Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake
The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been an extensive subject of study due to the highly variable reported stoichiometric values (e.g. anaerobic P-release/HAc-uptake ratios ranging fr...
Saved in:
Published in | Water research (Oxford) Vol. 83; pp. 354 - 366 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been an extensive subject of study due to the highly variable reported stoichiometric values (e.g. anaerobic P-release/HAc-uptake ratios ranging from 0.01 up to 0.93 P-mol/C-mol). Often, such differences have been explained by the different applied operating conditions (e.g. pH) or occurrence of glycogen-accumulating organisms (GAO). The present study investigated the ability of biomass highly enriched with specific PAO clades (‘Candidatus Accumulibacter phosphatis’ Clade I and II, hereafter PAO I and PAO II) to adopt a GAO metabolism. Based on long-term experiments, when Poly-P is not stoichiometrically limiting for the anaerobic VFA uptake, PAO I performed the typical PAO metabolism (with a P/HAc ratio of 0.64 P-mol/C-mol); whereas PAO II performed a mixed PAO-GAO metabolism (showing a P/HAc ratio of 0.22 P-mol/C-mol). In short-term batch tests, both PAO I and II gradually shifted their metabolism to a GAO metabolism when the Poly-P content decreased, but the HAc-uptake rate of PAO I was 4 times lower than that of PAO II, indicating that PAO II has a strong competitive advantage over PAO I when Poly-P is stoichiometrically limiting the VFA uptake. Thus, metabolic flexibility of PAO clades as well as their intrinsic differences are additional factors leading to the controversial anaerobic stoichiometry and kinetic rates observed in previous studies. From a practical perspective, the dominant type of PAO prevailing in full-scale EBPR systems may affect the P-release processes for biological or combined biological and chemical P-removal and recovery and consequently the process performance.
•The anaerobic stoichiometry of PAO I and II is intrinsically different.•Both PAO I and II exhibit a GAO metabolism for HAc-uptake under Poly-P depletion.•At high Poly-P content PAO I has faster HAc-uptake rates than PAO II.•PAO II has faster HAc-uptake rates than PAO I at low Poly-P content.•Prevalence of specific PAO clades may influence process performance. |
---|---|
AbstractList | The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been an extensive subject of study due to the highly variable reported stoichiometric values (e.g. anaerobic P-release/HAc-uptake ratios ranging from 0.01 up to 0.93 P-mol/C-mol). Often, such differences have been explained by the different applied operating conditions (e.g. pH) or occurrence of glycogen-accumulating organisms (GAO). The present study investigated the ability of biomass highly enriched with specific PAO clades ('Candidatus Accumulibacter phosphatis' Clade I and II, hereafter PAO I and PAO II) to adopt a GAO metabolism. Based on long-term experiments, when Poly-P is not stoichiometrically limiting for the anaerobic VFA uptake, PAO I performed the typical PAO metabolism (with a P/HAc ratio of 0.64 P-mol/C-mol); whereas PAO II performed a mixed PAO-GAO metabolism (showing a P/HAc ratio of 0.22 P-mol/C-mol). In short-term batch tests, both PAO I and II gradually shifted their metabolism to a GAO metabolism when the Poly-P content decreased, but the HAc-uptake rate of PAO I was 4 times lower than that of PAO II, indicating that PAO II has a strong competitive advantage over PAO I when Poly-P is stoichiometrically limiting the VFA uptake. Thus, metabolic flexibility of PAO clades as well as their intrinsic differences are additional factors leading to the controversial anaerobic stoichiometry and kinetic rates observed in previous studies. From a practical perspective, the dominant type of PAO prevailing in full-scale EBPR systems may affect the P-release processes for biological or combined biological and chemical P-removal and recovery and consequently the process performance. The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been an extensive subject of study due to the highly variable reported stoichiometric values (e.g. anaerobic P-release/HAc-uptake ratios ranging from 0.01 up to 0.93 P-mol/C-mol). Often, such differences have been explained by the different applied operating conditions (e.g. pH) or occurrence of glycogen-accumulating organisms (GAO). The present study investigated the ability of biomass highly enriched with specific PAO clades (‘Candidatus Accumulibacter phosphatis’ Clade I and II, hereafter PAO I and PAO II) to adopt a GAO metabolism. Based on long-term experiments, when Poly-P is not stoichiometrically limiting for the anaerobic VFA uptake, PAO I performed the typical PAO metabolism (with a P/HAc ratio of 0.64 P-mol/C-mol); whereas PAO II performed a mixed PAO-GAO metabolism (showing a P/HAc ratio of 0.22 P-mol/C-mol). In short-term batch tests, both PAO I and II gradually shifted their metabolism to a GAO metabolism when the Poly-P content decreased, but the HAc-uptake rate of PAO I was 4 times lower than that of PAO II, indicating that PAO II has a strong competitive advantage over PAO I when Poly-P is stoichiometrically limiting the VFA uptake. Thus, metabolic flexibility of PAO clades as well as their intrinsic differences are additional factors leading to the controversial anaerobic stoichiometry and kinetic rates observed in previous studies. From a practical perspective, the dominant type of PAO prevailing in full-scale EBPR systems may affect the P-release processes for biological or combined biological and chemical P-removal and recovery and consequently the process performance. •The anaerobic stoichiometry of PAO I and II is intrinsically different.•Both PAO I and II exhibit a GAO metabolism for HAc-uptake under Poly-P depletion.•At high Poly-P content PAO I has faster HAc-uptake rates than PAO II.•PAO II has faster HAc-uptake rates than PAO I at low Poly-P content.•Prevalence of specific PAO clades may influence process performance. The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been an extensive subject of study due to the highly variable reported stoichiometric values (e.g. anaerobic P-release/HAc-uptake ratios ranging from 0.01 up to 0.93 P-mol/C-mol). Often, such differences have been explained by the different applied operating conditions (e.g. pH) or occurrence of glycogen-accumulating organisms (GAO). The present study investigated the ability of biomass highly enriched with specific PAO clades ('Candidatus Accumulibacter phosphatis' Clade I and II, hereafter PAO I and PAO II) to adopt a GAO metabolism. Based on long-term experiments, when Poly-P is not stoichiometrically limiting for the anaerobic VFA uptake, PAO I performed the typical PAO metabolism (with a P/HAc ratio of 0.64 P-mol/C-mol); whereas PAO II performed a mixed PAO-GAO metabolism (showing a P/HAc ratio of 0.22 P-mol/C-mol). In short-term batch tests, both PAO I and II gradually shifted their metabolism to a GAO metabolism when the Poly-P content decreased, but the HAc-uptake rate of PAO I was 4 times lower than that of PAO II, indicating that PAO II has a strong competitive advantage over PAO I when Poly-P is stoichiometrically limiting the VFA uptake. Thus, metabolic flexibility of PAO clades as well as their intrinsic differences are additional factors leading to the controversial anaerobic stoichiometry and kinetic rates observed in previous studies. From a practical perspective, the dominant type of PAO prevailing in full-scale EBPR systems may affect the P-release processes for biological or combined biological and chemical P-removal and recovery and consequently the process performance. |
Author | Lopez-Vazquez, C.M. Welles, L. Hooijmans, C.M. van Loosdrecht, M.C.M. Abbas, B. Saad, S. Tian, W.D. Brdjanovic, D. |
Author_xml | – sequence: 1 givenname: L. surname: Welles fullname: Welles, L. email: laurenswelles@gmail.com, l.welles@unesco-ihe.org organization: Department of Environmental Engineering and Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands – sequence: 2 givenname: W.D. surname: Tian fullname: Tian, W.D. email: hittwd@gmail.com organization: Southwest Municipal Engineering Design and Research Institute of China, Shennan Road East NO. 1110, Shenzhen 518000, PR China – sequence: 3 givenname: S. surname: Saad fullname: Saad, S. email: sondos.abdel-hakim@eng.asu.edu.eg organization: Department of Environmental Engineering and Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands – sequence: 4 givenname: B. surname: Abbas fullname: Abbas, B. email: b.a.abbas@tudelft.nl organization: Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands – sequence: 5 givenname: C.M. surname: Lopez-Vazquez fullname: Lopez-Vazquez, C.M. email: c.lopezvazquez@unesco-ihe.org organization: Department of Environmental Engineering and Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands – sequence: 6 givenname: C.M. surname: Hooijmans fullname: Hooijmans, C.M. email: t.hooijmans@unesco-ihe.org organization: Department of Environmental Engineering and Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands – sequence: 7 givenname: M.C.M. surname: van Loosdrecht fullname: van Loosdrecht, M.C.M. email: m.c.m.vanloosdrecht@tudelft.nl organization: KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands – sequence: 8 givenname: D. surname: Brdjanovic fullname: Brdjanovic, D. email: d.brdjanovic@unesco-ihe.org organization: Department of Environmental Engineering and Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26189167$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFu1DAURS1URKeFP0DISzYZbMdxEhZIVUVhpEpsytp6cZ5Hnib2YDug-Qp-GU-n3bCgLCx7ce5ZXN8LcuaDR0LecrbmjKsPu_UvyBHTWjDerJlaM9m8ICvetX0lpOzOyIoxWVe8buQ5uUhpxxgTou5fkXOheNdz1a7I7ytjlnmZ3AAmY6RmghETvTvskW4o-JFuNnSP0YY4O7-l985jdgam6UBHZy1G9Jlup4MJW_QVnGyQj2yIW_AuzYnOmGEI08O7mIoXMIbBGZqWIeUIGemyz3CPr8lLC1PCN4_3Jfl-8_nu-mt1--3L5vrqtjKNaHPFsQUuetH1SoI0ILEfrWi4sR3CgGBNbQcOtelboaxl41B3kqnaDFaisFBfkvcn7z6GHwumrGeXDE4TeAxL0qKUVZej2mdR3hZQ9UL-D8pFq7qm7gr67hFdhhlHvY9uhnjQT19TgI8nwMSQUkSrjcul2OBLX27SnOnjDvROn3agjzvQTOmygxKWf4Wf_M_EPp1iWKr_6TDqZBx6g6OLaLIeg_u34A_w-dKB |
CitedBy_id | crossref_primary_10_1016_j_cej_2016_11_073 crossref_primary_10_1016_j_scitotenv_2023_168952 crossref_primary_10_1016_j_biortech_2021_126540 crossref_primary_10_3389_fmicb_2019_00125 crossref_primary_10_1016_j_biortech_2022_128444 crossref_primary_10_1016_j_jhazmat_2023_131157 crossref_primary_10_1016_j_chemosphere_2021_130912 crossref_primary_10_1016_j_copbio_2021_01_011 crossref_primary_10_1016_j_chemosphere_2022_136518 crossref_primary_10_1016_j_watres_2021_117563 crossref_primary_10_1128_spectrum_02832_23 crossref_primary_10_1016_j_enzmictec_2020_109567 crossref_primary_10_29105_qh6_2_226 crossref_primary_10_1016_j_chemosphere_2021_131173 crossref_primary_10_1016_j_chemosphere_2022_135675 crossref_primary_10_1016_j_jenvman_2021_113976 crossref_primary_10_1016_j_watres_2021_117725 crossref_primary_10_1264_jsme2_ME17020 crossref_primary_10_1016_j_chemosphere_2022_137576 crossref_primary_10_1016_j_jenvman_2023_119839 crossref_primary_10_1016_j_copbio_2020_01_002 crossref_primary_10_1016_j_cej_2023_146851 crossref_primary_10_1016_j_watres_2017_01_006 crossref_primary_10_1007_s10661_022_10151_3 crossref_primary_10_1016_j_watres_2018_11_011 crossref_primary_10_1016_j_watres_2021_117210 crossref_primary_10_1016_j_jenvman_2021_112362 crossref_primary_10_1016_j_watres_2023_120700 crossref_primary_10_1016_j_scitotenv_2019_135031 crossref_primary_10_1016_j_watres_2017_02_051 crossref_primary_10_1016_j_cej_2022_138753 crossref_primary_10_1186_s12866_020_01896_3 crossref_primary_10_3389_fmicb_2017_00718 crossref_primary_10_1134_S0003683820010056 crossref_primary_10_1128_AEM_00808_20 crossref_primary_10_1016_j_jenvman_2024_120456 crossref_primary_10_3389_fmicb_2023_1297694 crossref_primary_10_1016_j_watres_2025_123503 crossref_primary_10_1016_j_watres_2019_115228 crossref_primary_10_1128_msystems_00016_22 crossref_primary_10_1016_j_watres_2016_08_061 crossref_primary_10_1016_j_jwpe_2022_103258 crossref_primary_10_1016_j_jhazmat_2024_136299 crossref_primary_10_1016_j_watres_2025_123509 crossref_primary_10_1371_journal_pone_0216126 crossref_primary_10_1016_j_watres_2023_120713 crossref_primary_10_1186_s13568_016_0214_z crossref_primary_10_3389_fmicb_2018_00479 crossref_primary_10_1016_j_biteb_2024_101782 crossref_primary_10_1016_j_chemosphere_2021_131778 crossref_primary_10_1016_j_biortech_2020_123108 crossref_primary_10_1016_j_watres_2018_08_058 crossref_primary_10_1016_j_scitotenv_2020_140852 crossref_primary_10_1128_msystems_00474_21 crossref_primary_10_1016_j_cej_2022_138099 crossref_primary_10_1016_j_scitotenv_2023_162018 crossref_primary_10_1016_j_biortech_2016_11_102 crossref_primary_10_1016_j_watres_2022_118729 crossref_primary_10_2166_wst_2022_036 crossref_primary_10_1016_j_jes_2022_05_012 crossref_primary_10_3389_fmicb_2016_02121 crossref_primary_10_1007_s11356_020_09912_9 crossref_primary_10_1016_j_watres_2022_119365 crossref_primary_10_1016_j_scitotenv_2021_152297 crossref_primary_10_1002_bit_26295 crossref_primary_10_1016_j_jclepro_2024_141042 crossref_primary_10_1016_j_scitotenv_2020_140603 crossref_primary_10_3390_w14213428 crossref_primary_10_1016_j_cej_2020_127907 crossref_primary_10_1016_j_jwpe_2024_105575 crossref_primary_10_3389_fmicb_2016_01033 crossref_primary_10_1016_j_ibiod_2017_03_030 crossref_primary_10_1128_aem_00771_23 crossref_primary_10_1016_j_watres_2017_05_001 crossref_primary_10_1038_ismej_2016_67 crossref_primary_10_1016_j_jece_2022_107976 crossref_primary_10_1016_j_scitotenv_2024_172313 crossref_primary_10_1093_ismeco_ycae049 crossref_primary_10_1016_j_watres_2023_120742 crossref_primary_10_1016_j_cej_2019_123915 crossref_primary_10_1016_j_watres_2017_03_017 crossref_primary_10_1016_j_jwpe_2023_104579 crossref_primary_10_1016_j_biortech_2020_123574 crossref_primary_10_1021_acsestwater_4c00247 crossref_primary_10_1016_j_scitotenv_2023_164130 crossref_primary_10_1016_j_watres_2020_116606 crossref_primary_10_1128_msystems_00193_18 crossref_primary_10_1016_j_biortech_2019_122431 crossref_primary_10_1016_j_cej_2017_05_074 crossref_primary_10_1016_j_scitotenv_2023_167194 crossref_primary_10_1016_j_scitotenv_2023_169013 crossref_primary_10_1016_j_copbio_2019_03_008 crossref_primary_10_1007_s00253_017_8571_3 crossref_primary_10_1016_j_biortech_2022_127603 crossref_primary_10_1016_j_watres_2019_02_040 crossref_primary_10_1016_j_jwpe_2020_101861 crossref_primary_10_1016_j_scitotenv_2018_12_064 crossref_primary_10_1016_j_watres_2023_119803 crossref_primary_10_1134_S0026261719040052 crossref_primary_10_3389_fmicb_2024_1424938 |
Cites_doi | 10.1016/0043-1354(86)90115-6 10.1002/bit.260430605 10.1016/j.watres.2006.08.006 10.1099/00221287-148-11-3353 10.1016/j.watres.2010.07.028 10.1128/AEM.01207-07 10.1016/j.watres.2008.05.003 10.1016/j.watres.2008.03.019 10.1016/j.watres.2008.10.032 10.1016/j.watres.2011.03.024 10.1016/S0723-2020(99)80053-8 10.2166/wst.2008.552 10.2166/wst.1995.0078 10.1038/nbt1247 10.1016/S0043-1354(96)00369-7 10.1016/j.watres.2008.01.003 10.1016/j.watres.2012.01.003 10.1016/S0043-1354(99)00219-5 10.1016/j.watres.2007.06.065 10.1016/j.chemosphere.2013.05.009 10.2166/wst.1985.0221 10.1128/AEM.56.6.1919-1925.1990 10.1128/AEM.66.3.1175-1182.2000 10.2166/wst.2008.734 10.1016/S0723-2020(11)80121-9 10.2175/106143003X141286 10.1007/s00253-014-5778-4 10.1002/bit.10455 10.1016/S0043-1354(00)00092-0 10.1061/(ASCE)0733-9372(1997)123:2(144) 10.2175/106143007X220798 10.1007/s002530051289 10.1016/0043-1354(96)00035-8 10.1099/00221287-148-8-2299 10.1016/S0043-1354(98)00129-8 10.1111/j.1758-2229.2009.00090.x 10.1111/j.1462-2920.2008.01690.x 10.2166/wst.2006.403 10.1128/AEM.05016-11 10.1016/S0043-1354(96)00352-1 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7ST 7UA C1K F1W H97 L.G SOI 8FD FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.watres.2015.06.045 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
EndPage | 366 |
ExternalDocumentID | 26189167 10_1016_j_watres_2015_06_045 S004313541530097X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QH 7ST 7UA C1K F1W H97 L.G SOI 8FD FR3 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c527t-1e7a12928964a4ca4e9df251cf8eabeafc3fb1a3c9726ff0db384063cbf4e2fa3 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 |
IngestDate | Fri Jul 11 01:44:59 EDT 2025 Fri Jul 11 08:31:30 EDT 2025 Thu Jul 10 23:22:33 EDT 2025 Thu Apr 03 07:02:49 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Tue Jul 01 01:20:42 EDT 2025 Fri Feb 23 02:26:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metabolic shift Phosphate-accumulating organisms (PAO) Intracellular P-content Enhanced biological phosphorus removal (EBPR) Glycogen-accumulating organisms (GAO) ‘Candidatus Accumulibacter phosphatis’ Clade I and II |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-1e7a12928964a4ca4e9df251cf8eabeafc3fb1a3c9726ff0db384063cbf4e2fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26189167 |
PQID | 1712768538 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2000300067 proquest_miscellaneous_1730069247 proquest_miscellaneous_1712768538 pubmed_primary_26189167 crossref_citationtrail_10_1016_j_watres_2015_06_045 crossref_primary_10_1016_j_watres_2015_06_045 elsevier_sciencedirect_doi_10_1016_j_watres_2015_06_045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-15 |
PublicationDateYYYYMMDD | 2015-10-15 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Barnard (bib7) 1975; 9 Metcalf and Eddy, Inc (bib29) 2003 Peterson, Warnecke, Madejska, McMahon, Hugenholtz (bib49) 2008; 10 Smolders, van der Meij, van Loosdrecht, Heijnen (bib36) 1994; 43 Wentzel, Dold, Loewenthal, Ekama, Marais (bib42) 1987 Lopez-Vazquez, Brdjanovic, van Loosdrecht (bib25) 2008; 42 Tian, Lopez-Vazquez, Li, Brdjanovic, Van Loosdrecht (bib39) 2013; 92 Amann, Binder, Olson, Chisholm, Devereux, Stahl (bib2) 1990; 56 Lanham, Reis, Lemos (bib47) 2008; 58 Maurer, Gujer, Hany, Bachmann (bib28) 1997; 31 Barat, van Loosdrecht (bib5) 2006; 40 Hesselman, von Rummell, Resnick, Hany, Zehnder (bib20) 2000; 34 Zeng, Van Loosdrecht, Yuan, Keller (bib44) 2003; 81 He, Gall, McMahon (bib46) 2007; 73 Carvalho, Lemos, Oehmen, Reis (bib12) 2007; 41 Barat, Montoya, Borras, Seco, Ferrer (bib4) 2006; 53 Brdjanovic, van Loosdrecht, Versteeg, Hooijmans, Alaerts, Heijnen (bib11) 2000; 34 Sudiana, Mino, Satoh, Nakamura, Matsuo (bib38) 1999; 39 Winkler, Bassin, Kleerebezem, De Bruin, Van den Brand, Van Loosdrecht (bib43) 2011; 45 Barat, Montoya, Borras, Ferrer, Seco (bib6) 2008; 42 A.P.H.A (bib3) 1995 Brdjanovic, van Loosdrecht, Hooijmans, Mino, Alaerts, Heijnen (bib10) 1998; 50 Slater, Johnson, Blackall, Beiko, Bond (bib35) 2010; 44 Daims, Bruhl, Amann, Amann, Schleifer, Wagner (bib17) 1999; 22 Bassin, Pronk, Muyzer, Kleerebezem, Dezotti, van Loosdrecht (bib8) 2011; 77 Kong, Beer, Rees, Seviour (bib22) 2002; 148 Martín, Ivanova, Kunin, Warnecke, Barry, McHardy (bib27) 2006; 24 Erdal, Erdal, Daigger, Randall (bib18) 2008; 58 Crocetti, Banfield, Keller, Bond, Blackall (bib16) 2002; 148 Cech, Hartman (bib13) 1993; 20 Kisoglu, Erdal, Randall (bib21) 2000 Acevedo, Oehmen, Carvalho, Seco, Borras, Barat (bib1) 2012; 46 Comeau, Hall, Hancock, Oldham (bib14) 1986; 20 Smolders, van Loosdrecht, Heijnen (bib37) 1995; 31 Brdjanovic, van Loosdrecht, Hooijmans, Alaerts, Heijnen (bib9) 1997; 123 Manz, Amann, Ludwig, Wagner, Schleifer (bib26) 1992; 15 Welles, Lopez-Vazquez, Hooijmans, Van Loosdrecht, Brdjanovic (bib40) 2014; 98 Flowers, He, Yilmaz, Noguera, McMahon (bib19) 2009; 1 Lopez-Vazquez, Oehmen, Hooijmans, Brdjanovic, Gijzen, Yuan, van Loosdrecht (bib48) 2009; 43 Zhou, Pijuan, Zeng, Lu, Yuan (bib45) 2008; 42 Pereira, Lemos, Reis, Crespo, Carrondo, Santos (bib33) 1996; 30 Crocetti, Hugenholtz, Bond, Schuler, Keller, Jenkins, Blackall (bib15) 2000; 66 Mino, Arun, Tsuzuki, Matsuo (bib30) 1987 Schuler, Jenkins (bib34) 2003; 75 Wentzel, Dold, Ekama, Marais (bib41) 1985; 17 Mino, Van Loosdrecht, Heijnen (bib31) 1998; 32 Liu, Nakamura, Matsuo, Mino (bib23) 1997; 31 Lopez-Vazquez, Hooijmans, Brdjanovic, Gijzen, van Loosdrecht (bib24) 2007; 79 Barnard (10.1016/j.watres.2015.06.045_bib7) 1975; 9 Crocetti (10.1016/j.watres.2015.06.045_bib16) 2002; 148 Lanham (10.1016/j.watres.2015.06.045_bib47) 2008; 58 Metcalf and Eddy, Inc (10.1016/j.watres.2015.06.045_bib29) 2003 Winkler (10.1016/j.watres.2015.06.045_bib43) 2011; 45 Daims (10.1016/j.watres.2015.06.045_bib17) 1999; 22 Lopez-Vazquez (10.1016/j.watres.2015.06.045_bib48) 2009; 43 Carvalho (10.1016/j.watres.2015.06.045_bib12) 2007; 41 Schuler (10.1016/j.watres.2015.06.045_bib34) 2003; 75 Erdal (10.1016/j.watres.2015.06.045_bib18) 2008; 58 Peterson (10.1016/j.watres.2015.06.045_bib49) 2008; 10 Lopez-Vazquez (10.1016/j.watres.2015.06.045_bib24) 2007; 79 Hesselman (10.1016/j.watres.2015.06.045_bib20) 2000; 34 Brdjanovic (10.1016/j.watres.2015.06.045_bib11) 2000; 34 Manz (10.1016/j.watres.2015.06.045_bib26) 1992; 15 Flowers (10.1016/j.watres.2015.06.045_bib19) 2009; 1 Acevedo (10.1016/j.watres.2015.06.045_bib1) 2012; 46 Cech (10.1016/j.watres.2015.06.045_bib13) 1993; 20 Crocetti (10.1016/j.watres.2015.06.045_bib15) 2000; 66 Kong (10.1016/j.watres.2015.06.045_bib22) 2002; 148 Barat (10.1016/j.watres.2015.06.045_bib4) 2006; 53 Brdjanovic (10.1016/j.watres.2015.06.045_bib9) 1997; 123 Tian (10.1016/j.watres.2015.06.045_bib39) 2013; 92 Amann (10.1016/j.watres.2015.06.045_bib2) 1990; 56 Pereira (10.1016/j.watres.2015.06.045_bib33) 1996; 30 A.P.H.A (10.1016/j.watres.2015.06.045_bib3) 1995 Comeau (10.1016/j.watres.2015.06.045_bib14) 1986; 20 Lopez-Vazquez (10.1016/j.watres.2015.06.045_bib25) 2008; 42 Mino (10.1016/j.watres.2015.06.045_bib30) 1987 Mino (10.1016/j.watres.2015.06.045_bib31) 1998; 32 Slater (10.1016/j.watres.2015.06.045_bib35) 2010; 44 Sudiana (10.1016/j.watres.2015.06.045_bib38) 1999; 39 Smolders (10.1016/j.watres.2015.06.045_bib37) 1995; 31 Welles (10.1016/j.watres.2015.06.045_bib40) 2014; 98 Liu (10.1016/j.watres.2015.06.045_bib23) 1997; 31 He (10.1016/j.watres.2015.06.045_bib46) 2007; 73 Zhou (10.1016/j.watres.2015.06.045_bib45) 2008; 42 Martín (10.1016/j.watres.2015.06.045_bib27) 2006; 24 Wentzel (10.1016/j.watres.2015.06.045_bib42) 1987 Wentzel (10.1016/j.watres.2015.06.045_bib41) 1985; 17 Barat (10.1016/j.watres.2015.06.045_bib5) 2006; 40 Bassin (10.1016/j.watres.2015.06.045_bib8) 2011; 77 Maurer (10.1016/j.watres.2015.06.045_bib28) 1997; 31 Brdjanovic (10.1016/j.watres.2015.06.045_bib10) 1998; 50 Barat (10.1016/j.watres.2015.06.045_bib6) 2008; 42 Kisoglu (10.1016/j.watres.2015.06.045_bib21) 2000 Smolders (10.1016/j.watres.2015.06.045_bib36) 1994; 43 Zeng (10.1016/j.watres.2015.06.045_bib44) 2003; 81 |
References_xml | – volume: 56 start-page: 1919 year: 1990 end-page: 1925 ident: bib2 article-title: Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations publication-title: Appl. Environ. Microbiol. – volume: 42 start-page: 3415 year: 2008 end-page: 3424 ident: bib6 article-title: Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism publication-title: Water Res. – volume: 98 start-page: 7609 year: 2014 end-page: 7622 ident: bib40 article-title: Impact of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) publication-title: Appl. Microbiol. Biotechnol. – volume: 31 start-page: 1430 year: 1997 end-page: 1438 ident: bib23 article-title: Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors-effect of P/C feeding ratio publication-title: Water Res. – volume: 20 start-page: 1511 year: 1986 end-page: 1521 ident: bib14 article-title: Biochemical-model for enhanced biological phosphorus removal publication-title: Water Res. – volume: 31 start-page: 79 year: 1995 end-page: 97 ident: bib37 article-title: A metabolic model for the biological phosphorus removal process publication-title: Water Sci. Technol. – volume: 42 start-page: 3561 year: 2008 end-page: 3562 ident: bib25 article-title: Comment on “ Could polyphosphate-accumulating organisms (PAO) be glycogen-accumulating organisms (GAO)?” by Zhou, Y., Pijuan, M., Zeng, R., Lu, Huabing and Yuan Z. Water Res.. (2008) doi:10.1016/jwaterres.2008.01.003 publication-title: Water Res. – volume: 41 start-page: 4383 year: 2007 end-page: 4396 ident: bib12 article-title: Denitrifying phosphorus removal: linking the process performance with the microbial community structure publication-title: Water Res. – volume: 34 start-page: 3487 year: 2000 ident: bib20 article-title: Anaerobic metabolism of bacteria performing enhanced biological phosphate removal publication-title: Water Res. – volume: 92 start-page: 1314 year: 2013 end-page: 1320 ident: bib39 article-title: Occurrence of PAOI in a low temperature EBPR system publication-title: Chemosphere – volume: 79 start-page: 2487 year: 2007 end-page: 2498 ident: bib24 article-title: A practical method for the quantification of phosphorus- and glycogen-accumulating organisms populations in activated sludge systems publication-title: Water Environ. Res. – volume: 1 start-page: 583 year: 2009 end-page: 588 ident: bib19 article-title: Denitrification capabilities of two biological phosphorus removal sludges dominated by different ‘ publication-title: Environ. Microbiol. Rep. – volume: 22 start-page: 345 year: 1999 end-page: 352 ident: bib17 article-title: The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set publication-title: Syst. Appl. Microbiol. – start-page: 27 year: 1987 end-page: 38 ident: bib30 article-title: Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process publication-title: Biological Phosphate Removal from Wastewaters, Advances in Water Pollution Control – volume: 42 start-page: 2361 year: 2008 end-page: 2368 ident: bib45 article-title: Could polyphosphate-accumulating organisms (PAO) be glycogen-accumulating organisms (GAO)? publication-title: Water Res. – volume: 40 start-page: 3507 year: 2006 end-page: 3516 ident: bib5 article-title: Potential phosphorus recovery in a WWTP with the BCFS process: interactions with the biological process publication-title: Water Res. – volume: 24 start-page: 1263 year: 2006 end-page: 1269 ident: bib27 article-title: Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities publication-title: Nat. Biotechnol. – volume: 75 start-page: 485 year: 2003 end-page: 498 ident: bib34 article-title: Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, part 1: experimental results and comparison with metabolic models publication-title: Water Environ. Res. – volume: 15 start-page: 593 year: 1992 end-page: 600 ident: bib26 article-title: Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions publication-title: Syst. Appl. Micobiol. – volume: 43 start-page: 461 year: 1994 end-page: 470 ident: bib36 article-title: Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence publication-title: Biotechnol. Bioeng. – volume: 77 start-page: 7942 year: 2011 end-page: 7953 ident: bib8 article-title: Effect of elevated salt concentrations on the aerobic granular sludge process: linking microbial activity with microbial community structure publication-title: Appl. Environ. Microbiol. – volume: 17 start-page: 57 year: 1985 end-page: 71 ident: bib41 article-title: Kinetics of biological phosphorus release publication-title: Water Sci. Technol. – volume: 81 start-page: 92 year: 2003 end-page: 105 ident: bib44 article-title: Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems publication-title: Biotechnol. Bioeng. – volume: 32 start-page: 3193 year: 1998 end-page: 3207 ident: bib31 article-title: Microbiology and biochemistry of the enhanced biological phosphate removal process publication-title: Water Res. – start-page: 79 year: 1987 end-page: 91 ident: bib42 article-title: Experiments towards establishing the kinetics of biological excess phosphorus removal publication-title: Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters – volume: 50 start-page: 273 year: 1998 end-page: 276 ident: bib10 article-title: Effect of polyphosphate limitation on the anaerobic metabolism of phosphorus-accumulating microorganisms publication-title: Appl. Microbiol. Biotechnol. – volume: 34 start-page: 846 year: 2000 end-page: 858 ident: bib11 article-title: Modeling COD, N and P removal in a full-scale sstp Haarlem Waarderpolder publication-title: Water Res. – volume: 53 start-page: 29 year: 2006 end-page: 37 ident: bib4 article-title: Calcium effect on enhanced biological phosphorus removal publication-title: Water Sci. Technol. – year: 2003 ident: bib29 article-title: Wastewater Engineering - Treatment and Reuse – volume: 10 start-page: 2692 year: 2008 end-page: 2703 ident: bib49 article-title: Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal publication-title: Environ. Microbiol. – volume: 45 start-page: 3291 year: 2011 end-page: 3299 ident: bib43 article-title: Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO–GAO competition at high temperatures publication-title: Water Res. – volume: 30 start-page: 2128 year: 1996 ident: bib33 article-title: Model for carbon metabolism in biological phosphorus removal processes based on in vivo C13-NMR labelling experiments publication-title: Water Res. – volume: 148 start-page: 3353 year: 2002 end-page: 3364 ident: bib16 article-title: Glycogen accumulating organisms in laboratory-scale and full-scale wastewater treatment processes publication-title: Microbiology – year: 2000 ident: bib21 article-title: The effect of COD/TP ratio on intracellular storage materials, system performance and kinetic parameters in a BNR system publication-title: Proceedings of the 73rd Annual Water Environment Federation Technical Exposition and Conference – volume: 46 start-page: 1889 year: 2012 end-page: 1900 ident: bib1 article-title: Metabolic shift of polyphosphate-accumulating organisms with different levels of poly-phosphate storage publication-title: Water Res. – volume: 43 start-page: 450 year: 2009 end-page: 462 ident: bib48 article-title: Modeling the PAO–GAO competition: effects of carbon source, pH and temperature publication-title: Water Res. – volume: 39 year: 1999 ident: bib38 article-title: Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glyucose as carbon source publication-title: Water Sci. Technol. – year: 1995 ident: bib3 article-title: Standard Methods for the Examination of Water and Waste Water – volume: 58 start-page: 1693 year: 2008 end-page: 1697 ident: bib47 article-title: Kinetic and metabolic aspects of Defluviicoccus vanus-related organisms as competitors in EBPR systems publication-title: Water Sci. Technol. – volume: 66 start-page: 1175 year: 2000 end-page: 1182 ident: bib15 article-title: Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation publication-title: Appl. Environ. Microbiol. – volume: 58 start-page: 1329 year: 2008 end-page: 1334 ident: bib18 article-title: Is it PAO-GAO competition or metabolic shift in EBPR system? Evidence form an experimental study publication-title: Water Sci. Technol. – volume: 44 start-page: 4908 year: 2010 end-page: 4923 ident: bib35 article-title: Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP) publication-title: Water Res. – volume: 123 start-page: 144 year: 1997 end-page: 154 ident: bib9 article-title: Temperature effects on physiology of biological phosphorus removal publication-title: J. Environ. Eng. ASCE – volume: 73 start-page: 5865 year: 2007 end-page: 5874 ident: bib46 article-title: “Candidatus Accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes publication-title: Appl. Environ. Microbiol. – volume: 20 start-page: 1511 year: 1993 ident: bib13 article-title: Glucose-induced between polyphosphate and polysaccharide accumulating accumulating bacteria in ehanced biological phosphorus removal publication-title: Water Res. – volume: 9 start-page: 458 year: 1975 end-page: 490 ident: bib7 article-title: Biological nutrient removal without addition of chemicals publication-title: Water Res. – volume: 148 start-page: 2299 year: 2002 end-page: 2307 ident: bib22 article-title: Functional analysis of microbial communities in aerobic-anaerobic sequencing batch reactors fed with different phosphorus/carbon )P/C) ratios publication-title: Microbiology – volume: 31 start-page: 907 year: 1997 end-page: 917 ident: bib28 article-title: Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems publication-title: Water Res. – year: 2003 ident: 10.1016/j.watres.2015.06.045_bib29 – start-page: 27 year: 1987 ident: 10.1016/j.watres.2015.06.045_bib30 article-title: Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process – volume: 20 start-page: 1511 issue: 12 year: 1986 ident: 10.1016/j.watres.2015.06.045_bib14 article-title: Biochemical-model for enhanced biological phosphorus removal publication-title: Water Res. doi: 10.1016/0043-1354(86)90115-6 – volume: 43 start-page: 461 year: 1994 ident: 10.1016/j.watres.2015.06.045_bib36 article-title: Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260430605 – volume: 40 start-page: 3507 issue: 19 year: 2006 ident: 10.1016/j.watres.2015.06.045_bib5 article-title: Potential phosphorus recovery in a WWTP with the BCFS process: interactions with the biological process publication-title: Water Res. doi: 10.1016/j.watres.2006.08.006 – volume: 148 start-page: 3353 year: 2002 ident: 10.1016/j.watres.2015.06.045_bib16 article-title: Glycogen accumulating organisms in laboratory-scale and full-scale wastewater treatment processes publication-title: Microbiology doi: 10.1099/00221287-148-11-3353 – volume: 44 start-page: 4908 issue: 17 year: 2010 ident: 10.1016/j.watres.2015.06.045_bib35 article-title: Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP) publication-title: Water Res. doi: 10.1016/j.watres.2010.07.028 – volume: 73 start-page: 5865 issue: 18 year: 2007 ident: 10.1016/j.watres.2015.06.045_bib46 article-title: “Candidatus Accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01207-07 – volume: 42 start-page: 3415 issue: 13 year: 2008 ident: 10.1016/j.watres.2015.06.045_bib6 article-title: Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism publication-title: Water Res. doi: 10.1016/j.watres.2008.05.003 – volume: 42 start-page: 3561 year: 2008 ident: 10.1016/j.watres.2015.06.045_bib25 article-title: Comment on “ Could polyphosphate-accumulating organisms (PAO) be glycogen-accumulating organisms (GAO)?” by Zhou, Y., Pijuan, M., Zeng, R., Lu, Huabing and Yuan Z. Water Res.. (2008) doi:10.1016/jwaterres.2008.01.003 publication-title: Water Res. doi: 10.1016/j.watres.2008.03.019 – volume: 43 start-page: 450 issue: 2 year: 2009 ident: 10.1016/j.watres.2015.06.045_bib48 article-title: Modeling the PAO–GAO competition: effects of carbon source, pH and temperature publication-title: Water Res. doi: 10.1016/j.watres.2008.10.032 – volume: 45 start-page: 3291 issue: 11 year: 2011 ident: 10.1016/j.watres.2015.06.045_bib43 article-title: Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO–GAO competition at high temperatures publication-title: Water Res. doi: 10.1016/j.watres.2011.03.024 – volume: 22 start-page: 345 year: 1999 ident: 10.1016/j.watres.2015.06.045_bib17 article-title: The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set publication-title: Syst. Appl. Microbiol. doi: 10.1016/S0723-2020(99)80053-8 – volume: 58 start-page: 1693 issue: 8 year: 2008 ident: 10.1016/j.watres.2015.06.045_bib47 article-title: Kinetic and metabolic aspects of Defluviicoccus vanus-related organisms as competitors in EBPR systems publication-title: Water Sci. Technol. doi: 10.2166/wst.2008.552 – volume: 31 start-page: 79 year: 1995 ident: 10.1016/j.watres.2015.06.045_bib37 article-title: A metabolic model for the biological phosphorus removal process publication-title: Water Sci. Technol. doi: 10.2166/wst.1995.0078 – volume: 24 start-page: 1263 year: 2006 ident: 10.1016/j.watres.2015.06.045_bib27 article-title: Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities publication-title: Nat. Biotechnol. doi: 10.1038/nbt1247 – volume: 31 start-page: 907 issue: 4 year: 1997 ident: 10.1016/j.watres.2015.06.045_bib28 article-title: Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems publication-title: Water Res. doi: 10.1016/S0043-1354(96)00369-7 – volume: 42 start-page: 2361 year: 2008 ident: 10.1016/j.watres.2015.06.045_bib45 article-title: Could polyphosphate-accumulating organisms (PAO) be glycogen-accumulating organisms (GAO)? publication-title: Water Res. doi: 10.1016/j.watres.2008.01.003 – volume: 46 start-page: 1889 year: 2012 ident: 10.1016/j.watres.2015.06.045_bib1 article-title: Metabolic shift of polyphosphate-accumulating organisms with different levels of poly-phosphate storage publication-title: Water Res. doi: 10.1016/j.watres.2012.01.003 – volume: 34 start-page: 846 issue: 3 year: 2000 ident: 10.1016/j.watres.2015.06.045_bib11 article-title: Modeling COD, N and P removal in a full-scale sstp Haarlem Waarderpolder publication-title: Water Res. doi: 10.1016/S0043-1354(99)00219-5 – volume: 41 start-page: 4383 issue: 19 year: 2007 ident: 10.1016/j.watres.2015.06.045_bib12 article-title: Denitrifying phosphorus removal: linking the process performance with the microbial community structure publication-title: Water Res. doi: 10.1016/j.watres.2007.06.065 – volume: 92 start-page: 1314 year: 2013 ident: 10.1016/j.watres.2015.06.045_bib39 article-title: Occurrence of PAOI in a low temperature EBPR system publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.05.009 – volume: 17 start-page: 57 year: 1985 ident: 10.1016/j.watres.2015.06.045_bib41 article-title: Kinetics of biological phosphorus release publication-title: Water Sci. Technol. doi: 10.2166/wst.1985.0221 – volume: 56 start-page: 1919 year: 1990 ident: 10.1016/j.watres.2015.06.045_bib2 article-title: Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.56.6.1919-1925.1990 – volume: 66 start-page: 1175 year: 2000 ident: 10.1016/j.watres.2015.06.045_bib15 article-title: Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.3.1175-1182.2000 – year: 1995 ident: 10.1016/j.watres.2015.06.045_bib3 – volume: 58 start-page: 1329 issue: 6 year: 2008 ident: 10.1016/j.watres.2015.06.045_bib18 article-title: Is it PAO-GAO competition or metabolic shift in EBPR system? Evidence form an experimental study publication-title: Water Sci. Technol. doi: 10.2166/wst.2008.734 – volume: 15 start-page: 593 year: 1992 ident: 10.1016/j.watres.2015.06.045_bib26 article-title: Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions publication-title: Syst. Appl. Micobiol. doi: 10.1016/S0723-2020(11)80121-9 – volume: 75 start-page: 485 issue: 6 year: 2003 ident: 10.1016/j.watres.2015.06.045_bib34 article-title: Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, part 1: experimental results and comparison with metabolic models publication-title: Water Environ. Res. doi: 10.2175/106143003X141286 – volume: 98 start-page: 7609 issue: 12 year: 2014 ident: 10.1016/j.watres.2015.06.045_bib40 article-title: Impact of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-5778-4 – volume: 81 start-page: 92 issue: 1 year: 2003 ident: 10.1016/j.watres.2015.06.045_bib44 article-title: Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.10455 – year: 2000 ident: 10.1016/j.watres.2015.06.045_bib21 article-title: The effect of COD/TP ratio on intracellular storage materials, system performance and kinetic parameters in a BNR system – volume: 34 start-page: 3487 year: 2000 ident: 10.1016/j.watres.2015.06.045_bib20 article-title: Anaerobic metabolism of bacteria performing enhanced biological phosphate removal publication-title: Water Res. doi: 10.1016/S0043-1354(00)00092-0 – volume: 123 start-page: 144 issue: 2 year: 1997 ident: 10.1016/j.watres.2015.06.045_bib9 article-title: Temperature effects on physiology of biological phosphorus removal publication-title: J. Environ. Eng. ASCE doi: 10.1061/(ASCE)0733-9372(1997)123:2(144) – volume: 20 start-page: 1511 year: 1993 ident: 10.1016/j.watres.2015.06.045_bib13 article-title: Glucose-induced between polyphosphate and polysaccharide accumulating accumulating bacteria in ehanced biological phosphorus removal publication-title: Water Res. – volume: 79 start-page: 2487 issue: 13 year: 2007 ident: 10.1016/j.watres.2015.06.045_bib24 article-title: A practical method for the quantification of phosphorus- and glycogen-accumulating organisms populations in activated sludge systems publication-title: Water Environ. Res. doi: 10.2175/106143007X220798 – volume: 39 issue: 29 year: 1999 ident: 10.1016/j.watres.2015.06.045_bib38 article-title: Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glyucose as carbon source publication-title: Water Sci. Technol. – volume: 50 start-page: 273 year: 1998 ident: 10.1016/j.watres.2015.06.045_bib10 article-title: Effect of polyphosphate limitation on the anaerobic metabolism of phosphorus-accumulating microorganisms publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051289 – volume: 30 start-page: 2128 year: 1996 ident: 10.1016/j.watres.2015.06.045_bib33 article-title: Model for carbon metabolism in biological phosphorus removal processes based on in vivo C13-NMR labelling experiments publication-title: Water Res. doi: 10.1016/0043-1354(96)00035-8 – volume: 148 start-page: 2299 year: 2002 ident: 10.1016/j.watres.2015.06.045_bib22 article-title: Functional analysis of microbial communities in aerobic-anaerobic sequencing batch reactors fed with different phosphorus/carbon )P/C) ratios publication-title: Microbiology doi: 10.1099/00221287-148-8-2299 – volume: 32 start-page: 3193 issue: 11 year: 1998 ident: 10.1016/j.watres.2015.06.045_bib31 article-title: Microbiology and biochemistry of the enhanced biological phosphate removal process publication-title: Water Res. doi: 10.1016/S0043-1354(98)00129-8 – volume: 9 start-page: 458 issue: 5–6 year: 1975 ident: 10.1016/j.watres.2015.06.045_bib7 article-title: Biological nutrient removal without addition of chemicals publication-title: Water Res. – volume: 1 start-page: 583 issue: 6 year: 2009 ident: 10.1016/j.watres.2015.06.045_bib19 article-title: Denitrification capabilities of two biological phosphorus removal sludges dominated by different ‘Candidatus Accumulibacter’ clades publication-title: Environ. Microbiol. Rep. doi: 10.1111/j.1758-2229.2009.00090.x – volume: 10 start-page: 2692 issue: 10 year: 2008 ident: 10.1016/j.watres.2015.06.045_bib49 article-title: Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2008.01690.x – volume: 53 start-page: 29 issue: 12 year: 2006 ident: 10.1016/j.watres.2015.06.045_bib4 article-title: Calcium effect on enhanced biological phosphorus removal publication-title: Water Sci. Technol. doi: 10.2166/wst.2006.403 – volume: 77 start-page: 7942 issue: 22 year: 2011 ident: 10.1016/j.watres.2015.06.045_bib8 article-title: Effect of elevated salt concentrations on the aerobic granular sludge process: linking microbial activity with microbial community structure publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.05016-11 – volume: 31 start-page: 1430 issue: 6 year: 1997 ident: 10.1016/j.watres.2015.06.045_bib23 article-title: Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors-effect of P/C feeding ratio publication-title: Water Res. doi: 10.1016/S0043-1354(96)00352-1 – start-page: 79 year: 1987 ident: 10.1016/j.watres.2015.06.045_bib42 article-title: Experiments towards establishing the kinetics of biological excess phosphorus removal |
SSID | ssj0002239 |
Score | 2.505568 |
Snippet | The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 354 |
SubjectTerms | acetates Acetates - metabolism Anaerobiosis Betaproteobacteria - classification Betaproteobacteria - metabolism Biodegradation, Environmental Biological biomass Bioreactors Cladding Constraining Enhanced biological phosphorus removal (EBPR) Fatty Acids, Volatile - metabolism Glycogen - metabolism Glycogen-accumulating organisms (GAO) Intracellular P-content long term experiments Metabolic shift Metabolism Organisms Phosphate-accumulating organisms (PAO) phosphorus Phosphorus - metabolism Phosphorus removal Polyphosphates - metabolism Stoichiometry Uptakes Waste Disposal, Fluid Water Pollutants, Chemical - metabolism ‘Candidatus Accumulibacter phosphatis’ Clade I and II |
Title | Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake |
URI | https://dx.doi.org/10.1016/j.watres.2015.06.045 https://www.ncbi.nlm.nih.gov/pubmed/26189167 https://www.proquest.com/docview/1712768538 https://www.proquest.com/docview/1730069247 https://www.proquest.com/docview/2000300067 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQvbQHRFtalrYrV-IaSGxnnRxXqKvdVuUE0t6siWMjSsiuSFaIC3-hf7kzTkJbqYDUS5REHsuJJ_MRz3tm7DC3Os7yQkdKajwQ-WzuUoji2IoiA_A-I4Dz99PJ_Fx9XabLLXYyYGGorLK3_Z1ND9a6v3Pcv83j9eUlYXzR-ckUPZAkNMKSEOxKk5Yf3f8u80D3lw-rzNR6gM-FGq9bIEAGFXilgcWTQE3_dk-PhZ_BDc122U4fP_JpN8TXbMvVb9irP1gF37KfU2s3oeopMDFzW0HpGk4ZJ19wqEu-WPB1BxhAAX6FouGPdnXHh_1SWn5R3dkValcEXW9A9dG82wSquW74tWtRf6pwjj1hv-CI08nyBm1R4Lzlm3ULV26Pnc--nJ3Mo37fhcimQrdR4jRgGICp2ESBsqBcXnqMg6zPHBQOvJW-SEDaXIuJ93FZSEwTJ9IWXjnhQb5j2_WqdvuM5wI1xGZeZCWGaqnOPQ5aopURPpZlkY6YHF63sT0pOe2NUZmh-uyH6SbJ0CQZKsJTKBU9SK07Uo5n2uthJs1fymXQbzwj-XmYeIPfHS2mQO1Wm8YkOhGYqqG_eKqNJCZoofTjbUTISiloGLH3nWY9PBNmtxmG7_rgv8f_gb2kK3K2SfqRbbc3G_cJo6i2GIfPZMxeTBff5qe_APg7IUM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcUHkXChiJa9TEjtfJcVW12tB2T620N2vi2Kg0za5IVqi_gr_MjJOsQGqpxCWKEo_leMbziGc-M_YltzrO8lJHqdR4IfDZ3CmI4tiKMgPwPqMC5_PFdH6Zfl2q5Q47GmthKK1y0P29Tg_aenhyOMzm4frqimp80fhJhRZIUjXC8hHbJXQqNWG7s-J0vtgqZLSA-bjRTARjBV1I8_oJVJNBOV4qAHlSXdPdFuo-DzRYopM99mxwIfmsH-VztuOaF-zpH8CCL9mvmbWbkPgUwJi5raFyLaegkxccmooXBV_3NQNIwK-RNPzUrm_5eGRKx7_Vt3aFAhZB3xtQijTvz4Fqb1p-4zoUoTrcY0_YLziCdbK8RXUUYG_5Zt3BtXvFLk-OL47m0XD0QmSV0F2UOA3oCWA0Nk0htZC6vPLoClmfOSgdeCt9mYC0uRZT7-OqlBgpTqUtfeqEB_maTZpV494yngsUEpt5kVXorSmdexy0REUjfCyrUu0zOU63sQMuOR2PUZsxAe276ZlkiEmG8vBSpIq2VOsel-OB9nrkpPlLvgyajgcoP4-MN7j0aD8FGrfatCbRicBoDU3Gv9pIAoMWqb6_jQiBKfkN--xNL1nbb8IAN0MPXr_77_F_Yo_nF-dn5qxYnL5nT-gN2d5EHbBJ92PjPqBT1ZUfh0XzG8ErI_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accumulibacter+clades+Type+I+and+II+performing+kinetically+different+glycogen-accumulating+organisms+metabolisms+for+anaerobic+substrate+uptake&rft.jtitle=Water+research+%28Oxford%29&rft.au=Welles%2C+L&rft.au=Tian%2C+W+D&rft.au=Saad%2C+S&rft.au=Abbas%2C+B&rft.date=2015-10-15&rft.issn=0043-1354&rft.volume=83&rft.spage=354&rft.epage=366&rft_id=info:doi/10.1016%2Fj.watres.2015.06.045&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |