2008; 10 Hackeloer (D1RA05910F/cit92) 2011; 13 He (D1RA05910F/cit51) 2018; 122 Agranat (D1RA05910F/cit52) 2019; 30 Cheung (D1RA05910F/cit74) 2015; 137 Smrčina (D1RA05910F/cit39) 1992; 57 Hovorka (D1RA05910F/cit38) 1990; 31 Müllen (D1RA05910F/cit5) 2008; 41 Mughal (D1RA05910F/cit47b) 2014 Rathore (D1RA05910F/cit30c) 1995; 60 Zhi (D1RA05910F/cit3) 2008; 18 Takase (D1RA05910F/cit60) 2013; 135 Hu (D1RA05910F/cit80) 2017; 56 Li (D1RA05910F/cit59) 2011; 13 Kawasumi (D1RA05910F/cit72) 2013; 5 Shan (D1RA05910F/cit117) 2012; 14 Ito (D1RA05910F/cit108) 2017; 56 Feng (D1RA05910F/cit22) 2009; 81 Zuzak (D1RA05910F/cit131) 2019; 10 Müllen (D1RA05910F/cit28b) 2014; 8 Yang (D1RA05910F/cit106) 2015; 17 Wegner (D1RA05910F/cit124) 2009; 63 Fujikawa (D1RA05910F/cit95) 2017; 15 Dohi (D1RA05910F/cit100) 2009; 57 Van Loon (D1RA05910F/cit102) 2014; 79 Zhai (D1RA05910F/cit29) 2009; 11 Liu (D1RA05910F/cit76) 2016; 138 Saha (D1RA05910F/cit68) 2018; 20 Dohi (D1RA05910F/cit99) 2006; 8 Lee (D1RA05910F/cit9) 2008; 321 Morita (D1RA05910F/cit28h) 2011; 3 Debad (D1RA05910F/cit112) 1996; 118 Rieger (D1RA05910F/cit8) 2010; 23 Wick (D1RA05910F/cit37) 1971; 54 Evrard (D1RA05910F/cit122a) 1994 Wang (D1RA05910F/cit129) 2017; 139 Ronlan (D1RA05910F/cit30a) 1973; 95 Rathore (D1RA05910F/cit113) 1998; 63 Grätz (D1RA05910F/cit121) 2020; 8 Reinhard (D1RA05910F/cit75) 2015; 80 Balaban (D1RA05910F/cit17) 1964; 2 Baddeley (D1RA05910F/cit23b) 1950 Swager (D1RA05910F/cit15) 2014; 10 King (D1RA05910F/cit25) 2007; 72 Kumar (D1RA05910F/cit114) 1999; 26 Ajayakumar (D1RA05910F/cit81) 2018; 140 Zhao (D1RA05910F/cit2) 2012; 101 Wong (D1RA05910F/cit78) 2017; 56 Cai (D1RA05910F/cit125) 2010; 466 Geim (D1RA05910F/cit19) 2010 Ozaki (D1RA05910F/cit107) 2017; 129 Jones (D1RA05910F/cit21) 2012; 48 Smrčina (D1RA05910F/cit40) 1994; 59 Urieta-Mora (D1RA05910F/cit69) 2019; 142 Simpson (D1RA05910F/cit42) 2002; 8 Borner (D1RA05910F/cit57) 2006; 33 Shen (D1RA05910F/cit20b) 2021; 12 Sun (D1RA05910F/cit28i) 2013; 8 Scholl (D1RA05910F/cit32) 1910; 43 Markoulides (D1RA05910F/cit49) 2015; 39 Ruffieux (D1RA05910F/cit126) 2016; 531 Cooke (D1RA05910F/cit56) 1999; 29 Ip (D1RA05910F/cit77) 2016; 138 Maddala (D1RA05910F/cit109) 2017; 82 Di Giovannantonio (D1RA05910F/cit130) 2018; 12 Beil (D1RA05910F/cit96) 2019; 302 Yang (D1RA05910F/cit16) 2016; 22 Dou (D1RA05910F/cit20a) 2007; 9 Nobusue (D1RA05910F/cit79) 2017; 19 Takada (D1RA05910F/cit97) 1998; 63 Liu (D1RA05910F/cit128) 2017 Quernheim (D1RA05910F/cit10) 2015; 54 Grzybowski (D1RA05910F/cit24) 2020; 59 Murata (D1RA05910F/cit66) 2017; 129 Rempala (D1RA05910F/cit27) 2004; 126 Rathore (D1RA05910F/cit122b) 1995; 60 Morimoto (D1RA05910F/cit119) 2010; 12 Scholl (D1RA05910F/cit36) 1971; 36 Kumar (D1RA05910F/cit115) 2001; 1 Faggi (D1RA05910F/cit13) 2010; 132 Oded (D1RA05910F/cit50) 2016; 81 Zhai (D1RA05910F/cit70) 2009; 11 Magiera (D1RA05910F/cit83) 2020; 18 Chen (D1RA05910F/cit1) 2012; 51 Ip (D1RA05910F/cit88) 2021; 86 Zhang (D1RA05910F/cit20e) 2017; 8 Grzybowski (D1RA05910F/cit11) 2013; 52 Zou (D1RA05910F/cit86) 2021; 60 Narita (D1RA05910F/cit61) 2014; 6 Mughal (D1RA05910F/cit47a) 2012; 48 Xu (D1RA05910F/cit132) 2019; 141 Wong (D1RA05910F/cit28g) 2012; 22 Truax (D1RA05910F/cit104) 2016; 81 Lakshminarayana (D1RA05910F/cit63) 2015; 51 Tadano (D1RA05910F/cit93) 2013; 125 Baldridge (D1RA05910F/cit28e) 2013; 52 Sanchez-Sanchez (D1RA05910F/cit127) 2017; 139 Drummer (D1RA05910F/cit6) 2021 Yan (D1RA05910F/cit28d) 2011; 21 Kumar (D1RA05910F/cit89) 1997 Naarmann (D1RA05910F/cit55) 1994 Kovacic (D1RA05910F/cit34) 1962; 3 Grätz (D1RA05910F/cit67) 2018; 54 Han (D1RA05910F/cit84) 2020; 132 Spurg (D1RA05910F/cit91) 2009; 15 Xia (D1RA05910F/cit87a) 2021; 133 Budniak (D1RA05910F/cit120) 2017; 41 Blake (D1RA05910F/cit7) 2008; 8 Ball (D1RA05910F/cit28f) 2015; 48 Müller (D1RA05910F/cit41) 1995; 107 Zeng (D1RA05910F/cit123) 2021; 143 Ronlan (D1RA05910F/cit30b) 1974; 39 McKillop (D1RA05910F/cit110) 1980; 102 Krzeszewski (D1RA05910F/cit20d) 2018; 20 Scholl (D1RA05910F/cit31) 1910; 43 Jiao (D1RA05910F/cit45) 2010; 14 Labella (D1RA05910F/cit133) 2020; 11 Tohma (D1RA05910F/cit98) 2003; 1 Wang (D1RA05910F/cit118) 2010; 10 Solórzano (D1RA05910F/cit53) 2020; 10 Baddeley (D1RA05910F/cit23a) 1935 Pradhan (D1RA05910F/cit20f) 2013; 78 Mohr (D1RA05910F/cit111) 1994; 59 Pola (D1RA05910F/cit48) 2012; 24 Avlasevich (D1RA05910F/cit43) 2006; 16 Guo (D1RA05910F/cit101) 2013; 78 Wiener (D1RA05910F/cit33) 1941; 35 Kramer (D1RA05910F/cit90) 2004; 116 Scholl (D1RA05910F/cit12) 1912; 394 Wu (D1RA05910F/cit28a) 2007; 107 Ma (D1RA05910F/cit85) 2020; 132 Schlütter (D1RA05910F/cit73) 2014; 126 Boyd (D1RA05910F/cit94) 2015; 17 Wang (D1RA05910F/cit4) 2019; 52 Zhai (D1RA05910F/cit26) 2010; 75 Chaolumen (D1RA05910F/cit134) 2021; 133 Wang (D1RA05910F/cit54) 2021; 310 Bai (D1RA05910F/cit58) 2011; 41 Rempala (D1RA05910F/cit44) 2006; 71 Jones (D1RA05910F/cit71) 2012; 48 Chen (D1RA05910F/cit28c) 2012; 51 Cataldo (D1RA05910F/cit46) 2011; 19 Vollmann (D1RA05910F/cit35) 1963; 669 Ye (D1RA05910F/cit65) 2016; 81 Cheung (D1RA05910F/cit87b) 2019; 5 He (D1RA05910F/cit82) 2018; 57 Jia (D1RA05910F/cit105) 2017; 1 Qiu (D1RA05910F/cit20c) 2020; 142 |
References_xml | – issn: 1994 publication-title: Studies toward a biomimetic oxidative macrocyclization approach to the synthesis of the vancomycin family of antibiotics doi: Evrard – issn: 2010 end-page: p 11-19 publication-title: Nanoscience and technology: a collection of reviews from nature journals doi: Geim Novoselov – issn: 2017 end-page: p 1-32 publication-title: From Polyphenylenes to Nanographenes and Graphene Nanoribbons doi: Liu Berger Müllen Feng – volume: 54 start-page: 10341 year: 2015 ident: D1RA05910F/cit64 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201500392 – volume: 82 start-page: 8958 year: 2017 ident: D1RA05910F/cit109 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.7b01377 – volume: 20 start-page: 6855 year: 2018 ident: D1RA05910F/cit68 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b02979 – volume: 79 start-page: 10143 year: 2014 ident: D1RA05910F/cit62 publication-title: J. Org. Chem. doi: 10.1021/jo501790d – volume: 72 start-page: 2279 year: 2007 ident: D1RA05910F/cit25 publication-title: J. Org. Chem. doi: 10.1021/jo061515x – volume: 10 start-page: 21974 year: 2020 ident: D1RA05910F/cit53 publication-title: RSC Adv. doi: 10.1039/D0RA04213G – volume: 101 start-page: 063112 year: 2012 ident: D1RA05910F/cit2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4742331 – volume: 302 start-page: 310 year: 2019 ident: D1RA05910F/cit96 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.02.041 – volume: 137 start-page: 3910 year: 2015 ident: D1RA05910F/cit74 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00403 – volume: 132 start-page: 9111 year: 2020 ident: D1RA05910F/cit84 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201915327 – volume: 12 start-page: 3804 year: 2010 ident: D1RA05910F/cit119 publication-title: Org. Lett. doi: 10.1021/ol101498r – volume: 141 start-page: 7726 year: 2019 ident: D1RA05910F/cit132 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03554 – start-page: 7469 year: 2014 ident: D1RA05910F/cit47b publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201402995 – volume: 13 start-page: 4950 year: 2011 ident: D1RA05910F/cit59 publication-title: Org. Lett. doi: 10.1021/ol202058r – volume: 37 start-page: 2460 issue: 8 year: 2013 ident: D1RA05910F/cit14 publication-title: New J. Chem. doi: 10.1039/c3nj00359k – volume: 15 start-page: 13313 year: 2009 ident: D1RA05910F/cit91 publication-title: Chem.–Eur. J. doi: 10.1002/chem.200902466 – volume: 3 start-page: 467 year: 1962 ident: D1RA05910F/cit34 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)70494-1 – volume: 31 start-page: 413 year: 1990 ident: D1RA05910F/cit38 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)94569-6 – start-page: 1 year: 2021 ident: D1RA05910F/cit6 publication-title: Photosynth. Res. – volume: 21 start-page: 3295 year: 2011 ident: D1RA05910F/cit28d publication-title: J. Mater. Chem. doi: 10.1039/c0jm02827d – volume: 12 start-page: 1 year: 2021 ident: D1RA05910F/cit20b publication-title: Nat. Commun. doi: 10.1038/s41467-020-20314-w – volume: 13 start-page: 916 year: 2011 ident: D1RA05910F/cit92 publication-title: Org. Lett. doi: 10.1021/ol102969k – volume: 11 start-page: 10778 year: 2020 ident: D1RA05910F/cit133 publication-title: Chem. Sci. doi: 10.1039/D0SC01054E – volume: 139 start-page: 4671 year: 2017 ident: D1RA05910F/cit129 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02258 – volume: 56 start-page: 12356 year: 2017 ident: D1RA05910F/cit78 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201707505 – volume: 10 start-page: 0581 year: 2014 ident: D1RA05910F/cit15 publication-title: Synfacts doi: 10.1055/s-0033-1339044 – volume: 48 start-page: 8066 year: 2012 ident: D1RA05910F/cit21 publication-title: Chem. Commun. doi: 10.1039/c2cc33892k – volume: 310 start-page: 110596 year: 2021 ident: D1RA05910F/cit54 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2020.110596 – volume: 138 start-page: 13778 year: 2016 ident: D1RA05910F/cit77 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05820 – start-page: 994 year: 1950 ident: D1RA05910F/cit23b publication-title: J. Chem. Soc. doi: 10.1039/JR9500000994 – volume: 54 start-page: 769 year: 1971 ident: D1RA05910F/cit37 publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19710540302 – start-page: 1 volume-title: From Polyphenylenes to Nanographenes and Graphene Nanoribbons year: 2017 ident: D1RA05910F/cit128 – volume: 80 start-page: 9342 year: 2015 ident: D1RA05910F/cit75 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.5b01520 – volume: 126 start-page: 1564 year: 2014 ident: D1RA05910F/cit73 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201309324 – volume: 81 start-page: 2203 year: 2009 ident: D1RA05910F/cit22 publication-title: Pure Appl. Chem. doi: 10.1351/PAC-CON-09-07-07 – volume: 20 start-page: 1517 year: 2018 ident: D1RA05910F/cit20d publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b00223 – volume: 75 start-page: 4748 year: 2010 ident: D1RA05910F/cit26 publication-title: J. Org. Chem. doi: 10.1021/jo100611k – volume: 12 start-page: 74 year: 2018 ident: D1RA05910F/cit130 publication-title: ACS Nano doi: 10.1021/acsnano.7b07077 – volume: 51 start-page: 7640 year: 2012 ident: D1RA05910F/cit1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201201084 – volume: 102 start-page: 6504 year: 1980 ident: D1RA05910F/cit110 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00541a020 – volume: 6 start-page: 126 year: 2014 ident: D1RA05910F/cit61 publication-title: Nat. Chem. doi: 10.1038/nchem.1819 – volume: 140 start-page: 6240 year: 2018 ident: D1RA05910F/cit81 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03711 – start-page: 11 volume-title: Nanoscience and technology: a collection of reviews from nature journals year: 2010 ident: D1RA05910F/cit19 – volume: 23 start-page: 315 year: 2010 ident: D1RA05910F/cit8 publication-title: J. Phys. Org. Chem. doi: 10.1002/poc.1644 – volume: 16 start-page: 1053 year: 2006 ident: D1RA05910F/cit43 publication-title: J. Mater. Chem. doi: 10.1039/b516264e – volume: 22 start-page: 21131 year: 2012 ident: D1RA05910F/cit28g publication-title: J. Mater. Chem. doi: 10.1039/c2jm34394k – volume: 81 start-page: 9219 year: 2016 ident: D1RA05910F/cit65 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.6b01785 – volume: 48 start-page: 8066 year: 2012 ident: D1RA05910F/cit71 publication-title: Chem. Commun. doi: 10.1039/c2cc33892k – volume: 78 start-page: 8169 year: 2013 ident: D1RA05910F/cit101 publication-title: J. Org. Chem. doi: 10.1021/jo401001k – volume: 60 start-page: 7479 year: 1995 ident: D1RA05910F/cit122b publication-title: J. Org. Chem. doi: 10.1021/jo00128a020 – volume: 52 start-page: 9900 year: 2013 ident: D1RA05910F/cit11 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201210238 – volume: 3 start-page: 197 year: 2011 ident: D1RA05910F/cit28h publication-title: Nat. Chem. doi: 10.1038/nchem.985 – volume: 19 start-page: 713 year: 2011 ident: D1RA05910F/cit46 publication-title: Fullerenes, Nanotubes, Carbon Nanostruct. doi: 10.1080/1536383X.2010.494787 – volume: 107 start-page: 1751 year: 1995 ident: D1RA05910F/cit41 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.19951071523 – volume: 52 start-page: 2491 year: 2019 ident: D1RA05910F/cit4 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00322 – volume: 54 start-page: 10341 year: 2015 ident: D1RA05910F/cit10 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201500392 – volume: 30 start-page: 1579 year: 2019 ident: D1RA05910F/cit52 publication-title: Struct. Chem. doi: 10.1007/s11224-019-01368-z – volume: 132 start-page: 5686 year: 2020 ident: D1RA05910F/cit85 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201914716 – volume: 57 start-page: 13635 year: 2018 ident: D1RA05910F/cit82 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808461 – volume: 5 start-page: 838 year: 2019 ident: D1RA05910F/cit87b publication-title: Chem doi: 10.1016/j.chempr.2019.01.004 – volume: 1 start-page: 0305 year: 2001 ident: D1RA05910F/cit115 publication-title: Synthesis doi: 10.1055/s-2001-10821 – volume: 95 start-page: 7132 year: 1973 ident: D1RA05910F/cit30a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00802a038 – volume: 142 start-page: 14814 year: 2020 ident: D1RA05910F/cit20c publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05504 – volume: 8 start-page: 1704 year: 2008 ident: D1RA05910F/cit7 publication-title: Nano Lett. doi: 10.1021/nl080649i – volume: 394 start-page: 111 year: 1912 ident: D1RA05910F/cit12 publication-title: Justus Liebigs Ann. Chem. doi: 10.1002/jlac.19123940202 – volume: 24 start-page: 2566 year: 2012 ident: D1RA05910F/cit48 publication-title: Chem. Mater. doi: 10.1021/cm301190c – volume: 26 start-page: 1841 year: 1999 ident: D1RA05910F/cit114 publication-title: Liq. Cryst. doi: 10.1080/026782999203508 – volume: 17 start-page: 1344 year: 2015 ident: D1RA05910F/cit94 publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b00300 – volume: 107 start-page: 718 year: 2007 ident: D1RA05910F/cit28a publication-title: Chem. Rev. doi: 10.1021/cr068010r – volume: 125 start-page: 8148 year: 2013 ident: D1RA05910F/cit93 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201303143 – volume: 63 start-page: 7698 year: 1998 ident: D1RA05910F/cit97 publication-title: J. Org. Chem. doi: 10.1021/jo980704f – volume: 52 start-page: 5436 year: 2013 ident: D1RA05910F/cit28e publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201300625 – volume: 41 start-page: 10742 year: 2017 ident: D1RA05910F/cit120 publication-title: New J. Chem. doi: 10.1039/C7NJ02299A – volume: 59 start-page: 635 year: 1994 ident: D1RA05910F/cit111 publication-title: J. Org. Chem. doi: 10.1021/jo00082a022 – volume: 18 start-page: 1472 year: 2008 ident: D1RA05910F/cit3 publication-title: J. Mater. Chem. doi: 10.1039/b717585j – volume: 10 start-page: 1083 year: 2010 ident: D1RA05910F/cit118 publication-title: Synthesis doi: 10.1055/s-0029-1219237 – volume: 18 start-page: 2372 year: 2020 ident: D1RA05910F/cit83 publication-title: Org. Biomol. Chem. doi: 10.1039/D0OB00182A – volume: 43 start-page: 2202 year: 1910 ident: D1RA05910F/cit32 publication-title: Ber. Dtsch. Chem. Ges. A doi: 10.1002/cber.191004302175 – volume: 48 start-page: 267 year: 2015 ident: D1RA05910F/cit28f publication-title: Acc. Chem. Res. doi: 10.1021/ar500355d – volume: 35 start-page: 1240 year: 1941 ident: D1RA05910F/cit33 publication-title: CA – volume: 142 start-page: 4162 year: 2019 ident: D1RA05910F/cit69 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b10203 – volume: 139 start-page: 17617 year: 2017 ident: D1RA05910F/cit127 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10026 – volume: 78 start-page: 2266 year: 2013 ident: D1RA05910F/cit20f publication-title: J. Org. Chem. doi: 10.1021/jo3027752 – volume: 14 start-page: 2145 year: 2010 ident: D1RA05910F/cit45 publication-title: Curr. Org. Chem. doi: 10.2174/138527210793351616 – volume: 51 start-page: 3604 year: 2015 ident: D1RA05910F/cit63 publication-title: Chem. Commun. doi: 10.1039/C4CC09812A – volume: 9 start-page: 2485 year: 2007 ident: D1RA05910F/cit20a publication-title: Org. Lett. doi: 10.1021/ol0708018 – volume: 10 start-page: 10143 year: 2019 ident: D1RA05910F/cit131 publication-title: Chem. Sci. doi: 10.1039/C9SC03404H – start-page: 303 year: 1935 ident: D1RA05910F/cit23a publication-title: J. Chem. Soc. doi: 10.1039/jr9350000303 – volume: 41 start-page: 511 year: 2008 ident: D1RA05910F/cit5 publication-title: Acc. Chem. Res. doi: 10.1021/ar7001446 – volume: 33 start-page: 1439 year: 2006 ident: D1RA05910F/cit57 publication-title: Liq. Cryst. doi: 10.1080/02678290601119617 – volume: 39 start-page: 6498 year: 2015 ident: D1RA05910F/cit49 publication-title: New J. Chem. doi: 10.1039/C5NJ00808E – volume: 321 start-page: 385 year: 2008 ident: D1RA05910F/cit9 publication-title: Science doi: 10.1126/science.1157996 – volume: 143 start-page: 2682 year: 2021 ident: D1RA05910F/cit123 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c13298 – volume: 48 start-page: 8880 year: 2012 ident: D1RA05910F/cit47a publication-title: Chem. Commun. doi: 10.1039/c2cc34245f – volume: 306 start-page: 666 year: 2004 ident: D1RA05910F/cit18 publication-title: Science doi: 10.1126/science.1102896 – volume: 8 start-page: 2894 year: 2013 ident: D1RA05910F/cit28i publication-title: Chem.–Asian J. doi: 10.1002/asia.201300560 – volume: 669 start-page: 22 year: 1963 ident: D1RA05910F/cit35 publication-title: Justus Liebigs Ann. Chem. doi: 10.1002/jlac.19636690104 – volume: 8 start-page: 2007 year: 2006 ident: D1RA05910F/cit99 publication-title: Org. Lett. doi: 10.1021/ol060333m – volume: 133 start-page: 2 year: 2021 ident: D1RA05910F/cit134 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202100260 – volume: 36 start-page: 2053 year: 1971 ident: D1RA05910F/cit36 publication-title: J. Org. Chem. doi: 10.1021/jo00814a005 – volume: 63 start-page: 5847 year: 1998 ident: D1RA05910F/cit113 publication-title: J. Org. Chem. doi: 10.1021/jo980407a – volume: 2 start-page: 979 year: 1964 ident: D1RA05910F/cit17 publication-title: Friedel-Crafts Relat. React. – volume: 19 start-page: 3227 year: 2017 ident: D1RA05910F/cit79 publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b01341 – volume: 8 start-page: 6531 year: 2014 ident: D1RA05910F/cit28b publication-title: ACS Nano doi: 10.1021/nn503283d – volume: 57 start-page: 1917 year: 1992 ident: D1RA05910F/cit39 publication-title: J. Org. Chem. doi: 10.1021/jo00032a055 – volume: 8 start-page: 1424 year: 2002 ident: D1RA05910F/cit42 publication-title: Chem.–Eur. J. doi: 10.1002/1521-3765(20020315)8:6<1424::AID-CHEM1424>3.0.CO;2-Z – volume: 54 start-page: 5307 year: 2018 ident: D1RA05910F/cit67 publication-title: Chem. Commun. doi: 10.1039/C8CC01993B – volume: 60 start-page: 17654 issue: 32 year: 2021 ident: D1RA05910F/cit86 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202105427 – volume: 466 start-page: 470 year: 2010 ident: D1RA05910F/cit125 publication-title: Nature doi: 10.1038/nature09211 – volume: 1 start-page: 1647 year: 2003 ident: D1RA05910F/cit98 publication-title: Org. Biomol. Chem. doi: 10.1039/B302462H – volume: 132 start-page: 17980 year: 2010 ident: D1RA05910F/cit13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja107467c – volume: 11 start-page: 3474 year: 2009 ident: D1RA05910F/cit70 publication-title: Org. Lett. doi: 10.1021/ol901331p – volume: 531 start-page: 489 year: 2016 ident: D1RA05910F/cit126 publication-title: Nature doi: 10.1038/nature17151 – volume: 60 start-page: 7479 year: 1995 ident: D1RA05910F/cit30c publication-title: J. Org. Chem. doi: 10.1021/jo00128a020 – volume: 1 start-page: 2261 year: 2017 ident: D1RA05910F/cit105 publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00319F – volume: 39 start-page: 1014 year: 1974 ident: D1RA05910F/cit30b publication-title: J. Org. Chem. doi: 10.1021/jo00921a037 – volume: 41 start-page: 903 year: 2011 ident: D1RA05910F/cit58 publication-title: Synth. Commun. doi: 10.1080/00397911003707105 – volume: 15 start-page: 4697 year: 2017 ident: D1RA05910F/cit95 publication-title: Org. Biomol. Chem. doi: 10.1039/C7OB00987A – volume: 8 start-page: 1 year: 2017 ident: D1RA05910F/cit20e publication-title: Nat. Commun. doi: 10.1038/s41467-016-0009-6 – start-page: 477 year: 1994 ident: D1RA05910F/cit55 publication-title: Synthesis doi: 10.1055/s-1994-25505 – volume: 14 start-page: 3712 year: 2012 ident: D1RA05910F/cit117 publication-title: Org. Lett. doi: 10.1021/ol3015573 – volume: 135 start-page: 8031 year: 2013 ident: D1RA05910F/cit60 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402371f – volume: 116 start-page: 2501 year: 2004 ident: D1RA05910F/cit90 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.200353597 – volume: 10 start-page: 3559 year: 2008 ident: D1RA05910F/cit116 publication-title: Org. Lett. doi: 10.1021/ol801321f – volume: 126 start-page: 15002 year: 2004 ident: D1RA05910F/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja046513d – volume: 133 start-page: 10399 year: 2021 ident: D1RA05910F/cit87a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202100343 – volume: 51 start-page: 7640 year: 2012 ident: D1RA05910F/cit28c publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201201084 – volume: 57 start-page: 710 year: 2009 ident: D1RA05910F/cit100 publication-title: Chem. Pharm. Bull. doi: 10.1248/cpb.57.710 – volume: 59 start-page: 2998 year: 2020 ident: D1RA05910F/cit24 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904934 – volume: 59 start-page: 2156 year: 1994 ident: D1RA05910F/cit40 publication-title: J. Org. Chem. doi: 10.1021/jo00087a036 – volume: 5 start-page: 739 year: 2013 ident: D1RA05910F/cit72 publication-title: Nat. Chem. doi: 10.1038/nchem.1704 – volume-title: Studies toward a biomimetic oxidative macrocyclization approach to the synthesis of the vancomycin family of antibiotics year: 1994 ident: D1RA05910F/cit122a – volume: 56 start-page: 11144 year: 2017 ident: D1RA05910F/cit108 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701058 – volume: 81 start-page: 11389 year: 2016 ident: D1RA05910F/cit50 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.6b01798 – volume: 71 start-page: 5067 year: 2006 ident: D1RA05910F/cit44 publication-title: J. Org. Chem. doi: 10.1021/jo0526744 – volume: 8 start-page: 7569 year: 2020 ident: D1RA05910F/cit121 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c02223 – volume: 22 start-page: 18620 year: 2016 ident: D1RA05910F/cit16 publication-title: Chem.–Eur. J. doi: 10.1002/chem.201604649 – volume: 129 start-page: 5164 year: 2017 ident: D1RA05910F/cit66 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201709124 – volume: 11 start-page: 3474 year: 2009 ident: D1RA05910F/cit29 publication-title: Org. Lett. doi: 10.1021/ol901331p – volume: 129 start-page: 1381 year: 2017 ident: D1RA05910F/cit107 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201610374 – volume: 43 start-page: 1734 year: 1910 ident: D1RA05910F/cit31 publication-title: Ber. Dtsch. Chem. Ges. A doi: 10.1002/cber.19100430288 – volume: 29 start-page: 1767 year: 1999 ident: D1RA05910F/cit56 publication-title: Synth. Commun. doi: 10.1080/00397919908086164 – volume: 56 start-page: 3374 year: 2017 ident: D1RA05910F/cit80 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201610434 – volume: 118 start-page: 2374 year: 1996 ident: D1RA05910F/cit112 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9537888 – start-page: 1615 year: 1997 ident: D1RA05910F/cit89 publication-title: Chem. Commun. doi: 10.1039/a704130f – volume: 79 start-page: 8049 year: 2014 ident: D1RA05910F/cit102 publication-title: J. Org. Chem. doi: 10.1021/jo501185f – volume: 3 start-page: 314 year: 2016 ident: D1RA05910F/cit103 publication-title: Org. Chem. Front. doi: 10.1039/C5QO00361J – volume: 17 start-page: 4316 year: 2015 ident: D1RA05910F/cit106 publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b02135 – volume: 63 start-page: 44 year: 2009 ident: D1RA05910F/cit124 publication-title: Chimia doi: 10.2533/chimia.2009.44 – volume: 81 start-page: 6808 year: 2016 ident: D1RA05910F/cit104 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.6b01072 – volume: 122 start-page: 8933 year: 2018 ident: D1RA05910F/cit51 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b00469 – volume: 138 start-page: 8364 year: 2016 ident: D1RA05910F/cit76 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04426 – volume: 86 start-page: 5546 year: 2021 ident: D1RA05910F/cit88 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.1c00059 |
SSID | ssj0000651261 |
Score | 2.549799 |
SecondaryResourceType | review_article |
Snippet | Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 32158 |
SubjectTerms | Aluminum chloride Analogs Chemical synthesis Chemistry Chemists Covalent bonds electronics Ferric chloride Graphene heterocyclic compounds Organic chemistry oxidants Oxidizing agents Planar structures Polycyclic aromatic hydrocarbons Reagents systematic review |
Title | Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35495486 https://www.proquest.com/docview/2595989974 https://www.proquest.com/docview/2636460360 https://www.proquest.com/docview/2658647743 https://pubmed.ncbi.nlm.nih.gov/PMC9041733 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l7QEuiFdpoFSL4IIiB6_f5laFVgUJDkmDCpdo116TSqlT8hCCK3-cb9feddJEqHBxInu8sj2fxzO7M98Q8kp4Xp7nbuAUqRBOIBLuJFwwR9VUZm6WhpKrFd2Pn6KzYfDhIrxotX6vZC0tF6Kb_dpaV_I_WsU-6FVVyf6DZu2g2IH_0C-20DC2t9KxotCcKGJ-0_B73uGda9X3TGUeLxS9pskinP8s8VOzj5S8rJiqlaGryp1vMjr_WPVa-4OeSRZoMg7hdVfFYH0uuOgMuo3uvo11G4HOyXgO8zEE0uyk84Dnl9-1QbqqG3druE0gqLgYK43Lq8777up8hMdU8kQ9aaHNloeIG1qqGrB05ZZ9xu6yFXzVrLOVFfXhhyQrn2QYHV2WvWnvXV_Rpb5j_WO4icw9bb5qZiX_xsfOpiDqxXc_HTXn7pA9D7EGjOVe__Pw4oudqoOXxjzNvGvvwxDd-umbZoB112YjXtlMu92ZmS4z2ps5v0_u1WEIPa4w9YC0ZPmQ3OmZ7n-PyNcKW9Rgi_I55dRgiypsUWCLAlTUYotOC7qGrbc4p0EWrZD1mAxPT857Z07dh8PJQi9eOL4Xi1jmPMmKQgp4PIxLhOVpnDE_iRhXlFCMF26RwNnzZBqHAnGx63IZ5XHIpb9PdstpKQ8IhblncOBFIooQoYDgeN55gjF5HGRwjtvktXmEo6wmqVe9UiajTX21yUsre11Rs2yVOjSaGNWv7nyEmD9MkxSxdJu8sIfxhNVqGS_ldAmZyI-CCA6e-zeZMFGV3OrCn1TKtZfih4EiU4zaJF5TuxVQxO7rR8rLsSZ4T92AxT7G3AdArHzOZlzfU_H0Vnf-jNxt3s9DsruYLeVzeNALcaRnno5qnP8Bc5jGKw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scholl+reaction+as+a+powerful+tool+for+the+synthesis+of+nanographenes%3A+a+systematic+review&rft.jtitle=RSC+advances&rft.au=Jassas%2C+Rabab+S.&rft.au=Mughal%2C+Ehsan+Ullah&rft.au=Sadiq%2C+Amina&rft.au=Alsantali%2C+Reem+I.&rft.date=2021-09-29&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=11&rft.issue=51&rft.spage=32158&rft.epage=32202&rft_id=info:doi/10.1039%2FD1RA05910F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1RA05910F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |