Electroconductive natural polymer-based hydrogels
Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic properties, and biodegradable nature. More recently, when treated with electroactive materials, these hydrogels were endowed with high electrical...
Saved in:
Published in | Biomaterials Vol. 111; pp. 40 - 54 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic properties, and biodegradable nature. More recently, when treated with electroactive materials, these hydrogels were endowed with high electrical conductivity, electrochemical redox properties, and electromechanical properties; consequently, forming a smart hydrogel. The biological properties of these smart hydrogels, classified as electroconductive hydrogels, can be combined with electronics. Thus, they are considered as good candidates for some potential uses, which include bioconductors, biosensors, electro-stimulated drug delivery systems, as well as neuron-, muscle-, and skin-tissue engineering. However, there is lacking comprehensive information on the current state of these electroconductive hydrogels which complicates our understanding of this new type of biomaterials as well as their potential applications. Hence, this review provides a summary on the current development of electroconductive natural polymer-based hydrogels (ENPHs). We have introduced various types of ENPHs, with a brief description of their advantages and shortcomings. In addition, emerging technologies regarding their synthesis developed during the past decade are discussed. Finally, two attractive potential applications of ENPHs, cell culture and biomedical devices, are reviewed, along with their current challenges. |
---|---|
AbstractList | Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic properties, and biodegradable nature. More recently, when treated with electroactive materials, these hydrogels were endowed with high electrical conductivity, electrochemical redox properties, and electromechanical properties; consequently, forming a smart hydrogel. The biological properties of these smart hydrogels, classified as electroconductive hydrogels, can be combined with electronics. Thus, they are considered as good candidates for some potential uses, which include bioconductors, biosensors, electro-stimulated drug delivery systems, as well as neuron-, muscle-, and skin-tissue engineering. However, there is lacking comprehensive information on the current state of these electroconductive hydrogels which complicates our understanding of this new type of biomaterials as well as their potential applications. Hence, this review provides a summary on the current development of electroconductive natural polymer-based hydrogels (ENPHs). We have introduced various types of ENPHs, with a brief description of their advantages and shortcomings. In addition, emerging technologies regarding their synthesis developed during the past decade are discussed. Finally, two attractive potential applications of ENPHs, cell culture and biomedical devices, are reviewed, along with their current challenges. Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic properties, and biodegradable nature. More recently, when treated with electroactive materials, these hydrogels were endowed with high electrical conductivity, electrochemical redox properties, and electromechanical properties; consequently, forming a smart hydrogel. The biological properties of these smart hydrogels, classified as electroconductive hydrogels, can be combined with electronics. Thus, they are considered as good candidates for some potential uses, which include bioconductors, biosensors, electro-stimulated drug delivery systems, as well as neuron-, muscle-, and skin-tissue engineering. However, there is lacking comprehensive information on the current state of these electroconductive hydrogels which complicates our understanding of this new type of biomaterials as well as their potential applications. Hence, this review provides a summary on the current development of electroconductive natural polymer-based hydrogels (ENPHs). We have introduced various types of ENPHs, with a brief description of their advantages and shortcomings. In addition, emerging technologies regarding their synthesis developed during the past decade are discussed. Finally, two attractive potential applications of ENPHs, cell culture and biomedical devices, are reviewed, along with their current challenges.Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic properties, and biodegradable nature. More recently, when treated with electroactive materials, these hydrogels were endowed with high electrical conductivity, electrochemical redox properties, and electromechanical properties; consequently, forming a smart hydrogel. The biological properties of these smart hydrogels, classified as electroconductive hydrogels, can be combined with electronics. Thus, they are considered as good candidates for some potential uses, which include bioconductors, biosensors, electro-stimulated drug delivery systems, as well as neuron-, muscle-, and skin-tissue engineering. However, there is lacking comprehensive information on the current state of these electroconductive hydrogels which complicates our understanding of this new type of biomaterials as well as their potential applications. Hence, this review provides a summary on the current development of electroconductive natural polymer-based hydrogels (ENPHs). We have introduced various types of ENPHs, with a brief description of their advantages and shortcomings. In addition, emerging technologies regarding their synthesis developed during the past decade are discussed. Finally, two attractive potential applications of ENPHs, cell culture and biomedical devices, are reviewed, along with their current challenges. Abstract Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic properties, and biodegradable nature. More recently, when treated with electroactive materials, these hydrogels were endowed with high electrical conductivity, electrochemical redox properties, and electromechanical properties; consequently, forming a smart hydrogel. The biological properties of these smart hydrogels, classified as electroconductive hydrogels, can be combined with electronics. Thus, they are considered as good candidates for some potential uses, which include bioconductors, biosensors, electro-stimulated drug delivery systems, as well as neuron-, muscle-, and skin-tissue engineering. However, there is lacking comprehensive information on the current state of these electroconductive hydrogels which complicates our understanding of this new type of biomaterials as well as their potential applications. Hence, this review provides a summary on the current development of electroconductive natural polymer-based hydrogels (ENPHs). We have introduced various types of ENPHs, with a brief description of their advantages and shortcomings. In addition, emerging technologies regarding their synthesis developed during the past decade are discussed. Finally, two attractive potential applications of ENPHs, cell culture and biomedical devices, are reviewed, along with their current challenges. |
Author | Gao, Xing Li, Sixiang Wang, Qun Yang, Guang Shi, Zhijun Ullah, Muhammad Wajid |
Author_xml | – sequence: 1 givenname: Zhijun surname: Shi fullname: Shi, Zhijun organization: Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 2 givenname: Xing surname: Gao fullname: Gao, Xing organization: Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK – sequence: 3 givenname: Muhammad Wajid surname: Ullah fullname: Ullah, Muhammad Wajid organization: Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 4 givenname: Sixiang surname: Li fullname: Li, Sixiang organization: Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China – sequence: 5 givenname: Qun surname: Wang fullname: Wang, Qun email: qunwang@iastate.edu organization: Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA – sequence: 6 givenname: Guang surname: Yang fullname: Yang, Guang email: yang_sunny@yahoo.com organization: Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27721086$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv1DAQhS1URLeFv4BWnLgkHTtx7HBAlFJKpUo9AGfLsSfgxYkXO6m0_x5H20qoUtU9Wbbe-2Y8b07I0RhGJOQdhZICbc42ZefCoCeMTvtUsvxWQlsCgxdkRaWQBW-BH5EV0JoVbUPZMTlJaQP5DjV7RY6ZEIyCbFaEXno0UwwmjHY2k7vD9ainOWq_3ga_GzAWnU5o1793NoZf6NNr8rLPZfHN_XlKfn69_HHxrbi5vbq-OL8pDGdiKpiteNOBYCglik73jGojOo49s1oIbGTdc922ErgB1ljNZc2krY2UXSM6WZ2S93vuNoa_M6ZJDS4Z9F6PGOakGACwuhLAn5VSWfH8c8GbLH17L527Aa3aRjfouFMPE8mCT3uBiSGliL0ybtKTC-MUtfOKglpCUBv1fwhqCUFBq3IIGfHhEeKhykHmL3tzHjXeOYwqGYejQetiTkrZ4A7DfHyEMd6Nzmj_B3eYNmGO4-KhKjEF6vuyKsum0KYCzhjNgM9PAw7t4h8wDdVE |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_125674 crossref_primary_10_3390_gels9080662 crossref_primary_10_1016_j_polymer_2020_123257 crossref_primary_10_1016_j_polymer_2020_122961 crossref_primary_10_1016_j_rinp_2018_02_003 crossref_primary_10_1002_smll_202403856 crossref_primary_10_1021_acsami_8b01029 crossref_primary_10_1016_j_mser_2021_100630 crossref_primary_10_1016_j_polymertesting_2022_107486 crossref_primary_10_3390_bios13010142 crossref_primary_10_1007_s10856_024_06808_9 crossref_primary_10_1016_j_ceramint_2023_08_274 crossref_primary_10_3390_polym16142030 crossref_primary_10_1016_j_ecoleng_2020_105882 crossref_primary_10_1016_j_ijbiomac_2020_03_155 crossref_primary_10_1039_D0BM01268H crossref_primary_10_1039_D2NA00700B crossref_primary_10_1016_j_mtcomm_2021_102111 crossref_primary_10_1016_j_pmatsci_2022_100972 crossref_primary_10_1016_j_mtchem_2018_02_004 crossref_primary_10_1089_bioe_2020_0025 crossref_primary_10_1089_bioe_2020_0027 crossref_primary_10_1016_j_eurpolymj_2022_111091 crossref_primary_10_1002_adfm_202111278 crossref_primary_10_1007_s13726_022_01095_z crossref_primary_10_1016_j_biomaterials_2019_119672 crossref_primary_10_1039_C7RA02629C crossref_primary_10_1007_s13726_017_0575_4 crossref_primary_10_1016_j_cej_2024_150583 crossref_primary_10_1039_D1TB00686J crossref_primary_10_1016_j_carbpol_2021_118565 crossref_primary_10_1016_j_procbio_2022_10_015 crossref_primary_10_1021_acsabm_3c01209 crossref_primary_10_1039_D0TB02604B crossref_primary_10_1021_acs_iecr_9b05273 crossref_primary_10_1038_s41427_018_0076_8 crossref_primary_10_1016_j_ijbiomac_2017_08_171 crossref_primary_10_1007_s40005_024_00678_7 crossref_primary_10_1016_j_fbio_2024_105137 crossref_primary_10_1016_j_carbpol_2019_115112 crossref_primary_10_1002_wnan_1568 crossref_primary_10_1016_j_ijbiomac_2019_07_050 crossref_primary_10_1016_j_carbpol_2023_120760 crossref_primary_10_1002_adtp_202000151 crossref_primary_10_1039_C8SC02858C crossref_primary_10_1039_D4NJ03774J crossref_primary_10_1016_j_bioactmat_2023_11_012 crossref_primary_10_1520_MPC20180165 crossref_primary_10_1016_j_carbpol_2018_09_069 crossref_primary_10_1007_s10570_019_02407_y crossref_primary_10_1007_s13770_018_0146_6 crossref_primary_10_2147_IJN_S436111 crossref_primary_10_1039_C8BM00553B crossref_primary_10_1039_D1SM00997D crossref_primary_10_1021_acs_biomac_0c00566 crossref_primary_10_1177_2041731419900424 crossref_primary_10_1021_acsami_8b19482 crossref_primary_10_1039_D1RA06421E crossref_primary_10_1007_s00289_024_05333_7 crossref_primary_10_1021_acs_biomac_9b00322 crossref_primary_10_2174_0929867326666190903113004 crossref_primary_10_1088_2053_1591_abf284 crossref_primary_10_7717_peerj_13386 crossref_primary_10_1007_s10895_024_04055_3 crossref_primary_10_3390_polym15173572 crossref_primary_10_1021_acsapm_8b00203 crossref_primary_10_1021_acs_chemrev_0c00015 crossref_primary_10_1016_j_msec_2019_01_122 crossref_primary_10_1016_j_scp_2022_100905 crossref_primary_10_1002_adma_202402301 crossref_primary_10_1002_jbm_a_37016 crossref_primary_10_1016_j_cej_2022_136508 crossref_primary_10_3390_gels10010063 crossref_primary_10_3390_ijms24076364 crossref_primary_10_1155_2021_8212518 crossref_primary_10_1016_j_colsurfb_2018_01_002 crossref_primary_10_3389_fbioe_2022_958486 crossref_primary_10_1021_acsami_4c17451 crossref_primary_10_1515_polyeng_2019_0304 crossref_primary_10_1021_acs_molpharmaceut_2c00344 crossref_primary_10_1002_smll_202207048 crossref_primary_10_1002_smtd_202401156 crossref_primary_10_1155_2021_6668209 crossref_primary_10_3389_fbioe_2020_00414 crossref_primary_10_3389_fbioe_2022_1110004 crossref_primary_10_1016_j_mechmat_2019_103272 crossref_primary_10_1002_app_46905 crossref_primary_10_3389_fbioe_2021_732513 crossref_primary_10_1016_j_jmps_2023_105205 crossref_primary_10_1039_D1TB00247C crossref_primary_10_1002_mabi_202100355 crossref_primary_10_1039_D3GC05109A crossref_primary_10_1016_j_jenvman_2018_03_076 crossref_primary_10_1021_acsbiomaterials_9b00778 crossref_primary_10_3390_nano10122492 crossref_primary_10_3390_gels10020108 crossref_primary_10_1016_j_cej_2024_149660 crossref_primary_10_3389_fchem_2021_809676 crossref_primary_10_1016_j_carbpol_2018_09_083 crossref_primary_10_1002_macp_201700251 crossref_primary_10_1016_j_jmrt_2022_03_089 crossref_primary_10_1016_j_carbpol_2017_01_056 crossref_primary_10_1016_j_eurpolymj_2023_112137 crossref_primary_10_1007_s12588_018_9224_9 crossref_primary_10_1016_j_ccr_2020_213432 crossref_primary_10_1016_j_eml_2017_09_009 crossref_primary_10_3389_fchem_2020_615665 crossref_primary_10_4103_ATN_ATN_D_24_00011 crossref_primary_10_1016_j_carpta_2024_100627 crossref_primary_10_1016_j_cej_2024_156871 crossref_primary_10_1002_adhm_201900670 crossref_primary_10_1016_j_envpol_2021_117111 crossref_primary_10_1002_adma_202400346 crossref_primary_10_1016_j_jmbbm_2020_103642 crossref_primary_10_1016_j_polymertesting_2023_108277 crossref_primary_10_1016_j_colsurfa_2019_123751 crossref_primary_10_1016_j_mtcomm_2024_109593 crossref_primary_10_1021_acsnano_0c05197 crossref_primary_10_1007_s10965_018_1455_0 crossref_primary_10_1002_adhm_202100012 crossref_primary_10_1016_j_ijsolstr_2023_112325 crossref_primary_10_1002_smsc_202400362 crossref_primary_10_1016_j_eurpolymj_2021_110935 crossref_primary_10_1002_adv_22139 crossref_primary_10_1002_mame_201900848 crossref_primary_10_3390_polym11122067 crossref_primary_10_1016_j_cis_2025_103456 crossref_primary_10_3390_pharmaceutics15020424 crossref_primary_10_1039_D0CS01387K crossref_primary_10_1016_j_ndteint_2018_09_004 crossref_primary_10_1002_adhm_202203168 crossref_primary_10_1016_j_cej_2019_122022 crossref_primary_10_1016_j_seppur_2024_126819 crossref_primary_10_1021_acsanm_3c02053 crossref_primary_10_1002_jbm_b_34048 crossref_primary_10_1016_j_synthmet_2019_03_010 crossref_primary_10_2174_1573413716999201127111627 crossref_primary_10_1002_adhm_201900569 crossref_primary_10_3389_fbioe_2024_1309541 crossref_primary_10_1039_C7PY01460K crossref_primary_10_1007_s10570_024_05874_0 crossref_primary_10_1016_j_carbpol_2017_05_015 crossref_primary_10_1021_acssuschemeng_9b03555 crossref_primary_10_3390_ijms23020610 crossref_primary_10_1007_s12274_020_3259_x crossref_primary_10_1021_acsbiomaterials_1c00216 crossref_primary_10_1016_j_carbpol_2018_04_078 crossref_primary_10_1039_C8NR04073G crossref_primary_10_1016_j_biomaterials_2018_08_010 crossref_primary_10_1007_s00289_022_04580_w crossref_primary_10_1002_smll_201703305 crossref_primary_10_35812_CelluloseChemTechnol_2021_55_63 crossref_primary_10_1016_j_carbpol_2018_08_070 crossref_primary_10_1039_D3TC03863G crossref_primary_10_1016_j_ijbiomac_2018_11_252 crossref_primary_10_1002_adsu_202100173 crossref_primary_10_1002_adhm_201800593 crossref_primary_10_1016_j_ijbiomac_2024_136695 crossref_primary_10_1002_aelm_201700495 crossref_primary_10_3390_polym13030326 crossref_primary_10_1016_j_actbio_2018_09_035 crossref_primary_10_1016_j_progpolymsci_2019_02_007 crossref_primary_10_1021_acsnano_8b04609 crossref_primary_10_1007_s13346_020_00860_y crossref_primary_10_1016_j_ijbiomac_2024_137092 crossref_primary_10_3390_mi15060720 crossref_primary_10_1016_j_mtla_2022_101457 crossref_primary_10_1016_j_synbio_2018_04_002 crossref_primary_10_1016_j_polymer_2017_07_047 crossref_primary_10_1080_09205063_2018_1563847 crossref_primary_10_1016_j_ijbiomac_2024_138611 crossref_primary_10_1016_j_seppur_2024_130299 crossref_primary_10_1016_j_carbpol_2021_117872 crossref_primary_10_1002_adhm_202200526 crossref_primary_10_1007_s10924_021_02339_4 crossref_primary_10_1016_j_msec_2021_112559 crossref_primary_10_1002_adma_202105020 crossref_primary_10_1021_acsapm_2c01506 crossref_primary_10_3390_app9183938 crossref_primary_10_1016_j_msec_2019_04_012 crossref_primary_10_1007_s00396_020_04736_y crossref_primary_10_1016_j_ijbiomac_2017_04_110 crossref_primary_10_1002_adhm_201800334 crossref_primary_10_3390_biomedicines12051046 crossref_primary_10_1016_j_carbpol_2021_117860 crossref_primary_10_1016_j_carbpol_2022_120403 crossref_primary_10_1016_j_ijbiomac_2017_09_064 crossref_primary_10_1039_C7BM00268H crossref_primary_10_1021_acsami_2c08331 crossref_primary_10_1002_nano_202400189 crossref_primary_10_1038_s41467_021_22675_2 crossref_primary_10_1039_D0RA04316H crossref_primary_10_1016_j_eurpolymj_2018_08_036 crossref_primary_10_1016_j_actbio_2021_04_027 crossref_primary_10_1126_sciadv_abj7857 crossref_primary_10_1016_j_ijbiomac_2019_05_050 crossref_primary_10_1007_s42114_017_0018_x crossref_primary_10_1016_j_ijbiomac_2018_04_088 crossref_primary_10_3389_fbioe_2022_931256 crossref_primary_10_3390_gels7040277 crossref_primary_10_1016_j_ijbiomac_2020_08_044 crossref_primary_10_1039_C7SM02137B crossref_primary_10_1109_TUFFC_2020_3020283 crossref_primary_10_1016_j_eurpolymj_2020_109842 crossref_primary_10_1016_j_susmat_2022_e00444 crossref_primary_10_1021_acsabm_8b00823 crossref_primary_10_1002_advs_201802077 crossref_primary_10_1016_j_ijbiomac_2025_140651 crossref_primary_10_3390_polym15122744 crossref_primary_10_1016_j_progpolymsci_2022_101622 crossref_primary_10_3390_bios14090415 crossref_primary_10_1186_s12951_025_03237_w crossref_primary_10_1016_j_ijbiomac_2023_128348 crossref_primary_10_1039_D0TA02010A crossref_primary_10_1039_D4YA00155A crossref_primary_10_1002_celc_202100586 crossref_primary_10_1088_2515_7639_ad05e7 crossref_primary_10_1016_j_ijbiomac_2022_06_044 crossref_primary_10_1007_s42114_018_0036_3 crossref_primary_10_3390_polym13244423 crossref_primary_10_1016_j_ijbiomac_2017_07_075 crossref_primary_10_1016_j_polymertesting_2019_105896 crossref_primary_10_1039_D0BM01466D crossref_primary_10_1177_08853282211064403 crossref_primary_10_1016_j_ijbiomac_2019_12_132 crossref_primary_10_1021_acssuschemeng_0c07473 crossref_primary_10_1002_adhm_201901372 crossref_primary_10_1016_j_cis_2023_102982 crossref_primary_10_1039_D0TB01737J crossref_primary_10_1016_j_carpta_2024_100463 crossref_primary_10_1016_j_jclepro_2018_07_111 crossref_primary_10_1016_j_carbpol_2019_03_041 crossref_primary_10_1021_acsami_8b08409 crossref_primary_10_3389_fbioe_2021_616555 crossref_primary_10_3390_gels11040220 crossref_primary_10_3390_app10010065 crossref_primary_10_1002_adhm_202200846 crossref_primary_10_1016_j_cej_2024_155027 crossref_primary_10_3390_polym17040539 crossref_primary_10_3390_pharmaceutics11060266 crossref_primary_10_1021_acsami_9b15849 crossref_primary_10_1021_acs_analchem_8b04116 crossref_primary_10_1039_C9SM02127B crossref_primary_10_1002_term_3115 crossref_primary_10_2147_IJN_S386763 crossref_primary_10_1016_j_matpr_2021_10_241 crossref_primary_10_1007_s41061_022_00395_5 crossref_primary_10_1177_0883911517694398 crossref_primary_10_1002_adhm_202403983 crossref_primary_10_1016_j_ijbiomac_2019_08_217 crossref_primary_10_1016_j_ijbiomac_2024_132267 crossref_primary_10_1016_j_progpolymsci_2018_09_001 crossref_primary_10_1002_advs_202404580 crossref_primary_10_1134_S107042722209021X crossref_primary_10_1039_D3NJ01084H crossref_primary_10_1016_j_ijbiomac_2024_135661 crossref_primary_10_1016_j_envpol_2021_118277 crossref_primary_10_1002_adfm_202108495 crossref_primary_10_1021_acs_chemrev_7b00094 crossref_primary_10_1557_s43578_021_00255_w crossref_primary_10_1039_C7TB01152K crossref_primary_10_1002_marc_202100125 crossref_primary_10_1007_s10989_020_10022_w crossref_primary_10_1021_acsomega_3c04135 crossref_primary_10_1016_j_ijbiomac_2024_129409 crossref_primary_10_1016_j_aiepr_2023_07_002 crossref_primary_10_1016_j_biomaterials_2019_03_015 crossref_primary_10_1021_acsabm_2c00679 crossref_primary_10_1016_j_colsurfb_2017_07_024 crossref_primary_10_1016_j_addr_2021_05_010 crossref_primary_10_1016_j_cej_2022_135058 crossref_primary_10_2174_0929867326666190816125144 crossref_primary_10_1039_C8TB03312A crossref_primary_10_3390_gels9070519 crossref_primary_10_1016_j_mtcomm_2023_105791 crossref_primary_10_1021_acsapm_3c00445 crossref_primary_10_1039_D0QM00566E crossref_primary_10_3390_polym13172901 crossref_primary_10_1016_j_ijbiomac_2020_11_206 |
Cites_doi | 10.1016/j.actbio.2010.01.004 10.1007/s10965-014-0369-8 10.1016/j.carbpol.2015.10.010 10.1080/13102818.2014.997541 10.1021/nn203711s 10.1038/ncomms7962 10.1016/j.ijbiomac.2013.09.028 10.1098/rsfs.2013.0050 10.1002/jcp.21660 10.1039/C4TB01636J 10.1021/ac049519u 10.1016/j.biomaterials.2010.05.056 10.1016/j.biomaterials.2009.12.052 10.1007/s10439-010-9999-0 10.1021/am2016766 10.1016/0168-3659(94)00115-B 10.1021/bm049335p 10.5114/aoms.2013.33433 10.1002/jbm.a.32029 10.1088/1758-5082/5/4/041001 10.1016/j.msec.2011.03.007 10.1002/mabi.201100227 10.1039/c1jm12376a 10.1016/S0142-9612(03)00340-5 10.1016/j.biomaterials.2010.10.020 10.1016/j.jconrel.2009.09.010 10.1007/s10856-006-0698-1 10.1016/j.addr.2009.07.019 10.1016/j.jbiomech.2016.02.019 10.1007/978-1-60761-984-0_2 10.1529/biophysj.107.122598 10.1002/ange.200902538 10.1016/j.carbpol.2006.04.019 10.1021/bm8014973 10.1039/b820385g 10.1086/BBLv221n1p79 10.1038/jid.2010.96 10.1016/0142-9612(96)00041-5 10.1039/c3cc49140d 10.1089/ten.tec.2014.0338 10.1002/mabi.200600069 10.1021/bm501680s 10.1002/jbm.a.32412 10.1002/adma.201302958 10.1080/00032710701380442 10.1016/j.snb.2009.11.043 10.1021/acsnano.5b01433 10.1016/j.biomaterials.2012.11.012 10.1016/j.msec.2015.08.019 10.1016/j.bbapap.2005.02.002 10.1016/j.foodhyd.2013.07.012 10.1039/B817788K 10.1016/j.ijpharm.2013.03.013 10.1002/app.31203 10.1295/polymj.PJ2007180 10.1021/cr000108x 10.1016/j.biomaterials.2005.10.026 10.1155/2014/736898 10.3390/ma2020353 10.1007/s10118-016-1840-2 10.1016/j.msec.2009.10.006 10.1371/journal.pone.0071707 10.1002/adma.201303233 10.1039/c0cs00053a 10.1016/j.matlet.2014.04.183 10.1002/mabi.200700007 10.1038/nmat1741 10.1063/1.1995748 10.1016/S0141-8130(03)00022-9 10.1002/adma.201301082 10.1039/c3ee40997j 10.1016/j.carbpol.2015.03.055 10.1021/am4057826 10.1371/journal.pone.0062172 10.1002/adhm.201200182 10.1002/adem.200700287 10.1021/bm401679q 10.1021/bm800705t 10.1007/s10570-008-9206-8 10.1016/j.biomaterials.2004.02.049 10.1002/aenm.201301655 10.1016/j.jmbbm.2015.12.021 10.1038/nnano.2012.211 10.1002/adma.201003963 10.1021/bm200731x 10.1016/S0142-9612(02)00412-X 10.1039/C4CC07144A 10.1039/c2sm26898a 10.1007/s10570-014-0528-4 10.1016/j.biomaterials.2005.04.017 10.1016/j.carbpol.2006.08.021 10.1016/j.biortech.2015.07.044 10.1007/s10856-012-4571-0 10.1021/nn502704g 10.1039/c3nr00408b 10.1021/am404912c 10.1016/j.snb.2011.09.044 10.1016/j.nanoen.2014.08.004 10.1016/j.carbpol.2015.06.037 10.1002/smll.201401906 10.1016/j.biomaterials.2009.02.006 10.1016/j.reactfunctpolym.2014.06.003 10.1039/c3tb21509a 10.1002/adma.201301300 10.1016/j.actbio.2008.07.005 10.1007/s11434-009-0207-2 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I 10.1021/acsami.5b10829 10.1177/0883911511420700 10.1039/c2sm25090j 10.1039/c3tb20505c 10.1039/C1CS15203C 10.1016/j.carbpol.2012.10.071 10.1016/j.snb.2007.09.083 10.1016/j.biomaterials.2005.02.002 10.1002/jbm.820140108 10.1016/j.msec.2008.09.017 10.1016/S0079-6700(01)00021-1 10.1016/S0142-9612(00)00201-5 10.1016/j.bios.2004.07.029 10.1021/nn503693h 10.1021/cm060988h 10.1146/annurev.bioeng.2.1.9 10.1038/nnano.2011.160 10.1039/c3tb20149j 10.1002/star.201400127 10.1016/j.talanta.2014.07.027 10.1081/MC-100101421 10.1002/adma.201302042 10.1021/la0504311 10.1021/nn1027104 10.1080/10601320500437268 10.1039/c3sm51490k 10.1016/j.biomaterials.2003.09.066 10.1073/pnas.202235299 10.1016/j.reactfunctpolym.2012.12.014 10.1039/C5RA26704H 10.1007/s10570-009-9340-y 10.1021/nn305559j 10.1002/adfm.200305197 10.1002/term.97 10.1002/adma.201003343 10.1002/jbm.b.30667 10.1039/C1RA00719J 10.1016/j.carbpol.2012.09.060 10.1039/b923873e 10.1007/s40843-014-0005-z 10.1002/anie.201411383 10.1002/(SICI)1097-4628(19990705)73:1<113::AID-APP13>3.0.CO;2-D 10.1016/j.msec.2016.01.042 10.1021/ja1062357 10.1016/j.msec.2013.03.026 10.1016/j.polymertesting.2015.03.021 10.1016/j.mechmat.2008.07.001 10.1021/ac403397r 10.1038/nbt1055 10.1021/acsnano.5b03644 10.1039/c3py01634j 10.1002/adma.201302441 10.1002/anie.201402751 10.1038/sj.mt.6300084 10.1016/j.carbpol.2010.12.023 10.1007/s10570-015-0683-2 10.1016/j.ab.2005.07.037 10.1016/j.jfoodeng.2011.10.030 10.1073/pnas.0506020102 10.1016/j.electacta.2014.03.036 10.1021/bm500405h 10.1016/j.bios.2011.10.032 10.1039/C5RA03294F 10.1039/C4RA09640A 10.1038/ncomms1792 10.1002/(SICI)1097-4636(200002)49:2<289::AID-JBM18>3.0.CO;2-M 10.1002/jps.24414 10.1021/bm040048v 10.1039/C3NR05214A 10.1016/j.jpowsour.2007.09.117 10.1021/ac302703y 10.2514/2.3902 10.1016/S0142-9612(98)00107-0 10.1007/s10570-013-0109-y 10.1021/ja070457+ 10.1002/jbm.a.32869 10.1016/S0142-9612(00)00116-2 10.1039/c0jm03587d |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2016.09.020 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 54 |
ExternalDocumentID | 27721086 10_1016_j_biomaterials_2016_09_020 S0142961216305221 1_s2_0_S0142961216305221 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c527t-2d356b072e88e7baf21ac7b5ef2da77e684f5a99805c026da58428d4c88b67b83 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Mon Jul 21 12:00:16 EDT 2025 Thu Jul 10 22:04:41 EDT 2025 Wed Feb 19 02:42:48 EST 2025 Thu Apr 24 22:53:00 EDT 2025 Tue Jul 01 01:19:29 EDT 2025 Fri Feb 23 02:31:37 EST 2024 Tue Feb 25 19:57:19 EST 2025 Tue Aug 26 17:20:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electroconductive Drug delivery Hydrogels Bioconductors Natural polymers |
Language | English |
License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-2d356b072e88e7baf21ac7b5ef2da77e684f5a99805c026da58428d4c88b67b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 27721086 |
PQID | 1835404756 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2000243705 proquest_miscellaneous_1835404756 pubmed_primary_27721086 crossref_citationtrail_10_1016_j_biomaterials_2016_09_020 crossref_primary_10_1016_j_biomaterials_2016_09_020 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2016_09_020 elsevier_clinicalkeyesjournals_1_s2_0_S0142961216305221 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2016_09_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dvir, Timko, Brigham, Naik, Karajanagi, Levy (bib184) 2011; 6 Yannas, Burke (bib72) 1980; 14 Cheng, Xing, Chen, Yang, Sun, Zhou (bib81) 2009; 121 Dash, Samal, Bartoli, Morelli, Smet, Dubruel (bib23) 2014; 6 Fu, Zhang, Yang (bib47) 2013; 92 Mire, Agrawal, Wallace, Calvert, Het Panhuis (bib163) 2011; 21 Ismail, Shin, Shin, Yoon, Shon, Kim (bib95) 2008; 129 Li, Huang, Zhang, Xu, Wang, Yang (bib127) 2014; 4 Oh, Park, Kim, Kim, Yang, Kong (bib14) 2010; 141 Kowalska-Ludwicka, Cala, Grobelski, Sygut, Jesionek-Kupnicka, Kolodziejczyk (bib54) 2013; 9 Shi, Gao, Feng, Ding, Cao, Kuga (bib144) 2014; 53 Li, Chen, Shao, Zhou, Wu, Yang (bib84) 2015; 11 Kim, Kim, Kim, Spinks, Kim, Wallace (bib188) 2006; 18 Malliaras, Friend (bib3) 2005; 58 Xiao, Li, Wang, Shi, Ooi (bib146) 2010; 92 Ogoshi, Takashima, Yamaguchi, Harada (bib162) 2007; 129 Guo, Qi, Orbach, Lu, Freage, Mironi-Harpaz (bib80) 2014; 50 Wang, Gao, Zhang, Wan (bib50) 2010; 30 Khan, Ul-Islam, Khattak, Ullah, Park (bib107) 2015; 127 Guiseppi-Elie (bib7) 2010; 31 Voge, Kariolis, MacDonald, Stegemann (bib148) 2008; 86 Li, He, Zhang, Hu (bib170) 2005; 1749 Ullah, Ul-Islam, Khan, Kim, Jang, Park (bib24) 2016; 6 Cho, Borgens (bib149) 2013; 1 Ricotti, Fujie, Vazão, Ciofani, Marotta, Brescia (bib158) 2013; 8 Xu, Cai, Zhang (bib27) 2016; 34 Li, Wang, Huang, Huang, Hu, Zheng (bib46) 2015; 16 Zhu, Han, Duoss, Golobic, Kuntz, Spadaccini (bib165) 2015; 6 Yeo, Geng, Ito, Kohane, Burdick, Radisic (bib70) 2007; 81 Young, Engler (bib13) 2011; 32 Liu, Yan, Jiang, Xiong, Du, Shi (bib181) 2014; 2014 Spizzirri, Hampel, Cirillo, Nicoletta, Hassan, Vittorio (bib178) 2013; 448 Rowley, Madlambayan, Mooney (bib17) 1999; 20 Thorngkham, Paradee, Niamlang, Sirivat (bib182) 2015; 104 Hur, Im, Kim, Kim, Chung, Kim (bib87) 2014; 8 Khan, Ul-Islam, Ullah, Kim, Park (bib108) 2015; 22 Frensemeier, Koplin, Jaeger, Kramer, Klemm (bib133) 2010; vol. 2010 Ono, Saito, Yura, Ishikawa, Kurita, Akaike (bib69) 2000; 49 Dai (bib2) 1999; 39 Merino, Martín, Kostarelos, Prato, Vázquez (bib128) 2015; 9 Ford, Bertram, Hynes, Michaud, Li, Young (bib115) 2006; 103 Sannino, Demitri, Madaghiele (bib123) 2009; 2 Liu, Hu, Zhuang, Zhang, Wei, Wang (bib151) 2012; 12 Burdick, Prestwich (bib11) 2011; 23 Huang, Chen, Nguyen, Tang, Zhang, Yang (bib45) 2013; 1 Kulkarni, Setty, Sa (bib180) 2010; 115 Klemm, Schumann, Udhardt, Marsch (bib49) 2001; 26 Bhattarai, Gunn, Zhang (bib176) 2010; 62 Kim, Gordonov, Bentley, Payne (bib63) 2013; 85 Kuo, Ma (bib56) 2001; 22 Lopez-Sanchez, Rincon, Wang, Brulhart, Stokes, Gidley (bib134) 2014; 15 Nakayama, Kakugo, Gong, Osada, Takai, Erata (bib38) 2004; 14 Chau, Collighan, Verderio, Addy, Griffin (bib75) 2005; 26 Yow, Lim, Yim, Lim, Leong (bib125) 2011; 3 Zhang, Zhang, Wu (bib12) 2013; 73 Hay (bib121) 2013 Lee, Mooney (bib122) 2001; 101 Gao, Sevostianov (bib137) 2016; 49 Zaborowska, Bodin, Bäckdahl, Popp, Goldstein, Gatenholm (bib52) 2010; 6 Mi (bib67) 2005; 6 Gao, Shi, Liu, Yang, Sevostianov, Silberschmidt (bib39) 2015; 44 Ul-Islam, Ha, Khan, Park (bib25) 2013; 92 Wu, Li, Boldt, Wang, Kuan, Tran (bib85) 2014; 50 Lee, Lee, Shin, Gu, Kim, Kang (bib110) 2010; 145 Moura, Faneca, Lima, Gil, Figueiredo (bib65) 2011; 12 Xing, Cheng, Yang, Chen, Zhang, Sun (bib83) 2011; 23 Tomer, Dimitrijevic, Florence (bib173) 1995; 33 Striegel (bib28) 2003; 48 Huang, Lü, Zhang, Shao (bib190) 2012; 8 Shin, Bae, Cha, Mun, Chen, Tekin (bib118) 2011; 6 Gao, Kuśmierczyk, Shi, Liu, Yang, Sevostianov (bib136) 2016; 59 Fu, Zhou, Zhang, Yang (bib42) 2013; 33 Luo, Xu, Zhang, Yang, Chen (bib64) 2005; 21 Li, Faulkner Jones, Dun, Jin, Chen, Xing (bib86) 2015; 54 Shin, Jung, Zalabany, Kim, Zorlutuna, Kim (bib94) 2013; 7 Stewart, Kobayashi, Higgins, Quigley, Jamali, Moulton (bib153) 2015; 21 Venkatesan, Lowe, Anil, Manivasagan, Kheraif, Kang (bib19) 2015; 67 Khan, Ul-Islam, Khattak, Ullah, Park (bib30) 2015; 22 Ismail, Martínez, Al Harrasi, Kim, Otero (bib189) 2011; 160 Yan, Wang, Ren, Wu, Caridade, Fan (bib74) 2010; 95 Gao, Shi, Lau, Liu, Yang, Silberschmidt (bib37) 2016; 62 Ullah, Ul-Islam, Khan, Kim, Park (bib35) 2016; 136 Hsieh, Yano, Nogi, Eichhorn (bib40) 2008; 15 Ul-Islam, Khattak, Ullah, Khan, Park (bib26) 2014; 21 Chai, Leong (bib138) 2007; 15 Zhang, Zhou, Li, Zhang, Huang, He (bib172) 2015; 131 Guhados, Wan, Hutter (bib41) 2005; 21 Angele, Abke, Kujat, Faltermeier, Schumann, Nerlich (bib73) 2004; 25 Lee, Khaing, Siegel, Schmidt (bib183) 2015; 5 Santo, Frias, Carida, Cancedda, Gomes, Mano (bib21) 2009; 10 Sano, Rojas, Gatenholm, Davalos (bib105) 2010; 38 Guvendiren, Burdick (bib16) 2012; 3 Augst, Kong, Mooney (bib18) 2006; 6 Mizuno, Glowacki (bib77) 1996; 17 Mandal, Kundu (bib113) 2009; 30 Jus, Stachel, Schloegl, Pretzler, Friess, Meyer (bib76) 2011; 31 Svensson, Nicklasson, Harrah, Panilaitis, Kaplan, Brittberg (bib48) 2005; 26 Shi, Zang, Jiang, Huang, Lu, Ma (bib98) 2012; 2 Peppas, Huang, Torres-Lugo, Ward, Zhang (bib10) 2000; 2 Sirivisoot, Pareta, Harrison (bib147) 2014; 4 Thiele, Ma, Bruekers, Ma, Huck (bib6) 2014; 26 Thébaud, Pierron, Bareille, Le Visage, Letourneur, Bordenave (bib22) 2007; 18 Carletti, Motta, Migliaresi (bib111) 2011 Lee, Peng, Yang, Roh, Funabashi, Park (bib82) 2012; 7 Bäckdahl, Helenius, Bodin, Nannmark, Johansson, Risberg (bib51) 2006; 27 Astley, Chanliaud, Donald, Gidley (bib43) 2003; 32 Sayyar, Murray, Thompson, Chung, Officer, Gambhir (bib92) 2015; 3 Fatoni, Numnuam, Kanatharana, Limbut, Thavarungkul (bib167) 2014; 130 Subramony, Dargis, Castillo, Azeloglu, Tracey, Su (bib130) 2013; 34 Li, Rodrigues, Tomas (bib4) 2012; 41 Eftimov, Stefanova, Lalchev, Georgiev (bib152) 2015; 29 Malda, Visser, Melchels, Jüngst, Hennink, Dhert (bib5) 2013; 25 Liu, Cheng, Chen, Hou, Bai, Xi (bib143) 2014; 6 Chen, Dong, Ge, Guo, Ma (bib187) 2015; 7 Zhao, Kwak, Wang, Franz, White, Holladay (bib29) 2007; 67 Gross, Erkal, Lockwood, Chen, Spence (bib164) 2014; 86 Sekine, Ido, Miyake, Nagamine, Nishizawa (bib106) 2010; 132 Shi, Zheng, Wang, Lin, Fan (bib88) 2014; 4 Hou, Guo, Jiang (bib160) 2011; 40 Zhang, Li, Li, Guo, Ma (bib91) 2014; 82 Bar-Cohen (bib96) 2002; 39 Um, Lee, Park, Kwon, Umbach, Luo (bib58) 2006; 5 Zong, Cao, Ju (bib171) 2007; 40 Wei, Payne, Shi, Du (bib61) 2013; 9 Huang, Lee, Hsiao, Chen, Liu (bib174) 2011; 21 Guo, Song, Reid, Gu, Forrester, Jahoda (bib156) 2010; 130 Harley, Kim, Zaman, Yannas, Lauffenburger, Gibson (bib112) 2008; 95 Bhattarai, Gunn, Zhang (bib68) 2010; 62 Chang, Zhang (bib9) 2011; 84 MacDonald, Voge, Kariolis, Stegemann (bib140) 2008; 4 Zhang, Smith, Gorski (bib168) 2004; 76 Chenite, Chaput, Wang, Combes, Buschmann, Hoemann (bib66) 2000; 21 Liu, Zhao (bib177) 2006; 43 Gao, Shi, Kuśmierczyk, Liu, Yang, Sevostianov (bib135) 2016; 58 Eisenbarth (bib101) 2007; 9 Zang, Sun, Liu, Wang, Zhang, Liu (bib102) 2014; 128 Zhou, Chang, Zhang, Zhang (bib33) 2007; 7 Hu, Chen, Li, Shi, Shen, Zhang (bib100) 2009; 29 Ullah, Ul-Islam, Khan, Kim, Park (bib36) 2015; 132 Lutolf, Hubbell (bib139) 2005; 23 Putra, Kakugo, Furukawa, Gong, Osada, Uemura (bib103) 2008; 40 Zhao, Liu, Pan, Yu (bib8) 2013; 6 Guo, Jiang (bib161) 2014; 57 Li, Huang, Yang, Zhang, Zhang, Yang (bib192) 2014; 9 Sarker, Papageorgiou, Silva, Zehnder, Gul-E-Noor, Bertmer (bib57) 2014; 2 Li, Lin, Yang, Wan, Cui (bib31) 2009; 54 Shi, Qiu, Nie, Xiao, Payne, Du (bib60) 2013; 5 Shin, Aghaei Ghareh Bolagh, Dang, Topkaya, Gao, Yang (bib117) 2013; 25 Hu, Huang, Zhuang, Zhang, Lang, Chen (bib90) 2008; 9 Karageorgiou, Kaplan (bib116) 2005; 26 Ramón Azcón, Ahadian, Estili, Liang, Ostrovidov, Kaji (bib119) 2013; 25 McKenna, Mikkelsen, Wehr, Gidley, Menzies (bib44) 2009; 16 Khetan, Katz, Burdick (bib15) 2009; 5 Tang, Duan, Feng, Liu, Wang, Li (bib79) 2009 Guo, Cheng, Wu, Jiang, Gao, Li (bib159) 2013; 25 Sajesh, Jayakumar, Nair, Chennazhi (bib142) 2013; 62 Martins, Eng, Caridade, Mano, Reis, Vunjak-Novakovic (bib145) 2014; 15 Shi, Zhang, Phillips, Yang (bib55) 2014; 35 Uraki, Nemoto, Otsuka, Tamai, Sugiyama, Kishimoto (bib104) 2007; 69 Schulte, Ruffoni, Lambers, Christen, Webster, Kuhn (bib129) 2013; 8 Song, Zhao, Forrester, McCaig (bib157) 2002; 99 Paradee, Sirivat, Niamlang, Prissanaroon-Ouajai (bib179) 2012; 23 Shi, Phillips, Yang (bib97) 2013; 5 Kim, Kim, Kim (bib109) 2008; 176 Heo, Koh, Shim, Kim, Yim, Hwang (bib59) 2015 Charulatha, Rajaram (bib71) 2003; 24 Luo, Zeng, Liu, Zhang (bib34) 2015; 194 Collier, Camp, Hudson, Schmidt (bib89) 2000; 50 Wang, Wu, Guo, Ma (bib186) 2015; 9 Lee, Kim, Kim, Lee, Lee, Kim (bib175) 1999; 73 Drury, Mooney (bib120) 2003; 24 Rocha, Santo, Gomes, Reis, Mano (bib20) 2011; 26 Kunchornsup, Sirivat (bib32) 2014; 21 Li, Ge, Guo, Ma (bib150) 2014; 5 Aubin, Nichol, Hutson, Bae, Sieminski, Cropek (bib114) 2010; 31 Messerli, Graham (bib154) 2011; 221 Pok, Vitale, Eichmann, Benavides, Pasquali, Jacot (bib126) 2014; 8 Sehaqui, Ezekiel Mushi, Morimune, Salajkova, Nishino, Berglund (bib131) 2012; 4 Kim, Ampofo, Craft, Kim (bib132) 2008; 40 Li, Liu, Liu, Liu, Yao (bib169) 2005; 346 De Moura, Mattoso, Zucolotto (bib124) 2012; 109 Cen, Neoh, Li, Kang (bib141) 2004; 5 Abidian, Daneshvar, Egeland, Kipke, Cederna, Urbanchek (bib93) 2012; 1 Annabi, Tamayol, Uquillas, Akbari, Bertassoni, Cha (bib1) 2014; 26 Morán, Miguel, Lindman (bib78) 2010; 6 Shi, Li, Chen, Han, Yang (bib99) 2014; 6 Bäckdahl, Esguerra, Delbro, Risberg, Gatenholm (bib53) 2008; 2 Shi, Hu, Tu, Zhang, Wang, Xu (bib185) 2013; 9 Xu, Wu, Sun, Bai, Shi (bib191) 2010; 4 Liu, Yan, Jiang, Xiong, Du, Shi (bib62) 2014; 2014 Xing, Liu, Yu, Lian, Huang (bib166) 2012; 31 Huang, Cormie, Messerli, Robinson (bib155) 2009; 219 Chenite (10.1016/j.biomaterials.2016.09.020_bib66) 2000; 21 Zhang (10.1016/j.biomaterials.2016.09.020_bib172) 2015; 131 Klemm (10.1016/j.biomaterials.2016.09.020_bib49) 2001; 26 Shi (10.1016/j.biomaterials.2016.09.020_bib88) 2014; 4 Li (10.1016/j.biomaterials.2016.09.020_bib169) 2005; 346 Huang (10.1016/j.biomaterials.2016.09.020_bib190) 2012; 8 Oh (10.1016/j.biomaterials.2016.09.020_bib14) 2010; 141 Sano (10.1016/j.biomaterials.2016.09.020_bib105) 2010; 38 Li (10.1016/j.biomaterials.2016.09.020_bib170) 2005; 1749 Yan (10.1016/j.biomaterials.2016.09.020_bib74) 2010; 95 Annabi (10.1016/j.biomaterials.2016.09.020_bib1) 2014; 26 Yeo (10.1016/j.biomaterials.2016.09.020_bib70) 2007; 81 Liu (10.1016/j.biomaterials.2016.09.020_bib143) 2014; 6 Dvir (10.1016/j.biomaterials.2016.09.020_bib184) 2011; 6 Eisenbarth (10.1016/j.biomaterials.2016.09.020_bib101) 2007; 9 Huang (10.1016/j.biomaterials.2016.09.020_bib45) 2013; 1 Um (10.1016/j.biomaterials.2016.09.020_bib58) 2006; 5 Li (10.1016/j.biomaterials.2016.09.020_bib192) 2014; 9 Burdick (10.1016/j.biomaterials.2016.09.020_bib11) 2011; 23 Song (10.1016/j.biomaterials.2016.09.020_bib157) 2002; 99 Ogoshi (10.1016/j.biomaterials.2016.09.020_bib162) 2007; 129 Wang (10.1016/j.biomaterials.2016.09.020_bib50) 2010; 30 Carletti (10.1016/j.biomaterials.2016.09.020_bib111) 2011 Chang (10.1016/j.biomaterials.2016.09.020_bib9) 2011; 84 Mire (10.1016/j.biomaterials.2016.09.020_bib163) 2011; 21 Liu (10.1016/j.biomaterials.2016.09.020_bib151) 2012; 12 Kim (10.1016/j.biomaterials.2016.09.020_bib188) 2006; 18 Svensson (10.1016/j.biomaterials.2016.09.020_bib48) 2005; 26 Gao (10.1016/j.biomaterials.2016.09.020_bib137) 2016; 49 Messerli (10.1016/j.biomaterials.2016.09.020_bib154) 2011; 221 Fatoni (10.1016/j.biomaterials.2016.09.020_bib167) 2014; 130 Pok (10.1016/j.biomaterials.2016.09.020_bib126) 2014; 8 Li (10.1016/j.biomaterials.2016.09.020_bib31) 2009; 54 Guo (10.1016/j.biomaterials.2016.09.020_bib156) 2010; 130 Liu (10.1016/j.biomaterials.2016.09.020_bib62) 2014; 2014 Xing (10.1016/j.biomaterials.2016.09.020_bib166) 2012; 31 Zaborowska (10.1016/j.biomaterials.2016.09.020_bib52) 2010; 6 Hsieh (10.1016/j.biomaterials.2016.09.020_bib40) 2008; 15 Shi (10.1016/j.biomaterials.2016.09.020_bib98) 2012; 2 Xing (10.1016/j.biomaterials.2016.09.020_bib83) 2011; 23 Rocha (10.1016/j.biomaterials.2016.09.020_bib20) 2011; 26 Ono (10.1016/j.biomaterials.2016.09.020_bib69) 2000; 49 Dash (10.1016/j.biomaterials.2016.09.020_bib23) 2014; 6 Ismail (10.1016/j.biomaterials.2016.09.020_bib189) 2011; 160 Luo (10.1016/j.biomaterials.2016.09.020_bib34) 2015; 194 Heo (10.1016/j.biomaterials.2016.09.020_bib59) 2015 Zhao (10.1016/j.biomaterials.2016.09.020_bib8) 2013; 6 Dai (10.1016/j.biomaterials.2016.09.020_bib2) 1999; 39 Santo (10.1016/j.biomaterials.2016.09.020_bib21) 2009; 10 Shin (10.1016/j.biomaterials.2016.09.020_bib117) 2013; 25 Zhu (10.1016/j.biomaterials.2016.09.020_bib165) 2015; 6 Lee (10.1016/j.biomaterials.2016.09.020_bib122) 2001; 101 Zong (10.1016/j.biomaterials.2016.09.020_bib171) 2007; 40 McKenna (10.1016/j.biomaterials.2016.09.020_bib44) 2009; 16 Angele (10.1016/j.biomaterials.2016.09.020_bib73) 2004; 25 Hay (10.1016/j.biomaterials.2016.09.020_bib121) 2013 Merino (10.1016/j.biomaterials.2016.09.020_bib128) 2015; 9 Thébaud (10.1016/j.biomaterials.2016.09.020_bib22) 2007; 18 Jus (10.1016/j.biomaterials.2016.09.020_bib76) 2011; 31 Wei (10.1016/j.biomaterials.2016.09.020_bib61) 2013; 9 Shin (10.1016/j.biomaterials.2016.09.020_bib118) 2011; 6 Liu (10.1016/j.biomaterials.2016.09.020_bib181) 2014; 2014 Thorngkham (10.1016/j.biomaterials.2016.09.020_bib182) 2015; 104 Luo (10.1016/j.biomaterials.2016.09.020_bib64) 2005; 21 Uraki (10.1016/j.biomaterials.2016.09.020_bib104) 2007; 69 Wang (10.1016/j.biomaterials.2016.09.020_bib186) 2015; 9 Kunchornsup (10.1016/j.biomaterials.2016.09.020_bib32) 2014; 21 Li (10.1016/j.biomaterials.2016.09.020_bib127) 2014; 4 Stewart (10.1016/j.biomaterials.2016.09.020_bib153) 2015; 21 Mandal (10.1016/j.biomaterials.2016.09.020_bib113) 2009; 30 Putra (10.1016/j.biomaterials.2016.09.020_bib103) 2008; 40 Kim (10.1016/j.biomaterials.2016.09.020_bib132) 2008; 40 Huang (10.1016/j.biomaterials.2016.09.020_bib155) 2009; 219 Harley (10.1016/j.biomaterials.2016.09.020_bib112) 2008; 95 Sajesh (10.1016/j.biomaterials.2016.09.020_bib142) 2013; 62 Khan (10.1016/j.biomaterials.2016.09.020_bib108) 2015; 22 Kim (10.1016/j.biomaterials.2016.09.020_bib109) 2008; 176 Sayyar (10.1016/j.biomaterials.2016.09.020_bib92) 2015; 3 Sekine (10.1016/j.biomaterials.2016.09.020_bib106) 2010; 132 Spizzirri (10.1016/j.biomaterials.2016.09.020_bib178) 2013; 448 Bar-Cohen (10.1016/j.biomaterials.2016.09.020_bib96) 2002; 39 Schulte (10.1016/j.biomaterials.2016.09.020_bib129) 2013; 8 Sehaqui (10.1016/j.biomaterials.2016.09.020_bib131) 2012; 4 Zhang (10.1016/j.biomaterials.2016.09.020_bib91) 2014; 82 Subramony (10.1016/j.biomaterials.2016.09.020_bib130) 2013; 34 Malda (10.1016/j.biomaterials.2016.09.020_bib5) 2013; 25 MacDonald (10.1016/j.biomaterials.2016.09.020_bib140) 2008; 4 Hu (10.1016/j.biomaterials.2016.09.020_bib90) 2008; 9 Paradee (10.1016/j.biomaterials.2016.09.020_bib179) 2012; 23 Striegel (10.1016/j.biomaterials.2016.09.020_bib28) 2003; 48 Wu (10.1016/j.biomaterials.2016.09.020_bib85) 2014; 50 Li (10.1016/j.biomaterials.2016.09.020_bib150) 2014; 5 Shi (10.1016/j.biomaterials.2016.09.020_bib99) 2014; 6 Ul-Islam (10.1016/j.biomaterials.2016.09.020_bib25) 2013; 92 Abidian (10.1016/j.biomaterials.2016.09.020_bib93) 2012; 1 Yannas (10.1016/j.biomaterials.2016.09.020_bib72) 1980; 14 Ford (10.1016/j.biomaterials.2016.09.020_bib115) 2006; 103 Guo (10.1016/j.biomaterials.2016.09.020_bib159) 2013; 25 Malliaras (10.1016/j.biomaterials.2016.09.020_bib3) 2005; 58 Gao (10.1016/j.biomaterials.2016.09.020_bib39) 2015; 44 Xu (10.1016/j.biomaterials.2016.09.020_bib191) 2010; 4 Rowley (10.1016/j.biomaterials.2016.09.020_bib17) 1999; 20 Moura (10.1016/j.biomaterials.2016.09.020_bib65) 2011; 12 Bhattarai (10.1016/j.biomaterials.2016.09.020_bib176) 2010; 62 Shi (10.1016/j.biomaterials.2016.09.020_bib60) 2013; 5 Bäckdahl (10.1016/j.biomaterials.2016.09.020_bib53) 2008; 2 Guvendiren (10.1016/j.biomaterials.2016.09.020_bib16) 2012; 3 Hur (10.1016/j.biomaterials.2016.09.020_bib87) 2014; 8 Ramón Azcón (10.1016/j.biomaterials.2016.09.020_bib119) 2013; 25 Ullah (10.1016/j.biomaterials.2016.09.020_bib24) 2016; 6 Aubin (10.1016/j.biomaterials.2016.09.020_bib114) 2010; 31 Voge (10.1016/j.biomaterials.2016.09.020_bib148) 2008; 86 Khan (10.1016/j.biomaterials.2016.09.020_bib30) 2015; 22 Astley (10.1016/j.biomaterials.2016.09.020_bib43) 2003; 32 Nakayama (10.1016/j.biomaterials.2016.09.020_bib38) 2004; 14 Martins (10.1016/j.biomaterials.2016.09.020_bib145) 2014; 15 Shi (10.1016/j.biomaterials.2016.09.020_bib185) 2013; 9 Li (10.1016/j.biomaterials.2016.09.020_bib84) 2015; 11 Hu (10.1016/j.biomaterials.2016.09.020_bib100) 2009; 29 Gross (10.1016/j.biomaterials.2016.09.020_bib164) 2014; 86 Young (10.1016/j.biomaterials.2016.09.020_bib13) 2011; 32 Kim (10.1016/j.biomaterials.2016.09.020_bib63) 2013; 85 Eftimov (10.1016/j.biomaterials.2016.09.020_bib152) 2015; 29 Yow (10.1016/j.biomaterials.2016.09.020_bib125) 2011; 3 Lee (10.1016/j.biomaterials.2016.09.020_bib183) 2015; 5 Shin (10.1016/j.biomaterials.2016.09.020_bib94) 2013; 7 Gao (10.1016/j.biomaterials.2016.09.020_bib135) 2016; 58 Li (10.1016/j.biomaterials.2016.09.020_bib46) 2015; 16 Kuo (10.1016/j.biomaterials.2016.09.020_bib56) 2001; 22 Ismail (10.1016/j.biomaterials.2016.09.020_bib95) 2008; 129 Cen (10.1016/j.biomaterials.2016.09.020_bib141) 2004; 5 Zang (10.1016/j.biomaterials.2016.09.020_bib102) 2014; 128 Gao (10.1016/j.biomaterials.2016.09.020_bib136) 2016; 59 Khetan (10.1016/j.biomaterials.2016.09.020_bib15) 2009; 5 Shi (10.1016/j.biomaterials.2016.09.020_bib97) 2013; 5 Liu (10.1016/j.biomaterials.2016.09.020_bib177) 2006; 43 Khan (10.1016/j.biomaterials.2016.09.020_bib107) 2015; 127 Lee (10.1016/j.biomaterials.2016.09.020_bib110) 2010; 145 Ullah (10.1016/j.biomaterials.2016.09.020_bib35) 2016; 136 Chai (10.1016/j.biomaterials.2016.09.020_bib138) 2007; 15 Cheng (10.1016/j.biomaterials.2016.09.020_bib81) 2009; 121 Sarker (10.1016/j.biomaterials.2016.09.020_bib57) 2014; 2 Augst (10.1016/j.biomaterials.2016.09.020_bib18) 2006; 6 Thiele (10.1016/j.biomaterials.2016.09.020_bib6) 2014; 26 Guo (10.1016/j.biomaterials.2016.09.020_bib161) 2014; 57 Mi (10.1016/j.biomaterials.2016.09.020_bib67) 2005; 6 Hou (10.1016/j.biomaterials.2016.09.020_bib160) 2011; 40 Zhang (10.1016/j.biomaterials.2016.09.020_bib168) 2004; 76 Zhou (10.1016/j.biomaterials.2016.09.020_bib33) 2007; 7 Lopez-Sanchez (10.1016/j.biomaterials.2016.09.020_bib134) 2014; 15 Chen (10.1016/j.biomaterials.2016.09.020_bib187) 2015; 7 Lee (10.1016/j.biomaterials.2016.09.020_bib82) 2012; 7 Bhattarai (10.1016/j.biomaterials.2016.09.020_bib68) 2010; 62 Li (10.1016/j.biomaterials.2016.09.020_bib4) 2012; 41 Venkatesan (10.1016/j.biomaterials.2016.09.020_bib19) 2015; 67 Karageorgiou (10.1016/j.biomaterials.2016.09.020_bib116) 2005; 26 Sannino (10.1016/j.biomaterials.2016.09.020_bib123) 2009; 2 De Moura (10.1016/j.biomaterials.2016.09.020_bib124) 2012; 109 Kulkarni (10.1016/j.biomaterials.2016.09.020_bib180) 2010; 115 Guiseppi-Elie (10.1016/j.biomaterials.2016.09.020_bib7) 2010; 31 Shi (10.1016/j.biomaterials.2016.09.020_bib55) 2014; 35 Tomer (10.1016/j.biomaterials.2016.09.020_bib173) 1995; 33 Chau (10.1016/j.biomaterials.2016.09.020_bib75) 2005; 26 Peppas (10.1016/j.biomaterials.2016.09.020_bib10) 2000; 2 Zhao (10.1016/j.biomaterials.2016.09.020_bib29) 2007; 67 Collier (10.1016/j.biomaterials.2016.09.020_bib89) 2000; 50 Li (10.1016/j.biomaterials.2016.09.020_bib86) 2015; 54 Morán (10.1016/j.biomaterials.2016.09.020_bib78) 2010; 6 Ul-Islam (10.1016/j.biomaterials.2016.09.020_bib26) 2014; 21 Mizuno (10.1016/j.biomaterials.2016.09.020_bib77) 1996; 17 Zhang (10.1016/j.biomaterials.2016.09.020_bib12) 2013; 73 Shi (10.1016/j.biomaterials.2016.09.020_bib144) 2014; 53 Kowalska-Ludwicka (10.1016/j.biomaterials.2016.09.020_bib54) 2013; 9 Lutolf (10.1016/j.biomaterials.2016.09.020_bib139) 2005; 23 Ullah (10.1016/j.biomateria |
References_xml | – volume: 26 start-page: 125 year: 2014 end-page: 148 ident: bib6 article-title: 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide publication-title: Adv. Mater. – volume: 2014 start-page: 8 year: 2014 ident: bib181 article-title: Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel publication-title: Int. J. Polym. Sci. – volume: 67 start-page: 381 year: 2015 end-page: 390 ident: bib19 article-title: Seaweed polysaccharides and their potential biomedical applications publication-title: Starch – Stärke – volume: 10 start-page: 1392 year: 2009 end-page: 1401 ident: bib21 article-title: Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications publication-title: Biomacromolecules – volume: 32 start-page: 28 year: 2003 end-page: 35 ident: bib43 article-title: Tensile deformation of bacterial cellulose composites publication-title: Int. J. Biol. Macromol. – volume: 95 start-page: 4013 year: 2008 end-page: 4024 ident: bib112 article-title: Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions publication-title: Biophys. J. – volume: 20 start-page: 45 year: 1999 end-page: 53 ident: bib17 article-title: Alginate hydrogels as synthetic extracellular matrix materials publication-title: Biomaterials – volume: 92 start-page: 766 year: 2010 end-page: 772 ident: bib146 article-title: Incorporation of collagen in poly (3, 4-ethylenedioxythiophene) for a bifunctional film with high bio-and electrochemical activity publication-title: J. Biomed. Mater. Res. A – volume: 92 start-page: 360 year: 2013 end-page: 366 ident: bib25 article-title: Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose publication-title: Carbohyd. Polym. – volume: 25 start-page: 5011 year: 2013 end-page: 5028 ident: bib5 article-title: 25th anniversary article: engineering hydrogels for biofabrication publication-title: Adv. Mater. – volume: 50 start-page: 574 year: 2000 end-page: 584 ident: bib89 article-title: Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications publication-title: J. Biomed. Mater. Res. – volume: 132 start-page: 13174 year: 2010 end-page: 13175 ident: bib106 article-title: Conducting polymer electrodes printed on hydrogel publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3143 year: 2010 end-page: 3156 ident: bib78 article-title: DNA gel particles publication-title: Soft Mat. – volume: 115 start-page: 1180 year: 2010 end-page: 1188 ident: bib180 article-title: Polyacrylamide-g-alginate-based electrically responsive hydrogel for drug delivery application: synthesis, characterization, and formulation development publication-title: J. Appl. Polym. Sci. – volume: 21 start-page: 6642 year: 2005 end-page: 6646 ident: bib41 article-title: Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy publication-title: Langmuir – volume: 9 start-page: 2131 year: 2013 end-page: 2135 ident: bib61 article-title: Electrodeposition of a biopolymeric hydrogel in track-etched micropores publication-title: Soft Mat. – volume: 1749 start-page: 43 year: 2005 end-page: 51 ident: bib170 article-title: An electrochemical investigation of hemoglobin and catalase incorporated in collagen films publication-title: Biochim. Biophys. Acta (BBA)-Proteins Proteom. – volume: 131 start-page: 243 year: 2015 end-page: 248 ident: bib172 article-title: Hydrogen peroxide biosensor based on microperoxidase-11 immobilized on flexible MWCNTs-BC nanocomposite film publication-title: Talanta – volume: 50 start-page: 4065 year: 2014 end-page: 4068 ident: bib80 article-title: Reversible Ag+-crosslinked DNA hydrogels publication-title: Chem. Commun. – volume: 40 start-page: 1001 year: 2008 end-page: 1011 ident: bib132 article-title: Modeling elastic, viscous and creep characteristics of cellulose electro-active paper publication-title: Mech. Mater. – volume: 92 start-page: 1432 year: 2013 end-page: 1442 ident: bib47 article-title: Present status and applications of bacterial cellulose-based materials for skin tissue repair publication-title: Carbohyd. Polym. – volume: 11 start-page: 1138 year: 2015 end-page: 1143 ident: bib84 article-title: A writable polypeptide–DNA hydrogel with rationally designed multi-modification sites publication-title: Small – volume: 3 start-page: 481 year: 2015 end-page: 490 ident: bib92 article-title: Processable conducting graphene/chitosan hydrogels for tissue engineering publication-title: J. Mater. Chem. B – volume: 40 start-page: 2385 year: 2011 end-page: 2401 ident: bib160 article-title: Biomimetic smart nanopores and nanochannels publication-title: Chem. Soc. Rev. – volume: 9 start-page: 4686 year: 2015 end-page: 4697 ident: bib128 article-title: Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery publication-title: ACS Nano – volume: 50 start-page: 14620 year: 2014 end-page: 14622 ident: bib85 article-title: Programmable protein–DNA hybrid hydrogels for the immobilization and release of functional proteins publication-title: Chem. Commun. – volume: 5 start-page: 39228 year: 2015 end-page: 39231 ident: bib183 article-title: Surface modification of neural electrodes with a pyrrole-hyaluronic acid conjugate to attenuate reactive astrogliosis in vivo publication-title: RSC Adv. – volume: 25 start-page: 6385 year: 2013 end-page: 6391 ident: bib117 article-title: Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide publication-title: Adv. Mater. – volume: 16 start-page: 780 year: 2015 end-page: 789 ident: bib46 article-title: Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip publication-title: Biomacromolecules – volume: 2 start-page: 353 year: 2009 end-page: 373 ident: bib123 article-title: Biodegradable cellulose-based hydrogels: design and applications publication-title: Materials – volume: 25 start-page: 6064 year: 2013 end-page: 6068 ident: bib159 article-title: Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane publication-title: Adv. Mater. – volume: 58 start-page: 53 year: 2005 end-page: 58 ident: bib3 article-title: An organic electronics primer publication-title: Phys. Today – volume: 129 start-page: 834 year: 2008 end-page: 840 ident: bib95 article-title: Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization publication-title: Sens. Actuat. B Chem. – volume: 34 start-page: 1942 year: 2013 end-page: 1953 ident: bib130 article-title: The guidance of stem cell differentiation by substrate alignment and mechanical stimulation publication-title: Biomaterials – volume: 130 start-page: 2320 year: 2010 end-page: 2327 ident: bib156 article-title: Effects of physiological electric fields on migration of human dermal fibroblasts publication-title: J. Invest. Dermatol. – volume: 6 start-page: 3132 year: 2014 end-page: 3140 ident: bib143 article-title: Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide publication-title: ACS Appl. Mater. Inter. – volume: 9 start-page: 309 year: 2014 end-page: 317 ident: bib192 article-title: Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices publication-title: Nano Energy – volume: 1 start-page: 4166 year: 2013 end-page: 4170 ident: bib149 article-title: Electrically controlled release of the nerve growth factor from a collagen–carbon nanotube composite for supporting neuronal growth publication-title: J. Mater. Chem. B – volume: 8 start-page: e71707 year: 2013 ident: bib158 article-title: Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels publication-title: PloS One – volume: 4 start-page: 1043 year: 2012 end-page: 1049 ident: bib131 article-title: Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing publication-title: ACS Appl. Mater. Inter. – volume: 23 start-page: 47 year: 2005 end-page: 55 ident: bib139 article-title: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering publication-title: Nat. Biotechnol. – start-page: 1 year: 2015 end-page: 11 ident: bib59 article-title: Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering publication-title: Drug Deliv. Transl. Res. – volume: 23 start-page: 999 year: 2012 end-page: 1010 ident: bib179 article-title: Effects of crosslinking ratio, model drugs, and electric field strength on electrically controlled release for alginate-based hydrogel publication-title: J. Mater. Sci. Mater. Med. – volume: 54 start-page: 3957 year: 2015 end-page: 3961 ident: bib86 article-title: Rapid formation of a supramolecular polypeptide–DNA hydrogel for in situ three-dimensional multilayer bioprinting publication-title: Angew. Chem. Int. Ed. – volume: 121 start-page: 7796 year: 2009 end-page: 7799 ident: bib81 article-title: A pH-triggered, fast-responding DNA hydrogel publication-title: Angew. Chem. – volume: 39 start-page: 273 year: 1999 end-page: 387 ident: bib2 article-title: Conjugated and fullerene-containing polymers for electronic and photonic applications: advanced syntheses and microlithographic fabrications publication-title: J. Macromol. Sci. C – volume: 2014 year: 2014 ident: bib62 article-title: Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel publication-title: Int. J. Polym. Sci. – volume: 128 start-page: 314 year: 2014 end-page: 318 ident: bib102 article-title: Ordered manufactured bacterial cellulose as biomaterial of tissue engineering publication-title: Mater. Lett. – volume: 4 start-page: 7358 year: 2010 end-page: 7362 ident: bib191 article-title: Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels publication-title: ACS Nano – volume: 6 start-page: 975 year: 2005 end-page: 987 ident: bib67 article-title: Synthesis and characterization of a novel chitosan-gelatin bioconjugate with fluorescence emission publication-title: Biomacromolecules – volume: 8 start-page: 4609 year: 2012 end-page: 4615 ident: bib190 article-title: Glucono-δ-lactone controlled assembly of graphene oxide hydrogels with selectively reversible gel–sol transition publication-title: Soft Mat. – volume: 48 start-page: 73 year: 2003 end-page: 77 ident: bib28 article-title: Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl publication-title: J. Chil. Chem. Soc. – volume: 73 start-page: 923 year: 2013 end-page: 928 ident: bib12 article-title: Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique publication-title: React. Funct. Polym. – volume: 38 start-page: 2475 year: 2010 end-page: 2484 ident: bib105 article-title: Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers publication-title: Ann. Biomed. Eng. – volume: 26 start-page: 5474 year: 2005 end-page: 5491 ident: bib116 article-title: Porosity of 3D biomaterial scaffolds and osteogenesis publication-title: Biomaterials – volume: 12 start-page: 241 year: 2012 end-page: 250 ident: bib151 article-title: Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin publication-title: Macromol. Biosci. – volume: 4 year: 2014 ident: bib127 article-title: Flexible supercapacitors based on bacterial cellulose paper electrodes publication-title: Adv. Energy Mater. – volume: 136 start-page: 908 year: 2016 end-page: 916 ident: bib35 article-title: Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system publication-title: Carbohyd. Polym. – volume: 4 start-page: 20130050 year: 2014 ident: bib147 article-title: Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration publication-title: Interface Focus – volume: 109 start-page: 520 year: 2012 end-page: 524 ident: bib124 article-title: Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging publication-title: J. Food Eng. – volume: 21 start-page: 2155 year: 2000 end-page: 2161 ident: bib66 article-title: Novel injectable neutral solutions of chitosan form biodegradable gels in situ publication-title: Biomaterials – volume: 82 start-page: 81 year: 2014 end-page: 88 ident: bib91 article-title: Non-cytotoxic conductive carboxymethyl-chitosan/aniline pentamer hydrogels publication-title: React. Funct. Polym. – volume: 30 start-page: 214 year: 2010 end-page: 218 ident: bib50 article-title: Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial publication-title: Mater. Sci. Eng. C – volume: 6 start-page: 22424 year: 2016 end-page: 22435 ident: bib24 article-title: In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system publication-title: RSC Adv. – volume: 62 start-page: 130 year: 2016 end-page: 136 ident: bib37 article-title: Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel publication-title: Mater. Sci. Eng. C – volume: 21 start-page: 1 year: 2014 end-page: 9 ident: bib32 article-title: Thermo-electromechanical responses of 1-butyl-3-methylimidazolium chloride ionic liquid-cellulose gel publication-title: J. Polym. Res. – volume: 85 start-page: 2102 year: 2013 end-page: 2108 ident: bib63 article-title: Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor publication-title: Anal. Chem. – volume: 26 start-page: 85 year: 2014 end-page: 124 ident: bib1 article-title: 25th anniversary article: rational design and applications of hydrogels in regenerative medicine publication-title: Adv. Mater. – volume: 6 start-page: 362 year: 2011 end-page: 372 ident: bib118 article-title: Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation publication-title: ACS Nano – volume: 73 start-page: 113 year: 1999 end-page: 120 ident: bib175 article-title: Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid) publication-title: J. Appl. Polym. Sci. – volume: 33 start-page: 405 year: 1995 end-page: 413 ident: bib173 article-title: Electrically controlled release of macromolecules from cross-linked hyaluronic acid hydrogels publication-title: J. Control Release – volume: 40 start-page: 137 year: 2008 end-page: 142 ident: bib103 article-title: Production of bacterial cellulose with well oriented fibril on PDMS substrate publication-title: Polym. J. – volume: 23 start-page: H41 year: 2011 end-page: H56 ident: bib11 article-title: Hyaluronic acid hydrogels for biomedical applications publication-title: Adv. Mater. – volume: 21 start-page: 385 year: 2015 end-page: 393 ident: bib153 article-title: Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering publication-title: Tissue Eng. C Methods – volume: 9 start-page: 9167 year: 2015 end-page: 9179 ident: bib186 article-title: Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation publication-title: ACS Nano – volume: 34 start-page: 1281 year: 2016 end-page: 1289 ident: bib27 article-title: High strength cellulose composite films reinforced with clay for applications as antibacterial materials publication-title: Chin. J. Polym. Sci. – volume: 5 start-page: 797 year: 2006 end-page: 801 ident: bib58 article-title: Enzyme-catalysed assembly of DNA hydrogel publication-title: Nat. Mater. – volume: 2 start-page: 9 year: 2000 end-page: 29 ident: bib10 article-title: Physicochemical foundations and structural design of hydrogels in medicine and biology publication-title: Annu. Rev. Biomed. Eng. – volume: 26 start-page: 6518 year: 2005 end-page: 6529 ident: bib75 article-title: The cellular response to transglutaminase-cross-linked collagen publication-title: Biomaterials – volume: 221 start-page: 79 year: 2011 end-page: 92 ident: bib154 article-title: Extracellular electrical fields direct wound healing and regeneration publication-title: Biol. Bull. – volume: 21 start-page: 16077 year: 2011 end-page: 16085 ident: bib174 article-title: Characterization and drug release behavior of chip-like amphiphilic chitosan-silica hybrid hydrogel for electrically modulated release of ethosuximide: an in vitro study publication-title: J. Mater. Chem. – volume: 1 start-page: 2976 year: 2013 end-page: 2984 ident: bib45 article-title: Nano-cellulose 3D-networks as controlled-release drug carriers publication-title: J. Mater. Chem. B – volume: 86 start-page: 269 year: 2008 end-page: 277 ident: bib148 article-title: Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alignment publication-title: J. Biomed. Mater. Res. A – volume: 14 start-page: 65 year: 1980 end-page: 81 ident: bib72 article-title: Design of an artificial skin. I. Basic design principles publication-title: J. Biomed. Mater. Res. – volume: 67 start-page: 97 year: 2007 end-page: 103 ident: bib29 article-title: Interactions between cellulose and N-methylmorpholine-N-oxide publication-title: Carbohyd. Polym. – volume: 7 start-page: 2369 year: 2013 end-page: 2380 ident: bib94 article-title: Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators publication-title: ACS Nano – volume: 25 start-page: 2831 year: 2004 end-page: 2841 ident: bib73 article-title: Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices publication-title: Biomaterials – volume: 31 start-page: 2701 year: 2010 end-page: 2716 ident: bib7 article-title: Electroconductive hydrogels: synthesis, characterization and biomedical applications publication-title: Biomaterials – volume: 8 start-page: e62172 year: 2013 ident: bib129 article-title: Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level publication-title: PloS One – volume: 448 start-page: 115 year: 2013 end-page: 122 ident: bib178 article-title: Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems publication-title: Int. J. Pharm. – volume: 1 start-page: 762 year: 2012 end-page: 767 ident: bib93 article-title: Hybrid conducting polymer–hydrogel conduits for axonal growth and neural tissue engineering publication-title: Adv. Healthc. Mater. – volume: 59 start-page: 90 year: 2016 end-page: 98 ident: bib136 article-title: Through-thickness stress relaxation in bacterial cellulose hydrogel publication-title: J. Mech. Behav. Biomed. – volume: 160 start-page: 1180 year: 2011 end-page: 1190 ident: bib189 article-title: Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle publication-title: Sens. Actuat. B Chem. – volume: 26 start-page: 1561 year: 2001 end-page: 1603 ident: bib49 article-title: Bacterial synthesized cellulose—artificial blood vessels for microsurgery publication-title: Prog. Polym. Sci. – volume: 9 start-page: 2637 year: 2008 end-page: 2644 ident: bib90 article-title: Electroactive aniline pentamer cross-linking chitosan for stimulation growth of electrically sensitive cells publication-title: Biomacromolecules – volume: 7 start-page: 28273 year: 2015 end-page: 28285 ident: bib187 article-title: Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering publication-title: ACS Appl. Mater. Inter. – volume: 18 start-page: 339 year: 2007 end-page: 345 ident: bib22 article-title: Human endothelial progenitor cell attachment to polysaccharide-based hydrogels: a pre-requisite for vascular tissue engineering publication-title: J. Mater. Sci. Mater. Med. – volume: 22 start-page: 565 year: 2015 end-page: 579 ident: bib30 article-title: Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility publication-title: Cellulose – volume: 145 start-page: 89 year: 2010 end-page: 92 ident: bib110 article-title: Enhanced actuation of PPy/CNT hybrid fibers using porous structured DNA hydrogel publication-title: Sens. Actuat. B Chem. – volume: 346 start-page: 107 year: 2005 end-page: 114 ident: bib169 article-title: DNA biosensor based on chitosan film doped with carbon nanotubes publication-title: Anal. Biochem. – volume: 6 start-page: 2856 year: 2013 end-page: 2870 ident: bib8 article-title: 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices publication-title: Energy Environ. Sci. – volume: 14 start-page: 1124 year: 2004 end-page: 1128 ident: bib38 article-title: High mechanical strength double-network hydrogel with bacterial cellulose publication-title: Adv. Funct. Mater. – volume: 39 start-page: 822 year: 2002 end-page: 827 ident: bib96 article-title: Electroactive polymers as artificial muscles: a review publication-title: J. Spacecr. Rockets – volume: 41 start-page: 2193 year: 2012 end-page: 2221 ident: bib4 article-title: Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications publication-title: Chem. Soc. Rev. – volume: 21 start-page: 190 year: 2005 end-page: 196 ident: bib64 article-title: Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly publication-title: Biosens. Bioelectron. – volume: 24 start-page: 4337 year: 2003 end-page: 4351 ident: bib120 article-title: Hydrogels for tissue engineering: scaffold design variables and applications publication-title: Biomaterials – volume: 194 start-page: 403 year: 2015 end-page: 406 ident: bib34 article-title: An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: magnetic chitosan/cellulose microspheres publication-title: Bioresour. Technol. – volume: 176 start-page: 396 year: 2008 end-page: 402 ident: bib109 article-title: Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size publication-title: J. Power Sources – volume: 32 start-page: 1002 year: 2011 end-page: 1009 ident: bib13 article-title: Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro publication-title: Biomaterials – volume: 49 start-page: 765 year: 2016 end-page: 772 ident: bib137 article-title: Connection between elastic and electrical properties of cortical bone publication-title: J. Biomech. – volume: 53 start-page: 5380 year: 2014 end-page: 5384 ident: bib144 article-title: In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 623 year: 2006 end-page: 633 ident: bib18 article-title: Alginate hydrogels as biomaterials publication-title: Macromol. Biosci. – volume: 101 start-page: 1869 year: 2001 end-page: 1880 ident: bib122 article-title: Hydrogels for tissue engineering publication-title: Chem. Rev. – volume: 33 start-page: 2995 year: 2013 end-page: 3000 ident: bib42 article-title: Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation publication-title: Mater. Sci. Eng. C – volume: 21 start-page: 433 year: 2014 end-page: 447 ident: bib26 article-title: Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications publication-title: Cellulose – volume: 31 start-page: 277 year: 2012 end-page: 283 ident: bib166 article-title: Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine publication-title: Biosens. Bioelectron. – volume: 86 start-page: 3240 year: 2014 end-page: 3253 ident: bib164 article-title: Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences publication-title: Anal. Chem. – volume: 6 start-page: 720 year: 2011 end-page: 725 ident: bib184 article-title: Nanowired three-dimensional cardiac patches publication-title: Nat. Nanotechnol. – volume: 18 start-page: 5805 year: 2006 end-page: 5809 ident: bib188 article-title: Self-oscillatory actuation at constant DC voltage with pH-sensitive chitosan/polyaniline hydrogel blend publication-title: Chem. Mater. – volume: 127 start-page: 86 year: 2015 end-page: 93 ident: bib107 article-title: Bacterial cellulose–poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) composites for optoelectronic applications publication-title: Carbohyd. Polym. – volume: 57 start-page: 2 year: 2014 end-page: 6 ident: bib161 article-title: Two-dimensional ion channel based soft-matter piezoelectricity publication-title: Sci. China Mater. – volume: 40 start-page: 1556 year: 2007 end-page: 1568 ident: bib171 article-title: Amperometric biosensor for hydrogen peroxide based on myoglobin doped multiwalled carbon nanotube enhanced grafted collagen matrix publication-title: Anal. Lett. – volume: 17 start-page: 1819 year: 1996 end-page: 1825 ident: bib77 article-title: Three-dimensional composite of demineralized bone powder and collagen for in vitro analysis of chondroinduction of human dermal fibroblasts publication-title: Biomaterials – volume: 2 start-page: 1040 year: 2012 end-page: 1046 ident: bib98 article-title: In situ nano-assembly of bacterial cellulose–polyaniline composites publication-title: RSC Adv. – volume: 8 start-page: 10066 year: 2014 end-page: 10076 ident: bib87 article-title: Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel publication-title: ACS Nano – volume: 5 start-page: 2880 year: 2014 end-page: 2890 ident: bib150 article-title: In situ forming biodegradable electroactive hydrogels publication-title: Polym. Chem-UK – volume: 43 start-page: 345 year: 2006 end-page: 354 ident: bib177 article-title: Electroresponsive behavior of gelatin/alginate semi-interpenetrating polymer network membranes under direct-current electric field publication-title: J. Macromol. Sci. A – volume: 6 start-page: 3211 year: 2014 end-page: 3218 ident: bib23 article-title: Biofunctionalization of Ulvan Scaffolds for bone tissue engineering publication-title: ACS Appl. Mater. Inter. – volume: 5 start-page: 3194 year: 2013 end-page: 3201 ident: bib97 article-title: Nanocellulose electroconductive composites publication-title: Nanoscale – volume: 49 start-page: 289 year: 2000 end-page: 295 ident: bib69 article-title: Photocrosslinkable chitosan as a biological adhesive publication-title: J. Biomed. Mater. Res. – volume: 4 start-page: 47056 year: 2014 end-page: 47065 ident: bib88 article-title: pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery publication-title: RSC Adv. – volume: 103 start-page: 2512 year: 2006 end-page: 2517 ident: bib115 article-title: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks invivo publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 62 start-page: 83 year: 2010 end-page: 99 ident: bib176 article-title: Chitosan-based hydrogels for controlled, localized drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 132 start-page: 286 year: 2015 end-page: 294 ident: bib36 article-title: Innovative production of bio-cellulose using a cell-free system derived from a single cell line publication-title: Carbohyd. Polym. – volume: 2 start-page: 320 year: 2008 end-page: 330 ident: bib53 article-title: Engineering microporosity in bacterial cellulose scaffolds publication-title: J. Tissue Eng. Regen. M. – volume: 58 start-page: 153 year: 2016 end-page: 159 ident: bib135 article-title: Time-dependent rheological behaviour of bacterial cellulose hydrogel publication-title: Mater. Sci. Eng. C – volume: 21 start-page: 2671 year: 2011 end-page: 2678 ident: bib163 article-title: Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials publication-title: J. Mater. Chem. – volume: 31 start-page: 1068 year: 2011 end-page: 1077 ident: bib76 article-title: Cross-linking of collagen with laccases and tyrosinases publication-title: Mater. Sci. Eng. C – volume: 99 start-page: 13577 year: 2002 end-page: 13582 ident: bib157 article-title: Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo publication-title: Proc. Natl. Acad. Sci. – volume: 84 start-page: 40 year: 2011 end-page: 53 ident: bib9 article-title: Cellulose-based hydrogels: present status and application prospects publication-title: Carbohyd. Polym. – volume: 15 start-page: 467 year: 2007 end-page: 480 ident: bib138 article-title: Biomaterials approach to expand and direct differentiation of stem cells publication-title: Mol. Ther. – volume: 29 start-page: 390 year: 2015 end-page: 394 ident: bib152 article-title: Effect of hydrophilic polymers on the wettability, static and dynamic, of solid substrate covered by confluent monolayer of air-damaged SIRC cells publication-title: Biotechnol. Biotec EQ – volume: vol. 2010 start-page: 38 year: 2010 end-page: 44 ident: bib133 article-title: Mechanical Properties of Bacterially Synthesized Nanocellulose Hydrogels publication-title: Macromolecular Symposia – volume: 5 start-page: 41001 year: 2013 ident: bib60 article-title: Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click’chemistry publication-title: Biofabrication – volume: 129 start-page: 4878 year: 2007 end-page: 4879 ident: bib162 article-title: Chemically-responsive sol−gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 792 year: 2012 ident: bib16 article-title: Stiffening hydrogels to probe short-and long-term cellular responses to dynamic mechanics publication-title: Nat. Commun. – volume: 44 start-page: 82 year: 2015 end-page: 92 ident: bib39 article-title: Inelastic behaviour of bacterial cellulose hydrogel: in aqua cyclic tests publication-title: Polym. Test. – volume: 141 start-page: 2 year: 2010 end-page: 12 ident: bib14 article-title: Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives publication-title: J. Control Release – volume: 9 start-page: 527 year: 2013 end-page: 534 ident: bib54 article-title: Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves publication-title: Arch. Med. Sci. – volume: 24 start-page: 759 year: 2003 end-page: 767 ident: bib71 article-title: Influence of different crosslinking treatments on the physical properties of collagen membranes publication-title: Biomaterials – volume: 15 start-page: 2274 year: 2014 end-page: 2284 ident: bib134 article-title: Micromechanics and poroelasticity of hydrated cellulose networks publication-title: Biomacromolecules – volume: 81 start-page: 312 year: 2007 end-page: 322 ident: bib70 article-title: Photocrosslinkable hydrogel for myocyte cell culture and injection publication-title: J. Biomed. Mater. Res. B Appl. Biomaterials – volume: 3 start-page: 527 year: 2011 end-page: 544 ident: bib125 article-title: A 3D electroactive polypyrrole-collagen fibrous scaffold for tissue engineering publication-title: Polym. Basel – volume: 5 start-page: 2238 year: 2004 end-page: 2246 ident: bib141 article-title: Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer publication-title: Biomacromolecules – volume: 31 start-page: 6941 year: 2010 end-page: 6951 ident: bib114 article-title: Directed 3D cell alignment and elongation in microengineered hydrogels publication-title: Biomaterials – volume: 62 start-page: 83 year: 2010 end-page: 99 ident: bib68 article-title: Chitosan-based hydrogels for controlled, localized drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 9 start-page: 1051 year: 2007 end-page: 1060 ident: bib101 article-title: Biomaterials for tissue engineering publication-title: Adv. Eng. Mater. – volume: 8 start-page: 9822 year: 2014 end-page: 9832 ident: bib126 article-title: Biocompatible carbon nanotube–chitosan scaffold matching the electrical conductivity of the heart publication-title: ACS Nano – volume: 104 start-page: 1795 year: 2015 end-page: 1803 ident: bib182 article-title: Permeation study of indomethacin from polycarbazole/natural rubber blend film for electric field controlled transdermal delivery publication-title: J. Pharm. Sci-US – volume: 9 start-page: 10129 year: 2013 end-page: 10134 ident: bib185 article-title: Electromechanical polyaniline–cellulose hydrogels with high compressive strength publication-title: Soft Mat. – volume: 26 start-page: 493 year: 2011 end-page: 507 ident: bib20 article-title: Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering publication-title: J. Bioact. Compat. Pol. – volume: 15 start-page: 635 year: 2014 end-page: 643 ident: bib145 article-title: Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering publication-title: Biomacromolecules – volume: 35 start-page: 539 year: 2014 end-page: 545 ident: bib55 article-title: Utilization of bacterial cellulose in food publication-title: Food Hydrocolloid – volume: 62 start-page: 465 year: 2013 end-page: 471 ident: bib142 article-title: Biocompatible conducting chitosan/polypyrrole–alginate composite scaffold for bone tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 6 start-page: 6962 year: 2015 ident: bib165 article-title: Highly compressible 3D periodic graphene aerogel microlattices publication-title: Nat. Commun. – start-page: 641 year: 2009 end-page: 643 ident: bib79 article-title: Fluorescent DNA–poly (phenylenevinylene) hybrid hydrogels for monitoring drug release publication-title: Chem. Commun. – volume: 15 start-page: 507 year: 2008 end-page: 513 ident: bib40 article-title: An estimation of the Young's modulus of bacterial cellulose filaments publication-title: Cellulose – year: 2013 ident: bib121 article-title: Cell Biology of Extracellular Matrix – volume: 2 start-page: 1470 year: 2014 end-page: 1482 ident: bib57 article-title: Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties publication-title: J. Mater. Chem. B – start-page: 17 year: 2011 end-page: 39 ident: bib111 article-title: Scaffolds for tissue engineering and 3D cell culture publication-title: 3D Cell Cult. Methods Protoc. – volume: 25 start-page: 4028 year: 2013 end-page: 4034 ident: bib119 article-title: Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers publication-title: Adv. Mater. – volume: 95 start-page: 465 year: 2010 end-page: 475 ident: bib74 article-title: Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications publication-title: J. Biomed. Mater. Res. A – volume: 219 start-page: 162 year: 2009 end-page: 172 ident: bib155 article-title: The involvement of Ca2+ and integrins in directional responses of zebrafish keratocytes to electric fields publication-title: J. Cell Physiol. – volume: 7 start-page: 804 year: 2007 end-page: 809 ident: bib33 article-title: Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution publication-title: Macromol. Biosci. – volume: 12 start-page: 3275 year: 2011 end-page: 3284 ident: bib65 article-title: In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking publication-title: Biomacromolecules – volume: 69 start-page: 1 year: 2007 end-page: 6 ident: bib104 article-title: Honeycomb-like architecture produced by living bacteria, gluconacetobacter xylinus publication-title: Carbohyd. Polym. – volume: 5 start-page: 1601 year: 2009 end-page: 1606 ident: bib15 article-title: Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels publication-title: Soft Mat. – volume: 4 start-page: 1583 year: 2008 end-page: 1592 ident: bib140 article-title: Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels publication-title: Acta Biomater. – volume: 16 start-page: 1047 year: 2009 end-page: 1055 ident: bib44 article-title: Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by gluconacetobacter xylinus strain ATCC 53524 publication-title: Cellulose – volume: 6 start-page: 2540 year: 2010 end-page: 2547 ident: bib52 article-title: Microporous bacterial cellulose as a potential scaffold for bone regeneration publication-title: Acta Biomater. – volume: 29 start-page: 1216 year: 2009 end-page: 1219 ident: bib100 article-title: In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes publication-title: Mater. Sci. Eng. C – volume: 23 start-page: 1117 year: 2011 end-page: 1121 ident: bib83 article-title: Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness publication-title: Adv. Mater. – volume: 76 start-page: 5045 year: 2004 end-page: 5050 ident: bib168 article-title: Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes publication-title: Anal. Chem. – volume: 54 start-page: 1622 year: 2009 end-page: 1625 ident: bib31 article-title: A novel cellulose hydrogel prepared from its ionic liquid solution publication-title: Chin. Sci. Bull. – volume: 30 start-page: 2956 year: 2009 end-page: 2965 ident: bib113 article-title: Cell proliferation and migration in silk fibroin 3D scaffolds publication-title: Biomaterials – volume: 130 start-page: 296 year: 2014 end-page: 304 ident: bib167 article-title: A conductive porous structured chitosan-grafted polyaniline cryogel for use as a sialic acid biosensor publication-title: Electrochim. Acta – volume: 22 start-page: 511 year: 2001 end-page: 521 ident: bib56 article-title: Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties publication-title: Biomaterials – volume: 22 start-page: 2141 year: 2015 end-page: 2148 ident: bib108 article-title: Synthesis and characterization of a novel bacterial cellulose–poly (3, 4-ethylenedioxythiophene)–poly (styrene sulfonate) composite for use in biomedical applications publication-title: Cellulose – volume: 26 start-page: 419 year: 2005 end-page: 431 ident: bib48 article-title: Bacterial cellulose as a potential scaffold for tissue engineering of cartilage publication-title: Biomaterials – volume: 27 start-page: 2141 year: 2006 end-page: 2149 ident: bib51 article-title: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells publication-title: Biomaterials – volume: 6 start-page: 970 year: 2014 end-page: 977 ident: bib99 article-title: Double network bacterial cellulose hydrogel to build a biology–device interface publication-title: Nanoscale – volume: 7 start-page: 816 year: 2012 end-page: 820 ident: bib82 article-title: A mechanical metamaterial made from a DNA hydrogel publication-title: Nat. Nanotechnol. – volume: 6 start-page: 2540 issue: 7 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib52 article-title: Microporous bacterial cellulose as a potential scaffold for bone regeneration publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.01.004 – volume: 21 start-page: 1 issue: 3 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib32 article-title: Thermo-electromechanical responses of 1-butyl-3-methylimidazolium chloride ionic liquid-cellulose gel publication-title: J. Polym. Res. doi: 10.1007/s10965-014-0369-8 – volume: 136 start-page: 908 year: 2016 ident: 10.1016/j.biomaterials.2016.09.020_bib35 article-title: Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2015.10.010 – volume: 29 start-page: 390 issue: 2 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib152 article-title: Effect of hydrophilic polymers on the wettability, static and dynamic, of solid substrate covered by confluent monolayer of air-damaged SIRC cells publication-title: Biotechnol. Biotec EQ doi: 10.1080/13102818.2014.997541 – volume: 6 start-page: 362 issue: 1 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib118 article-title: Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation publication-title: ACS Nano doi: 10.1021/nn203711s – volume: 6 start-page: 6962 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib165 article-title: Highly compressible 3D periodic graphene aerogel microlattices publication-title: Nat. Commun. doi: 10.1038/ncomms7962 – volume: 62 start-page: 465 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib142 article-title: Biocompatible conducting chitosan/polypyrrole–alginate composite scaffold for bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2013.09.028 – volume: 4 start-page: 20130050 issue: 1 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib147 article-title: Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration publication-title: Interface Focus doi: 10.1098/rsfs.2013.0050 – volume: 219 start-page: 162 issue: 1 year: 2009 ident: 10.1016/j.biomaterials.2016.09.020_bib155 article-title: The involvement of Ca2+ and integrins in directional responses of zebrafish keratocytes to electric fields publication-title: J. Cell Physiol. doi: 10.1002/jcp.21660 – volume: 3 start-page: 481 issue: 3 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib92 article-title: Processable conducting graphene/chitosan hydrogels for tissue engineering publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01636J – volume: 76 start-page: 5045 issue: 17 year: 2004 ident: 10.1016/j.biomaterials.2016.09.020_bib168 article-title: Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes publication-title: Anal. Chem. doi: 10.1021/ac049519u – volume: 31 start-page: 6941 issue: 27 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib114 article-title: Directed 3D cell alignment and elongation in microengineered hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.05.056 – volume: 31 start-page: 2701 issue: 10 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib7 article-title: Electroconductive hydrogels: synthesis, characterization and biomedical applications publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.12.052 – volume: vol. 2010 start-page: 38 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib133 article-title: Mechanical Properties of Bacterially Synthesized Nanocellulose Hydrogels – volume: 38 start-page: 2475 issue: 8 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib105 article-title: Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-9999-0 – volume: 4 start-page: 1043 issue: 2 year: 2012 ident: 10.1016/j.biomaterials.2016.09.020_bib131 article-title: Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing publication-title: ACS Appl. Mater. Inter. doi: 10.1021/am2016766 – volume: 33 start-page: 405 issue: 3 year: 1995 ident: 10.1016/j.biomaterials.2016.09.020_bib173 article-title: Electrically controlled release of macromolecules from cross-linked hyaluronic acid hydrogels publication-title: J. Control Release doi: 10.1016/0168-3659(94)00115-B – volume: 6 start-page: 975 issue: 2 year: 2005 ident: 10.1016/j.biomaterials.2016.09.020_bib67 article-title: Synthesis and characterization of a novel chitosan-gelatin bioconjugate with fluorescence emission publication-title: Biomacromolecules doi: 10.1021/bm049335p – volume: 9 start-page: 527 issue: 3 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib54 article-title: Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves publication-title: Arch. Med. Sci. doi: 10.5114/aoms.2013.33433 – volume: 86 start-page: 269 issue: 1 year: 2008 ident: 10.1016/j.biomaterials.2016.09.020_bib148 article-title: Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alignment publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.32029 – volume: 5 start-page: 41001 issue: 4 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib60 article-title: Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click’chemistry publication-title: Biofabrication doi: 10.1088/1758-5082/5/4/041001 – volume: 31 start-page: 1068 issue: 5 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib76 article-title: Cross-linking of collagen with laccases and tyrosinases publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2011.03.007 – volume: 12 start-page: 241 issue: 2 year: 2012 ident: 10.1016/j.biomaterials.2016.09.020_bib151 article-title: Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin publication-title: Macromol. Biosci. doi: 10.1002/mabi.201100227 – volume: 21 start-page: 16077 issue: 40 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib174 article-title: Characterization and drug release behavior of chip-like amphiphilic chitosan-silica hybrid hydrogel for electrically modulated release of ethosuximide: an in vitro study publication-title: J. Mater. Chem. doi: 10.1039/c1jm12376a – volume: 24 start-page: 4337 issue: 24 year: 2003 ident: 10.1016/j.biomaterials.2016.09.020_bib120 article-title: Hydrogels for tissue engineering: scaffold design variables and applications publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00340-5 – volume: 32 start-page: 1002 issue: 4 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib13 article-title: Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.10.020 – volume: 141 start-page: 2 issue: 1 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib14 article-title: Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives publication-title: J. Control Release doi: 10.1016/j.jconrel.2009.09.010 – volume: 18 start-page: 339 issue: 2 year: 2007 ident: 10.1016/j.biomaterials.2016.09.020_bib22 article-title: Human endothelial progenitor cell attachment to polysaccharide-based hydrogels: a pre-requisite for vascular tissue engineering publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-006-0698-1 – volume: 62 start-page: 83 issue: 1 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib68 article-title: Chitosan-based hydrogels for controlled, localized drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2009.07.019 – volume: 49 start-page: 765 issue: 5 year: 2016 ident: 10.1016/j.biomaterials.2016.09.020_bib137 article-title: Connection between elastic and electrical properties of cortical bone publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.02.019 – start-page: 17 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib111 article-title: Scaffolds for tissue engineering and 3D cell culture publication-title: 3D Cell Cult. Methods Protoc. doi: 10.1007/978-1-60761-984-0_2 – volume: 95 start-page: 4013 issue: 8 year: 2008 ident: 10.1016/j.biomaterials.2016.09.020_bib112 article-title: Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions publication-title: Biophys. J. doi: 10.1529/biophysj.107.122598 – volume: 121 start-page: 7796 issue: 41 year: 2009 ident: 10.1016/j.biomaterials.2016.09.020_bib81 article-title: A pH-triggered, fast-responding DNA hydrogel publication-title: Angew. Chem. doi: 10.1002/ange.200902538 – volume: 67 start-page: 97 issue: 1 year: 2007 ident: 10.1016/j.biomaterials.2016.09.020_bib29 article-title: Interactions between cellulose and N-methylmorpholine-N-oxide publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2006.04.019 – volume: 10 start-page: 1392 issue: 6 year: 2009 ident: 10.1016/j.biomaterials.2016.09.020_bib21 article-title: Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications publication-title: Biomacromolecules doi: 10.1021/bm8014973 – volume: 5 start-page: 1601 issue: 8 year: 2009 ident: 10.1016/j.biomaterials.2016.09.020_bib15 article-title: Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels publication-title: Soft Mat. doi: 10.1039/b820385g – volume: 221 start-page: 79 issue: 1 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib154 article-title: Extracellular electrical fields direct wound healing and regeneration publication-title: Biol. Bull. doi: 10.1086/BBLv221n1p79 – volume: 130 start-page: 2320 issue: 9 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib156 article-title: Effects of physiological electric fields on migration of human dermal fibroblasts publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2010.96 – volume: 17 start-page: 1819 issue: 18 year: 1996 ident: 10.1016/j.biomaterials.2016.09.020_bib77 article-title: Three-dimensional composite of demineralized bone powder and collagen for in vitro analysis of chondroinduction of human dermal fibroblasts publication-title: Biomaterials doi: 10.1016/0142-9612(96)00041-5 – volume: 50 start-page: 4065 issue: 31 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib80 article-title: Reversible Ag+-crosslinked DNA hydrogels publication-title: Chem. Commun. doi: 10.1039/c3cc49140d – volume: 21 start-page: 385 issue: 4 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib153 article-title: Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering publication-title: Tissue Eng. C Methods doi: 10.1089/ten.tec.2014.0338 – volume: 6 start-page: 623 issue: 8 year: 2006 ident: 10.1016/j.biomaterials.2016.09.020_bib18 article-title: Alginate hydrogels as biomaterials publication-title: Macromol. Biosci. doi: 10.1002/mabi.200600069 – volume: 16 start-page: 780 issue: 3 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib46 article-title: Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip publication-title: Biomacromolecules doi: 10.1021/bm501680s – volume: 92 start-page: 766 issue: 2 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib146 article-title: Incorporation of collagen in poly (3, 4-ethylenedioxythiophene) for a bifunctional film with high bio-and electrochemical activity publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.32412 – volume: 26 start-page: 125 issue: 1 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib6 article-title: 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide publication-title: Adv. Mater. doi: 10.1002/adma.201302958 – volume: 40 start-page: 1556 issue: 8 year: 2007 ident: 10.1016/j.biomaterials.2016.09.020_bib171 article-title: Amperometric biosensor for hydrogen peroxide based on myoglobin doped multiwalled carbon nanotube enhanced grafted collagen matrix publication-title: Anal. Lett. doi: 10.1080/00032710701380442 – volume: 145 start-page: 89 issue: 1 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib110 article-title: Enhanced actuation of PPy/CNT hybrid fibers using porous structured DNA hydrogel publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2009.11.043 – volume: 9 start-page: 4686 issue: 5 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib128 article-title: Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery publication-title: ACS Nano doi: 10.1021/acsnano.5b01433 – volume: 34 start-page: 1942 issue: 8 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib130 article-title: The guidance of stem cell differentiation by substrate alignment and mechanical stimulation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.11.012 – volume: 58 start-page: 153 year: 2016 ident: 10.1016/j.biomaterials.2016.09.020_bib135 article-title: Time-dependent rheological behaviour of bacterial cellulose hydrogel publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.08.019 – volume: 1749 start-page: 43 issue: 1 year: 2005 ident: 10.1016/j.biomaterials.2016.09.020_bib170 article-title: An electrochemical investigation of hemoglobin and catalase incorporated in collagen films publication-title: Biochim. Biophys. Acta (BBA)-Proteins Proteom. doi: 10.1016/j.bbapap.2005.02.002 – volume: 35 start-page: 539 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib55 article-title: Utilization of bacterial cellulose in food publication-title: Food Hydrocolloid doi: 10.1016/j.foodhyd.2013.07.012 – start-page: 641 issue: 6 year: 2009 ident: 10.1016/j.biomaterials.2016.09.020_bib79 article-title: Fluorescent DNA–poly (phenylenevinylene) hybrid hydrogels for monitoring drug release publication-title: Chem. Commun. doi: 10.1039/B817788K – volume: 448 start-page: 115 issue: 1 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib178 article-title: Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2013.03.013 – volume: 115 start-page: 1180 issue: 2 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib180 article-title: Polyacrylamide-g-alginate-based electrically responsive hydrogel for drug delivery application: synthesis, characterization, and formulation development publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.31203 – volume: 40 start-page: 137 issue: 2 year: 2008 ident: 10.1016/j.biomaterials.2016.09.020_bib103 article-title: Production of bacterial cellulose with well oriented fibril on PDMS substrate publication-title: Polym. J. doi: 10.1295/polymj.PJ2007180 – volume: 101 start-page: 1869 issue: 7 year: 2001 ident: 10.1016/j.biomaterials.2016.09.020_bib122 article-title: Hydrogels for tissue engineering publication-title: Chem. Rev. doi: 10.1021/cr000108x – volume: 27 start-page: 2141 issue: 9 year: 2006 ident: 10.1016/j.biomaterials.2016.09.020_bib51 article-title: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.10.026 – volume: 2014 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib62 article-title: Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel publication-title: Int. J. Polym. Sci. doi: 10.1155/2014/736898 – volume: 2 start-page: 353 issue: 2 year: 2009 ident: 10.1016/j.biomaterials.2016.09.020_bib123 article-title: Biodegradable cellulose-based hydrogels: design and applications publication-title: Materials doi: 10.3390/ma2020353 – volume: 34 start-page: 1281 issue: 10 year: 2016 ident: 10.1016/j.biomaterials.2016.09.020_bib27 article-title: High strength cellulose composite films reinforced with clay for applications as antibacterial materials publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-016-1840-2 – volume: 30 start-page: 214 issue: 1 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib50 article-title: Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2009.10.006 – volume: 8 start-page: e71707 issue: 8 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib158 article-title: Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels publication-title: PloS One doi: 10.1371/journal.pone.0071707 – volume: 26 start-page: 85 issue: 1 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib1 article-title: 25th anniversary article: rational design and applications of hydrogels in regenerative medicine publication-title: Adv. Mater. doi: 10.1002/adma.201303233 – volume: 40 start-page: 2385 issue: 5 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib160 article-title: Biomimetic smart nanopores and nanochannels publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00053a – start-page: 1 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib59 article-title: Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering publication-title: Drug Deliv. Transl. Res. – volume: 128 start-page: 314 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib102 article-title: Ordered manufactured bacterial cellulose as biomaterial of tissue engineering publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.04.183 – volume: 7 start-page: 804 issue: 6 year: 2007 ident: 10.1016/j.biomaterials.2016.09.020_bib33 article-title: Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution publication-title: Macromol. Biosci. doi: 10.1002/mabi.200700007 – volume: 5 start-page: 797 issue: 10 year: 2006 ident: 10.1016/j.biomaterials.2016.09.020_bib58 article-title: Enzyme-catalysed assembly of DNA hydrogel publication-title: Nat. Mater. doi: 10.1038/nmat1741 – volume: 58 start-page: 53 issue: 5 year: 2005 ident: 10.1016/j.biomaterials.2016.09.020_bib3 article-title: An organic electronics primer publication-title: Phys. Today doi: 10.1063/1.1995748 – volume: 32 start-page: 28 issue: 1 year: 2003 ident: 10.1016/j.biomaterials.2016.09.020_bib43 article-title: Tensile deformation of bacterial cellulose composites publication-title: Int. J. Biol. Macromol. doi: 10.1016/S0141-8130(03)00022-9 – volume: 25 start-page: 6385 issue: 44 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib117 article-title: Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide publication-title: Adv. Mater. doi: 10.1002/adma.201301082 – volume: 6 start-page: 2856 issue: 10 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib8 article-title: 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40997j – volume: 127 start-page: 86 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib107 article-title: Bacterial cellulose–poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) composites for optoelectronic applications publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2015.03.055 – volume: 6 start-page: 3132 issue: 5 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib143 article-title: Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide publication-title: ACS Appl. Mater. Inter. doi: 10.1021/am4057826 – volume: 8 start-page: e62172 issue: 4 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib129 article-title: Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level publication-title: PloS One doi: 10.1371/journal.pone.0062172 – volume: 1 start-page: 762 issue: 6 year: 2012 ident: 10.1016/j.biomaterials.2016.09.020_bib93 article-title: Hybrid conducting polymer–hydrogel conduits for axonal growth and neural tissue engineering publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201200182 – volume: 9 start-page: 1051 issue: 12 year: 2007 ident: 10.1016/j.biomaterials.2016.09.020_bib101 article-title: Biomaterials for tissue engineering publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200700287 – volume: 15 start-page: 635 issue: 2 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib145 article-title: Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering publication-title: Biomacromolecules doi: 10.1021/bm401679q – volume: 9 start-page: 2637 issue: 10 year: 2008 ident: 10.1016/j.biomaterials.2016.09.020_bib90 article-title: Electroactive aniline pentamer cross-linking chitosan for stimulation growth of electrically sensitive cells publication-title: Biomacromolecules doi: 10.1021/bm800705t – volume: 15 start-page: 507 issue: 4 year: 2008 ident: 10.1016/j.biomaterials.2016.09.020_bib40 article-title: An estimation of the Young's modulus of bacterial cellulose filaments publication-title: Cellulose doi: 10.1007/s10570-008-9206-8 – volume: 26 start-page: 419 issue: 4 year: 2005 ident: 10.1016/j.biomaterials.2016.09.020_bib48 article-title: Bacterial cellulose as a potential scaffold for tissue engineering of cartilage publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.02.049 – volume: 4 issue: 10 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib127 article-title: Flexible supercapacitors based on bacterial cellulose paper electrodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301655 – volume: 59 start-page: 90 year: 2016 ident: 10.1016/j.biomaterials.2016.09.020_bib136 article-title: Through-thickness stress relaxation in bacterial cellulose hydrogel publication-title: J. Mech. Behav. Biomed. doi: 10.1016/j.jmbbm.2015.12.021 – volume: 7 start-page: 816 issue: 12 year: 2012 ident: 10.1016/j.biomaterials.2016.09.020_bib82 article-title: A mechanical metamaterial made from a DNA hydrogel publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.211 – volume: 23 start-page: H41 issue: 12 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib11 article-title: Hyaluronic acid hydrogels for biomedical applications publication-title: Adv. Mater. doi: 10.1002/adma.201003963 – volume: 62 start-page: 83 issue: 1 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib176 article-title: Chitosan-based hydrogels for controlled, localized drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2009.07.019 – volume: 12 start-page: 3275 issue: 9 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib65 article-title: In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking publication-title: Biomacromolecules doi: 10.1021/bm200731x – volume: 24 start-page: 759 issue: 5 year: 2003 ident: 10.1016/j.biomaterials.2016.09.020_bib71 article-title: Influence of different crosslinking treatments on the physical properties of collagen membranes publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00412-X – volume: 50 start-page: 14620 issue: 93 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib85 article-title: Programmable protein–DNA hybrid hydrogels for the immobilization and release of functional proteins publication-title: Chem. Commun. doi: 10.1039/C4CC07144A – volume: 9 start-page: 2131 issue: 7 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib61 article-title: Electrodeposition of a biopolymeric hydrogel in track-etched micropores publication-title: Soft Mat. doi: 10.1039/c2sm26898a – volume: 22 start-page: 565 issue: 1 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib30 article-title: Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility publication-title: Cellulose doi: 10.1007/s10570-014-0528-4 – volume: 26 start-page: 6518 issue: 33 year: 2005 ident: 10.1016/j.biomaterials.2016.09.020_bib75 article-title: The cellular response to transglutaminase-cross-linked collagen publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.04.017 – volume: 69 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.biomaterials.2016.09.020_bib104 article-title: Honeycomb-like architecture produced by living bacteria, gluconacetobacter xylinus publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2006.08.021 – volume: 194 start-page: 403 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib34 article-title: An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: magnetic chitosan/cellulose microspheres publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.07.044 – volume: 23 start-page: 999 issue: 4 year: 2012 ident: 10.1016/j.biomaterials.2016.09.020_bib179 article-title: Effects of crosslinking ratio, model drugs, and electric field strength on electrically controlled release for alginate-based hydrogel publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-012-4571-0 – volume: 8 start-page: 10066 issue: 10 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib87 article-title: Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel publication-title: ACS Nano doi: 10.1021/nn502704g – volume: 5 start-page: 3194 issue: 8 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib97 article-title: Nanocellulose electroconductive composites publication-title: Nanoscale doi: 10.1039/c3nr00408b – volume: 6 start-page: 3211 issue: 5 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib23 article-title: Biofunctionalization of Ulvan Scaffolds for bone tissue engineering publication-title: ACS Appl. Mater. Inter. doi: 10.1021/am404912c – volume: 160 start-page: 1180 issue: 1 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib189 article-title: Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2011.09.044 – volume: 9 start-page: 309 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib192 article-title: Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.08.004 – volume: 132 start-page: 286 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib36 article-title: Innovative production of bio-cellulose using a cell-free system derived from a single cell line publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2015.06.037 – volume: 2014 start-page: 8 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib181 article-title: Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel publication-title: Int. J. Polym. Sci. doi: 10.1155/2014/736898 – volume: 11 start-page: 1138 issue: 9–10 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib84 article-title: A writable polypeptide–DNA hydrogel with rationally designed multi-modification sites publication-title: Small doi: 10.1002/smll.201401906 – volume: 30 start-page: 2956 issue: 15 year: 2009 ident: 10.1016/j.biomaterials.2016.09.020_bib113 article-title: Cell proliferation and migration in silk fibroin 3D scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.02.006 – volume: 82 start-page: 81 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib91 article-title: Non-cytotoxic conductive carboxymethyl-chitosan/aniline pentamer hydrogels publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2014.06.003 – volume: 2 start-page: 1470 issue: 11 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib57 article-title: Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties publication-title: J. Mater. Chem. B doi: 10.1039/c3tb21509a – volume: 25 start-page: 4028 issue: 29 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib119 article-title: Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers publication-title: Adv. Mater. doi: 10.1002/adma.201301300 – volume: 4 start-page: 1583 issue: 6 year: 2008 ident: 10.1016/j.biomaterials.2016.09.020_bib140 article-title: Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.07.005 – volume: 54 start-page: 1622 issue: 9 year: 2009 ident: 10.1016/j.biomaterials.2016.09.020_bib31 article-title: A novel cellulose hydrogel prepared from its ionic liquid solution publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-009-0207-2 – volume: 50 start-page: 574 issue: 4 year: 2000 ident: 10.1016/j.biomaterials.2016.09.020_bib89 article-title: Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications publication-title: J. Biomed. Mater. Res. doi: 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I – volume: 7 start-page: 28273 issue: 51 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib187 article-title: Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.5b10829 – volume: 26 start-page: 493 issue: 5 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib20 article-title: Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering publication-title: J. Bioact. Compat. Pol. doi: 10.1177/0883911511420700 – volume: 8 start-page: 4609 issue: 17 year: 2012 ident: 10.1016/j.biomaterials.2016.09.020_bib190 article-title: Glucono-δ-lactone controlled assembly of graphene oxide hydrogels with selectively reversible gel–sol transition publication-title: Soft Mat. doi: 10.1039/c2sm25090j – volume: 1 start-page: 4166 issue: 33 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib149 article-title: Electrically controlled release of the nerve growth factor from a collagen–carbon nanotube composite for supporting neuronal growth publication-title: J. Mater. Chem. B doi: 10.1039/c3tb20505c – volume: 41 start-page: 2193 issue: 6 year: 2012 ident: 10.1016/j.biomaterials.2016.09.020_bib4 article-title: Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15203C – volume: 92 start-page: 1432 issue: 2 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib47 article-title: Present status and applications of bacterial cellulose-based materials for skin tissue repair publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2012.10.071 – volume: 129 start-page: 834 issue: 2 year: 2008 ident: 10.1016/j.biomaterials.2016.09.020_bib95 article-title: Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2007.09.083 – volume: 26 start-page: 5474 issue: 27 year: 2005 ident: 10.1016/j.biomaterials.2016.09.020_bib116 article-title: Porosity of 3D biomaterial scaffolds and osteogenesis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.02.002 – volume: 14 start-page: 65 issue: 1 year: 1980 ident: 10.1016/j.biomaterials.2016.09.020_bib72 article-title: Design of an artificial skin. I. Basic design principles publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820140108 – volume: 29 start-page: 1216 issue: 4 year: 2009 ident: 10.1016/j.biomaterials.2016.09.020_bib100 article-title: In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2008.09.017 – volume: 26 start-page: 1561 issue: 9 year: 2001 ident: 10.1016/j.biomaterials.2016.09.020_bib49 article-title: Bacterial synthesized cellulose—artificial blood vessels for microsurgery publication-title: Prog. Polym. Sci. doi: 10.1016/S0079-6700(01)00021-1 – volume: 22 start-page: 511 issue: 6 year: 2001 ident: 10.1016/j.biomaterials.2016.09.020_bib56 article-title: Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00201-5 – volume: 21 start-page: 190 issue: 1 year: 2005 ident: 10.1016/j.biomaterials.2016.09.020_bib64 article-title: Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2004.07.029 – volume: 48 start-page: 73 issue: 1 year: 2003 ident: 10.1016/j.biomaterials.2016.09.020_bib28 article-title: Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl publication-title: J. Chil. Chem. Soc. – volume: 8 start-page: 9822 issue: 10 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib126 article-title: Biocompatible carbon nanotube–chitosan scaffold matching the electrical conductivity of the heart publication-title: ACS Nano doi: 10.1021/nn503693h – volume: 18 start-page: 5805 issue: 24 year: 2006 ident: 10.1016/j.biomaterials.2016.09.020_bib188 article-title: Self-oscillatory actuation at constant DC voltage with pH-sensitive chitosan/polyaniline hydrogel blend publication-title: Chem. Mater. doi: 10.1021/cm060988h – volume: 2 start-page: 9 issue: 1 year: 2000 ident: 10.1016/j.biomaterials.2016.09.020_bib10 article-title: Physicochemical foundations and structural design of hydrogels in medicine and biology publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.2.1.9 – volume: 3 start-page: 527 issue: 1 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib125 article-title: A 3D electroactive polypyrrole-collagen fibrous scaffold for tissue engineering publication-title: Polym. Basel – volume: 6 start-page: 720 issue: 11 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib184 article-title: Nanowired three-dimensional cardiac patches publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.160 – volume: 1 start-page: 2976 issue: 23 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib45 article-title: Nano-cellulose 3D-networks as controlled-release drug carriers publication-title: J. Mater. Chem. B doi: 10.1039/c3tb20149j – volume: 67 start-page: 381 issue: 5–6 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib19 article-title: Seaweed polysaccharides and their potential biomedical applications publication-title: Starch – Stärke doi: 10.1002/star.201400127 – volume: 131 start-page: 243 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib172 article-title: Hydrogen peroxide biosensor based on microperoxidase-11 immobilized on flexible MWCNTs-BC nanocomposite film publication-title: Talanta doi: 10.1016/j.talanta.2014.07.027 – volume: 39 start-page: 273 issue: 2 year: 1999 ident: 10.1016/j.biomaterials.2016.09.020_bib2 article-title: Conjugated and fullerene-containing polymers for electronic and photonic applications: advanced syntheses and microlithographic fabrications publication-title: J. Macromol. Sci. C doi: 10.1081/MC-100101421 – volume: 25 start-page: 5011 issue: 36 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib5 article-title: 25th anniversary article: engineering hydrogels for biofabrication publication-title: Adv. Mater. doi: 10.1002/adma.201302042 – volume: 21 start-page: 6642 issue: 14 year: 2005 ident: 10.1016/j.biomaterials.2016.09.020_bib41 article-title: Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy publication-title: Langmuir doi: 10.1021/la0504311 – volume: 4 start-page: 7358 issue: 12 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib191 article-title: Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels publication-title: ACS Nano doi: 10.1021/nn1027104 – volume: 43 start-page: 345 issue: 2 year: 2006 ident: 10.1016/j.biomaterials.2016.09.020_bib177 article-title: Electroresponsive behavior of gelatin/alginate semi-interpenetrating polymer network membranes under direct-current electric field publication-title: J. Macromol. Sci. A doi: 10.1080/10601320500437268 – volume: 9 start-page: 10129 issue: 42 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib185 article-title: Electromechanical polyaniline–cellulose hydrogels with high compressive strength publication-title: Soft Mat. doi: 10.1039/c3sm51490k – volume: 25 start-page: 2831 issue: 14 year: 2004 ident: 10.1016/j.biomaterials.2016.09.020_bib73 article-title: Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.09.066 – volume: 99 start-page: 13577 issue: 21 year: 2002 ident: 10.1016/j.biomaterials.2016.09.020_bib157 article-title: Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.202235299 – volume: 73 start-page: 923 issue: 7 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib12 article-title: Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2012.12.014 – volume: 6 start-page: 22424 issue: 27 year: 2016 ident: 10.1016/j.biomaterials.2016.09.020_bib24 article-title: In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system publication-title: RSC Adv. doi: 10.1039/C5RA26704H – volume: 16 start-page: 1047 issue: 6 year: 2009 ident: 10.1016/j.biomaterials.2016.09.020_bib44 article-title: Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by gluconacetobacter xylinus strain ATCC 53524 publication-title: Cellulose doi: 10.1007/s10570-009-9340-y – volume: 7 start-page: 2369 issue: 3 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib94 article-title: Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators publication-title: ACS Nano doi: 10.1021/nn305559j – volume: 14 start-page: 1124 issue: 11 year: 2004 ident: 10.1016/j.biomaterials.2016.09.020_bib38 article-title: High mechanical strength double-network hydrogel with bacterial cellulose publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200305197 – volume: 2 start-page: 320 issue: 6 year: 2008 ident: 10.1016/j.biomaterials.2016.09.020_bib53 article-title: Engineering microporosity in bacterial cellulose scaffolds publication-title: J. Tissue Eng. Regen. M. doi: 10.1002/term.97 – volume: 23 start-page: 1117 issue: 9 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib83 article-title: Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness publication-title: Adv. Mater. doi: 10.1002/adma.201003343 – volume: 81 start-page: 312 issue: 2 year: 2007 ident: 10.1016/j.biomaterials.2016.09.020_bib70 article-title: Photocrosslinkable hydrogel for myocyte cell culture and injection publication-title: J. Biomed. Mater. Res. B Appl. Biomaterials doi: 10.1002/jbm.b.30667 – volume: 2 start-page: 1040 issue: 3 year: 2012 ident: 10.1016/j.biomaterials.2016.09.020_bib98 article-title: In situ nano-assembly of bacterial cellulose–polyaniline composites publication-title: RSC Adv. doi: 10.1039/C1RA00719J – volume: 92 start-page: 360 issue: 1 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib25 article-title: Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2012.09.060 – volume: 6 start-page: 3143 issue: 14 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib78 article-title: DNA gel particles publication-title: Soft Mat. doi: 10.1039/b923873e – volume: 57 start-page: 2 issue: 1 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib161 article-title: Two-dimensional ion channel based soft-matter piezoelectricity publication-title: Sci. China Mater. doi: 10.1007/s40843-014-0005-z – volume: 54 start-page: 3957 issue: 13 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib86 article-title: Rapid formation of a supramolecular polypeptide–DNA hydrogel for in situ three-dimensional multilayer bioprinting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411383 – volume: 73 start-page: 113 issue: 1 year: 1999 ident: 10.1016/j.biomaterials.2016.09.020_bib175 article-title: Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid) publication-title: J. Appl. Polym. Sci. doi: 10.1002/(SICI)1097-4628(19990705)73:1<113::AID-APP13>3.0.CO;2-D – volume: 62 start-page: 130 year: 2016 ident: 10.1016/j.biomaterials.2016.09.020_bib37 article-title: Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.01.042 – volume: 132 start-page: 13174 issue: 38 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib106 article-title: Conducting polymer electrodes printed on hydrogel publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1062357 – volume: 33 start-page: 2995 issue: 5 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib42 article-title: Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2013.03.026 – volume: 44 start-page: 82 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib39 article-title: Inelastic behaviour of bacterial cellulose hydrogel: in aqua cyclic tests publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2015.03.021 – volume: 40 start-page: 1001 issue: 12 year: 2008 ident: 10.1016/j.biomaterials.2016.09.020_bib132 article-title: Modeling elastic, viscous and creep characteristics of cellulose electro-active paper publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2008.07.001 – volume: 86 start-page: 3240 issue: 7 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib164 article-title: Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences publication-title: Anal. Chem. doi: 10.1021/ac403397r – volume: 23 start-page: 47 issue: 1 year: 2005 ident: 10.1016/j.biomaterials.2016.09.020_bib139 article-title: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering publication-title: Nat. Biotechnol. doi: 10.1038/nbt1055 – volume: 9 start-page: 9167 issue: 9 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib186 article-title: Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation publication-title: ACS Nano doi: 10.1021/acsnano.5b03644 – volume: 5 start-page: 2880 issue: 8 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib150 article-title: In situ forming biodegradable electroactive hydrogels publication-title: Polym. Chem-UK doi: 10.1039/c3py01634j – volume: 25 start-page: 6064 issue: 42 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib159 article-title: Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane publication-title: Adv. Mater. doi: 10.1002/adma.201302441 – volume: 53 start-page: 5380 issue: 21 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib144 article-title: In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402751 – volume: 15 start-page: 467 issue: 3 year: 2007 ident: 10.1016/j.biomaterials.2016.09.020_bib138 article-title: Biomaterials approach to expand and direct differentiation of stem cells publication-title: Mol. Ther. doi: 10.1038/sj.mt.6300084 – volume: 84 start-page: 40 issue: 1 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib9 article-title: Cellulose-based hydrogels: present status and application prospects publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2010.12.023 – volume: 22 start-page: 2141 issue: 4 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib108 article-title: Synthesis and characterization of a novel bacterial cellulose–poly (3, 4-ethylenedioxythiophene)–poly (styrene sulfonate) composite for use in biomedical applications publication-title: Cellulose doi: 10.1007/s10570-015-0683-2 – volume: 346 start-page: 107 issue: 1 year: 2005 ident: 10.1016/j.biomaterials.2016.09.020_bib169 article-title: DNA biosensor based on chitosan film doped with carbon nanotubes publication-title: Anal. Biochem. doi: 10.1016/j.ab.2005.07.037 – volume: 109 start-page: 520 issue: 3 year: 2012 ident: 10.1016/j.biomaterials.2016.09.020_bib124 article-title: Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2011.10.030 – volume: 103 start-page: 2512 issue: 8 year: 2006 ident: 10.1016/j.biomaterials.2016.09.020_bib115 article-title: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks invivo publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0506020102 – volume: 130 start-page: 296 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib167 article-title: A conductive porous structured chitosan-grafted polyaniline cryogel for use as a sialic acid biosensor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.03.036 – volume: 15 start-page: 2274 issue: 6 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib134 article-title: Micromechanics and poroelasticity of hydrated cellulose networks publication-title: Biomacromolecules doi: 10.1021/bm500405h – volume: 31 start-page: 277 issue: 1 year: 2012 ident: 10.1016/j.biomaterials.2016.09.020_bib166 article-title: Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.10.032 – volume: 5 start-page: 39228 issue: 49 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib183 article-title: Surface modification of neural electrodes with a pyrrole-hyaluronic acid conjugate to attenuate reactive astrogliosis in vivo publication-title: RSC Adv. doi: 10.1039/C5RA03294F – volume: 4 start-page: 47056 issue: 87 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib88 article-title: pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery publication-title: RSC Adv. doi: 10.1039/C4RA09640A – volume: 3 start-page: 792 year: 2012 ident: 10.1016/j.biomaterials.2016.09.020_bib16 article-title: Stiffening hydrogels to probe short-and long-term cellular responses to dynamic mechanics publication-title: Nat. Commun. doi: 10.1038/ncomms1792 – volume: 49 start-page: 289 issue: 2 year: 2000 ident: 10.1016/j.biomaterials.2016.09.020_bib69 article-title: Photocrosslinkable chitosan as a biological adhesive publication-title: J. Biomed. Mater. Res. doi: 10.1002/(SICI)1097-4636(200002)49:2<289::AID-JBM18>3.0.CO;2-M – volume: 104 start-page: 1795 issue: 5 year: 2015 ident: 10.1016/j.biomaterials.2016.09.020_bib182 article-title: Permeation study of indomethacin from polycarbazole/natural rubber blend film for electric field controlled transdermal delivery publication-title: J. Pharm. Sci-US doi: 10.1002/jps.24414 – volume: 5 start-page: 2238 issue: 6 year: 2004 ident: 10.1016/j.biomaterials.2016.09.020_bib141 article-title: Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer publication-title: Biomacromolecules doi: 10.1021/bm040048v – volume: 6 start-page: 970 issue: 2 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib99 article-title: Double network bacterial cellulose hydrogel to build a biology–device interface publication-title: Nanoscale doi: 10.1039/C3NR05214A – volume: 176 start-page: 396 issue: 1 year: 2008 ident: 10.1016/j.biomaterials.2016.09.020_bib109 article-title: Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.09.117 – year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib121 – volume: 85 start-page: 2102 issue: 4 year: 2013 ident: 10.1016/j.biomaterials.2016.09.020_bib63 article-title: Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor publication-title: Anal. Chem. doi: 10.1021/ac302703y – volume: 39 start-page: 822 issue: 6 year: 2002 ident: 10.1016/j.biomaterials.2016.09.020_bib96 article-title: Electroactive polymers as artificial muscles: a review publication-title: J. Spacecr. Rockets doi: 10.2514/2.3902 – volume: 20 start-page: 45 issue: 1 year: 1999 ident: 10.1016/j.biomaterials.2016.09.020_bib17 article-title: Alginate hydrogels as synthetic extracellular matrix materials publication-title: Biomaterials doi: 10.1016/S0142-9612(98)00107-0 – volume: 21 start-page: 433 issue: 1 year: 2014 ident: 10.1016/j.biomaterials.2016.09.020_bib26 article-title: Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications publication-title: Cellulose doi: 10.1007/s10570-013-0109-y – volume: 129 start-page: 4878 issue: 16 year: 2007 ident: 10.1016/j.biomaterials.2016.09.020_bib162 article-title: Chemically-responsive sol−gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins publication-title: J. Am. Chem. Soc. doi: 10.1021/ja070457+ – volume: 95 start-page: 465 issue: 2 year: 2010 ident: 10.1016/j.biomaterials.2016.09.020_bib74 article-title: Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.32869 – volume: 21 start-page: 2155 issue: 21 year: 2000 ident: 10.1016/j.biomaterials.2016.09.020_bib66 article-title: Novel injectable neutral solutions of chitosan form biodegradable gels in situ publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00116-2 – volume: 21 start-page: 2671 issue: 8 year: 2011 ident: 10.1016/j.biomaterials.2016.09.020_bib163 article-title: Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials publication-title: J. Mater. Chem. doi: 10.1039/c0jm03587d |
SSID | ssj0014042 |
Score | 2.6315653 |
SecondaryResourceType | review_article |
Snippet | Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic... Abstract Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 40 |
SubjectTerms | Advanced Basic Science biocompatibility biocompatible materials Biocompatible Materials - chemistry Bioconductors biodegradability bioengineering Biological Products - chemistry biosensors cell culture Dentistry Drug delivery drug delivery systems Electric Conductivity electrical conductivity electrochemistry Electroconductive electronics Electronics - instrumentation hydrocolloids Hydrogels Hydrogels - chemistry hydrophilicity Materials Testing medical equipment Natural polymers polymers Static Electricity Surface Properties |
Title | Electroconductive natural polymer-based hydrogels |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961216305221 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961216305221 https://dx.doi.org/10.1016/j.biomaterials.2016.09.020 https://www.ncbi.nlm.nih.gov/pubmed/27721086 https://www.proquest.com/docview/1835404756 https://www.proquest.com/docview/2000243705 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-hTkLjYRofY90GKhKvpo4Tx4mmPSAEKiD6BBJvlu04WyfWVG154GV_--6cDzFRpEo8JvEl1vnufBff_Q7gOHI-kSY2zKE6sKS0nNkyihna45JzfMgDmM7NOB3dJVf38n4DztpaGEqrbGx_bdODtW7uDBtuDmeTyZDSkkROAFgpyqwIxeRJokjKT_52aR6EHiPqNEbBaHQLPBpyvKjE3SzrpaY0rzRgnlLv79Wb1GtOaNiMLj7Ch8aLHJzWE92GDT_dga1n2II7sHnTnJrvQnRe97rB0JfQXdG-DQKeJ75hVj08_fFzRptZMfj1VMyrnziRPbi7OL89G7GmVQJzUqglE0UsU8uV8FnmlTWliIxTVvpSFEYpn2ZJKQ2GVlw6jLoKg36HyIrEZZlNlc3iT9CbVlP_GQbWpYrbKC-oQbhX6M_4OC9tLriywmWiD3nLG-0aHHFqZ_Gg24Sx3_o5XzXxVfNcI1_7EHe0sxpNYy2q7-0S6LZeFC2cRqO_FrVaRe0XjbIudKQXQnP9QqD68KOj_E8m1_7yUSsvGpWWTmLM1FeP-MXwuy1RMn19DNVQEVokl33Yr4Wt45nAmIhaZH154wy_wnu6qtNzvkFvOX_0B-hkLe1h0KJDeHd6eT0a_wPvlCfH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaCDtjaw7B165q9mgG7apFly7Ix7DAUDbI2ySkFchMkWe4yZHGQx6GX_faRfgQplgIBdrVMS6BIirTIjwCfA-cjaULDHKoDi3LLmc2DkKE9zjnHQV6C6QxHcf82up7ISQsum1oYSqusbX9l00trXT_p1tzsLqbTLqUliZQAsGKUWUHF5E8iVF9qY_DlzzbPg-BjRJXHKBi93iCPlkleVONu1tVeU55XXIKeUvPv_afUY15oeRr1XsDz2o3sfK9W-hJafn4KJzvggqfwdFhfm7-C4KpqdoOxL8G7ooHrlICe-IVFMbv_7ZeMTrOs8_M-WxZ3uJDXcNu7Gl_2Wd0rgTkp1JqJLJSx5Ur4JPHKmlwExikrfS4yo5SPkyiXBmMrLh2GXZlBx0MkWeSSxMbKJuEZHM2LuT-HjnWx4jZIM-oQ7hU6ND5Mc5sKrqxwiWhD2vBGuxpInPpZzHSTMfZL7_JVE181TzXytQ3hlnZRwWkcRPW12QLdFIyiidNo9Q-iVvuo_arW1pUO9Eporv-RqDZ821I-EMqDZ_7UyItGraWrGDP3xQZnLP-3RUrGj79DRVQEF8llG95UwrblmcCgiHpkvf3PFV7As_54ONCDH6Obd3BMI1Wuzns4Wi83_gN6XGv7sdSov3AYKVU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electroconductive+natural+polymer-based+hydrogels&rft.jtitle=Biomaterials&rft.au=Shi%2C+Zhijun&rft.au=Gao%2C+Xing&rft.au=Ullah%2C+Muhammad+Wajid&rft.au=Li%2C+Sixiang&rft.date=2016-12-01&rft.issn=0142-9612&rft.volume=111&rft.spage=40&rft.epage=54&rft_id=info:doi/10.1016%2Fj.biomaterials.2016.09.020&rft.externalDBID=ECK1-s2.0-S0142961216305221&rft.externalDocID=1_s2_0_S0142961216305221 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2Fcov200h.gif |