3-(4-Hydroxyphenyl)propionic acid, a major microbial metabolite of procyanidin A2, shows similar suppression of macrophage foam cell formation as its parent molecule
The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL −1 PCA2 and HPPA significantly reduce...
Saved in:
Published in | RSC advances Vol. 8; no. 12; pp. 6242 - 625 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.01.2018
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL
−1
PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment
via
nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells
via
regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation.
PCA2 and its major microbial metabolite HPPA inhibited macrophage foam cell formation, which may be due to regulating ABCA1, SR-B1 and CD36 expression, and restricted cellular oxidative stress and inflammation via NF-κB pathway. |
---|---|
AbstractList | The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL
−1
PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment
via
nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells
via
regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation.
PCA2 and its major microbial metabolite HPPA inhibited macrophage foam cell formation, which may be due to regulating ABCA1, SR-B1 and CD36 expression, and restricted cellular oxidative stress and inflammation via NF-κB pathway. The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL⁻¹ PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation. The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL −1 PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation. The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL-1 PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation.The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL-1 PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation. The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation. The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL−1 PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation. |
Author | Yang, Rui-Li Li, Wu Zhang, Yu-Ying Huang, Ri-Ming Li, Xiao-Le Li, Tong-Yun Li, Mei-Ying |
AuthorAffiliation | Guangdong Provincial Key Laboratory of Food Quality and Safety College of Food Science and Technology Hainan University South China Agricultural University College of Food Science |
AuthorAffiliation_xml | – name: Guangdong Provincial Key Laboratory of Food Quality and Safety – name: College of Food Science – name: South China Agricultural University – name: Hainan University – name: College of Food Science and Technology |
Author_xml | – sequence: 1 givenname: Yu-Ying surname: Zhang fullname: Zhang, Yu-Ying – sequence: 2 givenname: Xiao-Le surname: Li fullname: Li, Xiao-Le – sequence: 3 givenname: Tong-Yun surname: Li fullname: Li, Tong-Yun – sequence: 4 givenname: Mei-Ying surname: Li fullname: Li, Mei-Ying – sequence: 5 givenname: Ri-Ming surname: Huang fullname: Huang, Ri-Ming – sequence: 6 givenname: Wu surname: Li fullname: Li, Wu – sequence: 7 givenname: Rui-Li surname: Yang fullname: Yang, Rui-Li |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35540422$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFDEUhgep2Fp7470S8KZKR_M1H7kRyqJWKQii1-FM9kw3SzKZJjPq_iD_p9luW2sRzE0OnOe8vOfjcbE3hAGL4imjrxkV6o1pIjDRcLV-UBxwKuuS01rt3Yn3i6OU1jS_umK8Zo-KfVFVkkrOD4pfojyW5dlmGcPPzbjCYeNejjGMNgzWEDB2eUKAeFiHSLw1MXQWHPE4QRecnZCEnmTebGCwSzuQU35C0ir8SCRZbx1EkuZxjJhSVtzCHrLIuIILJH0ATww6l6PoYdoSkIidEhkh4jARHxya2eGT4mEPLuHR9X9YfHv_7uvirDz__OHj4vS8NBVvppILaRRDzlEIVfcIouuE6JXEVvU9SAW8Fd2yZ1Jhp2RdV0gpAzAGW0PzOA-Ltzvdce48Lk32EMHpMVoPcaMDWP13ZrArfRG-a0WbljdVFji-FojhcsY0aW_TtkUYMMxJ87rmlWwkr_-Pcs5oRXklMvriHroOcxzyJDTPtlvFWdtm6vld87eub5adAboD8gZSithrY6ersederNOM6u1J6UXz5fTqpD7lklf3Sm5U_wk_28ExmVvuz32K37bV2A4 |
CitedBy_id | crossref_primary_10_1039_C9FO02352F crossref_primary_10_3389_fnut_2022_1015924 crossref_primary_10_3390_molecules24020370 crossref_primary_10_3390_biom11020303 crossref_primary_10_3390_foods13223666 crossref_primary_10_1016_j_fbio_2022_102178 crossref_primary_10_1016_j_fitote_2021_105071 crossref_primary_10_1021_acs_jafc_4c07910 crossref_primary_10_1007_s11130_022_00948_5 crossref_primary_10_1080_19490976_2024_2426614 crossref_primary_10_1080_10408398_2020_1746234 crossref_primary_10_1177_03000605231167314 crossref_primary_10_1016_j_jff_2020_103787 crossref_primary_10_1021_acs_jafc_2c04101 crossref_primary_10_1016_j_jff_2021_104637 crossref_primary_10_1111_1541_4337_13352 crossref_primary_10_1186_s40538_024_00674_x crossref_primary_10_3390_molecules27238353 crossref_primary_10_1016_j_foodres_2022_111014 crossref_primary_10_3390_molecules29215102 crossref_primary_10_3390_fermentation8050201 crossref_primary_10_3390_nu12103054 crossref_primary_10_1002_mnfr_202101090 crossref_primary_10_3390_ijms24032051 |
Cites_doi | 10.1016/j.lwt.2016.06.049 10.1021/jf803450a 10.1016/j.foodres.2016.06.011 10.1021/np000128u 10.1039/C4RA10034D 10.1039/C6RA09019B 10.1021/acs.jafc.5b03657 10.1016/j.foodchem.2012.04.039 10.1039/C7RA07940K 10.1002/mnfr.201500113 10.1016/j.bbrc.2016.07.022 10.1016/j.fitote.2013.08.019 10.1016/j.cca.2013.06.006 10.1021/jf203927g 10.1016/j.cell.2011.04.005 10.1039/c0fo00132e 10.1016/j.ejphar.2012.08.024 10.1002/mnfr.201400370 10.1016/j.freeradbiomed.2011.06.002 10.1021/jf034815d 10.1016/j.atherosclerosis.2017.01.032 10.1021/acs.jafc.6b00656 10.1017/S0007114508162110 10.1097/MOL.0000000000000050 10.3390/ijms17111888 10.1021/jf0633185 10.1093/cvr/cvs369 10.1016/j.jff.2017.01.036 10.1111/jcmm.12689 10.1016/j.jnutbio.2013.05.001 10.1097/MOL.0b013e328338472d 10.1371/journal.pone.0008852 10.1097/01.fjc.0000242052.60502.21 10.1016/j.bbrc.2011.06.177 10.1016/j.ijbiomac.2014.08.026 10.1021/jf3035258 10.1002/mnfr.201000525 10.1016/j.jff.2012.09.005 10.1016/j.foodchem.2009.04.047 10.1016/j.bbrc.2014.04.052 10.4049/jimmunol.168.6.2828 10.1021/jf2040912 10.1016/j.carpath.2014.12.004 10.1016/S1097-2765(01)00164-2 10.1002/biof.1019 10.1016/j.nbd.2005.12.004 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2018 This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2018 – notice: This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1039/c7ra13729j |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 625 |
ExternalDocumentID | PMC9078275 35540422 10_1039_C7RA13729J c7ra13729j |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 31471705 – fundername: ; grantid: 317007 |
GroupedDBID | -JG 0-7 AAEMU ABGFH AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- H~N J3I R7C R7E R7G RCNCU RPMJG RRC RSCEA SLH SMJ 0R~ 53G AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABJNI ABPDG ABXOH ACGFS ADBBV ADMRA AENEX AESAV AETIL AFLYV AFPKN AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT BCNDV BLAPV CITATION EBS ECGLT EJD GROUPED_DOAJ H13 HZ~ J3G J3H M~E O9- OK1 PGMZT RAOCF RPM RVUXY YAE ZCN NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c527t-234c91e22e3396fea3bb33f94e89ffa49a283bdf149eb94665e001aacce8c0103 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 17:55:57 EDT 2025 Fri Jul 11 04:39:46 EDT 2025 Thu Jul 10 17:19:27 EDT 2025 Sun Jun 29 15:53:43 EDT 2025 Thu Jan 02 22:38:16 EST 2025 Tue Jul 01 04:24:11 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Mon Jan 28 17:14:02 EST 2019 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c527t-234c91e22e3396fea3bb33f94e89ffa49a283bdf149eb94665e001aacce8c0103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-6347-3196 |
OpenAccessLink | http://dx.doi.org/10.1039/c7ra13729j |
PMID | 35540422 |
PQID | 2010892188 |
PQPubID | 2047525 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2010892188 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9078275 proquest_miscellaneous_2662547426 pubmed_primary_35540422 crossref_primary_10_1039_C7RA13729J crossref_citationtrail_10_1039_C7RA13729J proquest_miscellaneous_2221050253 rsc_primary_c7ra13729j |
ProviderPackageCode | J3I R7E RRC R7G AEFDR RPMJG -JG AGSTE RCNCU AUDPV EF- SLH BSQNT EE0 SMJ RSCEA AFVBQ C6K H~N 0-7 ABGFH AAEMU R7C CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Baeza (C7RA13729J-(cit21)/*[position()=1]) 2016; 87 Chawla (C7RA13729J-(cit7)/*[position()=1]) 2001; 7 Li (C7RA13729J-(cit43)/*[position()=1]) 2015; 72 Lee (C7RA13729J-(cit25)/*[position()=1]) 2013; 5 Appeldoorn (C7RA13729J-(cit27)/*[position()=1]) 2009; 117 Wang (C7RA13729J-(cit37)/*[position()=1]) 2011; 411 Foo (C7RA13729J-(cit18)/*[position()=1]) 2000; 63 Xiao (C7RA13729J-(cit45)/*[position()=1]) 2016; 6 Fraga (C7RA13729J-(cit12)/*[position()=1]) 2011; 51 Yvan-Charvet (C7RA13729J-(cit32)/*[position()=1]) 2007; 117 Engemann (C7RA13729J-(cit30)/*[position()=1]) 2012; 60 Zha (C7RA13729J-(cit35)/*[position()=1]) 2015; 59 Yu (C7RA13729J-(cit1)/*[position()=1]) 2013; 424 Voloshyna (C7RA13729J-(cit6)/*[position()=1]) 2013; 698 Khallou-Laschet (C7RA13729J-(cit42)/*[position()=1]) 2010; 5 Sawyer (C7RA13729J-(cit11)/*[position()=1]) 2017; 31 Ahangarpour (C7RA13729J-(cit46)/*[position()=1]) 2016; 67 Verzelloni (C7RA13729J-(cit23)/*[position()=1]) 2011; 55 Hellerstein (C7RA13729J-(cit3)/*[position()=1]) 2014; 25 Cardona (C7RA13729J-(cit24)/*[position()=1]) 2013; 24 Gu (C7RA13729J-(cit13)/*[position()=1]) 2003; 51 Moore (C7RA13729J-(cit2)/*[position()=1]) 2011; 145 Gao (C7RA13729J-(cit8)/*[position()=1]) 2013; 97 Ge (C7RA13729J-(cit48)/*[position()=1]) 2015; 63 Martinez-Micaelo (C7RA13729J-(cit39)/*[position()=1]) 2015; 59 Zhao (C7RA13729J-(cit5)/*[position()=1]) 2014; 448 Martinez-Micaelo (C7RA13729J-(cit10)/*[position()=1]) 2012; 38 Chistiakov (C7RA13729J-(cit36)/*[position()=1]) 2016; 20 Lopez-Cobo (C7RA13729J-(cit26)/*[position()=1]) 2016; 73 Terra (C7RA13729J-(cit15)/*[position()=1]) 2009; 57 Wong (C7RA13729J-(cit19)/*[position()=1]) 2016; 64 Rothblat (C7RA13729J-(cit4)/*[position()=1]) 2010; 21 Chen (C7RA13729J-(cit16)/*[position()=1]) 2006; 48 Dong (C7RA13729J-(cit17)/*[position()=1]) 2013; 91 Zheng (C7RA13729J-(cit31)/*[position()=1]) 2016; 477 Li (C7RA13729J-(cit28)/*[position()=1]) 2012; 135 Ma (C7RA13729J-(cit33)/*[position()=1]) 2015; 24 Constanza (C7RA13729J-(cit9)/*[position()=1]) 2012; 60 Monagas (C7RA13729J-(cit20)/*[position()=1]) 2010; 1 Chen (C7RA13729J-(cit34)/*[position()=1]) 2017; 7 Fischer (C7RA13729J-(cit41)/*[position()=1]) 2002; 168 Cheng (C7RA13729J-(cit44)/*[position()=1]) 2015; 5 Wang (C7RA13729J-(cit14)/*[position()=1]) 2017; 258 Sironi (C7RA13729J-(cit38)/*[position()=1]) 2006; 22 Coleman (C7RA13729J-(cit29)/*[position()=1]) 2016; 17 Terra (C7RA13729J-(cit40)/*[position()=1]) 2007; 55 Ou (C7RA13729J-(cit47)/*[position()=1]) 2012; 60 Monagas (C7RA13729J-(cit22)/*[position()=1]) 2009; 102 |
References_xml | – volume: 73 start-page: 505 year: 2016 ident: C7RA13729J-(cit26)/*[position()=1] publication-title: LWT--Food Sci. Technol. doi: 10.1016/j.lwt.2016.06.049 – volume: 57 start-page: 2588 year: 2009 ident: C7RA13729J-(cit15)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf803450a – volume: 87 start-page: 25 year: 2016 ident: C7RA13729J-(cit21)/*[position()=1] publication-title: Food Res. Int. doi: 10.1016/j.foodres.2016.06.011 – volume: 63 start-page: 1225 year: 2000 ident: C7RA13729J-(cit18)/*[position()=1] publication-title: J. Nat. Prod. doi: 10.1021/np000128u – volume: 5 start-page: 4511 year: 2015 ident: C7RA13729J-(cit44)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA10034D – volume: 6 start-page: 105363 year: 2016 ident: C7RA13729J-(cit45)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA09019B – volume: 63 start-page: 8991 year: 2015 ident: C7RA13729J-(cit48)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.5b03657 – volume: 135 start-page: 31 year: 2012 ident: C7RA13729J-(cit28)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2012.04.039 – volume: 7 start-page: 49235 year: 2017 ident: C7RA13729J-(cit34)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA07940K – volume: 117 start-page: 3900 year: 2007 ident: C7RA13729J-(cit32)/*[position()=1] publication-title: J. Clin. Invest. – volume: 59 start-page: 2008 year: 2015 ident: C7RA13729J-(cit35)/*[position()=1] publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201500113 – volume: 477 start-page: 1017 year: 2016 ident: C7RA13729J-(cit31)/*[position()=1] publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.07.022 – volume: 91 start-page: 128 year: 2013 ident: C7RA13729J-(cit17)/*[position()=1] publication-title: Fitoterapia doi: 10.1016/j.fitote.2013.08.019 – volume: 424 start-page: 245 year: 2013 ident: C7RA13729J-(cit1)/*[position()=1] publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2013.06.006 – volume: 60 start-page: 749 year: 2012 ident: C7RA13729J-(cit30)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf203927g – volume: 145 start-page: 341 year: 2011 ident: C7RA13729J-(cit2)/*[position()=1] publication-title: Cell doi: 10.1016/j.cell.2011.04.005 – volume: 67 start-page: 243 year: 2016 ident: C7RA13729J-(cit46)/*[position()=1] publication-title: J. Physiol. Pharmacol. – volume: 1 start-page: 233 year: 2010 ident: C7RA13729J-(cit20)/*[position()=1] publication-title: Food Funct. doi: 10.1039/c0fo00132e – volume: 698 start-page: 299 year: 2013 ident: C7RA13729J-(cit6)/*[position()=1] publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2012.08.024 – volume: 59 start-page: 262 year: 2015 ident: C7RA13729J-(cit39)/*[position()=1] publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201400370 – volume: 51 start-page: 813 year: 2011 ident: C7RA13729J-(cit12)/*[position()=1] publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2011.06.002 – volume: 51 start-page: 7513 year: 2003 ident: C7RA13729J-(cit13)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf034815d – volume: 258 start-page: 56 year: 2017 ident: C7RA13729J-(cit14)/*[position()=1] publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2017.01.032 – volume: 64 start-page: 3574 year: 2016 ident: C7RA13729J-(cit19)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.6b00656 – volume: 102 start-page: 201 year: 2009 ident: C7RA13729J-(cit22)/*[position()=1] publication-title: Br. J. Nutr. doi: 10.1017/S0007114508162110 – volume: 25 start-page: 40 year: 2014 ident: C7RA13729J-(cit3)/*[position()=1] publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000050 – volume: 17 start-page: 1 year: 2016 ident: C7RA13729J-(cit29)/*[position()=1] publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17111888 – volume: 55 start-page: 4357 year: 2007 ident: C7RA13729J-(cit40)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf0633185 – volume: 97 start-page: 533 year: 2013 ident: C7RA13729J-(cit8)/*[position()=1] publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvs369 – volume: 31 start-page: 141 year: 2017 ident: C7RA13729J-(cit11)/*[position()=1] publication-title: J. Funct. Foods doi: 10.1016/j.jff.2017.01.036 – volume: 20 start-page: 17 year: 2016 ident: C7RA13729J-(cit36)/*[position()=1] publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.12689 – volume: 24 start-page: 1415 year: 2013 ident: C7RA13729J-(cit24)/*[position()=1] publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2013.05.001 – volume: 21 start-page: 229 year: 2010 ident: C7RA13729J-(cit4)/*[position()=1] publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0b013e328338472d – volume: 5 start-page: 1 year: 2010 ident: C7RA13729J-(cit42)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0008852 – volume: 48 start-page: 54 year: 2006 ident: C7RA13729J-(cit16)/*[position()=1] publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/01.fjc.0000242052.60502.21 – volume: 411 start-page: 543 year: 2011 ident: C7RA13729J-(cit37)/*[position()=1] publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.06.177 – volume: 72 start-page: 664 year: 2015 ident: C7RA13729J-(cit43)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2014.08.026 – volume: 60 start-page: 10776 year: 2012 ident: C7RA13729J-(cit9)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf3035258 – volume: 55 start-page: S35 year: 2011 ident: C7RA13729J-(cit23)/*[position()=1] publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201000525 – volume: 5 start-page: 144 year: 2013 ident: C7RA13729J-(cit25)/*[position()=1] publication-title: J. Funct. Foods doi: 10.1016/j.jff.2012.09.005 – volume: 117 start-page: 713 year: 2009 ident: C7RA13729J-(cit27)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2009.04.047 – volume: 448 start-page: 329 year: 2014 ident: C7RA13729J-(cit5)/*[position()=1] publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.04.052 – volume: 168 start-page: 2828 year: 2002 ident: C7RA13729J-(cit41)/*[position()=1] publication-title: J. Immunol. doi: 10.4049/jimmunol.168.6.2828 – volume: 60 start-page: 1390 year: 2012 ident: C7RA13729J-(cit47)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf2040912 – volume: 24 start-page: 230 year: 2015 ident: C7RA13729J-(cit33)/*[position()=1] publication-title: Cardiovasc. Pathol. doi: 10.1016/j.carpath.2014.12.004 – volume: 7 start-page: 161 year: 2001 ident: C7RA13729J-(cit7)/*[position()=1] publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00164-2 – volume: 38 start-page: 257 year: 2012 ident: C7RA13729J-(cit10)/*[position()=1] publication-title: BioFactors doi: 10.1002/biof.1019 – volume: 22 start-page: 445 year: 2006 ident: C7RA13729J-(cit38)/*[position()=1] publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2005.12.004 |
SSID | ssj0000651261 |
Score | 2.338506 |
Snippet | The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6242 |
SubjectTerms | Chemistry Cholesterol Efflux foam cells Gene expression gene expression regulation inflammation Lipid metabolism messenger RNA Metabolism metabolites Microorganisms Oxidative stress Procyanidins Propionic acid |
Title | 3-(4-Hydroxyphenyl)propionic acid, a major microbial metabolite of procyanidin A2, shows similar suppression of macrophage foam cell formation as its parent molecule |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35540422 https://www.proquest.com/docview/2010892188 https://www.proquest.com/docview/2221050253 https://www.proquest.com/docview/2662547426 https://pubmed.ncbi.nlm.nih.gov/PMC9078275 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2lrQS9IL4KgVItggNV6pJ47dp7jCJQVFEOIUHJKVpv1sRVbUeJLRR-C1f-JzMbe-3QgICLFa3HcZR5np0Zv5kh5DVXOCMaHiShhLIc22tb3Js5VijddtjBjuNtLBS--njRHzmXY3fcaHyvsZbyLDiX33bWlfyPVmEN9IpVsv-gWfOlsACfQb9wBA3D8a90zCzwDx2rv54hGQXZWusbCO3BKC4iPdlGyEhrULRicZ0uW3Gk-y7pipEM1I8FyJrzDNvYWiTRDLMfNl6xmqdfV61VFEdIU13li4Iwq73LWODgrznSfcJUxC3M_ldlkDi6Bl9HILc9yVrxZgDvFuVo8KlXsg-MT29S15PcmpQbKlKFNN9gHInU-qC2F4dp8sWa5Mn26pWKqi8oEhodv5bQUNrw2RCzg543I1xKK-3XwWjXTC4WuOzcC9oMW6lKbyk6-G7yui4EelzEGhXob2EftGo_NCzF8tQeObAhCAErejD4PBpPTA4P3LcORKBl11vG31Z3OyR3yuu3XZ5bccxtOu7espw-o72c4X1yrwhPaHeDtQekoZKH5G6vnAr4iPxg1ptfEHdq8EYRb2dUUI02atBGK7TRNKQ1tNGufUY11miBNVrDGgpXWKOINYpYowZrVKwoYI1usEZLrD0mo_fvhr2-VYz6sKRre5llM0fyDtgNxRi_CJVgQcBYyB3l8zAUDhfgBgezEOJ5FeBIBFeBfyWElMqXOKrkiOwnaaKeEurK0GsHkvvuzHPaLBBczJjrB9JzLpTbCZrktNTGVBZ98HEcy81U8zEYn_a8QVcr8bJJXhnZxab7y06p41Kp08I6rKbIMvE5ONB-k7w0p0FZ-DeJRKU5yNg2hDcQdbA_yIC9dB0PHOkmebLBifkpJcCaxNtCkBHA3vHbZ5JornvIcwwNPLdJjgBrRr6C77Pf3uw5Oaye2mOyny1z9QIc8yw40Qmtk-Ip-QmF7-on |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-%284-Hydroxyphenyl%29propionic+acid%2C+a+major+microbial+metabolite+of+procyanidin+A2%2C+shows+similar+suppression+of+macrophage+foam+cell+formation+as+its+parent+molecule&rft.jtitle=RSC+advances&rft.au=Zhang%2C+Yu-Ying&rft.au=Li%2C+Xiao-Le&rft.au=Li%2C+Tong-Yun&rft.au=Li%2C+Mei-Ying&rft.date=2018-01-01&rft.eissn=2046-2069&rft.volume=8&rft.issue=12&rft.spage=6242&rft_id=info:doi/10.1039%2Fc7ra13729j&rft_id=info%3Apmid%2F35540422&rft.externalDocID=35540422 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |