Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake

The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been an extensive subject of study due to the highly variable reported stoichiometric values (e.g. anaerobic P-release/HAc-uptake ratios ranging fr...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 83; pp. 354 - 366
Main Authors Welles, L., Tian, W.D., Saad, S., Abbas, B., Lopez-Vazquez, C.M., Hooijmans, C.M., van Loosdrecht, M.C.M., Brdjanovic, D.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been an extensive subject of study due to the highly variable reported stoichiometric values (e.g. anaerobic P-release/HAc-uptake ratios ranging from 0.01 up to 0.93 P-mol/C-mol). Often, such differences have been explained by the different applied operating conditions (e.g. pH) or occurrence of glycogen-accumulating organisms (GAO). The present study investigated the ability of biomass highly enriched with specific PAO clades (‘Candidatus Accumulibacter phosphatis’ Clade I and II, hereafter PAO I and PAO II) to adopt a GAO metabolism. Based on long-term experiments, when Poly-P is not stoichiometrically limiting for the anaerobic VFA uptake, PAO I performed the typical PAO metabolism (with a P/HAc ratio of 0.64 P-mol/C-mol); whereas PAO II performed a mixed PAO-GAO metabolism (showing a P/HAc ratio of 0.22 P-mol/C-mol). In short-term batch tests, both PAO I and II gradually shifted their metabolism to a GAO metabolism when the Poly-P content decreased, but the HAc-uptake rate of PAO I was 4 times lower than that of PAO II, indicating that PAO II has a strong competitive advantage over PAO I when Poly-P is stoichiometrically limiting the VFA uptake. Thus, metabolic flexibility of PAO clades as well as their intrinsic differences are additional factors leading to the controversial anaerobic stoichiometry and kinetic rates observed in previous studies. From a practical perspective, the dominant type of PAO prevailing in full-scale EBPR systems may affect the P-release processes for biological or combined biological and chemical P-removal and recovery and consequently the process performance. •The anaerobic stoichiometry of PAO I and II is intrinsically different.•Both PAO I and II exhibit a GAO metabolism for HAc-uptake under Poly-P depletion.•At high Poly-P content PAO I has faster HAc-uptake rates than PAO II.•PAO II has faster HAc-uptake rates than PAO I at low Poly-P content.•Prevalence of specific PAO clades may influence process performance.
AbstractList The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been an extensive subject of study due to the highly variable reported stoichiometric values (e.g. anaerobic P-release/HAc-uptake ratios ranging from 0.01 up to 0.93 P-mol/C-mol). Often, such differences have been explained by the different applied operating conditions (e.g. pH) or occurrence of glycogen-accumulating organisms (GAO). The present study investigated the ability of biomass highly enriched with specific PAO clades ('Candidatus Accumulibacter phosphatis' Clade I and II, hereafter PAO I and PAO II) to adopt a GAO metabolism. Based on long-term experiments, when Poly-P is not stoichiometrically limiting for the anaerobic VFA uptake, PAO I performed the typical PAO metabolism (with a P/HAc ratio of 0.64 P-mol/C-mol); whereas PAO II performed a mixed PAO-GAO metabolism (showing a P/HAc ratio of 0.22 P-mol/C-mol). In short-term batch tests, both PAO I and II gradually shifted their metabolism to a GAO metabolism when the Poly-P content decreased, but the HAc-uptake rate of PAO I was 4 times lower than that of PAO II, indicating that PAO II has a strong competitive advantage over PAO I when Poly-P is stoichiometrically limiting the VFA uptake. Thus, metabolic flexibility of PAO clades as well as their intrinsic differences are additional factors leading to the controversial anaerobic stoichiometry and kinetic rates observed in previous studies. From a practical perspective, the dominant type of PAO prevailing in full-scale EBPR systems may affect the P-release processes for biological or combined biological and chemical P-removal and recovery and consequently the process performance.
The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been an extensive subject of study due to the highly variable reported stoichiometric values (e.g. anaerobic P-release/HAc-uptake ratios ranging from 0.01 up to 0.93 P-mol/C-mol). Often, such differences have been explained by the different applied operating conditions (e.g. pH) or occurrence of glycogen-accumulating organisms (GAO). The present study investigated the ability of biomass highly enriched with specific PAO clades (‘Candidatus Accumulibacter phosphatis’ Clade I and II, hereafter PAO I and PAO II) to adopt a GAO metabolism. Based on long-term experiments, when Poly-P is not stoichiometrically limiting for the anaerobic VFA uptake, PAO I performed the typical PAO metabolism (with a P/HAc ratio of 0.64 P-mol/C-mol); whereas PAO II performed a mixed PAO-GAO metabolism (showing a P/HAc ratio of 0.22 P-mol/C-mol). In short-term batch tests, both PAO I and II gradually shifted their metabolism to a GAO metabolism when the Poly-P content decreased, but the HAc-uptake rate of PAO I was 4 times lower than that of PAO II, indicating that PAO II has a strong competitive advantage over PAO I when Poly-P is stoichiometrically limiting the VFA uptake. Thus, metabolic flexibility of PAO clades as well as their intrinsic differences are additional factors leading to the controversial anaerobic stoichiometry and kinetic rates observed in previous studies. From a practical perspective, the dominant type of PAO prevailing in full-scale EBPR systems may affect the P-release processes for biological or combined biological and chemical P-removal and recovery and consequently the process performance. •The anaerobic stoichiometry of PAO I and II is intrinsically different.•Both PAO I and II exhibit a GAO metabolism for HAc-uptake under Poly-P depletion.•At high Poly-P content PAO I has faster HAc-uptake rates than PAO II.•PAO II has faster HAc-uptake rates than PAO I at low Poly-P content.•Prevalence of specific PAO clades may influence process performance.
The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been an extensive subject of study due to the highly variable reported stoichiometric values (e.g. anaerobic P-release/HAc-uptake ratios ranging from 0.01 up to 0.93 P-mol/C-mol). Often, such differences have been explained by the different applied operating conditions (e.g. pH) or occurrence of glycogen-accumulating organisms (GAO). The present study investigated the ability of biomass highly enriched with specific PAO clades ('Candidatus Accumulibacter phosphatis' Clade I and II, hereafter PAO I and PAO II) to adopt a GAO metabolism. Based on long-term experiments, when Poly-P is not stoichiometrically limiting for the anaerobic VFA uptake, PAO I performed the typical PAO metabolism (with a P/HAc ratio of 0.64 P-mol/C-mol); whereas PAO II performed a mixed PAO-GAO metabolism (showing a P/HAc ratio of 0.22 P-mol/C-mol). In short-term batch tests, both PAO I and II gradually shifted their metabolism to a GAO metabolism when the Poly-P content decreased, but the HAc-uptake rate of PAO I was 4 times lower than that of PAO II, indicating that PAO II has a strong competitive advantage over PAO I when Poly-P is stoichiometrically limiting the VFA uptake. Thus, metabolic flexibility of PAO clades as well as their intrinsic differences are additional factors leading to the controversial anaerobic stoichiometry and kinetic rates observed in previous studies. From a practical perspective, the dominant type of PAO prevailing in full-scale EBPR systems may affect the P-release processes for biological or combined biological and chemical P-removal and recovery and consequently the process performance.
Author Lopez-Vazquez, C.M.
Welles, L.
Hooijmans, C.M.
van Loosdrecht, M.C.M.
Abbas, B.
Saad, S.
Tian, W.D.
Brdjanovic, D.
Author_xml – sequence: 1
  givenname: L.
  surname: Welles
  fullname: Welles, L.
  email: laurenswelles@gmail.com, l.welles@unesco-ihe.org
  organization: Department of Environmental Engineering and Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
– sequence: 2
  givenname: W.D.
  surname: Tian
  fullname: Tian, W.D.
  email: hittwd@gmail.com
  organization: Southwest Municipal Engineering Design and Research Institute of China, Shennan Road East NO. 1110, Shenzhen 518000, PR China
– sequence: 3
  givenname: S.
  surname: Saad
  fullname: Saad, S.
  email: sondos.abdel-hakim@eng.asu.edu.eg
  organization: Department of Environmental Engineering and Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
– sequence: 4
  givenname: B.
  surname: Abbas
  fullname: Abbas, B.
  email: b.a.abbas@tudelft.nl
  organization: Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
– sequence: 5
  givenname: C.M.
  surname: Lopez-Vazquez
  fullname: Lopez-Vazquez, C.M.
  email: c.lopezvazquez@unesco-ihe.org
  organization: Department of Environmental Engineering and Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
– sequence: 6
  givenname: C.M.
  surname: Hooijmans
  fullname: Hooijmans, C.M.
  email: t.hooijmans@unesco-ihe.org
  organization: Department of Environmental Engineering and Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
– sequence: 7
  givenname: M.C.M.
  surname: van Loosdrecht
  fullname: van Loosdrecht, M.C.M.
  email: m.c.m.vanloosdrecht@tudelft.nl
  organization: KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
– sequence: 8
  givenname: D.
  surname: Brdjanovic
  fullname: Brdjanovic, D.
  email: d.brdjanovic@unesco-ihe.org
  organization: Department of Environmental Engineering and Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26189167$$D View this record in MEDLINE/PubMed
BookMark eNqNksFu1DAURS1URKeFP0DISzYZbMdxEhZIVUVhpEpsytp6cZ5Hnib2YDug-Qp-GU-n3bCgLCx7ce5ZXN8LcuaDR0LecrbmjKsPu_UvyBHTWjDerJlaM9m8ICvetX0lpOzOyIoxWVe8buQ5uUhpxxgTou5fkXOheNdz1a7I7ytjlnmZ3AAmY6RmghETvTvskW4o-JFuNnSP0YY4O7-l985jdgam6UBHZy1G9Jlup4MJW_QVnGyQj2yIW_AuzYnOmGEI08O7mIoXMIbBGZqWIeUIGemyz3CPr8lLC1PCN4_3Jfl-8_nu-mt1--3L5vrqtjKNaHPFsQUuetH1SoI0ILEfrWi4sR3CgGBNbQcOtelboaxl41B3kqnaDFaisFBfkvcn7z6GHwumrGeXDE4TeAxL0qKUVZej2mdR3hZQ9UL-D8pFq7qm7gr67hFdhhlHvY9uhnjQT19TgI8nwMSQUkSrjcul2OBLX27SnOnjDvROn3agjzvQTOmygxKWf4Wf_M_EPp1iWKr_6TDqZBx6g6OLaLIeg_u34A_w-dKB
CitedBy_id crossref_primary_10_1016_j_cej_2016_11_073
crossref_primary_10_1016_j_scitotenv_2023_168952
crossref_primary_10_1016_j_biortech_2021_126540
crossref_primary_10_3389_fmicb_2019_00125
crossref_primary_10_1016_j_biortech_2022_128444
crossref_primary_10_1016_j_jhazmat_2023_131157
crossref_primary_10_1016_j_chemosphere_2021_130912
crossref_primary_10_1016_j_copbio_2021_01_011
crossref_primary_10_1016_j_chemosphere_2022_136518
crossref_primary_10_1016_j_watres_2021_117563
crossref_primary_10_1128_spectrum_02832_23
crossref_primary_10_1016_j_enzmictec_2020_109567
crossref_primary_10_29105_qh6_2_226
crossref_primary_10_1016_j_chemosphere_2021_131173
crossref_primary_10_1016_j_chemosphere_2022_135675
crossref_primary_10_1016_j_jenvman_2021_113976
crossref_primary_10_1016_j_watres_2021_117725
crossref_primary_10_1264_jsme2_ME17020
crossref_primary_10_1016_j_chemosphere_2022_137576
crossref_primary_10_1016_j_jenvman_2023_119839
crossref_primary_10_1016_j_copbio_2020_01_002
crossref_primary_10_1016_j_cej_2023_146851
crossref_primary_10_1016_j_watres_2017_01_006
crossref_primary_10_1007_s10661_022_10151_3
crossref_primary_10_1016_j_watres_2018_11_011
crossref_primary_10_1016_j_watres_2021_117210
crossref_primary_10_1016_j_jenvman_2021_112362
crossref_primary_10_1016_j_watres_2023_120700
crossref_primary_10_1016_j_scitotenv_2019_135031
crossref_primary_10_1016_j_watres_2017_02_051
crossref_primary_10_1016_j_cej_2022_138753
crossref_primary_10_1186_s12866_020_01896_3
crossref_primary_10_3389_fmicb_2017_00718
crossref_primary_10_1134_S0003683820010056
crossref_primary_10_1128_AEM_00808_20
crossref_primary_10_1016_j_jenvman_2024_120456
crossref_primary_10_3389_fmicb_2023_1297694
crossref_primary_10_1016_j_watres_2025_123503
crossref_primary_10_1016_j_watres_2019_115228
crossref_primary_10_1128_msystems_00016_22
crossref_primary_10_1016_j_watres_2016_08_061
crossref_primary_10_1016_j_jwpe_2022_103258
crossref_primary_10_1016_j_jhazmat_2024_136299
crossref_primary_10_1016_j_watres_2025_123509
crossref_primary_10_1371_journal_pone_0216126
crossref_primary_10_1016_j_watres_2023_120713
crossref_primary_10_1186_s13568_016_0214_z
crossref_primary_10_3389_fmicb_2018_00479
crossref_primary_10_1016_j_biteb_2024_101782
crossref_primary_10_1016_j_chemosphere_2021_131778
crossref_primary_10_1016_j_biortech_2020_123108
crossref_primary_10_1016_j_watres_2018_08_058
crossref_primary_10_1016_j_scitotenv_2020_140852
crossref_primary_10_1128_msystems_00474_21
crossref_primary_10_1016_j_cej_2022_138099
crossref_primary_10_1016_j_scitotenv_2023_162018
crossref_primary_10_1016_j_biortech_2016_11_102
crossref_primary_10_1016_j_watres_2022_118729
crossref_primary_10_2166_wst_2022_036
crossref_primary_10_1016_j_jes_2022_05_012
crossref_primary_10_3389_fmicb_2016_02121
crossref_primary_10_1007_s11356_020_09912_9
crossref_primary_10_1016_j_watres_2022_119365
crossref_primary_10_1016_j_scitotenv_2021_152297
crossref_primary_10_1002_bit_26295
crossref_primary_10_1016_j_jclepro_2024_141042
crossref_primary_10_1016_j_scitotenv_2020_140603
crossref_primary_10_3390_w14213428
crossref_primary_10_1016_j_cej_2020_127907
crossref_primary_10_1016_j_jwpe_2024_105575
crossref_primary_10_3389_fmicb_2016_01033
crossref_primary_10_1016_j_ibiod_2017_03_030
crossref_primary_10_1128_aem_00771_23
crossref_primary_10_1016_j_watres_2017_05_001
crossref_primary_10_1038_ismej_2016_67
crossref_primary_10_1016_j_jece_2022_107976
crossref_primary_10_1016_j_scitotenv_2024_172313
crossref_primary_10_1093_ismeco_ycae049
crossref_primary_10_1016_j_watres_2023_120742
crossref_primary_10_1016_j_cej_2019_123915
crossref_primary_10_1016_j_watres_2017_03_017
crossref_primary_10_1016_j_jwpe_2023_104579
crossref_primary_10_1016_j_biortech_2020_123574
crossref_primary_10_1021_acsestwater_4c00247
crossref_primary_10_1016_j_scitotenv_2023_164130
crossref_primary_10_1016_j_watres_2020_116606
crossref_primary_10_1128_msystems_00193_18
crossref_primary_10_1016_j_biortech_2019_122431
crossref_primary_10_1016_j_cej_2017_05_074
crossref_primary_10_1016_j_scitotenv_2023_167194
crossref_primary_10_1016_j_scitotenv_2023_169013
crossref_primary_10_1016_j_copbio_2019_03_008
crossref_primary_10_1007_s00253_017_8571_3
crossref_primary_10_1016_j_biortech_2022_127603
crossref_primary_10_1016_j_watres_2019_02_040
crossref_primary_10_1016_j_jwpe_2020_101861
crossref_primary_10_1016_j_scitotenv_2018_12_064
crossref_primary_10_1016_j_watres_2023_119803
crossref_primary_10_1134_S0026261719040052
crossref_primary_10_3389_fmicb_2024_1424938
Cites_doi 10.1016/0043-1354(86)90115-6
10.1002/bit.260430605
10.1016/j.watres.2006.08.006
10.1099/00221287-148-11-3353
10.1016/j.watres.2010.07.028
10.1128/AEM.01207-07
10.1016/j.watres.2008.05.003
10.1016/j.watres.2008.03.019
10.1016/j.watres.2008.10.032
10.1016/j.watres.2011.03.024
10.1016/S0723-2020(99)80053-8
10.2166/wst.2008.552
10.2166/wst.1995.0078
10.1038/nbt1247
10.1016/S0043-1354(96)00369-7
10.1016/j.watres.2008.01.003
10.1016/j.watres.2012.01.003
10.1016/S0043-1354(99)00219-5
10.1016/j.watres.2007.06.065
10.1016/j.chemosphere.2013.05.009
10.2166/wst.1985.0221
10.1128/AEM.56.6.1919-1925.1990
10.1128/AEM.66.3.1175-1182.2000
10.2166/wst.2008.734
10.1016/S0723-2020(11)80121-9
10.2175/106143003X141286
10.1007/s00253-014-5778-4
10.1002/bit.10455
10.1016/S0043-1354(00)00092-0
10.1061/(ASCE)0733-9372(1997)123:2(144)
10.2175/106143007X220798
10.1007/s002530051289
10.1016/0043-1354(96)00035-8
10.1099/00221287-148-8-2299
10.1016/S0043-1354(98)00129-8
10.1111/j.1758-2229.2009.00090.x
10.1111/j.1462-2920.2008.01690.x
10.2166/wst.2006.403
10.1128/AEM.05016-11
10.1016/S0043-1354(96)00352-1
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.watres.2015.06.045
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 366
ExternalDocumentID 26189167
10_1016_j_watres_2015_06_045
S004313541530097X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-c527t-1e7a12928964a4ca4e9df251cf8eabeafc3fb1a3c9726ff0db384063cbf4e2fa3
IEDL.DBID .~1
ISSN 0043-1354
IngestDate Fri Jul 11 01:44:59 EDT 2025
Fri Jul 11 08:31:30 EDT 2025
Thu Jul 10 23:22:33 EDT 2025
Thu Apr 03 07:02:49 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
Tue Jul 01 01:20:42 EDT 2025
Fri Feb 23 02:26:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metabolic shift
Phosphate-accumulating organisms (PAO)
Intracellular P-content
Enhanced biological phosphorus removal (EBPR)
Glycogen-accumulating organisms (GAO)
‘Candidatus Accumulibacter phosphatis’ Clade I and II
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-1e7a12928964a4ca4e9df251cf8eabeafc3fb1a3c9726ff0db384063cbf4e2fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26189167
PQID 1712768538
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_2000300067
proquest_miscellaneous_1730069247
proquest_miscellaneous_1712768538
pubmed_primary_26189167
crossref_citationtrail_10_1016_j_watres_2015_06_045
crossref_primary_10_1016_j_watres_2015_06_045
elsevier_sciencedirect_doi_10_1016_j_watres_2015_06_045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-15
PublicationDateYYYYMMDD 2015-10-15
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Barnard (bib7) 1975; 9
Metcalf and Eddy, Inc (bib29) 2003
Peterson, Warnecke, Madejska, McMahon, Hugenholtz (bib49) 2008; 10
Smolders, van der Meij, van Loosdrecht, Heijnen (bib36) 1994; 43
Wentzel, Dold, Loewenthal, Ekama, Marais (bib42) 1987
Lopez-Vazquez, Brdjanovic, van Loosdrecht (bib25) 2008; 42
Tian, Lopez-Vazquez, Li, Brdjanovic, Van Loosdrecht (bib39) 2013; 92
Amann, Binder, Olson, Chisholm, Devereux, Stahl (bib2) 1990; 56
Lanham, Reis, Lemos (bib47) 2008; 58
Maurer, Gujer, Hany, Bachmann (bib28) 1997; 31
Barat, van Loosdrecht (bib5) 2006; 40
Hesselman, von Rummell, Resnick, Hany, Zehnder (bib20) 2000; 34
Zeng, Van Loosdrecht, Yuan, Keller (bib44) 2003; 81
He, Gall, McMahon (bib46) 2007; 73
Carvalho, Lemos, Oehmen, Reis (bib12) 2007; 41
Barat, Montoya, Borras, Seco, Ferrer (bib4) 2006; 53
Brdjanovic, van Loosdrecht, Versteeg, Hooijmans, Alaerts, Heijnen (bib11) 2000; 34
Sudiana, Mino, Satoh, Nakamura, Matsuo (bib38) 1999; 39
Winkler, Bassin, Kleerebezem, De Bruin, Van den Brand, Van Loosdrecht (bib43) 2011; 45
Barat, Montoya, Borras, Ferrer, Seco (bib6) 2008; 42
A.P.H.A (bib3) 1995
Brdjanovic, van Loosdrecht, Hooijmans, Mino, Alaerts, Heijnen (bib10) 1998; 50
Slater, Johnson, Blackall, Beiko, Bond (bib35) 2010; 44
Daims, Bruhl, Amann, Amann, Schleifer, Wagner (bib17) 1999; 22
Bassin, Pronk, Muyzer, Kleerebezem, Dezotti, van Loosdrecht (bib8) 2011; 77
Kong, Beer, Rees, Seviour (bib22) 2002; 148
Martín, Ivanova, Kunin, Warnecke, Barry, McHardy (bib27) 2006; 24
Erdal, Erdal, Daigger, Randall (bib18) 2008; 58
Crocetti, Banfield, Keller, Bond, Blackall (bib16) 2002; 148
Cech, Hartman (bib13) 1993; 20
Kisoglu, Erdal, Randall (bib21) 2000
Acevedo, Oehmen, Carvalho, Seco, Borras, Barat (bib1) 2012; 46
Comeau, Hall, Hancock, Oldham (bib14) 1986; 20
Smolders, van Loosdrecht, Heijnen (bib37) 1995; 31
Brdjanovic, van Loosdrecht, Hooijmans, Alaerts, Heijnen (bib9) 1997; 123
Manz, Amann, Ludwig, Wagner, Schleifer (bib26) 1992; 15
Welles, Lopez-Vazquez, Hooijmans, Van Loosdrecht, Brdjanovic (bib40) 2014; 98
Flowers, He, Yilmaz, Noguera, McMahon (bib19) 2009; 1
Lopez-Vazquez, Oehmen, Hooijmans, Brdjanovic, Gijzen, Yuan, van Loosdrecht (bib48) 2009; 43
Zhou, Pijuan, Zeng, Lu, Yuan (bib45) 2008; 42
Pereira, Lemos, Reis, Crespo, Carrondo, Santos (bib33) 1996; 30
Crocetti, Hugenholtz, Bond, Schuler, Keller, Jenkins, Blackall (bib15) 2000; 66
Mino, Arun, Tsuzuki, Matsuo (bib30) 1987
Schuler, Jenkins (bib34) 2003; 75
Wentzel, Dold, Ekama, Marais (bib41) 1985; 17
Mino, Van Loosdrecht, Heijnen (bib31) 1998; 32
Liu, Nakamura, Matsuo, Mino (bib23) 1997; 31
Lopez-Vazquez, Hooijmans, Brdjanovic, Gijzen, van Loosdrecht (bib24) 2007; 79
Barnard (10.1016/j.watres.2015.06.045_bib7) 1975; 9
Crocetti (10.1016/j.watres.2015.06.045_bib16) 2002; 148
Lanham (10.1016/j.watres.2015.06.045_bib47) 2008; 58
Metcalf and Eddy, Inc (10.1016/j.watres.2015.06.045_bib29) 2003
Winkler (10.1016/j.watres.2015.06.045_bib43) 2011; 45
Daims (10.1016/j.watres.2015.06.045_bib17) 1999; 22
Lopez-Vazquez (10.1016/j.watres.2015.06.045_bib48) 2009; 43
Carvalho (10.1016/j.watres.2015.06.045_bib12) 2007; 41
Schuler (10.1016/j.watres.2015.06.045_bib34) 2003; 75
Erdal (10.1016/j.watres.2015.06.045_bib18) 2008; 58
Peterson (10.1016/j.watres.2015.06.045_bib49) 2008; 10
Lopez-Vazquez (10.1016/j.watres.2015.06.045_bib24) 2007; 79
Hesselman (10.1016/j.watres.2015.06.045_bib20) 2000; 34
Brdjanovic (10.1016/j.watres.2015.06.045_bib11) 2000; 34
Manz (10.1016/j.watres.2015.06.045_bib26) 1992; 15
Flowers (10.1016/j.watres.2015.06.045_bib19) 2009; 1
Acevedo (10.1016/j.watres.2015.06.045_bib1) 2012; 46
Cech (10.1016/j.watres.2015.06.045_bib13) 1993; 20
Crocetti (10.1016/j.watres.2015.06.045_bib15) 2000; 66
Kong (10.1016/j.watres.2015.06.045_bib22) 2002; 148
Barat (10.1016/j.watres.2015.06.045_bib4) 2006; 53
Brdjanovic (10.1016/j.watres.2015.06.045_bib9) 1997; 123
Tian (10.1016/j.watres.2015.06.045_bib39) 2013; 92
Amann (10.1016/j.watres.2015.06.045_bib2) 1990; 56
Pereira (10.1016/j.watres.2015.06.045_bib33) 1996; 30
A.P.H.A (10.1016/j.watres.2015.06.045_bib3) 1995
Comeau (10.1016/j.watres.2015.06.045_bib14) 1986; 20
Lopez-Vazquez (10.1016/j.watres.2015.06.045_bib25) 2008; 42
Mino (10.1016/j.watres.2015.06.045_bib30) 1987
Mino (10.1016/j.watres.2015.06.045_bib31) 1998; 32
Slater (10.1016/j.watres.2015.06.045_bib35) 2010; 44
Sudiana (10.1016/j.watres.2015.06.045_bib38) 1999; 39
Smolders (10.1016/j.watres.2015.06.045_bib37) 1995; 31
Welles (10.1016/j.watres.2015.06.045_bib40) 2014; 98
Liu (10.1016/j.watres.2015.06.045_bib23) 1997; 31
He (10.1016/j.watres.2015.06.045_bib46) 2007; 73
Zhou (10.1016/j.watres.2015.06.045_bib45) 2008; 42
Martín (10.1016/j.watres.2015.06.045_bib27) 2006; 24
Wentzel (10.1016/j.watres.2015.06.045_bib42) 1987
Wentzel (10.1016/j.watres.2015.06.045_bib41) 1985; 17
Barat (10.1016/j.watres.2015.06.045_bib5) 2006; 40
Bassin (10.1016/j.watres.2015.06.045_bib8) 2011; 77
Maurer (10.1016/j.watres.2015.06.045_bib28) 1997; 31
Brdjanovic (10.1016/j.watres.2015.06.045_bib10) 1998; 50
Barat (10.1016/j.watres.2015.06.045_bib6) 2008; 42
Kisoglu (10.1016/j.watres.2015.06.045_bib21) 2000
Smolders (10.1016/j.watres.2015.06.045_bib36) 1994; 43
Zeng (10.1016/j.watres.2015.06.045_bib44) 2003; 81
References_xml – volume: 56
  start-page: 1919
  year: 1990
  end-page: 1925
  ident: bib2
  article-title: Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations
  publication-title: Appl. Environ. Microbiol.
– volume: 42
  start-page: 3415
  year: 2008
  end-page: 3424
  ident: bib6
  article-title: Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism
  publication-title: Water Res.
– volume: 98
  start-page: 7609
  year: 2014
  end-page: 7622
  ident: bib40
  article-title: Impact of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO)
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 31
  start-page: 1430
  year: 1997
  end-page: 1438
  ident: bib23
  article-title: Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors-effect of P/C feeding ratio
  publication-title: Water Res.
– volume: 20
  start-page: 1511
  year: 1986
  end-page: 1521
  ident: bib14
  article-title: Biochemical-model for enhanced biological phosphorus removal
  publication-title: Water Res.
– volume: 31
  start-page: 79
  year: 1995
  end-page: 97
  ident: bib37
  article-title: A metabolic model for the biological phosphorus removal process
  publication-title: Water Sci. Technol.
– volume: 42
  start-page: 3561
  year: 2008
  end-page: 3562
  ident: bib25
  article-title: Comment on “ Could polyphosphate-accumulating organisms (PAO) be glycogen-accumulating organisms (GAO)?” by Zhou, Y., Pijuan, M., Zeng, R., Lu, Huabing and Yuan Z. Water Res.. (2008) doi:10.1016/jwaterres.2008.01.003
  publication-title: Water Res.
– volume: 41
  start-page: 4383
  year: 2007
  end-page: 4396
  ident: bib12
  article-title: Denitrifying phosphorus removal: linking the process performance with the microbial community structure
  publication-title: Water Res.
– volume: 34
  start-page: 3487
  year: 2000
  ident: bib20
  article-title: Anaerobic metabolism of bacteria performing enhanced biological phosphate removal
  publication-title: Water Res.
– volume: 92
  start-page: 1314
  year: 2013
  end-page: 1320
  ident: bib39
  article-title: Occurrence of PAOI in a low temperature EBPR system
  publication-title: Chemosphere
– volume: 79
  start-page: 2487
  year: 2007
  end-page: 2498
  ident: bib24
  article-title: A practical method for the quantification of phosphorus- and glycogen-accumulating organisms populations in activated sludge systems
  publication-title: Water Environ. Res.
– volume: 1
  start-page: 583
  year: 2009
  end-page: 588
  ident: bib19
  article-title: Denitrification capabilities of two biological phosphorus removal sludges dominated by different ‘
  publication-title: Environ. Microbiol. Rep.
– volume: 22
  start-page: 345
  year: 1999
  end-page: 352
  ident: bib17
  article-title: The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set
  publication-title: Syst. Appl. Microbiol.
– start-page: 27
  year: 1987
  end-page: 38
  ident: bib30
  article-title: Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process
  publication-title: Biological Phosphate Removal from Wastewaters, Advances in Water Pollution Control
– volume: 42
  start-page: 2361
  year: 2008
  end-page: 2368
  ident: bib45
  article-title: Could polyphosphate-accumulating organisms (PAO) be glycogen-accumulating organisms (GAO)?
  publication-title: Water Res.
– volume: 40
  start-page: 3507
  year: 2006
  end-page: 3516
  ident: bib5
  article-title: Potential phosphorus recovery in a WWTP with the BCFS process: interactions with the biological process
  publication-title: Water Res.
– volume: 24
  start-page: 1263
  year: 2006
  end-page: 1269
  ident: bib27
  article-title: Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities
  publication-title: Nat. Biotechnol.
– volume: 75
  start-page: 485
  year: 2003
  end-page: 498
  ident: bib34
  article-title: Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, part 1: experimental results and comparison with metabolic models
  publication-title: Water Environ. Res.
– volume: 15
  start-page: 593
  year: 1992
  end-page: 600
  ident: bib26
  article-title: Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions
  publication-title: Syst. Appl. Micobiol.
– volume: 43
  start-page: 461
  year: 1994
  end-page: 470
  ident: bib36
  article-title: Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence
  publication-title: Biotechnol. Bioeng.
– volume: 77
  start-page: 7942
  year: 2011
  end-page: 7953
  ident: bib8
  article-title: Effect of elevated salt concentrations on the aerobic granular sludge process: linking microbial activity with microbial community structure
  publication-title: Appl. Environ. Microbiol.
– volume: 17
  start-page: 57
  year: 1985
  end-page: 71
  ident: bib41
  article-title: Kinetics of biological phosphorus release
  publication-title: Water Sci. Technol.
– volume: 81
  start-page: 92
  year: 2003
  end-page: 105
  ident: bib44
  article-title: Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems
  publication-title: Biotechnol. Bioeng.
– volume: 32
  start-page: 3193
  year: 1998
  end-page: 3207
  ident: bib31
  article-title: Microbiology and biochemistry of the enhanced biological phosphate removal process
  publication-title: Water Res.
– start-page: 79
  year: 1987
  end-page: 91
  ident: bib42
  article-title: Experiments towards establishing the kinetics of biological excess phosphorus removal
  publication-title: Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters
– volume: 50
  start-page: 273
  year: 1998
  end-page: 276
  ident: bib10
  article-title: Effect of polyphosphate limitation on the anaerobic metabolism of phosphorus-accumulating microorganisms
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 34
  start-page: 846
  year: 2000
  end-page: 858
  ident: bib11
  article-title: Modeling COD, N and P removal in a full-scale sstp Haarlem Waarderpolder
  publication-title: Water Res.
– volume: 53
  start-page: 29
  year: 2006
  end-page: 37
  ident: bib4
  article-title: Calcium effect on enhanced biological phosphorus removal
  publication-title: Water Sci. Technol.
– year: 2003
  ident: bib29
  article-title: Wastewater Engineering - Treatment and Reuse
– volume: 10
  start-page: 2692
  year: 2008
  end-page: 2703
  ident: bib49
  article-title: Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal
  publication-title: Environ. Microbiol.
– volume: 45
  start-page: 3291
  year: 2011
  end-page: 3299
  ident: bib43
  article-title: Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO–GAO competition at high temperatures
  publication-title: Water Res.
– volume: 30
  start-page: 2128
  year: 1996
  ident: bib33
  article-title: Model for carbon metabolism in biological phosphorus removal processes based on in vivo C13-NMR labelling experiments
  publication-title: Water Res.
– volume: 148
  start-page: 3353
  year: 2002
  end-page: 3364
  ident: bib16
  article-title: Glycogen accumulating organisms in laboratory-scale and full-scale wastewater treatment processes
  publication-title: Microbiology
– year: 2000
  ident: bib21
  article-title: The effect of COD/TP ratio on intracellular storage materials, system performance and kinetic parameters in a BNR system
  publication-title: Proceedings of the 73rd Annual Water Environment Federation Technical Exposition and Conference
– volume: 46
  start-page: 1889
  year: 2012
  end-page: 1900
  ident: bib1
  article-title: Metabolic shift of polyphosphate-accumulating organisms with different levels of poly-phosphate storage
  publication-title: Water Res.
– volume: 43
  start-page: 450
  year: 2009
  end-page: 462
  ident: bib48
  article-title: Modeling the PAO–GAO competition: effects of carbon source, pH and temperature
  publication-title: Water Res.
– volume: 39
  year: 1999
  ident: bib38
  article-title: Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glyucose as carbon source
  publication-title: Water Sci. Technol.
– year: 1995
  ident: bib3
  article-title: Standard Methods for the Examination of Water and Waste Water
– volume: 58
  start-page: 1693
  year: 2008
  end-page: 1697
  ident: bib47
  article-title: Kinetic and metabolic aspects of Defluviicoccus vanus-related organisms as competitors in EBPR systems
  publication-title: Water Sci. Technol.
– volume: 66
  start-page: 1175
  year: 2000
  end-page: 1182
  ident: bib15
  article-title: Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation
  publication-title: Appl. Environ. Microbiol.
– volume: 58
  start-page: 1329
  year: 2008
  end-page: 1334
  ident: bib18
  article-title: Is it PAO-GAO competition or metabolic shift in EBPR system? Evidence form an experimental study
  publication-title: Water Sci. Technol.
– volume: 44
  start-page: 4908
  year: 2010
  end-page: 4923
  ident: bib35
  article-title: Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP)
  publication-title: Water Res.
– volume: 123
  start-page: 144
  year: 1997
  end-page: 154
  ident: bib9
  article-title: Temperature effects on physiology of biological phosphorus removal
  publication-title: J. Environ. Eng. ASCE
– volume: 73
  start-page: 5865
  year: 2007
  end-page: 5874
  ident: bib46
  article-title: “Candidatus Accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes
  publication-title: Appl. Environ. Microbiol.
– volume: 20
  start-page: 1511
  year: 1993
  ident: bib13
  article-title: Glucose-induced between polyphosphate and polysaccharide accumulating accumulating bacteria in ehanced biological phosphorus removal
  publication-title: Water Res.
– volume: 9
  start-page: 458
  year: 1975
  end-page: 490
  ident: bib7
  article-title: Biological nutrient removal without addition of chemicals
  publication-title: Water Res.
– volume: 148
  start-page: 2299
  year: 2002
  end-page: 2307
  ident: bib22
  article-title: Functional analysis of microbial communities in aerobic-anaerobic sequencing batch reactors fed with different phosphorus/carbon )P/C) ratios
  publication-title: Microbiology
– volume: 31
  start-page: 907
  year: 1997
  end-page: 917
  ident: bib28
  article-title: Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems
  publication-title: Water Res.
– year: 2003
  ident: 10.1016/j.watres.2015.06.045_bib29
– start-page: 27
  year: 1987
  ident: 10.1016/j.watres.2015.06.045_bib30
  article-title: Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process
– volume: 20
  start-page: 1511
  issue: 12
  year: 1986
  ident: 10.1016/j.watres.2015.06.045_bib14
  article-title: Biochemical-model for enhanced biological phosphorus removal
  publication-title: Water Res.
  doi: 10.1016/0043-1354(86)90115-6
– volume: 43
  start-page: 461
  year: 1994
  ident: 10.1016/j.watres.2015.06.045_bib36
  article-title: Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260430605
– volume: 40
  start-page: 3507
  issue: 19
  year: 2006
  ident: 10.1016/j.watres.2015.06.045_bib5
  article-title: Potential phosphorus recovery in a WWTP with the BCFS process: interactions with the biological process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.08.006
– volume: 148
  start-page: 3353
  year: 2002
  ident: 10.1016/j.watres.2015.06.045_bib16
  article-title: Glycogen accumulating organisms in laboratory-scale and full-scale wastewater treatment processes
  publication-title: Microbiology
  doi: 10.1099/00221287-148-11-3353
– volume: 44
  start-page: 4908
  issue: 17
  year: 2010
  ident: 10.1016/j.watres.2015.06.045_bib35
  article-title: Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP)
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.07.028
– volume: 73
  start-page: 5865
  issue: 18
  year: 2007
  ident: 10.1016/j.watres.2015.06.045_bib46
  article-title: “Candidatus Accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01207-07
– volume: 42
  start-page: 3415
  issue: 13
  year: 2008
  ident: 10.1016/j.watres.2015.06.045_bib6
  article-title: Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.05.003
– volume: 42
  start-page: 3561
  year: 2008
  ident: 10.1016/j.watres.2015.06.045_bib25
  article-title: Comment on “ Could polyphosphate-accumulating organisms (PAO) be glycogen-accumulating organisms (GAO)?” by Zhou, Y., Pijuan, M., Zeng, R., Lu, Huabing and Yuan Z. Water Res.. (2008) doi:10.1016/jwaterres.2008.01.003
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.03.019
– volume: 43
  start-page: 450
  issue: 2
  year: 2009
  ident: 10.1016/j.watres.2015.06.045_bib48
  article-title: Modeling the PAO–GAO competition: effects of carbon source, pH and temperature
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.10.032
– volume: 45
  start-page: 3291
  issue: 11
  year: 2011
  ident: 10.1016/j.watres.2015.06.045_bib43
  article-title: Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO–GAO competition at high temperatures
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.03.024
– volume: 22
  start-page: 345
  year: 1999
  ident: 10.1016/j.watres.2015.06.045_bib17
  article-title: The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set
  publication-title: Syst. Appl. Microbiol.
  doi: 10.1016/S0723-2020(99)80053-8
– volume: 58
  start-page: 1693
  issue: 8
  year: 2008
  ident: 10.1016/j.watres.2015.06.045_bib47
  article-title: Kinetic and metabolic aspects of Defluviicoccus vanus-related organisms as competitors in EBPR systems
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2008.552
– volume: 31
  start-page: 79
  year: 1995
  ident: 10.1016/j.watres.2015.06.045_bib37
  article-title: A metabolic model for the biological phosphorus removal process
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1995.0078
– volume: 24
  start-page: 1263
  year: 2006
  ident: 10.1016/j.watres.2015.06.045_bib27
  article-title: Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1247
– volume: 31
  start-page: 907
  issue: 4
  year: 1997
  ident: 10.1016/j.watres.2015.06.045_bib28
  article-title: Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(96)00369-7
– volume: 42
  start-page: 2361
  year: 2008
  ident: 10.1016/j.watres.2015.06.045_bib45
  article-title: Could polyphosphate-accumulating organisms (PAO) be glycogen-accumulating organisms (GAO)?
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.01.003
– volume: 46
  start-page: 1889
  year: 2012
  ident: 10.1016/j.watres.2015.06.045_bib1
  article-title: Metabolic shift of polyphosphate-accumulating organisms with different levels of poly-phosphate storage
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.01.003
– volume: 34
  start-page: 846
  issue: 3
  year: 2000
  ident: 10.1016/j.watres.2015.06.045_bib11
  article-title: Modeling COD, N and P removal in a full-scale sstp Haarlem Waarderpolder
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(99)00219-5
– volume: 41
  start-page: 4383
  issue: 19
  year: 2007
  ident: 10.1016/j.watres.2015.06.045_bib12
  article-title: Denitrifying phosphorus removal: linking the process performance with the microbial community structure
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.06.065
– volume: 92
  start-page: 1314
  year: 2013
  ident: 10.1016/j.watres.2015.06.045_bib39
  article-title: Occurrence of PAOI in a low temperature EBPR system
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.05.009
– volume: 17
  start-page: 57
  year: 1985
  ident: 10.1016/j.watres.2015.06.045_bib41
  article-title: Kinetics of biological phosphorus release
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1985.0221
– volume: 56
  start-page: 1919
  year: 1990
  ident: 10.1016/j.watres.2015.06.045_bib2
  article-title: Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.56.6.1919-1925.1990
– volume: 66
  start-page: 1175
  year: 2000
  ident: 10.1016/j.watres.2015.06.045_bib15
  article-title: Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.3.1175-1182.2000
– year: 1995
  ident: 10.1016/j.watres.2015.06.045_bib3
– volume: 58
  start-page: 1329
  issue: 6
  year: 2008
  ident: 10.1016/j.watres.2015.06.045_bib18
  article-title: Is it PAO-GAO competition or metabolic shift in EBPR system? Evidence form an experimental study
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2008.734
– volume: 15
  start-page: 593
  year: 1992
  ident: 10.1016/j.watres.2015.06.045_bib26
  article-title: Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions
  publication-title: Syst. Appl. Micobiol.
  doi: 10.1016/S0723-2020(11)80121-9
– volume: 75
  start-page: 485
  issue: 6
  year: 2003
  ident: 10.1016/j.watres.2015.06.045_bib34
  article-title: Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, part 1: experimental results and comparison with metabolic models
  publication-title: Water Environ. Res.
  doi: 10.2175/106143003X141286
– volume: 98
  start-page: 7609
  issue: 12
  year: 2014
  ident: 10.1016/j.watres.2015.06.045_bib40
  article-title: Impact of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO)
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-5778-4
– volume: 81
  start-page: 92
  issue: 1
  year: 2003
  ident: 10.1016/j.watres.2015.06.045_bib44
  article-title: Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10455
– year: 2000
  ident: 10.1016/j.watres.2015.06.045_bib21
  article-title: The effect of COD/TP ratio on intracellular storage materials, system performance and kinetic parameters in a BNR system
– volume: 34
  start-page: 3487
  year: 2000
  ident: 10.1016/j.watres.2015.06.045_bib20
  article-title: Anaerobic metabolism of bacteria performing enhanced biological phosphate removal
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(00)00092-0
– volume: 123
  start-page: 144
  issue: 2
  year: 1997
  ident: 10.1016/j.watres.2015.06.045_bib9
  article-title: Temperature effects on physiology of biological phosphorus removal
  publication-title: J. Environ. Eng. ASCE
  doi: 10.1061/(ASCE)0733-9372(1997)123:2(144)
– volume: 20
  start-page: 1511
  year: 1993
  ident: 10.1016/j.watres.2015.06.045_bib13
  article-title: Glucose-induced between polyphosphate and polysaccharide accumulating accumulating bacteria in ehanced biological phosphorus removal
  publication-title: Water Res.
– volume: 79
  start-page: 2487
  issue: 13
  year: 2007
  ident: 10.1016/j.watres.2015.06.045_bib24
  article-title: A practical method for the quantification of phosphorus- and glycogen-accumulating organisms populations in activated sludge systems
  publication-title: Water Environ. Res.
  doi: 10.2175/106143007X220798
– volume: 39
  issue: 29
  year: 1999
  ident: 10.1016/j.watres.2015.06.045_bib38
  article-title: Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glyucose as carbon source
  publication-title: Water Sci. Technol.
– volume: 50
  start-page: 273
  year: 1998
  ident: 10.1016/j.watres.2015.06.045_bib10
  article-title: Effect of polyphosphate limitation on the anaerobic metabolism of phosphorus-accumulating microorganisms
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051289
– volume: 30
  start-page: 2128
  year: 1996
  ident: 10.1016/j.watres.2015.06.045_bib33
  article-title: Model for carbon metabolism in biological phosphorus removal processes based on in vivo C13-NMR labelling experiments
  publication-title: Water Res.
  doi: 10.1016/0043-1354(96)00035-8
– volume: 148
  start-page: 2299
  year: 2002
  ident: 10.1016/j.watres.2015.06.045_bib22
  article-title: Functional analysis of microbial communities in aerobic-anaerobic sequencing batch reactors fed with different phosphorus/carbon )P/C) ratios
  publication-title: Microbiology
  doi: 10.1099/00221287-148-8-2299
– volume: 32
  start-page: 3193
  issue: 11
  year: 1998
  ident: 10.1016/j.watres.2015.06.045_bib31
  article-title: Microbiology and biochemistry of the enhanced biological phosphate removal process
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00129-8
– volume: 9
  start-page: 458
  issue: 5–6
  year: 1975
  ident: 10.1016/j.watres.2015.06.045_bib7
  article-title: Biological nutrient removal without addition of chemicals
  publication-title: Water Res.
– volume: 1
  start-page: 583
  issue: 6
  year: 2009
  ident: 10.1016/j.watres.2015.06.045_bib19
  article-title: Denitrification capabilities of two biological phosphorus removal sludges dominated by different ‘Candidatus Accumulibacter’ clades
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/j.1758-2229.2009.00090.x
– volume: 10
  start-page: 2692
  issue: 10
  year: 2008
  ident: 10.1016/j.watres.2015.06.045_bib49
  article-title: Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2008.01690.x
– volume: 53
  start-page: 29
  issue: 12
  year: 2006
  ident: 10.1016/j.watres.2015.06.045_bib4
  article-title: Calcium effect on enhanced biological phosphorus removal
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2006.403
– volume: 77
  start-page: 7942
  issue: 22
  year: 2011
  ident: 10.1016/j.watres.2015.06.045_bib8
  article-title: Effect of elevated salt concentrations on the aerobic granular sludge process: linking microbial activity with microbial community structure
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.05016-11
– volume: 31
  start-page: 1430
  issue: 6
  year: 1997
  ident: 10.1016/j.watres.2015.06.045_bib23
  article-title: Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors-effect of P/C feeding ratio
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(96)00352-1
– start-page: 79
  year: 1987
  ident: 10.1016/j.watres.2015.06.045_bib42
  article-title: Experiments towards establishing the kinetics of biological excess phosphorus removal
SSID ssj0002239
Score 2.505568
Snippet The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 354
SubjectTerms acetates
Acetates - metabolism
Anaerobiosis
Betaproteobacteria - classification
Betaproteobacteria - metabolism
Biodegradation, Environmental
Biological
biomass
Bioreactors
Cladding
Constraining
Enhanced biological phosphorus removal (EBPR)
Fatty Acids, Volatile - metabolism
Glycogen - metabolism
Glycogen-accumulating organisms (GAO)
Intracellular P-content
long term experiments
Metabolic shift
Metabolism
Organisms
Phosphate-accumulating organisms (PAO)
phosphorus
Phosphorus - metabolism
Phosphorus removal
Polyphosphates - metabolism
Stoichiometry
Uptakes
Waste Disposal, Fluid
Water Pollutants, Chemical - metabolism
‘Candidatus Accumulibacter phosphatis’ Clade I and II
Title Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake
URI https://dx.doi.org/10.1016/j.watres.2015.06.045
https://www.ncbi.nlm.nih.gov/pubmed/26189167
https://www.proquest.com/docview/1712768538
https://www.proquest.com/docview/1730069247
https://www.proquest.com/docview/2000300067
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQvbQHRFtalrYrV-IaSGxnnRxXqKvdVuUE0t6siWMjSsiuSFaIC3-hf7kzTkJbqYDUS5REHsuJJ_MRz3tm7DC3Os7yQkdKajwQ-WzuUoji2IoiA_A-I4Dz99PJ_Fx9XabLLXYyYGGorLK3_Z1ND9a6v3Pcv83j9eUlYXzR-ckUPZAkNMKSEOxKk5Yf3f8u80D3lw-rzNR6gM-FGq9bIEAGFXilgcWTQE3_dk-PhZ_BDc122U4fP_JpN8TXbMvVb9irP1gF37KfU2s3oeopMDFzW0HpGk4ZJ19wqEu-WPB1BxhAAX6FouGPdnXHh_1SWn5R3dkValcEXW9A9dG82wSquW74tWtRf6pwjj1hv-CI08nyBm1R4Lzlm3ULV26Pnc--nJ3Mo37fhcimQrdR4jRgGICp2ESBsqBcXnqMg6zPHBQOvJW-SEDaXIuJ93FZSEwTJ9IWXjnhQb5j2_WqdvuM5wI1xGZeZCWGaqnOPQ5aopURPpZlkY6YHF63sT0pOe2NUZmh-uyH6SbJ0CQZKsJTKBU9SK07Uo5n2uthJs1fymXQbzwj-XmYeIPfHS2mQO1Wm8YkOhGYqqG_eKqNJCZoofTjbUTISiloGLH3nWY9PBNmtxmG7_rgv8f_gb2kK3K2SfqRbbc3G_cJo6i2GIfPZMxeTBff5qe_APg7IUM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcUHkXChiJa9TEjtfJcVW12tB2T620N2vi2Kg0za5IVqi_gr_MjJOsQGqpxCWKEo_leMbziGc-M_YltzrO8lJHqdR4IfDZ3CmI4tiKMgPwPqMC5_PFdH6Zfl2q5Q47GmthKK1y0P29Tg_aenhyOMzm4frqimp80fhJhRZIUjXC8hHbJXQqNWG7s-J0vtgqZLSA-bjRTARjBV1I8_oJVJNBOV4qAHlSXdPdFuo-DzRYopM99mxwIfmsH-VztuOaF-zpH8CCL9mvmbWbkPgUwJi5raFyLaegkxccmooXBV_3NQNIwK-RNPzUrm_5eGRKx7_Vt3aFAhZB3xtQijTvz4Fqb1p-4zoUoTrcY0_YLziCdbK8RXUUYG_5Zt3BtXvFLk-OL47m0XD0QmSV0F2UOA3oCWA0Nk0htZC6vPLoClmfOSgdeCt9mYC0uRZT7-OqlBgpTqUtfeqEB_maTZpV494yngsUEpt5kVXorSmdexy0REUjfCyrUu0zOU63sQMuOR2PUZsxAe276ZlkiEmG8vBSpIq2VOsel-OB9nrkpPlLvgyajgcoP4-MN7j0aD8FGrfatCbRicBoDU3Gv9pIAoMWqb6_jQiBKfkN--xNL1nbb8IAN0MPXr_77_F_Yo_nF-dn5qxYnL5nT-gN2d5EHbBJ92PjPqBT1ZUfh0XzG8ErI_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accumulibacter+clades+Type+I+and+II+performing+kinetically+different+glycogen-accumulating+organisms+metabolisms+for+anaerobic+substrate+uptake&rft.jtitle=Water+research+%28Oxford%29&rft.au=Welles%2C+L&rft.au=Tian%2C+W+D&rft.au=Saad%2C+S&rft.au=Abbas%2C+B&rft.date=2015-10-15&rft.issn=0043-1354&rft.volume=83&rft.spage=354&rft.epage=366&rft_id=info:doi/10.1016%2Fj.watres.2015.06.045&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon