3-(4-Hydroxyphenyl)propionic acid, a major microbial metabolite of procyanidin A2, shows similar suppression of macrophage foam cell formation as its parent molecule

The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL −1 PCA2 and HPPA significantly reduce...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 8; no. 12; pp. 6242 - 625
Main Authors Zhang, Yu-Ying, Li, Xiao-Le, Li, Tong-Yun, Li, Mei-Ying, Huang, Ri-Ming, Li, Wu, Yang, Rui-Li
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.01.2018
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL −1 PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation. PCA2 and its major microbial metabolite HPPA inhibited macrophage foam cell formation, which may be due to regulating ABCA1, SR-B1 and CD36 expression, and restricted cellular oxidative stress and inflammation via NF-κB pathway.
AbstractList The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL −1 PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation. PCA2 and its major microbial metabolite HPPA inhibited macrophage foam cell formation, which may be due to regulating ABCA1, SR-B1 and CD36 expression, and restricted cellular oxidative stress and inflammation via NF-κB pathway.
The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL⁻¹ PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation.
The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL −1 PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation.
The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL-1 PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation.The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL-1 PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation.
The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation.
The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell formation, and underlying mechanism, were investigated for the first time. The results showed that 12.5 μg mL−1 PCA2 and HPPA significantly reduced cellular lipid accumulation and inhibited foam cell formation. HPPA promoted macrophage cholesterol efflux by up-regulating mRNA expressions of ABCA1 and SR-B1, while PCA2 significantly increased SR-B1 and LXR-α mRNA expression levels. Moreover, PCA2 and HPPA significantly lowered the elevated levels of CD36 mRNA expression in ox-LDL-treated macrophage cells. Besides these, the ox-LDL-induced cellular oxidative stress and inflammation was also restricted by PCA2 and HPPA treatment via nuclear factor kappa-B pathways. In conclusion, PCA2 and its major microbial metabolite, HPPA, inhibited the conversion of macrophage into foam cells via regulating cellular lipid metabolism and suppressing cellular oxidative stress and inflammation.
Author Yang, Rui-Li
Li, Wu
Zhang, Yu-Ying
Huang, Ri-Ming
Li, Xiao-Le
Li, Tong-Yun
Li, Mei-Ying
AuthorAffiliation Guangdong Provincial Key Laboratory of Food Quality and Safety
College of Food Science and Technology
Hainan University
South China Agricultural University
College of Food Science
AuthorAffiliation_xml – name: Guangdong Provincial Key Laboratory of Food Quality and Safety
– name: College of Food Science
– name: South China Agricultural University
– name: Hainan University
– name: College of Food Science and Technology
Author_xml – sequence: 1
  givenname: Yu-Ying
  surname: Zhang
  fullname: Zhang, Yu-Ying
– sequence: 2
  givenname: Xiao-Le
  surname: Li
  fullname: Li, Xiao-Le
– sequence: 3
  givenname: Tong-Yun
  surname: Li
  fullname: Li, Tong-Yun
– sequence: 4
  givenname: Mei-Ying
  surname: Li
  fullname: Li, Mei-Ying
– sequence: 5
  givenname: Ri-Ming
  surname: Huang
  fullname: Huang, Ri-Ming
– sequence: 6
  givenname: Wu
  surname: Li
  fullname: Li, Wu
– sequence: 7
  givenname: Rui-Li
  surname: Yang
  fullname: Yang, Rui-Li
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35540422$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhgep2Fp7470S8KZKR_M1H7kRyqJWKQii1-FM9kw3SzKZJjPq_iD_p9luW2sRzE0OnOe8vOfjcbE3hAGL4imjrxkV6o1pIjDRcLV-UBxwKuuS01rt3Yn3i6OU1jS_umK8Zo-KfVFVkkrOD4pfojyW5dlmGcPPzbjCYeNejjGMNgzWEDB2eUKAeFiHSLw1MXQWHPE4QRecnZCEnmTebGCwSzuQU35C0ir8SCRZbx1EkuZxjJhSVtzCHrLIuIILJH0ATww6l6PoYdoSkIidEhkh4jARHxya2eGT4mEPLuHR9X9YfHv_7uvirDz__OHj4vS8NBVvppILaRRDzlEIVfcIouuE6JXEVvU9SAW8Fd2yZ1Jhp2RdV0gpAzAGW0PzOA-Ltzvdce48Lk32EMHpMVoPcaMDWP13ZrArfRG-a0WbljdVFji-FojhcsY0aW_TtkUYMMxJ87rmlWwkr_-Pcs5oRXklMvriHroOcxzyJDTPtlvFWdtm6vld87eub5adAboD8gZSithrY6ersederNOM6u1J6UXz5fTqpD7lklf3Sm5U_wk_28ExmVvuz32K37bV2A4
CitedBy_id crossref_primary_10_1039_C9FO02352F
crossref_primary_10_3389_fnut_2022_1015924
crossref_primary_10_3390_molecules24020370
crossref_primary_10_3390_biom11020303
crossref_primary_10_3390_foods13223666
crossref_primary_10_1016_j_fbio_2022_102178
crossref_primary_10_1016_j_fitote_2021_105071
crossref_primary_10_1021_acs_jafc_4c07910
crossref_primary_10_1007_s11130_022_00948_5
crossref_primary_10_1080_19490976_2024_2426614
crossref_primary_10_1080_10408398_2020_1746234
crossref_primary_10_1177_03000605231167314
crossref_primary_10_1016_j_jff_2020_103787
crossref_primary_10_1021_acs_jafc_2c04101
crossref_primary_10_1016_j_jff_2021_104637
crossref_primary_10_1111_1541_4337_13352
crossref_primary_10_1186_s40538_024_00674_x
crossref_primary_10_3390_molecules27238353
crossref_primary_10_1016_j_foodres_2022_111014
crossref_primary_10_3390_molecules29215102
crossref_primary_10_3390_fermentation8050201
crossref_primary_10_3390_nu12103054
crossref_primary_10_1002_mnfr_202101090
crossref_primary_10_3390_ijms24032051
Cites_doi 10.1016/j.lwt.2016.06.049
10.1021/jf803450a
10.1016/j.foodres.2016.06.011
10.1021/np000128u
10.1039/C4RA10034D
10.1039/C6RA09019B
10.1021/acs.jafc.5b03657
10.1016/j.foodchem.2012.04.039
10.1039/C7RA07940K
10.1002/mnfr.201500113
10.1016/j.bbrc.2016.07.022
10.1016/j.fitote.2013.08.019
10.1016/j.cca.2013.06.006
10.1021/jf203927g
10.1016/j.cell.2011.04.005
10.1039/c0fo00132e
10.1016/j.ejphar.2012.08.024
10.1002/mnfr.201400370
10.1016/j.freeradbiomed.2011.06.002
10.1021/jf034815d
10.1016/j.atherosclerosis.2017.01.032
10.1021/acs.jafc.6b00656
10.1017/S0007114508162110
10.1097/MOL.0000000000000050
10.3390/ijms17111888
10.1021/jf0633185
10.1093/cvr/cvs369
10.1016/j.jff.2017.01.036
10.1111/jcmm.12689
10.1016/j.jnutbio.2013.05.001
10.1097/MOL.0b013e328338472d
10.1371/journal.pone.0008852
10.1097/01.fjc.0000242052.60502.21
10.1016/j.bbrc.2011.06.177
10.1016/j.ijbiomac.2014.08.026
10.1021/jf3035258
10.1002/mnfr.201000525
10.1016/j.jff.2012.09.005
10.1016/j.foodchem.2009.04.047
10.1016/j.bbrc.2014.04.052
10.4049/jimmunol.168.6.2828
10.1021/jf2040912
10.1016/j.carpath.2014.12.004
10.1016/S1097-2765(01)00164-2
10.1002/biof.1019
10.1016/j.nbd.2005.12.004
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2018
This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2018
– notice: This journal is © The Royal Society of Chemistry 2018 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/c7ra13729j
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

AGRICOLA
CrossRef
MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 625
ExternalDocumentID PMC9078275
35540422
10_1039_C7RA13729J
c7ra13729j
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 31471705
– fundername: ;
  grantid: 317007
GroupedDBID -JG
0-7
AAEMU
ABGFH
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
H~N
J3I
R7C
R7E
R7G
RCNCU
RPMJG
RRC
RSCEA
SLH
SMJ
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABIQK
ABJNI
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AENEX
AESAV
AETIL
AFLYV
AFPKN
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
BCNDV
BLAPV
CITATION
EBS
ECGLT
EJD
GROUPED_DOAJ
H13
HZ~
J3G
J3H
M~E
O9-
OK1
PGMZT
RAOCF
RPM
RVUXY
YAE
ZCN
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c527t-234c91e22e3396fea3bb33f94e89ffa49a283bdf149eb94665e001aacce8c0103
ISSN 2046-2069
IngestDate Thu Aug 21 17:55:57 EDT 2025
Fri Jul 11 04:39:46 EDT 2025
Thu Jul 10 17:19:27 EDT 2025
Sun Jun 29 15:53:43 EDT 2025
Thu Jan 02 22:38:16 EST 2025
Tue Jul 01 04:24:11 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Mon Jan 28 17:14:02 EST 2019
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c527t-234c91e22e3396fea3bb33f94e89ffa49a283bdf149eb94665e001aacce8c0103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-6347-3196
OpenAccessLink http://dx.doi.org/10.1039/c7ra13729j
PMID 35540422
PQID 2010892188
PQPubID 2047525
PageCount 9
ParticipantIDs proquest_journals_2010892188
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9078275
proquest_miscellaneous_2662547426
pubmed_primary_35540422
crossref_primary_10_1039_C7RA13729J
crossref_citationtrail_10_1039_C7RA13729J
proquest_miscellaneous_2221050253
rsc_primary_c7ra13729j
ProviderPackageCode J3I
R7E
RRC
R7G
AEFDR
RPMJG
-JG
AGSTE
RCNCU
AUDPV
EF-
SLH
BSQNT
EE0
SMJ
RSCEA
AFVBQ
C6K
H~N
0-7
ABGFH
AAEMU
R7C
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2018
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Baeza (C7RA13729J-(cit21)/*[position()=1]) 2016; 87
Chawla (C7RA13729J-(cit7)/*[position()=1]) 2001; 7
Li (C7RA13729J-(cit43)/*[position()=1]) 2015; 72
Lee (C7RA13729J-(cit25)/*[position()=1]) 2013; 5
Appeldoorn (C7RA13729J-(cit27)/*[position()=1]) 2009; 117
Wang (C7RA13729J-(cit37)/*[position()=1]) 2011; 411
Foo (C7RA13729J-(cit18)/*[position()=1]) 2000; 63
Xiao (C7RA13729J-(cit45)/*[position()=1]) 2016; 6
Fraga (C7RA13729J-(cit12)/*[position()=1]) 2011; 51
Yvan-Charvet (C7RA13729J-(cit32)/*[position()=1]) 2007; 117
Engemann (C7RA13729J-(cit30)/*[position()=1]) 2012; 60
Zha (C7RA13729J-(cit35)/*[position()=1]) 2015; 59
Yu (C7RA13729J-(cit1)/*[position()=1]) 2013; 424
Voloshyna (C7RA13729J-(cit6)/*[position()=1]) 2013; 698
Khallou-Laschet (C7RA13729J-(cit42)/*[position()=1]) 2010; 5
Sawyer (C7RA13729J-(cit11)/*[position()=1]) 2017; 31
Ahangarpour (C7RA13729J-(cit46)/*[position()=1]) 2016; 67
Verzelloni (C7RA13729J-(cit23)/*[position()=1]) 2011; 55
Hellerstein (C7RA13729J-(cit3)/*[position()=1]) 2014; 25
Cardona (C7RA13729J-(cit24)/*[position()=1]) 2013; 24
Gu (C7RA13729J-(cit13)/*[position()=1]) 2003; 51
Moore (C7RA13729J-(cit2)/*[position()=1]) 2011; 145
Gao (C7RA13729J-(cit8)/*[position()=1]) 2013; 97
Ge (C7RA13729J-(cit48)/*[position()=1]) 2015; 63
Martinez-Micaelo (C7RA13729J-(cit39)/*[position()=1]) 2015; 59
Zhao (C7RA13729J-(cit5)/*[position()=1]) 2014; 448
Martinez-Micaelo (C7RA13729J-(cit10)/*[position()=1]) 2012; 38
Chistiakov (C7RA13729J-(cit36)/*[position()=1]) 2016; 20
Lopez-Cobo (C7RA13729J-(cit26)/*[position()=1]) 2016; 73
Terra (C7RA13729J-(cit15)/*[position()=1]) 2009; 57
Wong (C7RA13729J-(cit19)/*[position()=1]) 2016; 64
Rothblat (C7RA13729J-(cit4)/*[position()=1]) 2010; 21
Chen (C7RA13729J-(cit16)/*[position()=1]) 2006; 48
Dong (C7RA13729J-(cit17)/*[position()=1]) 2013; 91
Zheng (C7RA13729J-(cit31)/*[position()=1]) 2016; 477
Li (C7RA13729J-(cit28)/*[position()=1]) 2012; 135
Ma (C7RA13729J-(cit33)/*[position()=1]) 2015; 24
Constanza (C7RA13729J-(cit9)/*[position()=1]) 2012; 60
Monagas (C7RA13729J-(cit20)/*[position()=1]) 2010; 1
Chen (C7RA13729J-(cit34)/*[position()=1]) 2017; 7
Fischer (C7RA13729J-(cit41)/*[position()=1]) 2002; 168
Cheng (C7RA13729J-(cit44)/*[position()=1]) 2015; 5
Wang (C7RA13729J-(cit14)/*[position()=1]) 2017; 258
Sironi (C7RA13729J-(cit38)/*[position()=1]) 2006; 22
Coleman (C7RA13729J-(cit29)/*[position()=1]) 2016; 17
Terra (C7RA13729J-(cit40)/*[position()=1]) 2007; 55
Ou (C7RA13729J-(cit47)/*[position()=1]) 2012; 60
Monagas (C7RA13729J-(cit22)/*[position()=1]) 2009; 102
References_xml – volume: 73
  start-page: 505
  year: 2016
  ident: C7RA13729J-(cit26)/*[position()=1]
  publication-title: LWT--Food Sci. Technol.
  doi: 10.1016/j.lwt.2016.06.049
– volume: 57
  start-page: 2588
  year: 2009
  ident: C7RA13729J-(cit15)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf803450a
– volume: 87
  start-page: 25
  year: 2016
  ident: C7RA13729J-(cit21)/*[position()=1]
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2016.06.011
– volume: 63
  start-page: 1225
  year: 2000
  ident: C7RA13729J-(cit18)/*[position()=1]
  publication-title: J. Nat. Prod.
  doi: 10.1021/np000128u
– volume: 5
  start-page: 4511
  year: 2015
  ident: C7RA13729J-(cit44)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA10034D
– volume: 6
  start-page: 105363
  year: 2016
  ident: C7RA13729J-(cit45)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA09019B
– volume: 63
  start-page: 8991
  year: 2015
  ident: C7RA13729J-(cit48)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.5b03657
– volume: 135
  start-page: 31
  year: 2012
  ident: C7RA13729J-(cit28)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.04.039
– volume: 7
  start-page: 49235
  year: 2017
  ident: C7RA13729J-(cit34)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA07940K
– volume: 117
  start-page: 3900
  year: 2007
  ident: C7RA13729J-(cit32)/*[position()=1]
  publication-title: J. Clin. Invest.
– volume: 59
  start-page: 2008
  year: 2015
  ident: C7RA13729J-(cit35)/*[position()=1]
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201500113
– volume: 477
  start-page: 1017
  year: 2016
  ident: C7RA13729J-(cit31)/*[position()=1]
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.07.022
– volume: 91
  start-page: 128
  year: 2013
  ident: C7RA13729J-(cit17)/*[position()=1]
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2013.08.019
– volume: 424
  start-page: 245
  year: 2013
  ident: C7RA13729J-(cit1)/*[position()=1]
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2013.06.006
– volume: 60
  start-page: 749
  year: 2012
  ident: C7RA13729J-(cit30)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf203927g
– volume: 145
  start-page: 341
  year: 2011
  ident: C7RA13729J-(cit2)/*[position()=1]
  publication-title: Cell
  doi: 10.1016/j.cell.2011.04.005
– volume: 67
  start-page: 243
  year: 2016
  ident: C7RA13729J-(cit46)/*[position()=1]
  publication-title: J. Physiol. Pharmacol.
– volume: 1
  start-page: 233
  year: 2010
  ident: C7RA13729J-(cit20)/*[position()=1]
  publication-title: Food Funct.
  doi: 10.1039/c0fo00132e
– volume: 698
  start-page: 299
  year: 2013
  ident: C7RA13729J-(cit6)/*[position()=1]
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2012.08.024
– volume: 59
  start-page: 262
  year: 2015
  ident: C7RA13729J-(cit39)/*[position()=1]
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201400370
– volume: 51
  start-page: 813
  year: 2011
  ident: C7RA13729J-(cit12)/*[position()=1]
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.06.002
– volume: 51
  start-page: 7513
  year: 2003
  ident: C7RA13729J-(cit13)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf034815d
– volume: 258
  start-page: 56
  year: 2017
  ident: C7RA13729J-(cit14)/*[position()=1]
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2017.01.032
– volume: 64
  start-page: 3574
  year: 2016
  ident: C7RA13729J-(cit19)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.6b00656
– volume: 102
  start-page: 201
  year: 2009
  ident: C7RA13729J-(cit22)/*[position()=1]
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114508162110
– volume: 25
  start-page: 40
  year: 2014
  ident: C7RA13729J-(cit3)/*[position()=1]
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0000000000000050
– volume: 17
  start-page: 1
  year: 2016
  ident: C7RA13729J-(cit29)/*[position()=1]
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17111888
– volume: 55
  start-page: 4357
  year: 2007
  ident: C7RA13729J-(cit40)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0633185
– volume: 97
  start-page: 533
  year: 2013
  ident: C7RA13729J-(cit8)/*[position()=1]
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvs369
– volume: 31
  start-page: 141
  year: 2017
  ident: C7RA13729J-(cit11)/*[position()=1]
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2017.01.036
– volume: 20
  start-page: 17
  year: 2016
  ident: C7RA13729J-(cit36)/*[position()=1]
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.12689
– volume: 24
  start-page: 1415
  year: 2013
  ident: C7RA13729J-(cit24)/*[position()=1]
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2013.05.001
– volume: 21
  start-page: 229
  year: 2010
  ident: C7RA13729J-(cit4)/*[position()=1]
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0b013e328338472d
– volume: 5
  start-page: 1
  year: 2010
  ident: C7RA13729J-(cit42)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008852
– volume: 48
  start-page: 54
  year: 2006
  ident: C7RA13729J-(cit16)/*[position()=1]
  publication-title: J. Cardiovasc. Pharmacol.
  doi: 10.1097/01.fjc.0000242052.60502.21
– volume: 411
  start-page: 543
  year: 2011
  ident: C7RA13729J-(cit37)/*[position()=1]
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.06.177
– volume: 72
  start-page: 664
  year: 2015
  ident: C7RA13729J-(cit43)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2014.08.026
– volume: 60
  start-page: 10776
  year: 2012
  ident: C7RA13729J-(cit9)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf3035258
– volume: 55
  start-page: S35
  year: 2011
  ident: C7RA13729J-(cit23)/*[position()=1]
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201000525
– volume: 5
  start-page: 144
  year: 2013
  ident: C7RA13729J-(cit25)/*[position()=1]
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2012.09.005
– volume: 117
  start-page: 713
  year: 2009
  ident: C7RA13729J-(cit27)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2009.04.047
– volume: 448
  start-page: 329
  year: 2014
  ident: C7RA13729J-(cit5)/*[position()=1]
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.04.052
– volume: 168
  start-page: 2828
  year: 2002
  ident: C7RA13729J-(cit41)/*[position()=1]
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.168.6.2828
– volume: 60
  start-page: 1390
  year: 2012
  ident: C7RA13729J-(cit47)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf2040912
– volume: 24
  start-page: 230
  year: 2015
  ident: C7RA13729J-(cit33)/*[position()=1]
  publication-title: Cardiovasc. Pathol.
  doi: 10.1016/j.carpath.2014.12.004
– volume: 7
  start-page: 161
  year: 2001
  ident: C7RA13729J-(cit7)/*[position()=1]
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00164-2
– volume: 38
  start-page: 257
  year: 2012
  ident: C7RA13729J-(cit10)/*[position()=1]
  publication-title: BioFactors
  doi: 10.1002/biof.1019
– volume: 22
  start-page: 445
  year: 2006
  ident: C7RA13729J-(cit38)/*[position()=1]
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2005.12.004
SSID ssj0000651261
Score 2.338506
Snippet The effect of procyanidin A2 (PCA2) and its major colonic metabolite 3-(4-hydroxyphenyl)propionic acid (HPPA) on the suppression of macrophage foam cell...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6242
SubjectTerms Chemistry
Cholesterol
Efflux
foam cells
Gene expression
gene expression regulation
inflammation
Lipid metabolism
messenger RNA
Metabolism
metabolites
Microorganisms
Oxidative stress
Procyanidins
Propionic acid
Title 3-(4-Hydroxyphenyl)propionic acid, a major microbial metabolite of procyanidin A2, shows similar suppression of macrophage foam cell formation as its parent molecule
URI https://www.ncbi.nlm.nih.gov/pubmed/35540422
https://www.proquest.com/docview/2010892188
https://www.proquest.com/docview/2221050253
https://www.proquest.com/docview/2662547426
https://pubmed.ncbi.nlm.nih.gov/PMC9078275
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2lrQS9IL4KgVItggNV6pJ47dp7jCJQVFEOIUHJKVpv1sRVbUeJLRR-C1f-JzMbe-3QgICLFa3HcZR5np0Zv5kh5DVXOCMaHiShhLIc22tb3Js5VijddtjBjuNtLBS--njRHzmXY3fcaHyvsZbyLDiX33bWlfyPVmEN9IpVsv-gWfOlsACfQb9wBA3D8a90zCzwDx2rv54hGQXZWusbCO3BKC4iPdlGyEhrULRicZ0uW3Gk-y7pipEM1I8FyJrzDNvYWiTRDLMfNl6xmqdfV61VFEdIU13li4Iwq73LWODgrznSfcJUxC3M_ldlkDi6Bl9HILc9yVrxZgDvFuVo8KlXsg-MT29S15PcmpQbKlKFNN9gHInU-qC2F4dp8sWa5Mn26pWKqi8oEhodv5bQUNrw2RCzg543I1xKK-3XwWjXTC4WuOzcC9oMW6lKbyk6-G7yui4EelzEGhXob2EftGo_NCzF8tQeObAhCAErejD4PBpPTA4P3LcORKBl11vG31Z3OyR3yuu3XZ5bccxtOu7espw-o72c4X1yrwhPaHeDtQekoZKH5G6vnAr4iPxg1ptfEHdq8EYRb2dUUI02atBGK7TRNKQ1tNGufUY11miBNVrDGgpXWKOINYpYowZrVKwoYI1usEZLrD0mo_fvhr2-VYz6sKRre5llM0fyDtgNxRi_CJVgQcBYyB3l8zAUDhfgBgezEOJ5FeBIBFeBfyWElMqXOKrkiOwnaaKeEurK0GsHkvvuzHPaLBBczJjrB9JzLpTbCZrktNTGVBZ98HEcy81U8zEYn_a8QVcr8bJJXhnZxab7y06p41Kp08I6rKbIMvE5ONB-k7w0p0FZ-DeJRKU5yNg2hDcQdbA_yIC9dB0PHOkmebLBifkpJcCaxNtCkBHA3vHbZ5JornvIcwwNPLdJjgBrRr6C77Pf3uw5Oaye2mOyny1z9QIc8yw40Qmtk-Ip-QmF7-on
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-%284-Hydroxyphenyl%29propionic+acid%2C+a+major+microbial+metabolite+of+procyanidin+A2%2C+shows+similar+suppression+of+macrophage+foam+cell+formation+as+its+parent+molecule&rft.jtitle=RSC+advances&rft.au=Zhang%2C+Yu-Ying&rft.au=Li%2C+Xiao-Le&rft.au=Li%2C+Tong-Yun&rft.au=Li%2C+Mei-Ying&rft.date=2018-01-01&rft.eissn=2046-2069&rft.volume=8&rft.issue=12&rft.spage=6242&rft_id=info:doi/10.1039%2Fc7ra13729j&rft_id=info%3Apmid%2F35540422&rft.externalDocID=35540422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon