Electroconductive natural polymer-based hydrogels

Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic properties, and biodegradable nature. More recently, when treated with electroactive materials, these hydrogels were endowed with high electrical...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 111; pp. 40 - 54
Main Authors Shi, Zhijun, Gao, Xing, Ullah, Muhammad Wajid, Li, Sixiang, Wang, Qun, Yang, Guang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic properties, and biodegradable nature. More recently, when treated with electroactive materials, these hydrogels were endowed with high electrical conductivity, electrochemical redox properties, and electromechanical properties; consequently, forming a smart hydrogel. The biological properties of these smart hydrogels, classified as electroconductive hydrogels, can be combined with electronics. Thus, they are considered as good candidates for some potential uses, which include bioconductors, biosensors, electro-stimulated drug delivery systems, as well as neuron-, muscle-, and skin-tissue engineering. However, there is lacking comprehensive information on the current state of these electroconductive hydrogels which complicates our understanding of this new type of biomaterials as well as their potential applications. Hence, this review provides a summary on the current development of electroconductive natural polymer-based hydrogels (ENPHs). We have introduced various types of ENPHs, with a brief description of their advantages and shortcomings. In addition, emerging technologies regarding their synthesis developed during the past decade are discussed. Finally, two attractive potential applications of ENPHs, cell culture and biomedical devices, are reviewed, along with their current challenges.
AbstractList Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic properties, and biodegradable nature. More recently, when treated with electroactive materials, these hydrogels were endowed with high electrical conductivity, electrochemical redox properties, and electromechanical properties; consequently, forming a smart hydrogel. The biological properties of these smart hydrogels, classified as electroconductive hydrogels, can be combined with electronics. Thus, they are considered as good candidates for some potential uses, which include bioconductors, biosensors, electro-stimulated drug delivery systems, as well as neuron-, muscle-, and skin-tissue engineering. However, there is lacking comprehensive information on the current state of these electroconductive hydrogels which complicates our understanding of this new type of biomaterials as well as their potential applications. Hence, this review provides a summary on the current development of electroconductive natural polymer-based hydrogels (ENPHs). We have introduced various types of ENPHs, with a brief description of their advantages and shortcomings. In addition, emerging technologies regarding their synthesis developed during the past decade are discussed. Finally, two attractive potential applications of ENPHs, cell culture and biomedical devices, are reviewed, along with their current challenges.
Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic properties, and biodegradable nature. More recently, when treated with electroactive materials, these hydrogels were endowed with high electrical conductivity, electrochemical redox properties, and electromechanical properties; consequently, forming a smart hydrogel. The biological properties of these smart hydrogels, classified as electroconductive hydrogels, can be combined with electronics. Thus, they are considered as good candidates for some potential uses, which include bioconductors, biosensors, electro-stimulated drug delivery systems, as well as neuron-, muscle-, and skin-tissue engineering. However, there is lacking comprehensive information on the current state of these electroconductive hydrogels which complicates our understanding of this new type of biomaterials as well as their potential applications. Hence, this review provides a summary on the current development of electroconductive natural polymer-based hydrogels (ENPHs). We have introduced various types of ENPHs, with a brief description of their advantages and shortcomings. In addition, emerging technologies regarding their synthesis developed during the past decade are discussed. Finally, two attractive potential applications of ENPHs, cell culture and biomedical devices, are reviewed, along with their current challenges.Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic properties, and biodegradable nature. More recently, when treated with electroactive materials, these hydrogels were endowed with high electrical conductivity, electrochemical redox properties, and electromechanical properties; consequently, forming a smart hydrogel. The biological properties of these smart hydrogels, classified as electroconductive hydrogels, can be combined with electronics. Thus, they are considered as good candidates for some potential uses, which include bioconductors, biosensors, electro-stimulated drug delivery systems, as well as neuron-, muscle-, and skin-tissue engineering. However, there is lacking comprehensive information on the current state of these electroconductive hydrogels which complicates our understanding of this new type of biomaterials as well as their potential applications. Hence, this review provides a summary on the current development of electroconductive natural polymer-based hydrogels (ENPHs). We have introduced various types of ENPHs, with a brief description of their advantages and shortcomings. In addition, emerging technologies regarding their synthesis developed during the past decade are discussed. Finally, two attractive potential applications of ENPHs, cell culture and biomedical devices, are reviewed, along with their current challenges.
Abstract Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic properties, and biodegradable nature. More recently, when treated with electroactive materials, these hydrogels were endowed with high electrical conductivity, electrochemical redox properties, and electromechanical properties; consequently, forming a smart hydrogel. The biological properties of these smart hydrogels, classified as electroconductive hydrogels, can be combined with electronics. Thus, they are considered as good candidates for some potential uses, which include bioconductors, biosensors, electro-stimulated drug delivery systems, as well as neuron-, muscle-, and skin-tissue engineering. However, there is lacking comprehensive information on the current state of these electroconductive hydrogels which complicates our understanding of this new type of biomaterials as well as their potential applications. Hence, this review provides a summary on the current development of electroconductive natural polymer-based hydrogels (ENPHs). We have introduced various types of ENPHs, with a brief description of their advantages and shortcomings. In addition, emerging technologies regarding their synthesis developed during the past decade are discussed. Finally, two attractive potential applications of ENPHs, cell culture and biomedical devices, are reviewed, along with their current challenges.
Author Gao, Xing
Li, Sixiang
Wang, Qun
Yang, Guang
Shi, Zhijun
Ullah, Muhammad Wajid
Author_xml – sequence: 1
  givenname: Zhijun
  surname: Shi
  fullname: Shi, Zhijun
  organization: Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
– sequence: 2
  givenname: Xing
  surname: Gao
  fullname: Gao, Xing
  organization: Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK
– sequence: 3
  givenname: Muhammad Wajid
  surname: Ullah
  fullname: Ullah, Muhammad Wajid
  organization: Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
– sequence: 4
  givenname: Sixiang
  surname: Li
  fullname: Li, Sixiang
  organization: Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
– sequence: 5
  givenname: Qun
  surname: Wang
  fullname: Wang, Qun
  email: qunwang@iastate.edu
  organization: Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
– sequence: 6
  givenname: Guang
  surname: Yang
  fullname: Yang, Guang
  email: yang_sunny@yahoo.com
  organization: Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27721086$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv1DAQhS1URLeFv4BWnLgkHTtx7HBAlFJKpUo9AGfLsSfgxYkXO6m0_x5H20qoUtU9Wbbe-2Y8b07I0RhGJOQdhZICbc42ZefCoCeMTvtUsvxWQlsCgxdkRaWQBW-BH5EV0JoVbUPZMTlJaQP5DjV7RY6ZEIyCbFaEXno0UwwmjHY2k7vD9ainOWq_3ga_GzAWnU5o1793NoZf6NNr8rLPZfHN_XlKfn69_HHxrbi5vbq-OL8pDGdiKpiteNOBYCglik73jGojOo49s1oIbGTdc922ErgB1ljNZc2krY2UXSM6WZ2S93vuNoa_M6ZJDS4Z9F6PGOakGACwuhLAn5VSWfH8c8GbLH17L527Aa3aRjfouFMPE8mCT3uBiSGliL0ybtKTC-MUtfOKglpCUBv1fwhqCUFBq3IIGfHhEeKhykHmL3tzHjXeOYwqGYejQetiTkrZ4A7DfHyEMd6Nzmj_B3eYNmGO4-KhKjEF6vuyKsum0KYCzhjNgM9PAw7t4h8wDdVE
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_125674
crossref_primary_10_3390_gels9080662
crossref_primary_10_1016_j_polymer_2020_123257
crossref_primary_10_1016_j_polymer_2020_122961
crossref_primary_10_1016_j_rinp_2018_02_003
crossref_primary_10_1002_smll_202403856
crossref_primary_10_1021_acsami_8b01029
crossref_primary_10_1016_j_mser_2021_100630
crossref_primary_10_1016_j_polymertesting_2022_107486
crossref_primary_10_3390_bios13010142
crossref_primary_10_1007_s10856_024_06808_9
crossref_primary_10_1016_j_ceramint_2023_08_274
crossref_primary_10_3390_polym16142030
crossref_primary_10_1016_j_ecoleng_2020_105882
crossref_primary_10_1016_j_ijbiomac_2020_03_155
crossref_primary_10_1039_D0BM01268H
crossref_primary_10_1039_D2NA00700B
crossref_primary_10_1016_j_mtcomm_2021_102111
crossref_primary_10_1016_j_pmatsci_2022_100972
crossref_primary_10_1016_j_mtchem_2018_02_004
crossref_primary_10_1089_bioe_2020_0025
crossref_primary_10_1089_bioe_2020_0027
crossref_primary_10_1016_j_eurpolymj_2022_111091
crossref_primary_10_1002_adfm_202111278
crossref_primary_10_1007_s13726_022_01095_z
crossref_primary_10_1016_j_biomaterials_2019_119672
crossref_primary_10_1039_C7RA02629C
crossref_primary_10_1007_s13726_017_0575_4
crossref_primary_10_1016_j_cej_2024_150583
crossref_primary_10_1039_D1TB00686J
crossref_primary_10_1016_j_carbpol_2021_118565
crossref_primary_10_1016_j_procbio_2022_10_015
crossref_primary_10_1021_acsabm_3c01209
crossref_primary_10_1039_D0TB02604B
crossref_primary_10_1021_acs_iecr_9b05273
crossref_primary_10_1038_s41427_018_0076_8
crossref_primary_10_1016_j_ijbiomac_2017_08_171
crossref_primary_10_1007_s40005_024_00678_7
crossref_primary_10_1016_j_fbio_2024_105137
crossref_primary_10_1016_j_carbpol_2019_115112
crossref_primary_10_1002_wnan_1568
crossref_primary_10_1016_j_ijbiomac_2019_07_050
crossref_primary_10_1016_j_carbpol_2023_120760
crossref_primary_10_1002_adtp_202000151
crossref_primary_10_1039_C8SC02858C
crossref_primary_10_1039_D4NJ03774J
crossref_primary_10_1016_j_bioactmat_2023_11_012
crossref_primary_10_1520_MPC20180165
crossref_primary_10_1016_j_carbpol_2018_09_069
crossref_primary_10_1007_s10570_019_02407_y
crossref_primary_10_1007_s13770_018_0146_6
crossref_primary_10_2147_IJN_S436111
crossref_primary_10_1039_C8BM00553B
crossref_primary_10_1039_D1SM00997D
crossref_primary_10_1021_acs_biomac_0c00566
crossref_primary_10_1177_2041731419900424
crossref_primary_10_1021_acsami_8b19482
crossref_primary_10_1039_D1RA06421E
crossref_primary_10_1007_s00289_024_05333_7
crossref_primary_10_1021_acs_biomac_9b00322
crossref_primary_10_2174_0929867326666190903113004
crossref_primary_10_1088_2053_1591_abf284
crossref_primary_10_7717_peerj_13386
crossref_primary_10_1007_s10895_024_04055_3
crossref_primary_10_3390_polym15173572
crossref_primary_10_1021_acsapm_8b00203
crossref_primary_10_1021_acs_chemrev_0c00015
crossref_primary_10_1016_j_msec_2019_01_122
crossref_primary_10_1016_j_scp_2022_100905
crossref_primary_10_1002_adma_202402301
crossref_primary_10_1002_jbm_a_37016
crossref_primary_10_1016_j_cej_2022_136508
crossref_primary_10_3390_gels10010063
crossref_primary_10_3390_ijms24076364
crossref_primary_10_1155_2021_8212518
crossref_primary_10_1016_j_colsurfb_2018_01_002
crossref_primary_10_3389_fbioe_2022_958486
crossref_primary_10_1021_acsami_4c17451
crossref_primary_10_1515_polyeng_2019_0304
crossref_primary_10_1021_acs_molpharmaceut_2c00344
crossref_primary_10_1002_smll_202207048
crossref_primary_10_1002_smtd_202401156
crossref_primary_10_1155_2021_6668209
crossref_primary_10_3389_fbioe_2020_00414
crossref_primary_10_3389_fbioe_2022_1110004
crossref_primary_10_1016_j_mechmat_2019_103272
crossref_primary_10_1002_app_46905
crossref_primary_10_3389_fbioe_2021_732513
crossref_primary_10_1016_j_jmps_2023_105205
crossref_primary_10_1039_D1TB00247C
crossref_primary_10_1002_mabi_202100355
crossref_primary_10_1039_D3GC05109A
crossref_primary_10_1016_j_jenvman_2018_03_076
crossref_primary_10_1021_acsbiomaterials_9b00778
crossref_primary_10_3390_nano10122492
crossref_primary_10_3390_gels10020108
crossref_primary_10_1016_j_cej_2024_149660
crossref_primary_10_3389_fchem_2021_809676
crossref_primary_10_1016_j_carbpol_2018_09_083
crossref_primary_10_1002_macp_201700251
crossref_primary_10_1016_j_jmrt_2022_03_089
crossref_primary_10_1016_j_carbpol_2017_01_056
crossref_primary_10_1016_j_eurpolymj_2023_112137
crossref_primary_10_1007_s12588_018_9224_9
crossref_primary_10_1016_j_ccr_2020_213432
crossref_primary_10_1016_j_eml_2017_09_009
crossref_primary_10_3389_fchem_2020_615665
crossref_primary_10_4103_ATN_ATN_D_24_00011
crossref_primary_10_1016_j_carpta_2024_100627
crossref_primary_10_1016_j_cej_2024_156871
crossref_primary_10_1002_adhm_201900670
crossref_primary_10_1016_j_envpol_2021_117111
crossref_primary_10_1002_adma_202400346
crossref_primary_10_1016_j_jmbbm_2020_103642
crossref_primary_10_1016_j_polymertesting_2023_108277
crossref_primary_10_1016_j_colsurfa_2019_123751
crossref_primary_10_1016_j_mtcomm_2024_109593
crossref_primary_10_1021_acsnano_0c05197
crossref_primary_10_1007_s10965_018_1455_0
crossref_primary_10_1002_adhm_202100012
crossref_primary_10_1016_j_ijsolstr_2023_112325
crossref_primary_10_1002_smsc_202400362
crossref_primary_10_1016_j_eurpolymj_2021_110935
crossref_primary_10_1002_adv_22139
crossref_primary_10_1002_mame_201900848
crossref_primary_10_3390_polym11122067
crossref_primary_10_1016_j_cis_2025_103456
crossref_primary_10_3390_pharmaceutics15020424
crossref_primary_10_1039_D0CS01387K
crossref_primary_10_1016_j_ndteint_2018_09_004
crossref_primary_10_1002_adhm_202203168
crossref_primary_10_1016_j_cej_2019_122022
crossref_primary_10_1016_j_seppur_2024_126819
crossref_primary_10_1021_acsanm_3c02053
crossref_primary_10_1002_jbm_b_34048
crossref_primary_10_1016_j_synthmet_2019_03_010
crossref_primary_10_2174_1573413716999201127111627
crossref_primary_10_1002_adhm_201900569
crossref_primary_10_3389_fbioe_2024_1309541
crossref_primary_10_1039_C7PY01460K
crossref_primary_10_1007_s10570_024_05874_0
crossref_primary_10_1016_j_carbpol_2017_05_015
crossref_primary_10_1021_acssuschemeng_9b03555
crossref_primary_10_3390_ijms23020610
crossref_primary_10_1007_s12274_020_3259_x
crossref_primary_10_1021_acsbiomaterials_1c00216
crossref_primary_10_1016_j_carbpol_2018_04_078
crossref_primary_10_1039_C8NR04073G
crossref_primary_10_1016_j_biomaterials_2018_08_010
crossref_primary_10_1007_s00289_022_04580_w
crossref_primary_10_1002_smll_201703305
crossref_primary_10_35812_CelluloseChemTechnol_2021_55_63
crossref_primary_10_1016_j_carbpol_2018_08_070
crossref_primary_10_1039_D3TC03863G
crossref_primary_10_1016_j_ijbiomac_2018_11_252
crossref_primary_10_1002_adsu_202100173
crossref_primary_10_1002_adhm_201800593
crossref_primary_10_1016_j_ijbiomac_2024_136695
crossref_primary_10_1002_aelm_201700495
crossref_primary_10_3390_polym13030326
crossref_primary_10_1016_j_actbio_2018_09_035
crossref_primary_10_1016_j_progpolymsci_2019_02_007
crossref_primary_10_1021_acsnano_8b04609
crossref_primary_10_1007_s13346_020_00860_y
crossref_primary_10_1016_j_ijbiomac_2024_137092
crossref_primary_10_3390_mi15060720
crossref_primary_10_1016_j_mtla_2022_101457
crossref_primary_10_1016_j_synbio_2018_04_002
crossref_primary_10_1016_j_polymer_2017_07_047
crossref_primary_10_1080_09205063_2018_1563847
crossref_primary_10_1016_j_ijbiomac_2024_138611
crossref_primary_10_1016_j_seppur_2024_130299
crossref_primary_10_1016_j_carbpol_2021_117872
crossref_primary_10_1002_adhm_202200526
crossref_primary_10_1007_s10924_021_02339_4
crossref_primary_10_1016_j_msec_2021_112559
crossref_primary_10_1002_adma_202105020
crossref_primary_10_1021_acsapm_2c01506
crossref_primary_10_3390_app9183938
crossref_primary_10_1016_j_msec_2019_04_012
crossref_primary_10_1007_s00396_020_04736_y
crossref_primary_10_1016_j_ijbiomac_2017_04_110
crossref_primary_10_1002_adhm_201800334
crossref_primary_10_3390_biomedicines12051046
crossref_primary_10_1016_j_carbpol_2021_117860
crossref_primary_10_1016_j_carbpol_2022_120403
crossref_primary_10_1016_j_ijbiomac_2017_09_064
crossref_primary_10_1039_C7BM00268H
crossref_primary_10_1021_acsami_2c08331
crossref_primary_10_1002_nano_202400189
crossref_primary_10_1038_s41467_021_22675_2
crossref_primary_10_1039_D0RA04316H
crossref_primary_10_1016_j_eurpolymj_2018_08_036
crossref_primary_10_1016_j_actbio_2021_04_027
crossref_primary_10_1126_sciadv_abj7857
crossref_primary_10_1016_j_ijbiomac_2019_05_050
crossref_primary_10_1007_s42114_017_0018_x
crossref_primary_10_1016_j_ijbiomac_2018_04_088
crossref_primary_10_3389_fbioe_2022_931256
crossref_primary_10_3390_gels7040277
crossref_primary_10_1016_j_ijbiomac_2020_08_044
crossref_primary_10_1039_C7SM02137B
crossref_primary_10_1109_TUFFC_2020_3020283
crossref_primary_10_1016_j_eurpolymj_2020_109842
crossref_primary_10_1016_j_susmat_2022_e00444
crossref_primary_10_1021_acsabm_8b00823
crossref_primary_10_1002_advs_201802077
crossref_primary_10_1016_j_ijbiomac_2025_140651
crossref_primary_10_3390_polym15122744
crossref_primary_10_1016_j_progpolymsci_2022_101622
crossref_primary_10_3390_bios14090415
crossref_primary_10_1186_s12951_025_03237_w
crossref_primary_10_1016_j_ijbiomac_2023_128348
crossref_primary_10_1039_D0TA02010A
crossref_primary_10_1039_D4YA00155A
crossref_primary_10_1002_celc_202100586
crossref_primary_10_1088_2515_7639_ad05e7
crossref_primary_10_1016_j_ijbiomac_2022_06_044
crossref_primary_10_1007_s42114_018_0036_3
crossref_primary_10_3390_polym13244423
crossref_primary_10_1016_j_ijbiomac_2017_07_075
crossref_primary_10_1016_j_polymertesting_2019_105896
crossref_primary_10_1039_D0BM01466D
crossref_primary_10_1177_08853282211064403
crossref_primary_10_1016_j_ijbiomac_2019_12_132
crossref_primary_10_1021_acssuschemeng_0c07473
crossref_primary_10_1002_adhm_201901372
crossref_primary_10_1016_j_cis_2023_102982
crossref_primary_10_1039_D0TB01737J
crossref_primary_10_1016_j_carpta_2024_100463
crossref_primary_10_1016_j_jclepro_2018_07_111
crossref_primary_10_1016_j_carbpol_2019_03_041
crossref_primary_10_1021_acsami_8b08409
crossref_primary_10_3389_fbioe_2021_616555
crossref_primary_10_3390_gels11040220
crossref_primary_10_3390_app10010065
crossref_primary_10_1002_adhm_202200846
crossref_primary_10_1016_j_cej_2024_155027
crossref_primary_10_3390_polym17040539
crossref_primary_10_3390_pharmaceutics11060266
crossref_primary_10_1021_acsami_9b15849
crossref_primary_10_1021_acs_analchem_8b04116
crossref_primary_10_1039_C9SM02127B
crossref_primary_10_1002_term_3115
crossref_primary_10_2147_IJN_S386763
crossref_primary_10_1016_j_matpr_2021_10_241
crossref_primary_10_1007_s41061_022_00395_5
crossref_primary_10_1177_0883911517694398
crossref_primary_10_1002_adhm_202403983
crossref_primary_10_1016_j_ijbiomac_2019_08_217
crossref_primary_10_1016_j_ijbiomac_2024_132267
crossref_primary_10_1016_j_progpolymsci_2018_09_001
crossref_primary_10_1002_advs_202404580
crossref_primary_10_1134_S107042722209021X
crossref_primary_10_1039_D3NJ01084H
crossref_primary_10_1016_j_ijbiomac_2024_135661
crossref_primary_10_1016_j_envpol_2021_118277
crossref_primary_10_1002_adfm_202108495
crossref_primary_10_1021_acs_chemrev_7b00094
crossref_primary_10_1557_s43578_021_00255_w
crossref_primary_10_1039_C7TB01152K
crossref_primary_10_1002_marc_202100125
crossref_primary_10_1007_s10989_020_10022_w
crossref_primary_10_1021_acsomega_3c04135
crossref_primary_10_1016_j_ijbiomac_2024_129409
crossref_primary_10_1016_j_aiepr_2023_07_002
crossref_primary_10_1016_j_biomaterials_2019_03_015
crossref_primary_10_1021_acsabm_2c00679
crossref_primary_10_1016_j_colsurfb_2017_07_024
crossref_primary_10_1016_j_addr_2021_05_010
crossref_primary_10_1016_j_cej_2022_135058
crossref_primary_10_2174_0929867326666190816125144
crossref_primary_10_1039_C8TB03312A
crossref_primary_10_3390_gels9070519
crossref_primary_10_1016_j_mtcomm_2023_105791
crossref_primary_10_1021_acsapm_3c00445
crossref_primary_10_1039_D0QM00566E
crossref_primary_10_3390_polym13172901
crossref_primary_10_1016_j_ijbiomac_2020_11_206
Cites_doi 10.1016/j.actbio.2010.01.004
10.1007/s10965-014-0369-8
10.1016/j.carbpol.2015.10.010
10.1080/13102818.2014.997541
10.1021/nn203711s
10.1038/ncomms7962
10.1016/j.ijbiomac.2013.09.028
10.1098/rsfs.2013.0050
10.1002/jcp.21660
10.1039/C4TB01636J
10.1021/ac049519u
10.1016/j.biomaterials.2010.05.056
10.1016/j.biomaterials.2009.12.052
10.1007/s10439-010-9999-0
10.1021/am2016766
10.1016/0168-3659(94)00115-B
10.1021/bm049335p
10.5114/aoms.2013.33433
10.1002/jbm.a.32029
10.1088/1758-5082/5/4/041001
10.1016/j.msec.2011.03.007
10.1002/mabi.201100227
10.1039/c1jm12376a
10.1016/S0142-9612(03)00340-5
10.1016/j.biomaterials.2010.10.020
10.1016/j.jconrel.2009.09.010
10.1007/s10856-006-0698-1
10.1016/j.addr.2009.07.019
10.1016/j.jbiomech.2016.02.019
10.1007/978-1-60761-984-0_2
10.1529/biophysj.107.122598
10.1002/ange.200902538
10.1016/j.carbpol.2006.04.019
10.1021/bm8014973
10.1039/b820385g
10.1086/BBLv221n1p79
10.1038/jid.2010.96
10.1016/0142-9612(96)00041-5
10.1039/c3cc49140d
10.1089/ten.tec.2014.0338
10.1002/mabi.200600069
10.1021/bm501680s
10.1002/jbm.a.32412
10.1002/adma.201302958
10.1080/00032710701380442
10.1016/j.snb.2009.11.043
10.1021/acsnano.5b01433
10.1016/j.biomaterials.2012.11.012
10.1016/j.msec.2015.08.019
10.1016/j.bbapap.2005.02.002
10.1016/j.foodhyd.2013.07.012
10.1039/B817788K
10.1016/j.ijpharm.2013.03.013
10.1002/app.31203
10.1295/polymj.PJ2007180
10.1021/cr000108x
10.1016/j.biomaterials.2005.10.026
10.1155/2014/736898
10.3390/ma2020353
10.1007/s10118-016-1840-2
10.1016/j.msec.2009.10.006
10.1371/journal.pone.0071707
10.1002/adma.201303233
10.1039/c0cs00053a
10.1016/j.matlet.2014.04.183
10.1002/mabi.200700007
10.1038/nmat1741
10.1063/1.1995748
10.1016/S0141-8130(03)00022-9
10.1002/adma.201301082
10.1039/c3ee40997j
10.1016/j.carbpol.2015.03.055
10.1021/am4057826
10.1371/journal.pone.0062172
10.1002/adhm.201200182
10.1002/adem.200700287
10.1021/bm401679q
10.1021/bm800705t
10.1007/s10570-008-9206-8
10.1016/j.biomaterials.2004.02.049
10.1002/aenm.201301655
10.1016/j.jmbbm.2015.12.021
10.1038/nnano.2012.211
10.1002/adma.201003963
10.1021/bm200731x
10.1016/S0142-9612(02)00412-X
10.1039/C4CC07144A
10.1039/c2sm26898a
10.1007/s10570-014-0528-4
10.1016/j.biomaterials.2005.04.017
10.1016/j.carbpol.2006.08.021
10.1016/j.biortech.2015.07.044
10.1007/s10856-012-4571-0
10.1021/nn502704g
10.1039/c3nr00408b
10.1021/am404912c
10.1016/j.snb.2011.09.044
10.1016/j.nanoen.2014.08.004
10.1016/j.carbpol.2015.06.037
10.1002/smll.201401906
10.1016/j.biomaterials.2009.02.006
10.1016/j.reactfunctpolym.2014.06.003
10.1039/c3tb21509a
10.1002/adma.201301300
10.1016/j.actbio.2008.07.005
10.1007/s11434-009-0207-2
10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I
10.1021/acsami.5b10829
10.1177/0883911511420700
10.1039/c2sm25090j
10.1039/c3tb20505c
10.1039/C1CS15203C
10.1016/j.carbpol.2012.10.071
10.1016/j.snb.2007.09.083
10.1016/j.biomaterials.2005.02.002
10.1002/jbm.820140108
10.1016/j.msec.2008.09.017
10.1016/S0079-6700(01)00021-1
10.1016/S0142-9612(00)00201-5
10.1016/j.bios.2004.07.029
10.1021/nn503693h
10.1021/cm060988h
10.1146/annurev.bioeng.2.1.9
10.1038/nnano.2011.160
10.1039/c3tb20149j
10.1002/star.201400127
10.1016/j.talanta.2014.07.027
10.1081/MC-100101421
10.1002/adma.201302042
10.1021/la0504311
10.1021/nn1027104
10.1080/10601320500437268
10.1039/c3sm51490k
10.1016/j.biomaterials.2003.09.066
10.1073/pnas.202235299
10.1016/j.reactfunctpolym.2012.12.014
10.1039/C5RA26704H
10.1007/s10570-009-9340-y
10.1021/nn305559j
10.1002/adfm.200305197
10.1002/term.97
10.1002/adma.201003343
10.1002/jbm.b.30667
10.1039/C1RA00719J
10.1016/j.carbpol.2012.09.060
10.1039/b923873e
10.1007/s40843-014-0005-z
10.1002/anie.201411383
10.1002/(SICI)1097-4628(19990705)73:1<113::AID-APP13>3.0.CO;2-D
10.1016/j.msec.2016.01.042
10.1021/ja1062357
10.1016/j.msec.2013.03.026
10.1016/j.polymertesting.2015.03.021
10.1016/j.mechmat.2008.07.001
10.1021/ac403397r
10.1038/nbt1055
10.1021/acsnano.5b03644
10.1039/c3py01634j
10.1002/adma.201302441
10.1002/anie.201402751
10.1038/sj.mt.6300084
10.1016/j.carbpol.2010.12.023
10.1007/s10570-015-0683-2
10.1016/j.ab.2005.07.037
10.1016/j.jfoodeng.2011.10.030
10.1073/pnas.0506020102
10.1016/j.electacta.2014.03.036
10.1021/bm500405h
10.1016/j.bios.2011.10.032
10.1039/C5RA03294F
10.1039/C4RA09640A
10.1038/ncomms1792
10.1002/(SICI)1097-4636(200002)49:2<289::AID-JBM18>3.0.CO;2-M
10.1002/jps.24414
10.1021/bm040048v
10.1039/C3NR05214A
10.1016/j.jpowsour.2007.09.117
10.1021/ac302703y
10.2514/2.3902
10.1016/S0142-9612(98)00107-0
10.1007/s10570-013-0109-y
10.1021/ja070457+
10.1002/jbm.a.32869
10.1016/S0142-9612(00)00116-2
10.1039/c0jm03587d
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2016.09.020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 54
ExternalDocumentID 27721086
10_1016_j_biomaterials_2016_09_020
S0142961216305221
1_s2_0_S0142961216305221
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c527t-2d356b072e88e7baf21ac7b5ef2da77e684f5a99805c026da58428d4c88b67b83
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Mon Jul 21 12:00:16 EDT 2025
Thu Jul 10 22:04:41 EDT 2025
Wed Feb 19 02:42:48 EST 2025
Thu Apr 24 22:53:00 EDT 2025
Tue Jul 01 01:19:29 EDT 2025
Fri Feb 23 02:31:37 EST 2024
Tue Feb 25 19:57:19 EST 2025
Tue Aug 26 17:20:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Electroconductive
Drug delivery
Hydrogels
Bioconductors
Natural polymers
Language English
License Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-2d356b072e88e7baf21ac7b5ef2da77e684f5a99805c026da58428d4c88b67b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 27721086
PQID 1835404756
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2000243705
proquest_miscellaneous_1835404756
pubmed_primary_27721086
crossref_citationtrail_10_1016_j_biomaterials_2016_09_020
crossref_primary_10_1016_j_biomaterials_2016_09_020
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2016_09_020
elsevier_clinicalkeyesjournals_1_s2_0_S0142961216305221
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2016_09_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dvir, Timko, Brigham, Naik, Karajanagi, Levy (bib184) 2011; 6
Yannas, Burke (bib72) 1980; 14
Cheng, Xing, Chen, Yang, Sun, Zhou (bib81) 2009; 121
Dash, Samal, Bartoli, Morelli, Smet, Dubruel (bib23) 2014; 6
Fu, Zhang, Yang (bib47) 2013; 92
Mire, Agrawal, Wallace, Calvert, Het Panhuis (bib163) 2011; 21
Ismail, Shin, Shin, Yoon, Shon, Kim (bib95) 2008; 129
Li, Huang, Zhang, Xu, Wang, Yang (bib127) 2014; 4
Oh, Park, Kim, Kim, Yang, Kong (bib14) 2010; 141
Kowalska-Ludwicka, Cala, Grobelski, Sygut, Jesionek-Kupnicka, Kolodziejczyk (bib54) 2013; 9
Shi, Gao, Feng, Ding, Cao, Kuga (bib144) 2014; 53
Li, Chen, Shao, Zhou, Wu, Yang (bib84) 2015; 11
Kim, Kim, Kim, Spinks, Kim, Wallace (bib188) 2006; 18
Malliaras, Friend (bib3) 2005; 58
Xiao, Li, Wang, Shi, Ooi (bib146) 2010; 92
Ogoshi, Takashima, Yamaguchi, Harada (bib162) 2007; 129
Guo, Qi, Orbach, Lu, Freage, Mironi-Harpaz (bib80) 2014; 50
Wang, Gao, Zhang, Wan (bib50) 2010; 30
Khan, Ul-Islam, Khattak, Ullah, Park (bib107) 2015; 127
Guiseppi-Elie (bib7) 2010; 31
Voge, Kariolis, MacDonald, Stegemann (bib148) 2008; 86
Li, He, Zhang, Hu (bib170) 2005; 1749
Ullah, Ul-Islam, Khan, Kim, Jang, Park (bib24) 2016; 6
Cho, Borgens (bib149) 2013; 1
Ricotti, Fujie, Vazão, Ciofani, Marotta, Brescia (bib158) 2013; 8
Xu, Cai, Zhang (bib27) 2016; 34
Li, Wang, Huang, Huang, Hu, Zheng (bib46) 2015; 16
Zhu, Han, Duoss, Golobic, Kuntz, Spadaccini (bib165) 2015; 6
Yeo, Geng, Ito, Kohane, Burdick, Radisic (bib70) 2007; 81
Young, Engler (bib13) 2011; 32
Liu, Yan, Jiang, Xiong, Du, Shi (bib181) 2014; 2014
Spizzirri, Hampel, Cirillo, Nicoletta, Hassan, Vittorio (bib178) 2013; 448
Rowley, Madlambayan, Mooney (bib17) 1999; 20
Thorngkham, Paradee, Niamlang, Sirivat (bib182) 2015; 104
Hur, Im, Kim, Kim, Chung, Kim (bib87) 2014; 8
Khan, Ul-Islam, Ullah, Kim, Park (bib108) 2015; 22
Frensemeier, Koplin, Jaeger, Kramer, Klemm (bib133) 2010; vol. 2010
Ono, Saito, Yura, Ishikawa, Kurita, Akaike (bib69) 2000; 49
Dai (bib2) 1999; 39
Merino, Martín, Kostarelos, Prato, Vázquez (bib128) 2015; 9
Ford, Bertram, Hynes, Michaud, Li, Young (bib115) 2006; 103
Sannino, Demitri, Madaghiele (bib123) 2009; 2
Liu, Hu, Zhuang, Zhang, Wei, Wang (bib151) 2012; 12
Burdick, Prestwich (bib11) 2011; 23
Huang, Chen, Nguyen, Tang, Zhang, Yang (bib45) 2013; 1
Kulkarni, Setty, Sa (bib180) 2010; 115
Klemm, Schumann, Udhardt, Marsch (bib49) 2001; 26
Bhattarai, Gunn, Zhang (bib176) 2010; 62
Kim, Gordonov, Bentley, Payne (bib63) 2013; 85
Kuo, Ma (bib56) 2001; 22
Lopez-Sanchez, Rincon, Wang, Brulhart, Stokes, Gidley (bib134) 2014; 15
Nakayama, Kakugo, Gong, Osada, Takai, Erata (bib38) 2004; 14
Chau, Collighan, Verderio, Addy, Griffin (bib75) 2005; 26
Yow, Lim, Yim, Lim, Leong (bib125) 2011; 3
Zhang, Zhang, Wu (bib12) 2013; 73
Hay (bib121) 2013
Lee, Mooney (bib122) 2001; 101
Gao, Sevostianov (bib137) 2016; 49
Zaborowska, Bodin, Bäckdahl, Popp, Goldstein, Gatenholm (bib52) 2010; 6
Mi (bib67) 2005; 6
Gao, Shi, Liu, Yang, Sevostianov, Silberschmidt (bib39) 2015; 44
Ul-Islam, Ha, Khan, Park (bib25) 2013; 92
Wu, Li, Boldt, Wang, Kuan, Tran (bib85) 2014; 50
Lee, Lee, Shin, Gu, Kim, Kang (bib110) 2010; 145
Moura, Faneca, Lima, Gil, Figueiredo (bib65) 2011; 12
Xing, Cheng, Yang, Chen, Zhang, Sun (bib83) 2011; 23
Tomer, Dimitrijevic, Florence (bib173) 1995; 33
Striegel (bib28) 2003; 48
Huang, Lü, Zhang, Shao (bib190) 2012; 8
Shin, Bae, Cha, Mun, Chen, Tekin (bib118) 2011; 6
Gao, Kuśmierczyk, Shi, Liu, Yang, Sevostianov (bib136) 2016; 59
Fu, Zhou, Zhang, Yang (bib42) 2013; 33
Luo, Xu, Zhang, Yang, Chen (bib64) 2005; 21
Li, Faulkner Jones, Dun, Jin, Chen, Xing (bib86) 2015; 54
Shin, Jung, Zalabany, Kim, Zorlutuna, Kim (bib94) 2013; 7
Stewart, Kobayashi, Higgins, Quigley, Jamali, Moulton (bib153) 2015; 21
Venkatesan, Lowe, Anil, Manivasagan, Kheraif, Kang (bib19) 2015; 67
Khan, Ul-Islam, Khattak, Ullah, Park (bib30) 2015; 22
Ismail, Martínez, Al Harrasi, Kim, Otero (bib189) 2011; 160
Yan, Wang, Ren, Wu, Caridade, Fan (bib74) 2010; 95
Gao, Shi, Lau, Liu, Yang, Silberschmidt (bib37) 2016; 62
Ullah, Ul-Islam, Khan, Kim, Park (bib35) 2016; 136
Hsieh, Yano, Nogi, Eichhorn (bib40) 2008; 15
Ul-Islam, Khattak, Ullah, Khan, Park (bib26) 2014; 21
Chai, Leong (bib138) 2007; 15
Zhang, Zhou, Li, Zhang, Huang, He (bib172) 2015; 131
Guhados, Wan, Hutter (bib41) 2005; 21
Angele, Abke, Kujat, Faltermeier, Schumann, Nerlich (bib73) 2004; 25
Lee, Khaing, Siegel, Schmidt (bib183) 2015; 5
Santo, Frias, Carida, Cancedda, Gomes, Mano (bib21) 2009; 10
Sano, Rojas, Gatenholm, Davalos (bib105) 2010; 38
Guvendiren, Burdick (bib16) 2012; 3
Augst, Kong, Mooney (bib18) 2006; 6
Mizuno, Glowacki (bib77) 1996; 17
Mandal, Kundu (bib113) 2009; 30
Jus, Stachel, Schloegl, Pretzler, Friess, Meyer (bib76) 2011; 31
Svensson, Nicklasson, Harrah, Panilaitis, Kaplan, Brittberg (bib48) 2005; 26
Shi, Zang, Jiang, Huang, Lu, Ma (bib98) 2012; 2
Peppas, Huang, Torres-Lugo, Ward, Zhang (bib10) 2000; 2
Sirivisoot, Pareta, Harrison (bib147) 2014; 4
Thiele, Ma, Bruekers, Ma, Huck (bib6) 2014; 26
Thébaud, Pierron, Bareille, Le Visage, Letourneur, Bordenave (bib22) 2007; 18
Carletti, Motta, Migliaresi (bib111) 2011
Lee, Peng, Yang, Roh, Funabashi, Park (bib82) 2012; 7
Bäckdahl, Helenius, Bodin, Nannmark, Johansson, Risberg (bib51) 2006; 27
Astley, Chanliaud, Donald, Gidley (bib43) 2003; 32
Sayyar, Murray, Thompson, Chung, Officer, Gambhir (bib92) 2015; 3
Fatoni, Numnuam, Kanatharana, Limbut, Thavarungkul (bib167) 2014; 130
Subramony, Dargis, Castillo, Azeloglu, Tracey, Su (bib130) 2013; 34
Li, Rodrigues, Tomas (bib4) 2012; 41
Eftimov, Stefanova, Lalchev, Georgiev (bib152) 2015; 29
Malda, Visser, Melchels, Jüngst, Hennink, Dhert (bib5) 2013; 25
Liu, Cheng, Chen, Hou, Bai, Xi (bib143) 2014; 6
Chen, Dong, Ge, Guo, Ma (bib187) 2015; 7
Zhao, Kwak, Wang, Franz, White, Holladay (bib29) 2007; 67
Gross, Erkal, Lockwood, Chen, Spence (bib164) 2014; 86
Sekine, Ido, Miyake, Nagamine, Nishizawa (bib106) 2010; 132
Shi, Zheng, Wang, Lin, Fan (bib88) 2014; 4
Hou, Guo, Jiang (bib160) 2011; 40
Zhang, Li, Li, Guo, Ma (bib91) 2014; 82
Bar-Cohen (bib96) 2002; 39
Um, Lee, Park, Kwon, Umbach, Luo (bib58) 2006; 5
Zong, Cao, Ju (bib171) 2007; 40
Wei, Payne, Shi, Du (bib61) 2013; 9
Huang, Lee, Hsiao, Chen, Liu (bib174) 2011; 21
Guo, Song, Reid, Gu, Forrester, Jahoda (bib156) 2010; 130
Harley, Kim, Zaman, Yannas, Lauffenburger, Gibson (bib112) 2008; 95
Bhattarai, Gunn, Zhang (bib68) 2010; 62
Chang, Zhang (bib9) 2011; 84
MacDonald, Voge, Kariolis, Stegemann (bib140) 2008; 4
Zhang, Smith, Gorski (bib168) 2004; 76
Chenite, Chaput, Wang, Combes, Buschmann, Hoemann (bib66) 2000; 21
Liu, Zhao (bib177) 2006; 43
Gao, Shi, Kuśmierczyk, Liu, Yang, Sevostianov (bib135) 2016; 58
Eisenbarth (bib101) 2007; 9
Zang, Sun, Liu, Wang, Zhang, Liu (bib102) 2014; 128
Zhou, Chang, Zhang, Zhang (bib33) 2007; 7
Hu, Chen, Li, Shi, Shen, Zhang (bib100) 2009; 29
Ullah, Ul-Islam, Khan, Kim, Park (bib36) 2015; 132
Lutolf, Hubbell (bib139) 2005; 23
Putra, Kakugo, Furukawa, Gong, Osada, Uemura (bib103) 2008; 40
Zhao, Liu, Pan, Yu (bib8) 2013; 6
Guo, Jiang (bib161) 2014; 57
Li, Huang, Yang, Zhang, Zhang, Yang (bib192) 2014; 9
Sarker, Papageorgiou, Silva, Zehnder, Gul-E-Noor, Bertmer (bib57) 2014; 2
Li, Lin, Yang, Wan, Cui (bib31) 2009; 54
Shi, Qiu, Nie, Xiao, Payne, Du (bib60) 2013; 5
Shin, Aghaei Ghareh Bolagh, Dang, Topkaya, Gao, Yang (bib117) 2013; 25
Hu, Huang, Zhuang, Zhang, Lang, Chen (bib90) 2008; 9
Karageorgiou, Kaplan (bib116) 2005; 26
Ramón Azcón, Ahadian, Estili, Liang, Ostrovidov, Kaji (bib119) 2013; 25
McKenna, Mikkelsen, Wehr, Gidley, Menzies (bib44) 2009; 16
Khetan, Katz, Burdick (bib15) 2009; 5
Tang, Duan, Feng, Liu, Wang, Li (bib79) 2009
Guo, Cheng, Wu, Jiang, Gao, Li (bib159) 2013; 25
Sajesh, Jayakumar, Nair, Chennazhi (bib142) 2013; 62
Martins, Eng, Caridade, Mano, Reis, Vunjak-Novakovic (bib145) 2014; 15
Shi, Zhang, Phillips, Yang (bib55) 2014; 35
Uraki, Nemoto, Otsuka, Tamai, Sugiyama, Kishimoto (bib104) 2007; 69
Schulte, Ruffoni, Lambers, Christen, Webster, Kuhn (bib129) 2013; 8
Song, Zhao, Forrester, McCaig (bib157) 2002; 99
Paradee, Sirivat, Niamlang, Prissanaroon-Ouajai (bib179) 2012; 23
Shi, Phillips, Yang (bib97) 2013; 5
Kim, Kim, Kim (bib109) 2008; 176
Heo, Koh, Shim, Kim, Yim, Hwang (bib59) 2015
Charulatha, Rajaram (bib71) 2003; 24
Luo, Zeng, Liu, Zhang (bib34) 2015; 194
Collier, Camp, Hudson, Schmidt (bib89) 2000; 50
Wang, Wu, Guo, Ma (bib186) 2015; 9
Lee, Kim, Kim, Lee, Lee, Kim (bib175) 1999; 73
Drury, Mooney (bib120) 2003; 24
Rocha, Santo, Gomes, Reis, Mano (bib20) 2011; 26
Kunchornsup, Sirivat (bib32) 2014; 21
Li, Ge, Guo, Ma (bib150) 2014; 5
Aubin, Nichol, Hutson, Bae, Sieminski, Cropek (bib114) 2010; 31
Messerli, Graham (bib154) 2011; 221
Pok, Vitale, Eichmann, Benavides, Pasquali, Jacot (bib126) 2014; 8
Sehaqui, Ezekiel Mushi, Morimune, Salajkova, Nishino, Berglund (bib131) 2012; 4
Kim, Ampofo, Craft, Kim (bib132) 2008; 40
Li, Liu, Liu, Liu, Yao (bib169) 2005; 346
De Moura, Mattoso, Zucolotto (bib124) 2012; 109
Cen, Neoh, Li, Kang (bib141) 2004; 5
Abidian, Daneshvar, Egeland, Kipke, Cederna, Urbanchek (bib93) 2012; 1
Annabi, Tamayol, Uquillas, Akbari, Bertassoni, Cha (bib1) 2014; 26
Morán, Miguel, Lindman (bib78) 2010; 6
Shi, Li, Chen, Han, Yang (bib99) 2014; 6
Bäckdahl, Esguerra, Delbro, Risberg, Gatenholm (bib53) 2008; 2
Shi, Hu, Tu, Zhang, Wang, Xu (bib185) 2013; 9
Xu, Wu, Sun, Bai, Shi (bib191) 2010; 4
Liu, Yan, Jiang, Xiong, Du, Shi (bib62) 2014; 2014
Xing, Liu, Yu, Lian, Huang (bib166) 2012; 31
Huang, Cormie, Messerli, Robinson (bib155) 2009; 219
Chenite (10.1016/j.biomaterials.2016.09.020_bib66) 2000; 21
Zhang (10.1016/j.biomaterials.2016.09.020_bib172) 2015; 131
Klemm (10.1016/j.biomaterials.2016.09.020_bib49) 2001; 26
Shi (10.1016/j.biomaterials.2016.09.020_bib88) 2014; 4
Li (10.1016/j.biomaterials.2016.09.020_bib169) 2005; 346
Huang (10.1016/j.biomaterials.2016.09.020_bib190) 2012; 8
Oh (10.1016/j.biomaterials.2016.09.020_bib14) 2010; 141
Sano (10.1016/j.biomaterials.2016.09.020_bib105) 2010; 38
Li (10.1016/j.biomaterials.2016.09.020_bib170) 2005; 1749
Yan (10.1016/j.biomaterials.2016.09.020_bib74) 2010; 95
Annabi (10.1016/j.biomaterials.2016.09.020_bib1) 2014; 26
Yeo (10.1016/j.biomaterials.2016.09.020_bib70) 2007; 81
Liu (10.1016/j.biomaterials.2016.09.020_bib143) 2014; 6
Dvir (10.1016/j.biomaterials.2016.09.020_bib184) 2011; 6
Eisenbarth (10.1016/j.biomaterials.2016.09.020_bib101) 2007; 9
Huang (10.1016/j.biomaterials.2016.09.020_bib45) 2013; 1
Um (10.1016/j.biomaterials.2016.09.020_bib58) 2006; 5
Li (10.1016/j.biomaterials.2016.09.020_bib192) 2014; 9
Burdick (10.1016/j.biomaterials.2016.09.020_bib11) 2011; 23
Song (10.1016/j.biomaterials.2016.09.020_bib157) 2002; 99
Ogoshi (10.1016/j.biomaterials.2016.09.020_bib162) 2007; 129
Wang (10.1016/j.biomaterials.2016.09.020_bib50) 2010; 30
Carletti (10.1016/j.biomaterials.2016.09.020_bib111) 2011
Chang (10.1016/j.biomaterials.2016.09.020_bib9) 2011; 84
Mire (10.1016/j.biomaterials.2016.09.020_bib163) 2011; 21
Liu (10.1016/j.biomaterials.2016.09.020_bib151) 2012; 12
Kim (10.1016/j.biomaterials.2016.09.020_bib188) 2006; 18
Svensson (10.1016/j.biomaterials.2016.09.020_bib48) 2005; 26
Gao (10.1016/j.biomaterials.2016.09.020_bib137) 2016; 49
Messerli (10.1016/j.biomaterials.2016.09.020_bib154) 2011; 221
Fatoni (10.1016/j.biomaterials.2016.09.020_bib167) 2014; 130
Pok (10.1016/j.biomaterials.2016.09.020_bib126) 2014; 8
Li (10.1016/j.biomaterials.2016.09.020_bib31) 2009; 54
Guo (10.1016/j.biomaterials.2016.09.020_bib156) 2010; 130
Liu (10.1016/j.biomaterials.2016.09.020_bib62) 2014; 2014
Xing (10.1016/j.biomaterials.2016.09.020_bib166) 2012; 31
Zaborowska (10.1016/j.biomaterials.2016.09.020_bib52) 2010; 6
Hsieh (10.1016/j.biomaterials.2016.09.020_bib40) 2008; 15
Shi (10.1016/j.biomaterials.2016.09.020_bib98) 2012; 2
Xing (10.1016/j.biomaterials.2016.09.020_bib83) 2011; 23
Rocha (10.1016/j.biomaterials.2016.09.020_bib20) 2011; 26
Ono (10.1016/j.biomaterials.2016.09.020_bib69) 2000; 49
Dash (10.1016/j.biomaterials.2016.09.020_bib23) 2014; 6
Ismail (10.1016/j.biomaterials.2016.09.020_bib189) 2011; 160
Luo (10.1016/j.biomaterials.2016.09.020_bib34) 2015; 194
Heo (10.1016/j.biomaterials.2016.09.020_bib59) 2015
Zhao (10.1016/j.biomaterials.2016.09.020_bib8) 2013; 6
Dai (10.1016/j.biomaterials.2016.09.020_bib2) 1999; 39
Santo (10.1016/j.biomaterials.2016.09.020_bib21) 2009; 10
Shin (10.1016/j.biomaterials.2016.09.020_bib117) 2013; 25
Zhu (10.1016/j.biomaterials.2016.09.020_bib165) 2015; 6
Lee (10.1016/j.biomaterials.2016.09.020_bib122) 2001; 101
Zong (10.1016/j.biomaterials.2016.09.020_bib171) 2007; 40
McKenna (10.1016/j.biomaterials.2016.09.020_bib44) 2009; 16
Angele (10.1016/j.biomaterials.2016.09.020_bib73) 2004; 25
Hay (10.1016/j.biomaterials.2016.09.020_bib121) 2013
Merino (10.1016/j.biomaterials.2016.09.020_bib128) 2015; 9
Thébaud (10.1016/j.biomaterials.2016.09.020_bib22) 2007; 18
Jus (10.1016/j.biomaterials.2016.09.020_bib76) 2011; 31
Wei (10.1016/j.biomaterials.2016.09.020_bib61) 2013; 9
Shin (10.1016/j.biomaterials.2016.09.020_bib118) 2011; 6
Liu (10.1016/j.biomaterials.2016.09.020_bib181) 2014; 2014
Thorngkham (10.1016/j.biomaterials.2016.09.020_bib182) 2015; 104
Luo (10.1016/j.biomaterials.2016.09.020_bib64) 2005; 21
Uraki (10.1016/j.biomaterials.2016.09.020_bib104) 2007; 69
Wang (10.1016/j.biomaterials.2016.09.020_bib186) 2015; 9
Kunchornsup (10.1016/j.biomaterials.2016.09.020_bib32) 2014; 21
Li (10.1016/j.biomaterials.2016.09.020_bib127) 2014; 4
Stewart (10.1016/j.biomaterials.2016.09.020_bib153) 2015; 21
Mandal (10.1016/j.biomaterials.2016.09.020_bib113) 2009; 30
Putra (10.1016/j.biomaterials.2016.09.020_bib103) 2008; 40
Kim (10.1016/j.biomaterials.2016.09.020_bib132) 2008; 40
Huang (10.1016/j.biomaterials.2016.09.020_bib155) 2009; 219
Harley (10.1016/j.biomaterials.2016.09.020_bib112) 2008; 95
Sajesh (10.1016/j.biomaterials.2016.09.020_bib142) 2013; 62
Khan (10.1016/j.biomaterials.2016.09.020_bib108) 2015; 22
Kim (10.1016/j.biomaterials.2016.09.020_bib109) 2008; 176
Sayyar (10.1016/j.biomaterials.2016.09.020_bib92) 2015; 3
Sekine (10.1016/j.biomaterials.2016.09.020_bib106) 2010; 132
Spizzirri (10.1016/j.biomaterials.2016.09.020_bib178) 2013; 448
Bar-Cohen (10.1016/j.biomaterials.2016.09.020_bib96) 2002; 39
Schulte (10.1016/j.biomaterials.2016.09.020_bib129) 2013; 8
Sehaqui (10.1016/j.biomaterials.2016.09.020_bib131) 2012; 4
Zhang (10.1016/j.biomaterials.2016.09.020_bib91) 2014; 82
Subramony (10.1016/j.biomaterials.2016.09.020_bib130) 2013; 34
Malda (10.1016/j.biomaterials.2016.09.020_bib5) 2013; 25
MacDonald (10.1016/j.biomaterials.2016.09.020_bib140) 2008; 4
Hu (10.1016/j.biomaterials.2016.09.020_bib90) 2008; 9
Paradee (10.1016/j.biomaterials.2016.09.020_bib179) 2012; 23
Striegel (10.1016/j.biomaterials.2016.09.020_bib28) 2003; 48
Wu (10.1016/j.biomaterials.2016.09.020_bib85) 2014; 50
Li (10.1016/j.biomaterials.2016.09.020_bib150) 2014; 5
Shi (10.1016/j.biomaterials.2016.09.020_bib99) 2014; 6
Ul-Islam (10.1016/j.biomaterials.2016.09.020_bib25) 2013; 92
Abidian (10.1016/j.biomaterials.2016.09.020_bib93) 2012; 1
Yannas (10.1016/j.biomaterials.2016.09.020_bib72) 1980; 14
Ford (10.1016/j.biomaterials.2016.09.020_bib115) 2006; 103
Guo (10.1016/j.biomaterials.2016.09.020_bib159) 2013; 25
Malliaras (10.1016/j.biomaterials.2016.09.020_bib3) 2005; 58
Gao (10.1016/j.biomaterials.2016.09.020_bib39) 2015; 44
Xu (10.1016/j.biomaterials.2016.09.020_bib191) 2010; 4
Rowley (10.1016/j.biomaterials.2016.09.020_bib17) 1999; 20
Moura (10.1016/j.biomaterials.2016.09.020_bib65) 2011; 12
Bhattarai (10.1016/j.biomaterials.2016.09.020_bib176) 2010; 62
Shi (10.1016/j.biomaterials.2016.09.020_bib60) 2013; 5
Bäckdahl (10.1016/j.biomaterials.2016.09.020_bib53) 2008; 2
Guvendiren (10.1016/j.biomaterials.2016.09.020_bib16) 2012; 3
Hur (10.1016/j.biomaterials.2016.09.020_bib87) 2014; 8
Ramón Azcón (10.1016/j.biomaterials.2016.09.020_bib119) 2013; 25
Ullah (10.1016/j.biomaterials.2016.09.020_bib24) 2016; 6
Aubin (10.1016/j.biomaterials.2016.09.020_bib114) 2010; 31
Voge (10.1016/j.biomaterials.2016.09.020_bib148) 2008; 86
Khan (10.1016/j.biomaterials.2016.09.020_bib30) 2015; 22
Astley (10.1016/j.biomaterials.2016.09.020_bib43) 2003; 32
Nakayama (10.1016/j.biomaterials.2016.09.020_bib38) 2004; 14
Martins (10.1016/j.biomaterials.2016.09.020_bib145) 2014; 15
Shi (10.1016/j.biomaterials.2016.09.020_bib185) 2013; 9
Li (10.1016/j.biomaterials.2016.09.020_bib84) 2015; 11
Hu (10.1016/j.biomaterials.2016.09.020_bib100) 2009; 29
Gross (10.1016/j.biomaterials.2016.09.020_bib164) 2014; 86
Young (10.1016/j.biomaterials.2016.09.020_bib13) 2011; 32
Kim (10.1016/j.biomaterials.2016.09.020_bib63) 2013; 85
Eftimov (10.1016/j.biomaterials.2016.09.020_bib152) 2015; 29
Yow (10.1016/j.biomaterials.2016.09.020_bib125) 2011; 3
Lee (10.1016/j.biomaterials.2016.09.020_bib183) 2015; 5
Shin (10.1016/j.biomaterials.2016.09.020_bib94) 2013; 7
Gao (10.1016/j.biomaterials.2016.09.020_bib135) 2016; 58
Li (10.1016/j.biomaterials.2016.09.020_bib46) 2015; 16
Kuo (10.1016/j.biomaterials.2016.09.020_bib56) 2001; 22
Ismail (10.1016/j.biomaterials.2016.09.020_bib95) 2008; 129
Cen (10.1016/j.biomaterials.2016.09.020_bib141) 2004; 5
Zang (10.1016/j.biomaterials.2016.09.020_bib102) 2014; 128
Gao (10.1016/j.biomaterials.2016.09.020_bib136) 2016; 59
Khetan (10.1016/j.biomaterials.2016.09.020_bib15) 2009; 5
Shi (10.1016/j.biomaterials.2016.09.020_bib97) 2013; 5
Liu (10.1016/j.biomaterials.2016.09.020_bib177) 2006; 43
Khan (10.1016/j.biomaterials.2016.09.020_bib107) 2015; 127
Lee (10.1016/j.biomaterials.2016.09.020_bib110) 2010; 145
Ullah (10.1016/j.biomaterials.2016.09.020_bib35) 2016; 136
Chai (10.1016/j.biomaterials.2016.09.020_bib138) 2007; 15
Cheng (10.1016/j.biomaterials.2016.09.020_bib81) 2009; 121
Sarker (10.1016/j.biomaterials.2016.09.020_bib57) 2014; 2
Augst (10.1016/j.biomaterials.2016.09.020_bib18) 2006; 6
Thiele (10.1016/j.biomaterials.2016.09.020_bib6) 2014; 26
Guo (10.1016/j.biomaterials.2016.09.020_bib161) 2014; 57
Mi (10.1016/j.biomaterials.2016.09.020_bib67) 2005; 6
Hou (10.1016/j.biomaterials.2016.09.020_bib160) 2011; 40
Zhang (10.1016/j.biomaterials.2016.09.020_bib168) 2004; 76
Zhou (10.1016/j.biomaterials.2016.09.020_bib33) 2007; 7
Lopez-Sanchez (10.1016/j.biomaterials.2016.09.020_bib134) 2014; 15
Chen (10.1016/j.biomaterials.2016.09.020_bib187) 2015; 7
Lee (10.1016/j.biomaterials.2016.09.020_bib82) 2012; 7
Bhattarai (10.1016/j.biomaterials.2016.09.020_bib68) 2010; 62
Li (10.1016/j.biomaterials.2016.09.020_bib4) 2012; 41
Venkatesan (10.1016/j.biomaterials.2016.09.020_bib19) 2015; 67
Karageorgiou (10.1016/j.biomaterials.2016.09.020_bib116) 2005; 26
Sannino (10.1016/j.biomaterials.2016.09.020_bib123) 2009; 2
De Moura (10.1016/j.biomaterials.2016.09.020_bib124) 2012; 109
Kulkarni (10.1016/j.biomaterials.2016.09.020_bib180) 2010; 115
Guiseppi-Elie (10.1016/j.biomaterials.2016.09.020_bib7) 2010; 31
Shi (10.1016/j.biomaterials.2016.09.020_bib55) 2014; 35
Tomer (10.1016/j.biomaterials.2016.09.020_bib173) 1995; 33
Chau (10.1016/j.biomaterials.2016.09.020_bib75) 2005; 26
Peppas (10.1016/j.biomaterials.2016.09.020_bib10) 2000; 2
Zhao (10.1016/j.biomaterials.2016.09.020_bib29) 2007; 67
Collier (10.1016/j.biomaterials.2016.09.020_bib89) 2000; 50
Li (10.1016/j.biomaterials.2016.09.020_bib86) 2015; 54
Morán (10.1016/j.biomaterials.2016.09.020_bib78) 2010; 6
Ul-Islam (10.1016/j.biomaterials.2016.09.020_bib26) 2014; 21
Mizuno (10.1016/j.biomaterials.2016.09.020_bib77) 1996; 17
Zhang (10.1016/j.biomaterials.2016.09.020_bib12) 2013; 73
Shi (10.1016/j.biomaterials.2016.09.020_bib144) 2014; 53
Kowalska-Ludwicka (10.1016/j.biomaterials.2016.09.020_bib54) 2013; 9
Lutolf (10.1016/j.biomaterials.2016.09.020_bib139) 2005; 23
Ullah (10.1016/j.biomateria
References_xml – volume: 26
  start-page: 125
  year: 2014
  end-page: 148
  ident: bib6
  article-title: 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide
  publication-title: Adv. Mater.
– volume: 2014
  start-page: 8
  year: 2014
  ident: bib181
  article-title: Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel
  publication-title: Int. J. Polym. Sci.
– volume: 67
  start-page: 381
  year: 2015
  end-page: 390
  ident: bib19
  article-title: Seaweed polysaccharides and their potential biomedical applications
  publication-title: Starch – Stärke
– volume: 10
  start-page: 1392
  year: 2009
  end-page: 1401
  ident: bib21
  article-title: Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications
  publication-title: Biomacromolecules
– volume: 32
  start-page: 28
  year: 2003
  end-page: 35
  ident: bib43
  article-title: Tensile deformation of bacterial cellulose composites
  publication-title: Int. J. Biol. Macromol.
– volume: 95
  start-page: 4013
  year: 2008
  end-page: 4024
  ident: bib112
  article-title: Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions
  publication-title: Biophys. J.
– volume: 20
  start-page: 45
  year: 1999
  end-page: 53
  ident: bib17
  article-title: Alginate hydrogels as synthetic extracellular matrix materials
  publication-title: Biomaterials
– volume: 92
  start-page: 766
  year: 2010
  end-page: 772
  ident: bib146
  article-title: Incorporation of collagen in poly (3, 4-ethylenedioxythiophene) for a bifunctional film with high bio-and electrochemical activity
  publication-title: J. Biomed. Mater. Res. A
– volume: 92
  start-page: 360
  year: 2013
  end-page: 366
  ident: bib25
  article-title: Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose
  publication-title: Carbohyd. Polym.
– volume: 25
  start-page: 5011
  year: 2013
  end-page: 5028
  ident: bib5
  article-title: 25th anniversary article: engineering hydrogels for biofabrication
  publication-title: Adv. Mater.
– volume: 50
  start-page: 574
  year: 2000
  end-page: 584
  ident: bib89
  article-title: Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications
  publication-title: J. Biomed. Mater. Res.
– volume: 132
  start-page: 13174
  year: 2010
  end-page: 13175
  ident: bib106
  article-title: Conducting polymer electrodes printed on hydrogel
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3143
  year: 2010
  end-page: 3156
  ident: bib78
  article-title: DNA gel particles
  publication-title: Soft Mat.
– volume: 115
  start-page: 1180
  year: 2010
  end-page: 1188
  ident: bib180
  article-title: Polyacrylamide-g-alginate-based electrically responsive hydrogel for drug delivery application: synthesis, characterization, and formulation development
  publication-title: J. Appl. Polym. Sci.
– volume: 21
  start-page: 6642
  year: 2005
  end-page: 6646
  ident: bib41
  article-title: Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy
  publication-title: Langmuir
– volume: 9
  start-page: 2131
  year: 2013
  end-page: 2135
  ident: bib61
  article-title: Electrodeposition of a biopolymeric hydrogel in track-etched micropores
  publication-title: Soft Mat.
– volume: 1749
  start-page: 43
  year: 2005
  end-page: 51
  ident: bib170
  article-title: An electrochemical investigation of hemoglobin and catalase incorporated in collagen films
  publication-title: Biochim. Biophys. Acta (BBA)-Proteins Proteom.
– volume: 131
  start-page: 243
  year: 2015
  end-page: 248
  ident: bib172
  article-title: Hydrogen peroxide biosensor based on microperoxidase-11 immobilized on flexible MWCNTs-BC nanocomposite film
  publication-title: Talanta
– volume: 50
  start-page: 4065
  year: 2014
  end-page: 4068
  ident: bib80
  article-title: Reversible Ag+-crosslinked DNA hydrogels
  publication-title: Chem. Commun.
– volume: 40
  start-page: 1001
  year: 2008
  end-page: 1011
  ident: bib132
  article-title: Modeling elastic, viscous and creep characteristics of cellulose electro-active paper
  publication-title: Mech. Mater.
– volume: 92
  start-page: 1432
  year: 2013
  end-page: 1442
  ident: bib47
  article-title: Present status and applications of bacterial cellulose-based materials for skin tissue repair
  publication-title: Carbohyd. Polym.
– volume: 11
  start-page: 1138
  year: 2015
  end-page: 1143
  ident: bib84
  article-title: A writable polypeptide–DNA hydrogel with rationally designed multi-modification sites
  publication-title: Small
– volume: 3
  start-page: 481
  year: 2015
  end-page: 490
  ident: bib92
  article-title: Processable conducting graphene/chitosan hydrogels for tissue engineering
  publication-title: J. Mater. Chem. B
– volume: 40
  start-page: 2385
  year: 2011
  end-page: 2401
  ident: bib160
  article-title: Biomimetic smart nanopores and nanochannels
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 4686
  year: 2015
  end-page: 4697
  ident: bib128
  article-title: Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery
  publication-title: ACS Nano
– volume: 50
  start-page: 14620
  year: 2014
  end-page: 14622
  ident: bib85
  article-title: Programmable protein–DNA hybrid hydrogels for the immobilization and release of functional proteins
  publication-title: Chem. Commun.
– volume: 5
  start-page: 39228
  year: 2015
  end-page: 39231
  ident: bib183
  article-title: Surface modification of neural electrodes with a pyrrole-hyaluronic acid conjugate to attenuate reactive astrogliosis in vivo
  publication-title: RSC Adv.
– volume: 25
  start-page: 6385
  year: 2013
  end-page: 6391
  ident: bib117
  article-title: Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide
  publication-title: Adv. Mater.
– volume: 16
  start-page: 780
  year: 2015
  end-page: 789
  ident: bib46
  article-title: Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip
  publication-title: Biomacromolecules
– volume: 2
  start-page: 353
  year: 2009
  end-page: 373
  ident: bib123
  article-title: Biodegradable cellulose-based hydrogels: design and applications
  publication-title: Materials
– volume: 25
  start-page: 6064
  year: 2013
  end-page: 6068
  ident: bib159
  article-title: Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane
  publication-title: Adv. Mater.
– volume: 58
  start-page: 53
  year: 2005
  end-page: 58
  ident: bib3
  article-title: An organic electronics primer
  publication-title: Phys. Today
– volume: 129
  start-page: 834
  year: 2008
  end-page: 840
  ident: bib95
  article-title: Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization
  publication-title: Sens. Actuat. B Chem.
– volume: 34
  start-page: 1942
  year: 2013
  end-page: 1953
  ident: bib130
  article-title: The guidance of stem cell differentiation by substrate alignment and mechanical stimulation
  publication-title: Biomaterials
– volume: 130
  start-page: 2320
  year: 2010
  end-page: 2327
  ident: bib156
  article-title: Effects of physiological electric fields on migration of human dermal fibroblasts
  publication-title: J. Invest. Dermatol.
– volume: 6
  start-page: 3132
  year: 2014
  end-page: 3140
  ident: bib143
  article-title: Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide
  publication-title: ACS Appl. Mater. Inter.
– volume: 9
  start-page: 309
  year: 2014
  end-page: 317
  ident: bib192
  article-title: Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices
  publication-title: Nano Energy
– volume: 1
  start-page: 4166
  year: 2013
  end-page: 4170
  ident: bib149
  article-title: Electrically controlled release of the nerve growth factor from a collagen–carbon nanotube composite for supporting neuronal growth
  publication-title: J. Mater. Chem. B
– volume: 8
  start-page: e71707
  year: 2013
  ident: bib158
  article-title: Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels
  publication-title: PloS One
– volume: 4
  start-page: 1043
  year: 2012
  end-page: 1049
  ident: bib131
  article-title: Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing
  publication-title: ACS Appl. Mater. Inter.
– volume: 23
  start-page: 47
  year: 2005
  end-page: 55
  ident: bib139
  article-title: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
  publication-title: Nat. Biotechnol.
– start-page: 1
  year: 2015
  end-page: 11
  ident: bib59
  article-title: Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering
  publication-title: Drug Deliv. Transl. Res.
– volume: 23
  start-page: 999
  year: 2012
  end-page: 1010
  ident: bib179
  article-title: Effects of crosslinking ratio, model drugs, and electric field strength on electrically controlled release for alginate-based hydrogel
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 54
  start-page: 3957
  year: 2015
  end-page: 3961
  ident: bib86
  article-title: Rapid formation of a supramolecular polypeptide–DNA hydrogel for in situ three-dimensional multilayer bioprinting
  publication-title: Angew. Chem. Int. Ed.
– volume: 121
  start-page: 7796
  year: 2009
  end-page: 7799
  ident: bib81
  article-title: A pH-triggered, fast-responding DNA hydrogel
  publication-title: Angew. Chem.
– volume: 39
  start-page: 273
  year: 1999
  end-page: 387
  ident: bib2
  article-title: Conjugated and fullerene-containing polymers for electronic and photonic applications: advanced syntheses and microlithographic fabrications
  publication-title: J. Macromol. Sci. C
– volume: 2014
  year: 2014
  ident: bib62
  article-title: Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel
  publication-title: Int. J. Polym. Sci.
– volume: 128
  start-page: 314
  year: 2014
  end-page: 318
  ident: bib102
  article-title: Ordered manufactured bacterial cellulose as biomaterial of tissue engineering
  publication-title: Mater. Lett.
– volume: 4
  start-page: 7358
  year: 2010
  end-page: 7362
  ident: bib191
  article-title: Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels
  publication-title: ACS Nano
– volume: 6
  start-page: 975
  year: 2005
  end-page: 987
  ident: bib67
  article-title: Synthesis and characterization of a novel chitosan-gelatin bioconjugate with fluorescence emission
  publication-title: Biomacromolecules
– volume: 8
  start-page: 4609
  year: 2012
  end-page: 4615
  ident: bib190
  article-title: Glucono-δ-lactone controlled assembly of graphene oxide hydrogels with selectively reversible gel–sol transition
  publication-title: Soft Mat.
– volume: 48
  start-page: 73
  year: 2003
  end-page: 77
  ident: bib28
  article-title: Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl
  publication-title: J. Chil. Chem. Soc.
– volume: 73
  start-page: 923
  year: 2013
  end-page: 928
  ident: bib12
  article-title: Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique
  publication-title: React. Funct. Polym.
– volume: 38
  start-page: 2475
  year: 2010
  end-page: 2484
  ident: bib105
  article-title: Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers
  publication-title: Ann. Biomed. Eng.
– volume: 26
  start-page: 5474
  year: 2005
  end-page: 5491
  ident: bib116
  article-title: Porosity of 3D biomaterial scaffolds and osteogenesis
  publication-title: Biomaterials
– volume: 12
  start-page: 241
  year: 2012
  end-page: 250
  ident: bib151
  article-title: Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin
  publication-title: Macromol. Biosci.
– volume: 4
  year: 2014
  ident: bib127
  article-title: Flexible supercapacitors based on bacterial cellulose paper electrodes
  publication-title: Adv. Energy Mater.
– volume: 136
  start-page: 908
  year: 2016
  end-page: 916
  ident: bib35
  article-title: Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system
  publication-title: Carbohyd. Polym.
– volume: 4
  start-page: 20130050
  year: 2014
  ident: bib147
  article-title: Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration
  publication-title: Interface Focus
– volume: 109
  start-page: 520
  year: 2012
  end-page: 524
  ident: bib124
  article-title: Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging
  publication-title: J. Food Eng.
– volume: 21
  start-page: 2155
  year: 2000
  end-page: 2161
  ident: bib66
  article-title: Novel injectable neutral solutions of chitosan form biodegradable gels in situ
  publication-title: Biomaterials
– volume: 82
  start-page: 81
  year: 2014
  end-page: 88
  ident: bib91
  article-title: Non-cytotoxic conductive carboxymethyl-chitosan/aniline pentamer hydrogels
  publication-title: React. Funct. Polym.
– volume: 30
  start-page: 214
  year: 2010
  end-page: 218
  ident: bib50
  article-title: Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial
  publication-title: Mater. Sci. Eng. C
– volume: 6
  start-page: 22424
  year: 2016
  end-page: 22435
  ident: bib24
  article-title: In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system
  publication-title: RSC Adv.
– volume: 62
  start-page: 130
  year: 2016
  end-page: 136
  ident: bib37
  article-title: Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel
  publication-title: Mater. Sci. Eng. C
– volume: 21
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib32
  article-title: Thermo-electromechanical responses of 1-butyl-3-methylimidazolium chloride ionic liquid-cellulose gel
  publication-title: J. Polym. Res.
– volume: 85
  start-page: 2102
  year: 2013
  end-page: 2108
  ident: bib63
  article-title: Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor
  publication-title: Anal. Chem.
– volume: 26
  start-page: 85
  year: 2014
  end-page: 124
  ident: bib1
  article-title: 25th anniversary article: rational design and applications of hydrogels in regenerative medicine
  publication-title: Adv. Mater.
– volume: 6
  start-page: 362
  year: 2011
  end-page: 372
  ident: bib118
  article-title: Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation
  publication-title: ACS Nano
– volume: 73
  start-page: 113
  year: 1999
  end-page: 120
  ident: bib175
  article-title: Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid)
  publication-title: J. Appl. Polym. Sci.
– volume: 33
  start-page: 405
  year: 1995
  end-page: 413
  ident: bib173
  article-title: Electrically controlled release of macromolecules from cross-linked hyaluronic acid hydrogels
  publication-title: J. Control Release
– volume: 40
  start-page: 137
  year: 2008
  end-page: 142
  ident: bib103
  article-title: Production of bacterial cellulose with well oriented fibril on PDMS substrate
  publication-title: Polym. J.
– volume: 23
  start-page: H41
  year: 2011
  end-page: H56
  ident: bib11
  article-title: Hyaluronic acid hydrogels for biomedical applications
  publication-title: Adv. Mater.
– volume: 21
  start-page: 385
  year: 2015
  end-page: 393
  ident: bib153
  article-title: Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering
  publication-title: Tissue Eng. C Methods
– volume: 9
  start-page: 9167
  year: 2015
  end-page: 9179
  ident: bib186
  article-title: Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation
  publication-title: ACS Nano
– volume: 34
  start-page: 1281
  year: 2016
  end-page: 1289
  ident: bib27
  article-title: High strength cellulose composite films reinforced with clay for applications as antibacterial materials
  publication-title: Chin. J. Polym. Sci.
– volume: 5
  start-page: 797
  year: 2006
  end-page: 801
  ident: bib58
  article-title: Enzyme-catalysed assembly of DNA hydrogel
  publication-title: Nat. Mater.
– volume: 2
  start-page: 9
  year: 2000
  end-page: 29
  ident: bib10
  article-title: Physicochemical foundations and structural design of hydrogels in medicine and biology
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 26
  start-page: 6518
  year: 2005
  end-page: 6529
  ident: bib75
  article-title: The cellular response to transglutaminase-cross-linked collagen
  publication-title: Biomaterials
– volume: 221
  start-page: 79
  year: 2011
  end-page: 92
  ident: bib154
  article-title: Extracellular electrical fields direct wound healing and regeneration
  publication-title: Biol. Bull.
– volume: 21
  start-page: 16077
  year: 2011
  end-page: 16085
  ident: bib174
  article-title: Characterization and drug release behavior of chip-like amphiphilic chitosan-silica hybrid hydrogel for electrically modulated release of ethosuximide: an in vitro study
  publication-title: J. Mater. Chem.
– volume: 1
  start-page: 2976
  year: 2013
  end-page: 2984
  ident: bib45
  article-title: Nano-cellulose 3D-networks as controlled-release drug carriers
  publication-title: J. Mater. Chem. B
– volume: 86
  start-page: 269
  year: 2008
  end-page: 277
  ident: bib148
  article-title: Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alignment
  publication-title: J. Biomed. Mater. Res. A
– volume: 14
  start-page: 65
  year: 1980
  end-page: 81
  ident: bib72
  article-title: Design of an artificial skin. I. Basic design principles
  publication-title: J. Biomed. Mater. Res.
– volume: 67
  start-page: 97
  year: 2007
  end-page: 103
  ident: bib29
  article-title: Interactions between cellulose and N-methylmorpholine-N-oxide
  publication-title: Carbohyd. Polym.
– volume: 7
  start-page: 2369
  year: 2013
  end-page: 2380
  ident: bib94
  article-title: Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators
  publication-title: ACS Nano
– volume: 25
  start-page: 2831
  year: 2004
  end-page: 2841
  ident: bib73
  article-title: Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices
  publication-title: Biomaterials
– volume: 31
  start-page: 2701
  year: 2010
  end-page: 2716
  ident: bib7
  article-title: Electroconductive hydrogels: synthesis, characterization and biomedical applications
  publication-title: Biomaterials
– volume: 8
  start-page: e62172
  year: 2013
  ident: bib129
  article-title: Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level
  publication-title: PloS One
– volume: 448
  start-page: 115
  year: 2013
  end-page: 122
  ident: bib178
  article-title: Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems
  publication-title: Int. J. Pharm.
– volume: 1
  start-page: 762
  year: 2012
  end-page: 767
  ident: bib93
  article-title: Hybrid conducting polymer–hydrogel conduits for axonal growth and neural tissue engineering
  publication-title: Adv. Healthc. Mater.
– volume: 59
  start-page: 90
  year: 2016
  end-page: 98
  ident: bib136
  article-title: Through-thickness stress relaxation in bacterial cellulose hydrogel
  publication-title: J. Mech. Behav. Biomed.
– volume: 160
  start-page: 1180
  year: 2011
  end-page: 1190
  ident: bib189
  article-title: Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle
  publication-title: Sens. Actuat. B Chem.
– volume: 26
  start-page: 1561
  year: 2001
  end-page: 1603
  ident: bib49
  article-title: Bacterial synthesized cellulose—artificial blood vessels for microsurgery
  publication-title: Prog. Polym. Sci.
– volume: 9
  start-page: 2637
  year: 2008
  end-page: 2644
  ident: bib90
  article-title: Electroactive aniline pentamer cross-linking chitosan for stimulation growth of electrically sensitive cells
  publication-title: Biomacromolecules
– volume: 7
  start-page: 28273
  year: 2015
  end-page: 28285
  ident: bib187
  article-title: Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering
  publication-title: ACS Appl. Mater. Inter.
– volume: 18
  start-page: 339
  year: 2007
  end-page: 345
  ident: bib22
  article-title: Human endothelial progenitor cell attachment to polysaccharide-based hydrogels: a pre-requisite for vascular tissue engineering
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 22
  start-page: 565
  year: 2015
  end-page: 579
  ident: bib30
  article-title: Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility
  publication-title: Cellulose
– volume: 145
  start-page: 89
  year: 2010
  end-page: 92
  ident: bib110
  article-title: Enhanced actuation of PPy/CNT hybrid fibers using porous structured DNA hydrogel
  publication-title: Sens. Actuat. B Chem.
– volume: 346
  start-page: 107
  year: 2005
  end-page: 114
  ident: bib169
  article-title: DNA biosensor based on chitosan film doped with carbon nanotubes
  publication-title: Anal. Biochem.
– volume: 6
  start-page: 2856
  year: 2013
  end-page: 2870
  ident: bib8
  article-title: 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 1124
  year: 2004
  end-page: 1128
  ident: bib38
  article-title: High mechanical strength double-network hydrogel with bacterial cellulose
  publication-title: Adv. Funct. Mater.
– volume: 39
  start-page: 822
  year: 2002
  end-page: 827
  ident: bib96
  article-title: Electroactive polymers as artificial muscles: a review
  publication-title: J. Spacecr. Rockets
– volume: 41
  start-page: 2193
  year: 2012
  end-page: 2221
  ident: bib4
  article-title: Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications
  publication-title: Chem. Soc. Rev.
– volume: 21
  start-page: 190
  year: 2005
  end-page: 196
  ident: bib64
  article-title: Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly
  publication-title: Biosens. Bioelectron.
– volume: 24
  start-page: 4337
  year: 2003
  end-page: 4351
  ident: bib120
  article-title: Hydrogels for tissue engineering: scaffold design variables and applications
  publication-title: Biomaterials
– volume: 194
  start-page: 403
  year: 2015
  end-page: 406
  ident: bib34
  article-title: An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: magnetic chitosan/cellulose microspheres
  publication-title: Bioresour. Technol.
– volume: 176
  start-page: 396
  year: 2008
  end-page: 402
  ident: bib109
  article-title: Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size
  publication-title: J. Power Sources
– volume: 32
  start-page: 1002
  year: 2011
  end-page: 1009
  ident: bib13
  article-title: Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro
  publication-title: Biomaterials
– volume: 49
  start-page: 765
  year: 2016
  end-page: 772
  ident: bib137
  article-title: Connection between elastic and electrical properties of cortical bone
  publication-title: J. Biomech.
– volume: 53
  start-page: 5380
  year: 2014
  end-page: 5384
  ident: bib144
  article-title: In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 623
  year: 2006
  end-page: 633
  ident: bib18
  article-title: Alginate hydrogels as biomaterials
  publication-title: Macromol. Biosci.
– volume: 101
  start-page: 1869
  year: 2001
  end-page: 1880
  ident: bib122
  article-title: Hydrogels for tissue engineering
  publication-title: Chem. Rev.
– volume: 33
  start-page: 2995
  year: 2013
  end-page: 3000
  ident: bib42
  article-title: Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation
  publication-title: Mater. Sci. Eng. C
– volume: 21
  start-page: 433
  year: 2014
  end-page: 447
  ident: bib26
  article-title: Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications
  publication-title: Cellulose
– volume: 31
  start-page: 277
  year: 2012
  end-page: 283
  ident: bib166
  article-title: Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine
  publication-title: Biosens. Bioelectron.
– volume: 86
  start-page: 3240
  year: 2014
  end-page: 3253
  ident: bib164
  article-title: Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences
  publication-title: Anal. Chem.
– volume: 6
  start-page: 720
  year: 2011
  end-page: 725
  ident: bib184
  article-title: Nanowired three-dimensional cardiac patches
  publication-title: Nat. Nanotechnol.
– volume: 18
  start-page: 5805
  year: 2006
  end-page: 5809
  ident: bib188
  article-title: Self-oscillatory actuation at constant DC voltage with pH-sensitive chitosan/polyaniline hydrogel blend
  publication-title: Chem. Mater.
– volume: 127
  start-page: 86
  year: 2015
  end-page: 93
  ident: bib107
  article-title: Bacterial cellulose–poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) composites for optoelectronic applications
  publication-title: Carbohyd. Polym.
– volume: 57
  start-page: 2
  year: 2014
  end-page: 6
  ident: bib161
  article-title: Two-dimensional ion channel based soft-matter piezoelectricity
  publication-title: Sci. China Mater.
– volume: 40
  start-page: 1556
  year: 2007
  end-page: 1568
  ident: bib171
  article-title: Amperometric biosensor for hydrogen peroxide based on myoglobin doped multiwalled carbon nanotube enhanced grafted collagen matrix
  publication-title: Anal. Lett.
– volume: 17
  start-page: 1819
  year: 1996
  end-page: 1825
  ident: bib77
  article-title: Three-dimensional composite of demineralized bone powder and collagen for in vitro analysis of chondroinduction of human dermal fibroblasts
  publication-title: Biomaterials
– volume: 2
  start-page: 1040
  year: 2012
  end-page: 1046
  ident: bib98
  article-title: In situ nano-assembly of bacterial cellulose–polyaniline composites
  publication-title: RSC Adv.
– volume: 8
  start-page: 10066
  year: 2014
  end-page: 10076
  ident: bib87
  article-title: Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel
  publication-title: ACS Nano
– volume: 5
  start-page: 2880
  year: 2014
  end-page: 2890
  ident: bib150
  article-title: In situ forming biodegradable electroactive hydrogels
  publication-title: Polym. Chem-UK
– volume: 43
  start-page: 345
  year: 2006
  end-page: 354
  ident: bib177
  article-title: Electroresponsive behavior of gelatin/alginate semi-interpenetrating polymer network membranes under direct-current electric field
  publication-title: J. Macromol. Sci. A
– volume: 6
  start-page: 3211
  year: 2014
  end-page: 3218
  ident: bib23
  article-title: Biofunctionalization of Ulvan Scaffolds for bone tissue engineering
  publication-title: ACS Appl. Mater. Inter.
– volume: 5
  start-page: 3194
  year: 2013
  end-page: 3201
  ident: bib97
  article-title: Nanocellulose electroconductive composites
  publication-title: Nanoscale
– volume: 49
  start-page: 289
  year: 2000
  end-page: 295
  ident: bib69
  article-title: Photocrosslinkable chitosan as a biological adhesive
  publication-title: J. Biomed. Mater. Res.
– volume: 4
  start-page: 47056
  year: 2014
  end-page: 47065
  ident: bib88
  article-title: pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery
  publication-title: RSC Adv.
– volume: 103
  start-page: 2512
  year: 2006
  end-page: 2517
  ident: bib115
  article-title: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks invivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 62
  start-page: 83
  year: 2010
  end-page: 99
  ident: bib176
  article-title: Chitosan-based hydrogels for controlled, localized drug delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 132
  start-page: 286
  year: 2015
  end-page: 294
  ident: bib36
  article-title: Innovative production of bio-cellulose using a cell-free system derived from a single cell line
  publication-title: Carbohyd. Polym.
– volume: 2
  start-page: 320
  year: 2008
  end-page: 330
  ident: bib53
  article-title: Engineering microporosity in bacterial cellulose scaffolds
  publication-title: J. Tissue Eng. Regen. M.
– volume: 58
  start-page: 153
  year: 2016
  end-page: 159
  ident: bib135
  article-title: Time-dependent rheological behaviour of bacterial cellulose hydrogel
  publication-title: Mater. Sci. Eng. C
– volume: 21
  start-page: 2671
  year: 2011
  end-page: 2678
  ident: bib163
  article-title: Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials
  publication-title: J. Mater. Chem.
– volume: 31
  start-page: 1068
  year: 2011
  end-page: 1077
  ident: bib76
  article-title: Cross-linking of collagen with laccases and tyrosinases
  publication-title: Mater. Sci. Eng. C
– volume: 99
  start-page: 13577
  year: 2002
  end-page: 13582
  ident: bib157
  article-title: Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo
  publication-title: Proc. Natl. Acad. Sci.
– volume: 84
  start-page: 40
  year: 2011
  end-page: 53
  ident: bib9
  article-title: Cellulose-based hydrogels: present status and application prospects
  publication-title: Carbohyd. Polym.
– volume: 15
  start-page: 467
  year: 2007
  end-page: 480
  ident: bib138
  article-title: Biomaterials approach to expand and direct differentiation of stem cells
  publication-title: Mol. Ther.
– volume: 29
  start-page: 390
  year: 2015
  end-page: 394
  ident: bib152
  article-title: Effect of hydrophilic polymers on the wettability, static and dynamic, of solid substrate covered by confluent monolayer of air-damaged SIRC cells
  publication-title: Biotechnol. Biotec EQ
– volume: vol. 2010
  start-page: 38
  year: 2010
  end-page: 44
  ident: bib133
  article-title: Mechanical Properties of Bacterially Synthesized Nanocellulose Hydrogels
  publication-title: Macromolecular Symposia
– volume: 5
  start-page: 41001
  year: 2013
  ident: bib60
  article-title: Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click’chemistry
  publication-title: Biofabrication
– volume: 129
  start-page: 4878
  year: 2007
  end-page: 4879
  ident: bib162
  article-title: Chemically-responsive sol−gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 792
  year: 2012
  ident: bib16
  article-title: Stiffening hydrogels to probe short-and long-term cellular responses to dynamic mechanics
  publication-title: Nat. Commun.
– volume: 44
  start-page: 82
  year: 2015
  end-page: 92
  ident: bib39
  article-title: Inelastic behaviour of bacterial cellulose hydrogel: in aqua cyclic tests
  publication-title: Polym. Test.
– volume: 141
  start-page: 2
  year: 2010
  end-page: 12
  ident: bib14
  article-title: Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives
  publication-title: J. Control Release
– volume: 9
  start-page: 527
  year: 2013
  end-page: 534
  ident: bib54
  article-title: Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves
  publication-title: Arch. Med. Sci.
– volume: 24
  start-page: 759
  year: 2003
  end-page: 767
  ident: bib71
  article-title: Influence of different crosslinking treatments on the physical properties of collagen membranes
  publication-title: Biomaterials
– volume: 15
  start-page: 2274
  year: 2014
  end-page: 2284
  ident: bib134
  article-title: Micromechanics and poroelasticity of hydrated cellulose networks
  publication-title: Biomacromolecules
– volume: 81
  start-page: 312
  year: 2007
  end-page: 322
  ident: bib70
  article-title: Photocrosslinkable hydrogel for myocyte cell culture and injection
  publication-title: J. Biomed. Mater. Res. B Appl. Biomaterials
– volume: 3
  start-page: 527
  year: 2011
  end-page: 544
  ident: bib125
  article-title: A 3D electroactive polypyrrole-collagen fibrous scaffold for tissue engineering
  publication-title: Polym. Basel
– volume: 5
  start-page: 2238
  year: 2004
  end-page: 2246
  ident: bib141
  article-title: Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer
  publication-title: Biomacromolecules
– volume: 31
  start-page: 6941
  year: 2010
  end-page: 6951
  ident: bib114
  article-title: Directed 3D cell alignment and elongation in microengineered hydrogels
  publication-title: Biomaterials
– volume: 62
  start-page: 83
  year: 2010
  end-page: 99
  ident: bib68
  article-title: Chitosan-based hydrogels for controlled, localized drug delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 9
  start-page: 1051
  year: 2007
  end-page: 1060
  ident: bib101
  article-title: Biomaterials for tissue engineering
  publication-title: Adv. Eng. Mater.
– volume: 8
  start-page: 9822
  year: 2014
  end-page: 9832
  ident: bib126
  article-title: Biocompatible carbon nanotube–chitosan scaffold matching the electrical conductivity of the heart
  publication-title: ACS Nano
– volume: 104
  start-page: 1795
  year: 2015
  end-page: 1803
  ident: bib182
  article-title: Permeation study of indomethacin from polycarbazole/natural rubber blend film for electric field controlled transdermal delivery
  publication-title: J. Pharm. Sci-US
– volume: 9
  start-page: 10129
  year: 2013
  end-page: 10134
  ident: bib185
  article-title: Electromechanical polyaniline–cellulose hydrogels with high compressive strength
  publication-title: Soft Mat.
– volume: 26
  start-page: 493
  year: 2011
  end-page: 507
  ident: bib20
  article-title: Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering
  publication-title: J. Bioact. Compat. Pol.
– volume: 15
  start-page: 635
  year: 2014
  end-page: 643
  ident: bib145
  article-title: Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering
  publication-title: Biomacromolecules
– volume: 35
  start-page: 539
  year: 2014
  end-page: 545
  ident: bib55
  article-title: Utilization of bacterial cellulose in food
  publication-title: Food Hydrocolloid
– volume: 62
  start-page: 465
  year: 2013
  end-page: 471
  ident: bib142
  article-title: Biocompatible conducting chitosan/polypyrrole–alginate composite scaffold for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 6
  start-page: 6962
  year: 2015
  ident: bib165
  article-title: Highly compressible 3D periodic graphene aerogel microlattices
  publication-title: Nat. Commun.
– start-page: 641
  year: 2009
  end-page: 643
  ident: bib79
  article-title: Fluorescent DNA–poly (phenylenevinylene) hybrid hydrogels for monitoring drug release
  publication-title: Chem. Commun.
– volume: 15
  start-page: 507
  year: 2008
  end-page: 513
  ident: bib40
  article-title: An estimation of the Young's modulus of bacterial cellulose filaments
  publication-title: Cellulose
– year: 2013
  ident: bib121
  article-title: Cell Biology of Extracellular Matrix
– volume: 2
  start-page: 1470
  year: 2014
  end-page: 1482
  ident: bib57
  article-title: Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties
  publication-title: J. Mater. Chem. B
– start-page: 17
  year: 2011
  end-page: 39
  ident: bib111
  article-title: Scaffolds for tissue engineering and 3D cell culture
  publication-title: 3D Cell Cult. Methods Protoc.
– volume: 25
  start-page: 4028
  year: 2013
  end-page: 4034
  ident: bib119
  article-title: Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers
  publication-title: Adv. Mater.
– volume: 95
  start-page: 465
  year: 2010
  end-page: 475
  ident: bib74
  article-title: Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications
  publication-title: J. Biomed. Mater. Res. A
– volume: 219
  start-page: 162
  year: 2009
  end-page: 172
  ident: bib155
  article-title: The involvement of Ca2+ and integrins in directional responses of zebrafish keratocytes to electric fields
  publication-title: J. Cell Physiol.
– volume: 7
  start-page: 804
  year: 2007
  end-page: 809
  ident: bib33
  article-title: Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution
  publication-title: Macromol. Biosci.
– volume: 12
  start-page: 3275
  year: 2011
  end-page: 3284
  ident: bib65
  article-title: In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking
  publication-title: Biomacromolecules
– volume: 69
  start-page: 1
  year: 2007
  end-page: 6
  ident: bib104
  article-title: Honeycomb-like architecture produced by living bacteria, gluconacetobacter xylinus
  publication-title: Carbohyd. Polym.
– volume: 5
  start-page: 1601
  year: 2009
  end-page: 1606
  ident: bib15
  article-title: Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels
  publication-title: Soft Mat.
– volume: 4
  start-page: 1583
  year: 2008
  end-page: 1592
  ident: bib140
  article-title: Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels
  publication-title: Acta Biomater.
– volume: 16
  start-page: 1047
  year: 2009
  end-page: 1055
  ident: bib44
  article-title: Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by gluconacetobacter xylinus strain ATCC 53524
  publication-title: Cellulose
– volume: 6
  start-page: 2540
  year: 2010
  end-page: 2547
  ident: bib52
  article-title: Microporous bacterial cellulose as a potential scaffold for bone regeneration
  publication-title: Acta Biomater.
– volume: 29
  start-page: 1216
  year: 2009
  end-page: 1219
  ident: bib100
  article-title: In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes
  publication-title: Mater. Sci. Eng. C
– volume: 23
  start-page: 1117
  year: 2011
  end-page: 1121
  ident: bib83
  article-title: Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness
  publication-title: Adv. Mater.
– volume: 76
  start-page: 5045
  year: 2004
  end-page: 5050
  ident: bib168
  article-title: Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes
  publication-title: Anal. Chem.
– volume: 54
  start-page: 1622
  year: 2009
  end-page: 1625
  ident: bib31
  article-title: A novel cellulose hydrogel prepared from its ionic liquid solution
  publication-title: Chin. Sci. Bull.
– volume: 30
  start-page: 2956
  year: 2009
  end-page: 2965
  ident: bib113
  article-title: Cell proliferation and migration in silk fibroin 3D scaffolds
  publication-title: Biomaterials
– volume: 130
  start-page: 296
  year: 2014
  end-page: 304
  ident: bib167
  article-title: A conductive porous structured chitosan-grafted polyaniline cryogel for use as a sialic acid biosensor
  publication-title: Electrochim. Acta
– volume: 22
  start-page: 511
  year: 2001
  end-page: 521
  ident: bib56
  article-title: Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties
  publication-title: Biomaterials
– volume: 22
  start-page: 2141
  year: 2015
  end-page: 2148
  ident: bib108
  article-title: Synthesis and characterization of a novel bacterial cellulose–poly (3, 4-ethylenedioxythiophene)–poly (styrene sulfonate) composite for use in biomedical applications
  publication-title: Cellulose
– volume: 26
  start-page: 419
  year: 2005
  end-page: 431
  ident: bib48
  article-title: Bacterial cellulose as a potential scaffold for tissue engineering of cartilage
  publication-title: Biomaterials
– volume: 27
  start-page: 2141
  year: 2006
  end-page: 2149
  ident: bib51
  article-title: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells
  publication-title: Biomaterials
– volume: 6
  start-page: 970
  year: 2014
  end-page: 977
  ident: bib99
  article-title: Double network bacterial cellulose hydrogel to build a biology–device interface
  publication-title: Nanoscale
– volume: 7
  start-page: 816
  year: 2012
  end-page: 820
  ident: bib82
  article-title: A mechanical metamaterial made from a DNA hydrogel
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 2540
  issue: 7
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib52
  article-title: Microporous bacterial cellulose as a potential scaffold for bone regeneration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.01.004
– volume: 21
  start-page: 1
  issue: 3
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib32
  article-title: Thermo-electromechanical responses of 1-butyl-3-methylimidazolium chloride ionic liquid-cellulose gel
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-014-0369-8
– volume: 136
  start-page: 908
  year: 2016
  ident: 10.1016/j.biomaterials.2016.09.020_bib35
  article-title: Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2015.10.010
– volume: 29
  start-page: 390
  issue: 2
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib152
  article-title: Effect of hydrophilic polymers on the wettability, static and dynamic, of solid substrate covered by confluent monolayer of air-damaged SIRC cells
  publication-title: Biotechnol. Biotec EQ
  doi: 10.1080/13102818.2014.997541
– volume: 6
  start-page: 362
  issue: 1
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib118
  article-title: Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation
  publication-title: ACS Nano
  doi: 10.1021/nn203711s
– volume: 6
  start-page: 6962
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib165
  article-title: Highly compressible 3D periodic graphene aerogel microlattices
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7962
– volume: 62
  start-page: 465
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib142
  article-title: Biocompatible conducting chitosan/polypyrrole–alginate composite scaffold for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2013.09.028
– volume: 4
  start-page: 20130050
  issue: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib147
  article-title: Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2013.0050
– volume: 219
  start-page: 162
  issue: 1
  year: 2009
  ident: 10.1016/j.biomaterials.2016.09.020_bib155
  article-title: The involvement of Ca2+ and integrins in directional responses of zebrafish keratocytes to electric fields
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.21660
– volume: 3
  start-page: 481
  issue: 3
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib92
  article-title: Processable conducting graphene/chitosan hydrogels for tissue engineering
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB01636J
– volume: 76
  start-page: 5045
  issue: 17
  year: 2004
  ident: 10.1016/j.biomaterials.2016.09.020_bib168
  article-title: Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes
  publication-title: Anal. Chem.
  doi: 10.1021/ac049519u
– volume: 31
  start-page: 6941
  issue: 27
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib114
  article-title: Directed 3D cell alignment and elongation in microengineered hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.056
– volume: 31
  start-page: 2701
  issue: 10
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib7
  article-title: Electroconductive hydrogels: synthesis, characterization and biomedical applications
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.12.052
– volume: vol. 2010
  start-page: 38
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib133
  article-title: Mechanical Properties of Bacterially Synthesized Nanocellulose Hydrogels
– volume: 38
  start-page: 2475
  issue: 8
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib105
  article-title: Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-9999-0
– volume: 4
  start-page: 1043
  issue: 2
  year: 2012
  ident: 10.1016/j.biomaterials.2016.09.020_bib131
  article-title: Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/am2016766
– volume: 33
  start-page: 405
  issue: 3
  year: 1995
  ident: 10.1016/j.biomaterials.2016.09.020_bib173
  article-title: Electrically controlled release of macromolecules from cross-linked hyaluronic acid hydrogels
  publication-title: J. Control Release
  doi: 10.1016/0168-3659(94)00115-B
– volume: 6
  start-page: 975
  issue: 2
  year: 2005
  ident: 10.1016/j.biomaterials.2016.09.020_bib67
  article-title: Synthesis and characterization of a novel chitosan-gelatin bioconjugate with fluorescence emission
  publication-title: Biomacromolecules
  doi: 10.1021/bm049335p
– volume: 9
  start-page: 527
  issue: 3
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib54
  article-title: Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves
  publication-title: Arch. Med. Sci.
  doi: 10.5114/aoms.2013.33433
– volume: 86
  start-page: 269
  issue: 1
  year: 2008
  ident: 10.1016/j.biomaterials.2016.09.020_bib148
  article-title: Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alignment
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.32029
– volume: 5
  start-page: 41001
  issue: 4
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib60
  article-title: Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click’chemistry
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/5/4/041001
– volume: 31
  start-page: 1068
  issue: 5
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib76
  article-title: Cross-linking of collagen with laccases and tyrosinases
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2011.03.007
– volume: 12
  start-page: 241
  issue: 2
  year: 2012
  ident: 10.1016/j.biomaterials.2016.09.020_bib151
  article-title: Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201100227
– volume: 21
  start-page: 16077
  issue: 40
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib174
  article-title: Characterization and drug release behavior of chip-like amphiphilic chitosan-silica hybrid hydrogel for electrically modulated release of ethosuximide: an in vitro study
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12376a
– volume: 24
  start-page: 4337
  issue: 24
  year: 2003
  ident: 10.1016/j.biomaterials.2016.09.020_bib120
  article-title: Hydrogels for tissue engineering: scaffold design variables and applications
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00340-5
– volume: 32
  start-page: 1002
  issue: 4
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib13
  article-title: Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.10.020
– volume: 141
  start-page: 2
  issue: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib14
  article-title: Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2009.09.010
– volume: 18
  start-page: 339
  issue: 2
  year: 2007
  ident: 10.1016/j.biomaterials.2016.09.020_bib22
  article-title: Human endothelial progenitor cell attachment to polysaccharide-based hydrogels: a pre-requisite for vascular tissue engineering
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-006-0698-1
– volume: 62
  start-page: 83
  issue: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib68
  article-title: Chitosan-based hydrogels for controlled, localized drug delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2009.07.019
– volume: 49
  start-page: 765
  issue: 5
  year: 2016
  ident: 10.1016/j.biomaterials.2016.09.020_bib137
  article-title: Connection between elastic and electrical properties of cortical bone
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.02.019
– start-page: 17
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib111
  article-title: Scaffolds for tissue engineering and 3D cell culture
  publication-title: 3D Cell Cult. Methods Protoc.
  doi: 10.1007/978-1-60761-984-0_2
– volume: 95
  start-page: 4013
  issue: 8
  year: 2008
  ident: 10.1016/j.biomaterials.2016.09.020_bib112
  article-title: Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.122598
– volume: 121
  start-page: 7796
  issue: 41
  year: 2009
  ident: 10.1016/j.biomaterials.2016.09.020_bib81
  article-title: A pH-triggered, fast-responding DNA hydrogel
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200902538
– volume: 67
  start-page: 97
  issue: 1
  year: 2007
  ident: 10.1016/j.biomaterials.2016.09.020_bib29
  article-title: Interactions between cellulose and N-methylmorpholine-N-oxide
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2006.04.019
– volume: 10
  start-page: 1392
  issue: 6
  year: 2009
  ident: 10.1016/j.biomaterials.2016.09.020_bib21
  article-title: Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications
  publication-title: Biomacromolecules
  doi: 10.1021/bm8014973
– volume: 5
  start-page: 1601
  issue: 8
  year: 2009
  ident: 10.1016/j.biomaterials.2016.09.020_bib15
  article-title: Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels
  publication-title: Soft Mat.
  doi: 10.1039/b820385g
– volume: 221
  start-page: 79
  issue: 1
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib154
  article-title: Extracellular electrical fields direct wound healing and regeneration
  publication-title: Biol. Bull.
  doi: 10.1086/BBLv221n1p79
– volume: 130
  start-page: 2320
  issue: 9
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib156
  article-title: Effects of physiological electric fields on migration of human dermal fibroblasts
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2010.96
– volume: 17
  start-page: 1819
  issue: 18
  year: 1996
  ident: 10.1016/j.biomaterials.2016.09.020_bib77
  article-title: Three-dimensional composite of demineralized bone powder and collagen for in vitro analysis of chondroinduction of human dermal fibroblasts
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(96)00041-5
– volume: 50
  start-page: 4065
  issue: 31
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib80
  article-title: Reversible Ag+-crosslinked DNA hydrogels
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc49140d
– volume: 21
  start-page: 385
  issue: 4
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib153
  article-title: Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering
  publication-title: Tissue Eng. C Methods
  doi: 10.1089/ten.tec.2014.0338
– volume: 6
  start-page: 623
  issue: 8
  year: 2006
  ident: 10.1016/j.biomaterials.2016.09.020_bib18
  article-title: Alginate hydrogels as biomaterials
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200600069
– volume: 16
  start-page: 780
  issue: 3
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib46
  article-title: Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip
  publication-title: Biomacromolecules
  doi: 10.1021/bm501680s
– volume: 92
  start-page: 766
  issue: 2
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib146
  article-title: Incorporation of collagen in poly (3, 4-ethylenedioxythiophene) for a bifunctional film with high bio-and electrochemical activity
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.32412
– volume: 26
  start-page: 125
  issue: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib6
  article-title: 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302958
– volume: 40
  start-page: 1556
  issue: 8
  year: 2007
  ident: 10.1016/j.biomaterials.2016.09.020_bib171
  article-title: Amperometric biosensor for hydrogen peroxide based on myoglobin doped multiwalled carbon nanotube enhanced grafted collagen matrix
  publication-title: Anal. Lett.
  doi: 10.1080/00032710701380442
– volume: 145
  start-page: 89
  issue: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib110
  article-title: Enhanced actuation of PPy/CNT hybrid fibers using porous structured DNA hydrogel
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2009.11.043
– volume: 9
  start-page: 4686
  issue: 5
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib128
  article-title: Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01433
– volume: 34
  start-page: 1942
  issue: 8
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib130
  article-title: The guidance of stem cell differentiation by substrate alignment and mechanical stimulation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.11.012
– volume: 58
  start-page: 153
  year: 2016
  ident: 10.1016/j.biomaterials.2016.09.020_bib135
  article-title: Time-dependent rheological behaviour of bacterial cellulose hydrogel
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.08.019
– volume: 1749
  start-page: 43
  issue: 1
  year: 2005
  ident: 10.1016/j.biomaterials.2016.09.020_bib170
  article-title: An electrochemical investigation of hemoglobin and catalase incorporated in collagen films
  publication-title: Biochim. Biophys. Acta (BBA)-Proteins Proteom.
  doi: 10.1016/j.bbapap.2005.02.002
– volume: 35
  start-page: 539
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib55
  article-title: Utilization of bacterial cellulose in food
  publication-title: Food Hydrocolloid
  doi: 10.1016/j.foodhyd.2013.07.012
– start-page: 641
  issue: 6
  year: 2009
  ident: 10.1016/j.biomaterials.2016.09.020_bib79
  article-title: Fluorescent DNA–poly (phenylenevinylene) hybrid hydrogels for monitoring drug release
  publication-title: Chem. Commun.
  doi: 10.1039/B817788K
– volume: 448
  start-page: 115
  issue: 1
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib178
  article-title: Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2013.03.013
– volume: 115
  start-page: 1180
  issue: 2
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib180
  article-title: Polyacrylamide-g-alginate-based electrically responsive hydrogel for drug delivery application: synthesis, characterization, and formulation development
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.31203
– volume: 40
  start-page: 137
  issue: 2
  year: 2008
  ident: 10.1016/j.biomaterials.2016.09.020_bib103
  article-title: Production of bacterial cellulose with well oriented fibril on PDMS substrate
  publication-title: Polym. J.
  doi: 10.1295/polymj.PJ2007180
– volume: 101
  start-page: 1869
  issue: 7
  year: 2001
  ident: 10.1016/j.biomaterials.2016.09.020_bib122
  article-title: Hydrogels for tissue engineering
  publication-title: Chem. Rev.
  doi: 10.1021/cr000108x
– volume: 27
  start-page: 2141
  issue: 9
  year: 2006
  ident: 10.1016/j.biomaterials.2016.09.020_bib51
  article-title: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.10.026
– volume: 2014
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib62
  article-title: Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel
  publication-title: Int. J. Polym. Sci.
  doi: 10.1155/2014/736898
– volume: 2
  start-page: 353
  issue: 2
  year: 2009
  ident: 10.1016/j.biomaterials.2016.09.020_bib123
  article-title: Biodegradable cellulose-based hydrogels: design and applications
  publication-title: Materials
  doi: 10.3390/ma2020353
– volume: 34
  start-page: 1281
  issue: 10
  year: 2016
  ident: 10.1016/j.biomaterials.2016.09.020_bib27
  article-title: High strength cellulose composite films reinforced with clay for applications as antibacterial materials
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-016-1840-2
– volume: 30
  start-page: 214
  issue: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib50
  article-title: Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2009.10.006
– volume: 8
  start-page: e71707
  issue: 8
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib158
  article-title: Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels
  publication-title: PloS One
  doi: 10.1371/journal.pone.0071707
– volume: 26
  start-page: 85
  issue: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib1
  article-title: 25th anniversary article: rational design and applications of hydrogels in regenerative medicine
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303233
– volume: 40
  start-page: 2385
  issue: 5
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib160
  article-title: Biomimetic smart nanopores and nanochannels
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00053a
– start-page: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib59
  article-title: Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering
  publication-title: Drug Deliv. Transl. Res.
– volume: 128
  start-page: 314
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib102
  article-title: Ordered manufactured bacterial cellulose as biomaterial of tissue engineering
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.04.183
– volume: 7
  start-page: 804
  issue: 6
  year: 2007
  ident: 10.1016/j.biomaterials.2016.09.020_bib33
  article-title: Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200700007
– volume: 5
  start-page: 797
  issue: 10
  year: 2006
  ident: 10.1016/j.biomaterials.2016.09.020_bib58
  article-title: Enzyme-catalysed assembly of DNA hydrogel
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1741
– volume: 58
  start-page: 53
  issue: 5
  year: 2005
  ident: 10.1016/j.biomaterials.2016.09.020_bib3
  article-title: An organic electronics primer
  publication-title: Phys. Today
  doi: 10.1063/1.1995748
– volume: 32
  start-page: 28
  issue: 1
  year: 2003
  ident: 10.1016/j.biomaterials.2016.09.020_bib43
  article-title: Tensile deformation of bacterial cellulose composites
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/S0141-8130(03)00022-9
– volume: 25
  start-page: 6385
  issue: 44
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib117
  article-title: Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301082
– volume: 6
  start-page: 2856
  issue: 10
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib8
  article-title: 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40997j
– volume: 127
  start-page: 86
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib107
  article-title: Bacterial cellulose–poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) composites for optoelectronic applications
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2015.03.055
– volume: 6
  start-page: 3132
  issue: 5
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib143
  article-title: Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/am4057826
– volume: 8
  start-page: e62172
  issue: 4
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib129
  article-title: Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level
  publication-title: PloS One
  doi: 10.1371/journal.pone.0062172
– volume: 1
  start-page: 762
  issue: 6
  year: 2012
  ident: 10.1016/j.biomaterials.2016.09.020_bib93
  article-title: Hybrid conducting polymer–hydrogel conduits for axonal growth and neural tissue engineering
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201200182
– volume: 9
  start-page: 1051
  issue: 12
  year: 2007
  ident: 10.1016/j.biomaterials.2016.09.020_bib101
  article-title: Biomaterials for tissue engineering
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200700287
– volume: 15
  start-page: 635
  issue: 2
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib145
  article-title: Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering
  publication-title: Biomacromolecules
  doi: 10.1021/bm401679q
– volume: 9
  start-page: 2637
  issue: 10
  year: 2008
  ident: 10.1016/j.biomaterials.2016.09.020_bib90
  article-title: Electroactive aniline pentamer cross-linking chitosan for stimulation growth of electrically sensitive cells
  publication-title: Biomacromolecules
  doi: 10.1021/bm800705t
– volume: 15
  start-page: 507
  issue: 4
  year: 2008
  ident: 10.1016/j.biomaterials.2016.09.020_bib40
  article-title: An estimation of the Young's modulus of bacterial cellulose filaments
  publication-title: Cellulose
  doi: 10.1007/s10570-008-9206-8
– volume: 26
  start-page: 419
  issue: 4
  year: 2005
  ident: 10.1016/j.biomaterials.2016.09.020_bib48
  article-title: Bacterial cellulose as a potential scaffold for tissue engineering of cartilage
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.02.049
– volume: 4
  issue: 10
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib127
  article-title: Flexible supercapacitors based on bacterial cellulose paper electrodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301655
– volume: 59
  start-page: 90
  year: 2016
  ident: 10.1016/j.biomaterials.2016.09.020_bib136
  article-title: Through-thickness stress relaxation in bacterial cellulose hydrogel
  publication-title: J. Mech. Behav. Biomed.
  doi: 10.1016/j.jmbbm.2015.12.021
– volume: 7
  start-page: 816
  issue: 12
  year: 2012
  ident: 10.1016/j.biomaterials.2016.09.020_bib82
  article-title: A mechanical metamaterial made from a DNA hydrogel
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.211
– volume: 23
  start-page: H41
  issue: 12
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib11
  article-title: Hyaluronic acid hydrogels for biomedical applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003963
– volume: 62
  start-page: 83
  issue: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib176
  article-title: Chitosan-based hydrogels for controlled, localized drug delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2009.07.019
– volume: 12
  start-page: 3275
  issue: 9
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib65
  article-title: In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking
  publication-title: Biomacromolecules
  doi: 10.1021/bm200731x
– volume: 24
  start-page: 759
  issue: 5
  year: 2003
  ident: 10.1016/j.biomaterials.2016.09.020_bib71
  article-title: Influence of different crosslinking treatments on the physical properties of collagen membranes
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00412-X
– volume: 50
  start-page: 14620
  issue: 93
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib85
  article-title: Programmable protein–DNA hybrid hydrogels for the immobilization and release of functional proteins
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC07144A
– volume: 9
  start-page: 2131
  issue: 7
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib61
  article-title: Electrodeposition of a biopolymeric hydrogel in track-etched micropores
  publication-title: Soft Mat.
  doi: 10.1039/c2sm26898a
– volume: 22
  start-page: 565
  issue: 1
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib30
  article-title: Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility
  publication-title: Cellulose
  doi: 10.1007/s10570-014-0528-4
– volume: 26
  start-page: 6518
  issue: 33
  year: 2005
  ident: 10.1016/j.biomaterials.2016.09.020_bib75
  article-title: The cellular response to transglutaminase-cross-linked collagen
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.04.017
– volume: 69
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.biomaterials.2016.09.020_bib104
  article-title: Honeycomb-like architecture produced by living bacteria, gluconacetobacter xylinus
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2006.08.021
– volume: 194
  start-page: 403
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib34
  article-title: An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: magnetic chitosan/cellulose microspheres
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.07.044
– volume: 23
  start-page: 999
  issue: 4
  year: 2012
  ident: 10.1016/j.biomaterials.2016.09.020_bib179
  article-title: Effects of crosslinking ratio, model drugs, and electric field strength on electrically controlled release for alginate-based hydrogel
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-012-4571-0
– volume: 8
  start-page: 10066
  issue: 10
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib87
  article-title: Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel
  publication-title: ACS Nano
  doi: 10.1021/nn502704g
– volume: 5
  start-page: 3194
  issue: 8
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib97
  article-title: Nanocellulose electroconductive composites
  publication-title: Nanoscale
  doi: 10.1039/c3nr00408b
– volume: 6
  start-page: 3211
  issue: 5
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib23
  article-title: Biofunctionalization of Ulvan Scaffolds for bone tissue engineering
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/am404912c
– volume: 160
  start-page: 1180
  issue: 1
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib189
  article-title: Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2011.09.044
– volume: 9
  start-page: 309
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib192
  article-title: Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.08.004
– volume: 132
  start-page: 286
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib36
  article-title: Innovative production of bio-cellulose using a cell-free system derived from a single cell line
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2015.06.037
– volume: 2014
  start-page: 8
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib181
  article-title: Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel
  publication-title: Int. J. Polym. Sci.
  doi: 10.1155/2014/736898
– volume: 11
  start-page: 1138
  issue: 9–10
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib84
  article-title: A writable polypeptide–DNA hydrogel with rationally designed multi-modification sites
  publication-title: Small
  doi: 10.1002/smll.201401906
– volume: 30
  start-page: 2956
  issue: 15
  year: 2009
  ident: 10.1016/j.biomaterials.2016.09.020_bib113
  article-title: Cell proliferation and migration in silk fibroin 3D scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.02.006
– volume: 82
  start-page: 81
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib91
  article-title: Non-cytotoxic conductive carboxymethyl-chitosan/aniline pentamer hydrogels
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2014.06.003
– volume: 2
  start-page: 1470
  issue: 11
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib57
  article-title: Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb21509a
– volume: 25
  start-page: 4028
  issue: 29
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib119
  article-title: Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301300
– volume: 4
  start-page: 1583
  issue: 6
  year: 2008
  ident: 10.1016/j.biomaterials.2016.09.020_bib140
  article-title: Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.07.005
– volume: 54
  start-page: 1622
  issue: 9
  year: 2009
  ident: 10.1016/j.biomaterials.2016.09.020_bib31
  article-title: A novel cellulose hydrogel prepared from its ionic liquid solution
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-009-0207-2
– volume: 50
  start-page: 574
  issue: 4
  year: 2000
  ident: 10.1016/j.biomaterials.2016.09.020_bib89
  article-title: Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I
– volume: 7
  start-page: 28273
  issue: 51
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib187
  article-title: Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.5b10829
– volume: 26
  start-page: 493
  issue: 5
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib20
  article-title: Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering
  publication-title: J. Bioact. Compat. Pol.
  doi: 10.1177/0883911511420700
– volume: 8
  start-page: 4609
  issue: 17
  year: 2012
  ident: 10.1016/j.biomaterials.2016.09.020_bib190
  article-title: Glucono-δ-lactone controlled assembly of graphene oxide hydrogels with selectively reversible gel–sol transition
  publication-title: Soft Mat.
  doi: 10.1039/c2sm25090j
– volume: 1
  start-page: 4166
  issue: 33
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib149
  article-title: Electrically controlled release of the nerve growth factor from a collagen–carbon nanotube composite for supporting neuronal growth
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb20505c
– volume: 41
  start-page: 2193
  issue: 6
  year: 2012
  ident: 10.1016/j.biomaterials.2016.09.020_bib4
  article-title: Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15203C
– volume: 92
  start-page: 1432
  issue: 2
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib47
  article-title: Present status and applications of bacterial cellulose-based materials for skin tissue repair
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2012.10.071
– volume: 129
  start-page: 834
  issue: 2
  year: 2008
  ident: 10.1016/j.biomaterials.2016.09.020_bib95
  article-title: Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2007.09.083
– volume: 26
  start-page: 5474
  issue: 27
  year: 2005
  ident: 10.1016/j.biomaterials.2016.09.020_bib116
  article-title: Porosity of 3D biomaterial scaffolds and osteogenesis
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.02.002
– volume: 14
  start-page: 65
  issue: 1
  year: 1980
  ident: 10.1016/j.biomaterials.2016.09.020_bib72
  article-title: Design of an artificial skin. I. Basic design principles
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820140108
– volume: 29
  start-page: 1216
  issue: 4
  year: 2009
  ident: 10.1016/j.biomaterials.2016.09.020_bib100
  article-title: In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2008.09.017
– volume: 26
  start-page: 1561
  issue: 9
  year: 2001
  ident: 10.1016/j.biomaterials.2016.09.020_bib49
  article-title: Bacterial synthesized cellulose—artificial blood vessels for microsurgery
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/S0079-6700(01)00021-1
– volume: 22
  start-page: 511
  issue: 6
  year: 2001
  ident: 10.1016/j.biomaterials.2016.09.020_bib56
  article-title: Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00201-5
– volume: 21
  start-page: 190
  issue: 1
  year: 2005
  ident: 10.1016/j.biomaterials.2016.09.020_bib64
  article-title: Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2004.07.029
– volume: 48
  start-page: 73
  issue: 1
  year: 2003
  ident: 10.1016/j.biomaterials.2016.09.020_bib28
  article-title: Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl
  publication-title: J. Chil. Chem. Soc.
– volume: 8
  start-page: 9822
  issue: 10
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib126
  article-title: Biocompatible carbon nanotube–chitosan scaffold matching the electrical conductivity of the heart
  publication-title: ACS Nano
  doi: 10.1021/nn503693h
– volume: 18
  start-page: 5805
  issue: 24
  year: 2006
  ident: 10.1016/j.biomaterials.2016.09.020_bib188
  article-title: Self-oscillatory actuation at constant DC voltage with pH-sensitive chitosan/polyaniline hydrogel blend
  publication-title: Chem. Mater.
  doi: 10.1021/cm060988h
– volume: 2
  start-page: 9
  issue: 1
  year: 2000
  ident: 10.1016/j.biomaterials.2016.09.020_bib10
  article-title: Physicochemical foundations and structural design of hydrogels in medicine and biology
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.2.1.9
– volume: 3
  start-page: 527
  issue: 1
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib125
  article-title: A 3D electroactive polypyrrole-collagen fibrous scaffold for tissue engineering
  publication-title: Polym. Basel
– volume: 6
  start-page: 720
  issue: 11
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib184
  article-title: Nanowired three-dimensional cardiac patches
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.160
– volume: 1
  start-page: 2976
  issue: 23
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib45
  article-title: Nano-cellulose 3D-networks as controlled-release drug carriers
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb20149j
– volume: 67
  start-page: 381
  issue: 5–6
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib19
  article-title: Seaweed polysaccharides and their potential biomedical applications
  publication-title: Starch – Stärke
  doi: 10.1002/star.201400127
– volume: 131
  start-page: 243
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib172
  article-title: Hydrogen peroxide biosensor based on microperoxidase-11 immobilized on flexible MWCNTs-BC nanocomposite film
  publication-title: Talanta
  doi: 10.1016/j.talanta.2014.07.027
– volume: 39
  start-page: 273
  issue: 2
  year: 1999
  ident: 10.1016/j.biomaterials.2016.09.020_bib2
  article-title: Conjugated and fullerene-containing polymers for electronic and photonic applications: advanced syntheses and microlithographic fabrications
  publication-title: J. Macromol. Sci. C
  doi: 10.1081/MC-100101421
– volume: 25
  start-page: 5011
  issue: 36
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib5
  article-title: 25th anniversary article: engineering hydrogels for biofabrication
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302042
– volume: 21
  start-page: 6642
  issue: 14
  year: 2005
  ident: 10.1016/j.biomaterials.2016.09.020_bib41
  article-title: Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy
  publication-title: Langmuir
  doi: 10.1021/la0504311
– volume: 4
  start-page: 7358
  issue: 12
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib191
  article-title: Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels
  publication-title: ACS Nano
  doi: 10.1021/nn1027104
– volume: 43
  start-page: 345
  issue: 2
  year: 2006
  ident: 10.1016/j.biomaterials.2016.09.020_bib177
  article-title: Electroresponsive behavior of gelatin/alginate semi-interpenetrating polymer network membranes under direct-current electric field
  publication-title: J. Macromol. Sci. A
  doi: 10.1080/10601320500437268
– volume: 9
  start-page: 10129
  issue: 42
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib185
  article-title: Electromechanical polyaniline–cellulose hydrogels with high compressive strength
  publication-title: Soft Mat.
  doi: 10.1039/c3sm51490k
– volume: 25
  start-page: 2831
  issue: 14
  year: 2004
  ident: 10.1016/j.biomaterials.2016.09.020_bib73
  article-title: Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.09.066
– volume: 99
  start-page: 13577
  issue: 21
  year: 2002
  ident: 10.1016/j.biomaterials.2016.09.020_bib157
  article-title: Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.202235299
– volume: 73
  start-page: 923
  issue: 7
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib12
  article-title: Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2012.12.014
– volume: 6
  start-page: 22424
  issue: 27
  year: 2016
  ident: 10.1016/j.biomaterials.2016.09.020_bib24
  article-title: In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system
  publication-title: RSC Adv.
  doi: 10.1039/C5RA26704H
– volume: 16
  start-page: 1047
  issue: 6
  year: 2009
  ident: 10.1016/j.biomaterials.2016.09.020_bib44
  article-title: Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by gluconacetobacter xylinus strain ATCC 53524
  publication-title: Cellulose
  doi: 10.1007/s10570-009-9340-y
– volume: 7
  start-page: 2369
  issue: 3
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib94
  article-title: Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators
  publication-title: ACS Nano
  doi: 10.1021/nn305559j
– volume: 14
  start-page: 1124
  issue: 11
  year: 2004
  ident: 10.1016/j.biomaterials.2016.09.020_bib38
  article-title: High mechanical strength double-network hydrogel with bacterial cellulose
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200305197
– volume: 2
  start-page: 320
  issue: 6
  year: 2008
  ident: 10.1016/j.biomaterials.2016.09.020_bib53
  article-title: Engineering microporosity in bacterial cellulose scaffolds
  publication-title: J. Tissue Eng. Regen. M.
  doi: 10.1002/term.97
– volume: 23
  start-page: 1117
  issue: 9
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib83
  article-title: Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003343
– volume: 81
  start-page: 312
  issue: 2
  year: 2007
  ident: 10.1016/j.biomaterials.2016.09.020_bib70
  article-title: Photocrosslinkable hydrogel for myocyte cell culture and injection
  publication-title: J. Biomed. Mater. Res. B Appl. Biomaterials
  doi: 10.1002/jbm.b.30667
– volume: 2
  start-page: 1040
  issue: 3
  year: 2012
  ident: 10.1016/j.biomaterials.2016.09.020_bib98
  article-title: In situ nano-assembly of bacterial cellulose–polyaniline composites
  publication-title: RSC Adv.
  doi: 10.1039/C1RA00719J
– volume: 92
  start-page: 360
  issue: 1
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib25
  article-title: Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2012.09.060
– volume: 6
  start-page: 3143
  issue: 14
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib78
  article-title: DNA gel particles
  publication-title: Soft Mat.
  doi: 10.1039/b923873e
– volume: 57
  start-page: 2
  issue: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib161
  article-title: Two-dimensional ion channel based soft-matter piezoelectricity
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-014-0005-z
– volume: 54
  start-page: 3957
  issue: 13
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib86
  article-title: Rapid formation of a supramolecular polypeptide–DNA hydrogel for in situ three-dimensional multilayer bioprinting
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201411383
– volume: 73
  start-page: 113
  issue: 1
  year: 1999
  ident: 10.1016/j.biomaterials.2016.09.020_bib175
  article-title: Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid)
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19990705)73:1<113::AID-APP13>3.0.CO;2-D
– volume: 62
  start-page: 130
  year: 2016
  ident: 10.1016/j.biomaterials.2016.09.020_bib37
  article-title: Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.01.042
– volume: 132
  start-page: 13174
  issue: 38
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib106
  article-title: Conducting polymer electrodes printed on hydrogel
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1062357
– volume: 33
  start-page: 2995
  issue: 5
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib42
  article-title: Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2013.03.026
– volume: 44
  start-page: 82
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib39
  article-title: Inelastic behaviour of bacterial cellulose hydrogel: in aqua cyclic tests
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2015.03.021
– volume: 40
  start-page: 1001
  issue: 12
  year: 2008
  ident: 10.1016/j.biomaterials.2016.09.020_bib132
  article-title: Modeling elastic, viscous and creep characteristics of cellulose electro-active paper
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2008.07.001
– volume: 86
  start-page: 3240
  issue: 7
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib164
  article-title: Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences
  publication-title: Anal. Chem.
  doi: 10.1021/ac403397r
– volume: 23
  start-page: 47
  issue: 1
  year: 2005
  ident: 10.1016/j.biomaterials.2016.09.020_bib139
  article-title: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1055
– volume: 9
  start-page: 9167
  issue: 9
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib186
  article-title: Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03644
– volume: 5
  start-page: 2880
  issue: 8
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib150
  article-title: In situ forming biodegradable electroactive hydrogels
  publication-title: Polym. Chem-UK
  doi: 10.1039/c3py01634j
– volume: 25
  start-page: 6064
  issue: 42
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib159
  article-title: Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302441
– volume: 53
  start-page: 5380
  issue: 21
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib144
  article-title: In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402751
– volume: 15
  start-page: 467
  issue: 3
  year: 2007
  ident: 10.1016/j.biomaterials.2016.09.020_bib138
  article-title: Biomaterials approach to expand and direct differentiation of stem cells
  publication-title: Mol. Ther.
  doi: 10.1038/sj.mt.6300084
– volume: 84
  start-page: 40
  issue: 1
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib9
  article-title: Cellulose-based hydrogels: present status and application prospects
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2010.12.023
– volume: 22
  start-page: 2141
  issue: 4
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib108
  article-title: Synthesis and characterization of a novel bacterial cellulose–poly (3, 4-ethylenedioxythiophene)–poly (styrene sulfonate) composite for use in biomedical applications
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0683-2
– volume: 346
  start-page: 107
  issue: 1
  year: 2005
  ident: 10.1016/j.biomaterials.2016.09.020_bib169
  article-title: DNA biosensor based on chitosan film doped with carbon nanotubes
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2005.07.037
– volume: 109
  start-page: 520
  issue: 3
  year: 2012
  ident: 10.1016/j.biomaterials.2016.09.020_bib124
  article-title: Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2011.10.030
– volume: 103
  start-page: 2512
  issue: 8
  year: 2006
  ident: 10.1016/j.biomaterials.2016.09.020_bib115
  article-title: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks invivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0506020102
– volume: 130
  start-page: 296
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib167
  article-title: A conductive porous structured chitosan-grafted polyaniline cryogel for use as a sialic acid biosensor
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.03.036
– volume: 15
  start-page: 2274
  issue: 6
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib134
  article-title: Micromechanics and poroelasticity of hydrated cellulose networks
  publication-title: Biomacromolecules
  doi: 10.1021/bm500405h
– volume: 31
  start-page: 277
  issue: 1
  year: 2012
  ident: 10.1016/j.biomaterials.2016.09.020_bib166
  article-title: Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2011.10.032
– volume: 5
  start-page: 39228
  issue: 49
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib183
  article-title: Surface modification of neural electrodes with a pyrrole-hyaluronic acid conjugate to attenuate reactive astrogliosis in vivo
  publication-title: RSC Adv.
  doi: 10.1039/C5RA03294F
– volume: 4
  start-page: 47056
  issue: 87
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib88
  article-title: pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery
  publication-title: RSC Adv.
  doi: 10.1039/C4RA09640A
– volume: 3
  start-page: 792
  year: 2012
  ident: 10.1016/j.biomaterials.2016.09.020_bib16
  article-title: Stiffening hydrogels to probe short-and long-term cellular responses to dynamic mechanics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1792
– volume: 49
  start-page: 289
  issue: 2
  year: 2000
  ident: 10.1016/j.biomaterials.2016.09.020_bib69
  article-title: Photocrosslinkable chitosan as a biological adhesive
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/(SICI)1097-4636(200002)49:2<289::AID-JBM18>3.0.CO;2-M
– volume: 104
  start-page: 1795
  issue: 5
  year: 2015
  ident: 10.1016/j.biomaterials.2016.09.020_bib182
  article-title: Permeation study of indomethacin from polycarbazole/natural rubber blend film for electric field controlled transdermal delivery
  publication-title: J. Pharm. Sci-US
  doi: 10.1002/jps.24414
– volume: 5
  start-page: 2238
  issue: 6
  year: 2004
  ident: 10.1016/j.biomaterials.2016.09.020_bib141
  article-title: Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer
  publication-title: Biomacromolecules
  doi: 10.1021/bm040048v
– volume: 6
  start-page: 970
  issue: 2
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib99
  article-title: Double network bacterial cellulose hydrogel to build a biology–device interface
  publication-title: Nanoscale
  doi: 10.1039/C3NR05214A
– volume: 176
  start-page: 396
  issue: 1
  year: 2008
  ident: 10.1016/j.biomaterials.2016.09.020_bib109
  article-title: Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.09.117
– year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib121
– volume: 85
  start-page: 2102
  issue: 4
  year: 2013
  ident: 10.1016/j.biomaterials.2016.09.020_bib63
  article-title: Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor
  publication-title: Anal. Chem.
  doi: 10.1021/ac302703y
– volume: 39
  start-page: 822
  issue: 6
  year: 2002
  ident: 10.1016/j.biomaterials.2016.09.020_bib96
  article-title: Electroactive polymers as artificial muscles: a review
  publication-title: J. Spacecr. Rockets
  doi: 10.2514/2.3902
– volume: 20
  start-page: 45
  issue: 1
  year: 1999
  ident: 10.1016/j.biomaterials.2016.09.020_bib17
  article-title: Alginate hydrogels as synthetic extracellular matrix materials
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(98)00107-0
– volume: 21
  start-page: 433
  issue: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2016.09.020_bib26
  article-title: Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications
  publication-title: Cellulose
  doi: 10.1007/s10570-013-0109-y
– volume: 129
  start-page: 4878
  issue: 16
  year: 2007
  ident: 10.1016/j.biomaterials.2016.09.020_bib162
  article-title: Chemically-responsive sol−gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja070457+
– volume: 95
  start-page: 465
  issue: 2
  year: 2010
  ident: 10.1016/j.biomaterials.2016.09.020_bib74
  article-title: Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.32869
– volume: 21
  start-page: 2155
  issue: 21
  year: 2000
  ident: 10.1016/j.biomaterials.2016.09.020_bib66
  article-title: Novel injectable neutral solutions of chitosan form biodegradable gels in situ
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00116-2
– volume: 21
  start-page: 2671
  issue: 8
  year: 2011
  ident: 10.1016/j.biomaterials.2016.09.020_bib163
  article-title: Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm03587d
SSID ssj0014042
Score 2.6315653
SecondaryResourceType review_article
Snippet Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic...
Abstract Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 40
SubjectTerms Advanced Basic Science
biocompatibility
biocompatible materials
Biocompatible Materials - chemistry
Bioconductors
biodegradability
bioengineering
Biological Products - chemistry
biosensors
cell culture
Dentistry
Drug delivery
drug delivery systems
Electric Conductivity
electrical conductivity
electrochemistry
Electroconductive
electronics
Electronics - instrumentation
hydrocolloids
Hydrogels
Hydrogels - chemistry
hydrophilicity
Materials Testing
medical equipment
Natural polymers
polymers
Static Electricity
Surface Properties
Title Electroconductive natural polymer-based hydrogels
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961216305221
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961216305221
https://dx.doi.org/10.1016/j.biomaterials.2016.09.020
https://www.ncbi.nlm.nih.gov/pubmed/27721086
https://www.proquest.com/docview/1835404756
https://www.proquest.com/docview/2000243705
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-hTkLjYRofY90GKhKvpo4Tx4mmPSAEKiD6BBJvlu04WyfWVG154GV_--6cDzFRpEo8JvEl1vnufBff_Q7gOHI-kSY2zKE6sKS0nNkyihna45JzfMgDmM7NOB3dJVf38n4DztpaGEqrbGx_bdODtW7uDBtuDmeTyZDSkkROAFgpyqwIxeRJokjKT_52aR6EHiPqNEbBaHQLPBpyvKjE3SzrpaY0rzRgnlLv79Wb1GtOaNiMLj7Ch8aLHJzWE92GDT_dga1n2II7sHnTnJrvQnRe97rB0JfQXdG-DQKeJ75hVj08_fFzRptZMfj1VMyrnziRPbi7OL89G7GmVQJzUqglE0UsU8uV8FnmlTWliIxTVvpSFEYpn2ZJKQ2GVlw6jLoKg36HyIrEZZlNlc3iT9CbVlP_GQbWpYrbKC-oQbhX6M_4OC9tLriywmWiD3nLG-0aHHFqZ_Gg24Sx3_o5XzXxVfNcI1_7EHe0sxpNYy2q7-0S6LZeFC2cRqO_FrVaRe0XjbIudKQXQnP9QqD68KOj_E8m1_7yUSsvGpWWTmLM1FeP-MXwuy1RMn19DNVQEVokl33Yr4Wt45nAmIhaZH154wy_wnu6qtNzvkFvOX_0B-hkLe1h0KJDeHd6eT0a_wPvlCfH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaCDtjaw7B165q9mgG7apFly7Ix7DAUDbI2ySkFchMkWe4yZHGQx6GX_faRfgQplgIBdrVMS6BIirTIjwCfA-cjaULDHKoDi3LLmc2DkKE9zjnHQV6C6QxHcf82up7ISQsum1oYSqusbX9l00trXT_p1tzsLqbTLqUliZQAsGKUWUHF5E8iVF9qY_DlzzbPg-BjRJXHKBi93iCPlkleVONu1tVeU55XXIKeUvPv_afUY15oeRr1XsDz2o3sfK9W-hJafn4KJzvggqfwdFhfm7-C4KpqdoOxL8G7ooHrlICe-IVFMbv_7ZeMTrOs8_M-WxZ3uJDXcNu7Gl_2Wd0rgTkp1JqJLJSx5Ur4JPHKmlwExikrfS4yo5SPkyiXBmMrLh2GXZlBx0MkWeSSxMbKJuEZHM2LuT-HjnWx4jZIM-oQ7hU6ND5Mc5sKrqxwiWhD2vBGuxpInPpZzHSTMfZL7_JVE181TzXytQ3hlnZRwWkcRPW12QLdFIyiidNo9Q-iVvuo_arW1pUO9Eporv-RqDZ821I-EMqDZ_7UyItGraWrGDP3xQZnLP-3RUrGj79DRVQEF8llG95UwrblmcCgiHpkvf3PFV7As_54ONCDH6Obd3BMI1Wuzns4Wi83_gN6XGv7sdSov3AYKVU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electroconductive+natural+polymer-based+hydrogels&rft.jtitle=Biomaterials&rft.au=Shi%2C+Zhijun&rft.au=Gao%2C+Xing&rft.au=Ullah%2C+Muhammad+Wajid&rft.au=Li%2C+Sixiang&rft.date=2016-12-01&rft.issn=0142-9612&rft.volume=111&rft.spage=40&rft.epage=54&rft_id=info:doi/10.1016%2Fj.biomaterials.2016.09.020&rft.externalDBID=ECK1-s2.0-S0142961216305221&rft.externalDocID=1_s2_0_S0142961216305221
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2Fcov200h.gif