Mesenchymal markers on human adipose stem/progenitor cells

The stromal‐vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described three major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45−/CD31+/CD34+), pe...

Full description

Saved in:
Bibliographic Details
Published inCytometry. Part A Vol. 83A; no. 1; pp. 134 - 140
Main Authors Zimmerlin, Ludovic, Donnenberg, Vera S., Rubin, J. Peter, Donnenberg, Albert D.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The stromal‐vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described three major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45−/CD31+/CD34+), pericytes (CD45−/CD31−/CD146+), and supra‐adventitial adipose stromal cells (SA‐ASC, CD45−/CD31−/CD146−/CD34+). EPC are luminal, pericytes are adventitial, and SA‐ASC surround the vessel like a sheath. The multipotency of the pericytes and SA‐ASC compartments is strikingly similar to that of CD45−/CD34−/CD73+/CD105+/CD90+ bone marrow‐derived mesenchymal stem cells (BM‐MSC). Here, we determine the extent to which this mesenchymal pattern is expressed on the three adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105‐FITC/CD73‐PE/CD146‐PETXR/CD14‐PECY5/CD33‐PECY5/CD235A‐PECY5/CD31‐PECY7/CD90‐APC/CD34‐A700/CD45‐APCCY7/DAPI). Adipose EPC were highly proliferative with (14.3 ± 2.8)% (mean ± SEM) having >2N DNA. About half (53.1 ± 7.6)% coexpressed CD73 and CD105, and (71.9 ± 7.4)% expressed CD90. Pericytes were less proliferative [(8.2 ± 3.4)% >2N DNA)] with a smaller proportion [(29.6 ± 6.9)% CD73+/CD105+, (60.5 ± 10.2)% CD90+] expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes were both highly proliferative [(15.1 ± 3.6)% with >2N DNA] and of uniform mesenchymal phenotype [(93.3 ± 3.7)% CD73+/CD105+, (97.8 ± 0.7)% CD90+], suggesting transit amplifying progenitor cells. SA‐ASC were the least proliferative [(3.7 ± 0.8)%>2N DNA] but were also highly mesenchymal in phenotype [(94.4 ± 3.2)% CD73+/CD105+, (95.5 ± 1.2)% CD90+]. These data imply a progenitor/progeny relationship between pericytes and SA‐ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM‐MSC, SA‐ASC are distinguished by CD34 expression. © 2012 International Society for Advancement of Cytometry
AbstractList The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described three major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45-/CD31+/CD34+), pericytes (CD45-/CD31-/CD146+), and supra-adventitial adipose stromal cells (SA-ASC, CD45-/CD31-/CD146-/CD34+). EPC are luminal, pericytes are adventitial, and SA-ASC surround the vessel like a sheath. The multipotency of the pericytes and SA-ASC compartments is strikingly similar to that of CD45-/CD34-/CD73+/CD105+/CD90+ bone marrow-derived mesenchymal stem cells (BM-MSC). Here, we determine the extent to which this mesenchymal pattern is expressed on the three adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105-FITC/CD73-PE/CD146-PETXR/CD14-PECY5/CD33-PECY5/CD235A-PECY5 / CD31-PECY7/CD90-APC/CD34-A700/CD45-APCCY7/DAPI). Adipose EPC were highly proliferative with (14.3 plus or minus 2.8)% (mean plus or minus SEM) having >2N DNA. About half (53.1 plus or minus 7.6)% coexpressed CD73 and CD105, and (71.9 plus or minus 7.4)% expressed CD90. Pericytes were less proliferative [(8.2 plus or minus 3.4)% >2N DNA)] with a smaller proportion [(29.6 plus or minus 6.9)% CD73+/CD105+, (60.5 plus or minus 10.2)% CD90+] expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes were both highly proliferative [(15.1 plus or minus 3.6)% with >2N DNA] and of uniform mesenchymal phenotype [(93.3 plus or minus 3.7)% CD73+/CD105+, (97.8 plus or minus 0.7)% CD90+], suggesting transit amplifying progenitor cells. SA-ASC were the least proliferative [(3.7 plus or minus 0.8)%>2N DNA] but were also highly mesenchymal in phenotype [(94.4 plus or minus 3.2)% CD73+/CD105+, (95.5 plus or minus 1.2)% CD90+]. These data imply a progenitor/progeny relationship between pericytes and SA-ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM-MSC, SA-ASC are distinguished by CD34 expression. copyright 2012 International Society for Advancement of Cytometry
Abstract The stromal‐vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described three major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45−/CD31+/CD34+), pericytes (CD45−/CD31−/CD146+), and supra‐adventitial adipose stromal cells (SA‐ASC, CD45−/CD31−/CD146−/CD34+). EPC are luminal, pericytes are adventitial, and SA‐ASC surround the vessel like a sheath. The multipotency of the pericytes and SA‐ASC compartments is strikingly similar to that of CD45−/CD34−/CD73+/CD105+/CD90+ bone marrow‐derived mesenchymal stem cells (BM‐MSC). Here, we determine the extent to which this mesenchymal pattern is expressed on the three adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105‐FITC/CD73‐PE/CD146‐PETXR/CD14‐PECY5/CD33‐PECY5/CD235A‐PECY5/CD31‐PECY7/CD90‐APC/CD34‐A700/CD45‐APCCY7/DAPI). Adipose EPC were highly proliferative with (14.3 ± 2.8)% (mean ± SEM) having >2 N DNA. About half (53.1 ± 7.6)% coexpressed CD73 and CD105, and (71.9 ± 7.4)% expressed CD90. Pericytes were less proliferative [(8.2 ± 3.4)% >2 N DNA)] with a smaller proportion [(29.6 ± 6.9)% CD73+/CD105+, (60.5 ± 10.2)% CD90+] expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes were both highly proliferative [(15.1 ± 3.6)% with >2 N DNA] and of uniform mesenchymal phenotype [(93.3 ± 3.7)% CD73+/CD105+, (97.8 ± 0.7)% CD90+], suggesting transit amplifying progenitor cells. SA‐ASC were the least proliferative [(3.7 ± 0.8)%>2 N DNA] but were also highly mesenchymal in phenotype [(94.4 ± 3.2)% CD73+/CD105+, (95.5 ± 1.2)% CD90+]. These data imply a progenitor/progeny relationship between pericytes and SA‐ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM‐MSC, SA‐ASC are distinguished by CD34 expression. © 2012 International Society for Advancement of Cytometry
The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described 3 major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45−/CD31+/CD34+), pericytes (CD45−/CD31−/CD146+) and supra-adventitial adipose stromal cells (SA-ASC, CD45−/CD31−/CD146−/CD34+). EPC are luminal, pericytes are adventitial and SA-ASC surround the vessel like a sheath. The multipotency of the pericytes and SA-ASC compartments is strikingly similar to that of CD45−/CD34−/CD73+/CD105+/CD90+ bone marrow-derived mesenchymal stem cells (BM-MSC). Here we determine the extent to which this mesenchymal expression pattern is expressed on the 3 adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105-FITC/CD73-PE/CD146-PETXR/CD14-PECY5/CD33-PECY5/CD235A-PECY5/CD31-PECY7/CD90-APC/CD34-A700/CD45-APCCY7/DAPI). Adipose EPC were highly proliferative with 14.3±2.8% (mean ± SEM) having >2N DNA. About half (53.1±7.6%) coexpressed CD73 and CD105, and 71.9±7.4% expressed CD90. Pericytes were less proliferative (8.2±3.4% >2N DNA) with a smaller proportion (29.6±6.9% CD73+/CD105+, 60.5±10.2% CD90+) expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes, were both highly proliferative (15.1±3.6% with >2N DNA) and of uniform mesenchymal phenotype (93.3±3.7% CD73+/CD105+, 97.8±0.7% CD90+), suggesting transit amplifying progenitor cells. SA-ASC were the least proliferative (3.7 ± 0.8%>2N DNA) but were also highly mesenchymal in phenotype (94.4±3.2% CD73+/CD105+, 95.5±1.2% CD90+). These data imply a progenitor/progeny relationship between pericytes and SA-ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM-MSC, SA-ASC are distinguished by CD34 expression.
The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described three major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45-/CD31+/CD34+), pericytes (CD45-/CD31-/CD146+), and supra-adventitial adipose stromal cells (SA-ASC, CD45-/CD31-/CD146-/CD34+). EPC are luminal, pericytes are adventitial, and SA-ASC surround the vessel like a sheath. The multipotency of the pericytes and SA-ASC compartments is strikingly similar to that of CD45-/CD34-/CD73+/CD105+/CD90+ bone marrow-derived mesenchymal stem cells (BM-MSC). Here, we determine the extent to which this mesenchymal pattern is expressed on the three adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105-FITC/CD73-PE/CD146-PETXR/CD14-PECY5/CD33-PECY5/CD235A-PECY5/CD31-PECY7/CD90-APC/CD34-A700/CD45-APCCY7/DAPI). Adipose EPC were highly proliferative with (14.3 ± 2.8)% (mean ± SEM) having >2N DNA. About half (53.1 ± 7.6)% coexpressed CD73 and CD105, and (71.9 ± 7.4)% expressed CD90. Pericytes were less proliferative [(8.2 ± 3.4)% >2N DNA)] with a smaller proportion [(29.6 ± 6.9)% CD73+/CD105+, (60.5 ± 10.2)% CD90+] expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes were both highly proliferative [(15.1 ± 3.6)% with >2N DNA] and of uniform mesenchymal phenotype [(93.3 ± 3.7)% CD73+/CD105+, (97.8 ± 0.7)% CD90+], suggesting transit amplifying progenitor cells. SA-ASC were the least proliferative [(3.7 ± 0.8)%>2N DNA] but were also highly mesenchymal in phenotype [(94.4 ± 3.2)% CD73+/CD105+, (95.5 ± 1.2)% CD90+]. These data imply a progenitor/progeny relationship between pericytes and SA-ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM-MSC, SA-ASC are distinguished by CD34 expression.
The stromal‐vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described three major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45−/CD31+/CD34+), pericytes (CD45−/CD31−/CD146+), and supra‐adventitial adipose stromal cells (SA‐ASC, CD45−/CD31−/CD146−/CD34+). EPC are luminal, pericytes are adventitial, and SA‐ASC surround the vessel like a sheath. The multipotency of the pericytes and SA‐ASC compartments is strikingly similar to that of CD45−/CD34−/CD73+/CD105+/CD90+ bone marrow‐derived mesenchymal stem cells (BM‐MSC). Here, we determine the extent to which this mesenchymal pattern is expressed on the three adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105‐FITC/CD73‐PE/CD146‐PETXR/CD14‐PECY5/CD33‐PECY5/CD235A‐PECY5/CD31‐PECY7/CD90‐APC/CD34‐A700/CD45‐APCCY7/DAPI). Adipose EPC were highly proliferative with (14.3 ± 2.8)% (mean ± SEM) having >2N DNA. About half (53.1 ± 7.6)% coexpressed CD73 and CD105, and (71.9 ± 7.4)% expressed CD90. Pericytes were less proliferative [(8.2 ± 3.4)% >2N DNA)] with a smaller proportion [(29.6 ± 6.9)% CD73+/CD105+, (60.5 ± 10.2)% CD90+] expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes were both highly proliferative [(15.1 ± 3.6)% with >2N DNA] and of uniform mesenchymal phenotype [(93.3 ± 3.7)% CD73+/CD105+, (97.8 ± 0.7)% CD90+], suggesting transit amplifying progenitor cells. SA‐ASC were the least proliferative [(3.7 ± 0.8)%>2N DNA] but were also highly mesenchymal in phenotype [(94.4 ± 3.2)% CD73+/CD105+, (95.5 ± 1.2)% CD90+]. These data imply a progenitor/progeny relationship between pericytes and SA‐ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM‐MSC, SA‐ASC are distinguished by CD34 expression. © 2012 International Society for Advancement of Cytometry
The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described three major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45-/CD31+/CD34+), pericytes (CD45-/CD31-/CD146+), and supra-adventitial adipose stromal cells (SA-ASC, CD45-/CD31-/CD146-/CD34+). EPC are luminal, pericytes are adventitial, and SA-ASC surround the vessel like a sheath. The multipotency of the pericytes and SA-ASC compartments is strikingly similar to that of CD45-/CD34-/CD73+/CD105+/CD90+ bone marrow-derived mesenchymal stem cells (BM-MSC). Here, we determine the extent to which this mesenchymal pattern is expressed on the three adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105-FITC/CD73-PE/CD146-PETXR/CD14-PECY5/CD33-PECY5/CD235A-PECY5/CD31-PECY7/CD90-APC/CD34-A700/CD45-APCCY7/DAPI). Adipose EPC were highly proliferative with (14.3 ± 2.8)% (mean ± SEM) having >2N DNA. About half (53.1 ± 7.6)% coexpressed CD73 and CD105, and (71.9 ± 7.4)% expressed CD90. Pericytes were less proliferative [(8.2 ± 3.4)% >2N DNA)] with a smaller proportion [(29.6 ± 6.9)% CD73+/CD105+, (60.5 ± 10.2)% CD90+] expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes were both highly proliferative [(15.1 ± 3.6)% with >2N DNA] and of uniform mesenchymal phenotype [(93.3 ± 3.7)% CD73+/CD105+, (97.8 ± 0.7)% CD90+], suggesting transit amplifying progenitor cells. SA-ASC were the least proliferative [(3.7 ± 0.8)%>2N DNA] but were also highly mesenchymal in phenotype [(94.4 ± 3.2)% CD73+/CD105+, (95.5 ± 1.2)% CD90+]. These data imply a progenitor/progeny relationship between pericytes and SA-ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM-MSC, SA-ASC are distinguished by CD34 expression.The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described three major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45-/CD31+/CD34+), pericytes (CD45-/CD31-/CD146+), and supra-adventitial adipose stromal cells (SA-ASC, CD45-/CD31-/CD146-/CD34+). EPC are luminal, pericytes are adventitial, and SA-ASC surround the vessel like a sheath. The multipotency of the pericytes and SA-ASC compartments is strikingly similar to that of CD45-/CD34-/CD73+/CD105+/CD90+ bone marrow-derived mesenchymal stem cells (BM-MSC). Here, we determine the extent to which this mesenchymal pattern is expressed on the three adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105-FITC/CD73-PE/CD146-PETXR/CD14-PECY5/CD33-PECY5/CD235A-PECY5/CD31-PECY7/CD90-APC/CD34-A700/CD45-APCCY7/DAPI). Adipose EPC were highly proliferative with (14.3 ± 2.8)% (mean ± SEM) having >2N DNA. About half (53.1 ± 7.6)% coexpressed CD73 and CD105, and (71.9 ± 7.4)% expressed CD90. Pericytes were less proliferative [(8.2 ± 3.4)% >2N DNA)] with a smaller proportion [(29.6 ± 6.9)% CD73+/CD105+, (60.5 ± 10.2)% CD90+] expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes were both highly proliferative [(15.1 ± 3.6)% with >2N DNA] and of uniform mesenchymal phenotype [(93.3 ± 3.7)% CD73+/CD105+, (97.8 ± 0.7)% CD90+], suggesting transit amplifying progenitor cells. SA-ASC were the least proliferative [(3.7 ± 0.8)%>2N DNA] but were also highly mesenchymal in phenotype [(94.4 ± 3.2)% CD73+/CD105+, (95.5 ± 1.2)% CD90+]. These data imply a progenitor/progeny relationship between pericytes and SA-ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM-MSC, SA-ASC are distinguished by CD34 expression.
Author Zimmerlin, Ludovic
Donnenberg, Albert D.
Rubin, J. Peter
Donnenberg, Vera S.
AuthorAffiliation 3 University of Pittsburgh Cancer Institute
6 University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology
2 University of Pittsburgh School of Medicine, Department of Cardiothoracic Surgery
4 McGowan Institute of Regenerative Medicine
1 The Johns Hopkins University School of Medicine, Department of Oncology, Division of Pediatric Oncology
5 University of Pittsburgh School of Medicine, Department of Surgery, Division of Plastic Surgery
AuthorAffiliation_xml – name: 6 University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology
– name: 3 University of Pittsburgh Cancer Institute
– name: 4 McGowan Institute of Regenerative Medicine
– name: 2 University of Pittsburgh School of Medicine, Department of Cardiothoracic Surgery
– name: 1 The Johns Hopkins University School of Medicine, Department of Oncology, Division of Pediatric Oncology
– name: 5 University of Pittsburgh School of Medicine, Department of Surgery, Division of Plastic Surgery
Author_xml – sequence: 1
  givenname: Ludovic
  surname: Zimmerlin
  fullname: Zimmerlin, Ludovic
– sequence: 2
  givenname: Vera S.
  surname: Donnenberg
  fullname: Donnenberg, Vera S.
– sequence: 3
  givenname: J. Peter
  surname: Rubin
  fullname: Rubin, J. Peter
– sequence: 4
  givenname: Albert D.
  surname: Donnenberg
  fullname: Donnenberg, Albert D.
  email: donnenbergad@upmc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23184564$$D View this record in MEDLINE/PubMed
BookMark eNqNkbtPwzAQhy1URB-wMaOMDKT1K3HDgIQqXlJRlzIwWa5zaQOJXewUlP-ehJYKFoQXW-dPn-7u10cdYw0gdErwkGBMR7qu7FANaXPEAeqRKKIhTxju7N-UdlHf-xeMWYQZPUJdysiYRzHvoctH8GD0qi5VEZTKvYLzgTXBalMqE6g0X1sPga-gHK2dXYLJK-sCDUXhj9FhpgoPJ7t7gJ5ub-aT-3A6u3uYXE9DHVEhQi0ynkESaQJxoheJiFLQGR2nWBGdaYAsxliki1gnAtIkSRUhCxK3JUYJJWyArrbe9WZRQqrBVE4Vcu3ypt9aWpXL3z8mX8mlfZecRIKRVnC-Ezj7tgFfyTL37QjKgN14SZoVxVzE7B8obYwUx5w36MUW1c567yDbd0SwbJORbTJSya9kGvzs5xR7-DuKBmBb4CMvoP5TJifP89lW-wkj053S
CitedBy_id crossref_primary_10_1038_s41598_020_72875_x
crossref_primary_10_3390_ijms19113497
crossref_primary_10_1371_journal_pone_0186238
crossref_primary_10_1093_asj_sjab033
crossref_primary_10_3389_fbioe_2021_638415
crossref_primary_10_1080_08941939_2017_1423420
crossref_primary_10_3390_ani12141844
crossref_primary_10_1080_14712598_2019_1671970
crossref_primary_10_1089_chi_2017_0269
crossref_primary_10_1002_cyto_a_23506
crossref_primary_10_1016_j_yexcr_2019_04_018
crossref_primary_10_1089_biores_2015_0028
crossref_primary_10_1089_wound_2015_0655
crossref_primary_10_3390_polym15193938
crossref_primary_10_1186_s40169_018_0183_8
crossref_primary_10_1002_cyto_a_23574
crossref_primary_10_1093_pm_pny256
crossref_primary_10_1111_cas_13415
crossref_primary_10_1517_14712598_2014_907785
crossref_primary_10_2217_rme_15_19
crossref_primary_10_1093_asj_sjw197
crossref_primary_10_1097_PRS_0000000000002356
crossref_primary_10_1186_s13287_018_0886_1
crossref_primary_10_1080_21623945_2019_1608751
crossref_primary_10_3390_ijms18051038
crossref_primary_10_1155_2020_7056261
crossref_primary_10_1111_micc_12107
crossref_primary_10_1155_2019_5841587
crossref_primary_10_1002_cyto_a_22646
crossref_primary_10_1016_j_biocel_2014_09_013
crossref_primary_10_1097_SLA_0000000000003318
crossref_primary_10_7603_s40730_014_0021_6
crossref_primary_10_1002_ar_23086
crossref_primary_10_1016_j_anplas_2018_07_005
crossref_primary_10_1097_PRS_0000000000004495
crossref_primary_10_1002_stem_2052
crossref_primary_10_1186_s13287_021_02538_9
crossref_primary_10_3390_biomedicines10102584
crossref_primary_10_3390_ijms20153827
crossref_primary_10_3390_ijms21041408
crossref_primary_10_1007_s12015_020_10090_x
crossref_primary_10_3389_fcell_2017_00069
crossref_primary_10_1002_cyto_a_22630
crossref_primary_10_1080_01480545_2024_2324332
crossref_primary_10_14336_AD_2020_0621
crossref_primary_10_1182_blood_2017_03_772939
crossref_primary_10_1002_cyto_a_22238
crossref_primary_10_1007_s00289_020_03476_x
crossref_primary_10_1134_S1990519X17050066
crossref_primary_10_1002_cyto_a_23600
crossref_primary_10_3389_fimmu_2018_01642
crossref_primary_10_4252_wjsc_v13_i6_521
crossref_primary_10_1016_j_imbio_2018_01_001
crossref_primary_10_1161_CIRCRESAHA_116_305368
crossref_primary_10_1016_j_scr_2015_08_004
crossref_primary_10_1038_npjbcancer_2016_4
crossref_primary_10_1093_asj_sjab146
crossref_primary_10_1016_j_ymeth_2015_03_012
crossref_primary_10_1016_j_cjprs_2024_03_001
crossref_primary_10_1016_j_pharmthera_2019_107399
crossref_primary_10_1186_s13287_016_0370_8
crossref_primary_10_3389_fbioe_2020_00689
crossref_primary_10_5115_acb_2013_46_2_113
crossref_primary_10_1016_j_semcdb_2016_01_035
crossref_primary_10_7603_s40730_016_0004_x
crossref_primary_10_1002_cbin_10515
crossref_primary_10_1016_j_heliyon_2024_e27996
crossref_primary_10_3390_ijms23105806
crossref_primary_10_1002_jemt_22925
crossref_primary_10_1002_stem_2325
crossref_primary_10_1016_j_athoracsur_2017_01_091
crossref_primary_10_3390_jcm12175683
crossref_primary_10_1089_scd_2017_0017
crossref_primary_10_1007_s12015_017_9774_9
crossref_primary_10_1186_s13287_016_0302_7
crossref_primary_10_1007_s10557_018_6813_y
crossref_primary_10_1038_emm_2013_94
crossref_primary_10_1093_asj_sjw211
crossref_primary_10_1089_ten_tec_2018_0154
crossref_primary_10_1016_j_scr_2016_04_016
crossref_primary_10_15407_cryo24_01_003
crossref_primary_10_1002_lary_24407
crossref_primary_10_3390_genes10060474
crossref_primary_10_3390_ijms24098190
crossref_primary_10_1016_j_jcyt_2013_06_018
crossref_primary_10_1002_jcph_486
crossref_primary_10_1007_s11154_021_09686_6
crossref_primary_10_3389_fbioe_2022_889306
crossref_primary_10_1182_blood_2016_08_734798
crossref_primary_10_1371_journal_pone_0144401
crossref_primary_10_1016_j_asmr_2023_03_013
crossref_primary_10_1186_s12967_014_0337_4
crossref_primary_10_3390_ijms21217933
crossref_primary_10_1002_stem_2599
crossref_primary_10_1038_s41598_022_20581_1
crossref_primary_10_1007_s00018_013_1462_6
crossref_primary_10_3390_ijms20102566
crossref_primary_10_1007_s10529_013_1422_0
crossref_primary_10_1016_j_jcyt_2015_04_004
crossref_primary_10_1111_cpr_13017
crossref_primary_10_4252_wjsc_v13_i10_1360
crossref_primary_10_1016_j_repbio_2020_100472
crossref_primary_10_1002_cyto_a_22680
crossref_primary_10_1016_j_tem_2021_09_001
crossref_primary_10_1002_cyto_a_22205
crossref_primary_10_1089_scd_2019_0106
crossref_primary_10_14341_omet12985
crossref_primary_10_1016_j_transproceed_2021_06_008
crossref_primary_10_1038_s41598_019_47719_y
crossref_primary_10_1080_02648725_2021_2003590
crossref_primary_10_1155_2015_120949
crossref_primary_10_1016_j_reth_2023_08_003
crossref_primary_10_3390_ijms232113517
crossref_primary_10_1089_scd_2012_0647
crossref_primary_10_1007_s12015_017_9733_5
crossref_primary_10_1155_2017_4758930
crossref_primary_10_3390_ph16091302
crossref_primary_10_1002_mus_26094
crossref_primary_10_1155_2018_7357213
crossref_primary_10_1016_j_asmr_2023_04_002
crossref_primary_10_1002_jor_24156
crossref_primary_10_5966_sctm_2015_0161
crossref_primary_10_1089_scd_2015_0013
crossref_primary_10_1111_jdv_14489
crossref_primary_10_1186_s12864_015_1403_x
crossref_primary_10_1002_term_2096
crossref_primary_10_1002_sctm_18_0051
crossref_primary_10_1016_j_bjps_2015_10_014
crossref_primary_10_1186_scrt277
crossref_primary_10_1016_j_scr_2017_05_004
crossref_primary_10_1002_cyto_a_23243
crossref_primary_10_1016_j_biochi_2013_05_010
crossref_primary_10_1016_j_gendis_2021_09_004
crossref_primary_10_1158_0008_5472_CAN_14_2744
crossref_primary_10_1016_j_pharmthera_2016_08_003
crossref_primary_10_1097_PRS_0000000000002920
crossref_primary_10_1177_229255031502300304
crossref_primary_10_3390_ijms21082869
crossref_primary_10_1089_rej_2022_0008
crossref_primary_10_1186_1471_2164_14_625
crossref_primary_10_1089_dna_2018_4158
crossref_primary_10_1002_cbf_3056
crossref_primary_10_1007_s12015_014_9556_6
crossref_primary_10_1111_iju_14408
crossref_primary_10_1016_j_reth_2020_01_004
crossref_primary_10_1155_2017_6843727
crossref_primary_10_3390_cells13010055
crossref_primary_10_1089_cell_2015_0040
crossref_primary_10_1016_j_arcmed_2016_05_004
crossref_primary_10_1111_micc_12672
crossref_primary_10_1021_acsbiomaterials_6b00261
crossref_primary_10_1097_MD_0000000000026982
crossref_primary_10_1089_rej_2021_0042
crossref_primary_10_1007_s13577_020_00379_x
crossref_primary_10_1080_15476278_2015_1126018
crossref_primary_10_1097_CM9_0000000000000518
crossref_primary_10_3390_ijms24043793
crossref_primary_10_3390_ijms21124382
crossref_primary_10_1186_s12943_019_0960_z
crossref_primary_10_3390_genes15010126
crossref_primary_10_1177_09636897211067454
crossref_primary_10_1016_j_anplas_2014_09_014
crossref_primary_10_1097_PRS_0000000000004030
crossref_primary_10_1089_ars_2017_7171
crossref_primary_10_1242_bio_010256
Cites_doi 10.1182/blood-2010-04-280719
10.1089/ten.tea.2010.0248
10.1126/science.1156232
10.1111/j.1600-0625.2011.01407.x
10.4061/2011/368192
10.1089/scd.2008.0117
10.1097/01.prs.0000234609.74811.2e
10.1002/cyto.a.21168
10.1161/01.RES.0000109792.43271.47
10.1084/jem.20091046
10.1002/cyto.a.20813
10.1002/jcp.1138
10.1038/nature00870
10.1016/0040-8166(76)90013-6
10.1016/j.cell.2007.04.028
10.1097/PRS.0b013e318221db33
10.1634/stemcells.2005-0234
10.1161/01.CIR.0000135466.16823.D0
10.1016/j.stem.2010.11.011
10.1002/jcp.20636
10.1186/ar2448
10.1080/14653240600855905
10.1016/j.gde.2003.08.001
10.1016/j.jconrel.2007.05.005
10.1161/01.RES.0000135902.99383.6f
10.1016/j.cell.2008.09.036
10.1091/mbc.e02-02-0105
10.1089/107632701300062859
10.1097/SAP.0b013e31819ae05c
10.1007/978-1-61737-950-5_12
10.1002/jor.1100090504
10.1161/CIRCRESAHA.107.159475
10.1089/scd.2011.0200
10.1371/journal.pone.0001453
10.1161/01.CIR.0000114522.38265.61
10.1016/j.exphem.2007.12.015
10.1080/14653240701358445
10.1016/j.bone.2010.06.020
10.1007/BF02556152
10.1161/CIRCULATIONAHA.111.048264
10.1172/JCI108516
10.1242/dev.002642
10.1038/nprot.2010.31
10.1007/s00266-007-9019-4
10.1089/ten.2006.12.3375
10.1201/9781420003710.ch2
10.1016/j.yexcr.2008.06.018
10.1016/j.stem.2008.07.003
ContentType Journal Article
Copyright Copyright © 2012 International Society for Advancement of Cytometry
Copyright © 2012 International Society for Advancement of Cytometry.
Copyright_xml – notice: Copyright © 2012 International Society for Advancement of Cytometry
– notice: Copyright © 2012 International Society for Advancement of Cytometry.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1002/cyto.a.22227
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
CrossRef

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1552-4930
EndPage 140
ExternalDocumentID 10_1002_cyto_a_22227
23184564
CYTO22227
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Hillman Foundation, Glimmer of Hope Foundation, Commonwealth of Pennsylvania, through the McGowan Institute of Regenerative Medicine
– fundername: NHLBI (Production Assistance for Cellular Therapy (PACT)
  funderid: N01‐HB‐37165
– fundername: NIH
  funderid: R01CA 114246
– fundername: Department of Defense
  funderid: BC032981; BC044784
– fundername: CCSG
  funderid: P30CA047904
– fundername: Department of Defense Biomedical Translational Initiative
  funderid: W911QY‐09‐C‐0209
– fundername: NHLBI NIH HHS
  grantid: N01-HB-37165
– fundername: NCI NIH HHS
  grantid: P30CA047904
– fundername: NCI NIH HHS
  grantid: R01 CA114246
– fundername: NCI NIH HHS
  grantid: P30 CA047904
– fundername: NHLBI NIH HHS
  grantid: N01HB37165
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~KM
~WT
ACXME
CGR
CUY
CVF
ECM
EIF
NPM
ZA5
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c5277-c7f4fe95c1e69cb975decf28d0a1cfceef6007db6c97ed99da11b1607db321213
IEDL.DBID DR2
ISSN 1552-4922
1552-4930
IngestDate Tue Sep 17 21:24:58 EDT 2024
Fri Aug 16 01:56:03 EDT 2024
Sat Aug 17 04:46:00 EDT 2024
Fri Aug 23 02:59:15 EDT 2024
Thu May 23 23:17:56 EDT 2024
Sat Aug 24 01:01:08 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright © 2012 International Society for Advancement of Cytometry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5277-c7f4fe95c1e69cb975decf28d0a1cfceef6007db6c97ed99da11b1607db321213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.22227
PMID 23184564
PQID 1273120644
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4157311
proquest_miscellaneous_1492647631
proquest_miscellaneous_1273120644
crossref_primary_10_1002_cyto_a_22227
pubmed_primary_23184564
wiley_primary_10_1002_cyto_a_22227_CYTO22227
PublicationCentury 2000
PublicationDate January 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2013
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References 2001; 189
2002; 13
2008; 36
2003; 13
1999; 284
2008; 32
2008; 3
2008; 102
2011; 17
2012; 125
2007; 134
2010; 64
2006; 208
2011; 128
1991; 48
2006; 24
2010; 116
2007; 9
2008; 314
2009; 206
2010; 5
2012; 21
2010; 7
2011; 699
2007; 129
2006; 12
2010
2012; 81A
2007; 122
2008; 17
2008
2006; 8
2002; 418
2008; 10
2008; 322
2004; 109
2006; 118
1976; 8
1991; 9
2010; 77A
2011; 2011
2004; 110
1893; 22
2004; 94
1976; 58
2004; 95
2010; 47
2001; 7
1895; 2
2008; 135
956396 - J Clin Invest. 1976 Sep;58(3):699-704
21941565 - Stem Cells Int. 2011;2011:368192
16557516 - J Cell Physiol. 2006 Jul;208(1):64-76
18598346 - Arthritis Res Ther. 2008;10(4):R74
22095829 - Circulation. 2012 Jan 3;125(1):87-99
1647262 - Calcif Tissue Int. 1991 May;48(5):326-34
16923606 - Cytotherapy. 2006;8(4):315-7
14734516 - Circulation. 2004 Feb 10;109(5):656-63
14550421 - Curr Opin Genet Dev. 2003 Oct;13(5):537-42
1870029 - J Orthop Res. 1991 Sep;9(5):641-50
18197263 - PLoS One. 2008;3(1):e1453
18786417 - Cell Stem Cell. 2008 Sep 11;3(3):301-13
15242981 - Circ Res. 2004 Jul 9;95(1):9-20
23027703 - Cytometry A. 2013 Jan;83(1):48-61
20601304 - Bone. 2010 Oct;47(4):718-28
20539287 - Nat Protoc. 2010 Jun;5(6):1115-26
21112566 - Cell Stem Cell. 2010 Dec 3;7(6):718-29
19841085 - J Exp Med. 2009 Oct 26;206(11):2483-96
17518674 - Tissue Eng. 2006 Dec;12(12):3375-82
12475952 - Mol Biol Cell. 2002 Dec;13(12):4279-95
18647602 - Exp Cell Res. 2008 Oct 1;314(16):2951-64
14656930 - Circ Res. 2004 Feb 6;94(2):223-9
21861688 - Stem Cells Dev. 2012 May 20;21(8):1299-308
17507398 - Development. 2007 Jun;134(12):2283-92
22151396 - Exp Dermatol. 2012 Jan;21(1):78-80
22069300 - Cytometry A. 2012 Jan;81(1):12-4
16936551 - Plast Reconstr Surg. 2006 Sep;118(3 Suppl):121S-128S
17763894 - Aesthetic Plast Surg. 2008 Jan;32(1):48-55; discussion 56-7
17786605 - Cytotherapy. 2007;9(5):439-50
982426 - Tissue Cell. 1976;8(3):561-71
19852056 - Cytometry A. 2010 Jan;77(1):22-30
18801968 - Science. 2008 Oct 24;322(5901):583-6
17604725 - Cell. 2007 Jun 29;129(7):1377-88
11304456 - Tissue Eng. 2001 Apr;7(2):211-28
15238461 - Circulation. 2004 Jul 20;110(3):349-55
21116987 - Methods Mol Biol. 2011;699:251-73
18597617 - Stem Cells Dev. 2008 Dec;17(6):1053-63
20673000 - Tissue Eng Part A. 2011 Jan;17(1-2):93-106
18835024 - Cell. 2008 Oct 17;135(2):240-9
10102814 - Science. 1999 Apr 2;284(5411):143-7
11573204 - J Cell Physiol. 2001 Oct;189(1):54-63
16322640 - Stem Cells. 2006 Feb;24(2):376-85
18295964 - Exp Hematol. 2008 May;36(5):642-54
20098110 - Ann Plast Surg. 2010 Feb;64(2):222-8
17967785 - Circ Res. 2008 Jan 4;102(1):77-85
17582641 - J Control Release. 2007 Oct 8;122(3):385-91
21572381 - Plast Reconstr Surg. 2011 Sep;128(3):663-72
12077603 - Nature. 2002 Jul 4;418(6893):41-9
20884805 - Blood. 2010 Dec 16;116(25):5762-72
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
Neuber GA (e_1_2_6_14_2) 1893; 22
Yoshimura K (e_1_2_6_15_2) 2010
e_1_2_6_19_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_40_2
Nery AA (e_1_2_6_24_2)
Czerny V (e_1_2_6_13_2) 1895; 2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 81A
  start-page: 12
  year: 2012
  end-page: 14
  article-title: Pericytes: A universal adult tissue stem cell?
  publication-title: Cytometry A
– volume: 208
  start-page: 64
  year: 2006
  end-page: 76
  article-title: Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates
  publication-title: J Cell Physiol
– volume: 2011
  start-page: 368192
  year: 2011
  article-title: Comparison of gene expression in human embryonic stem cells, hESC‐derived mesenchymal stem cells and human mesenchymal stem cells
  publication-title: Stem Cells Int
– volume: 5
  start-page: 1115
  year: 2010
  end-page: 1126
  article-title: Isolation, differentiation and characterization of vascular cells derived from human embryonic stem cells
  publication-title: Nat Protoc
– volume: 2
  start-page: 216
  year: 1895
  article-title: Plastischer Ersatz der Brustdruse durch ein Lipom
  publication-title: Chir Kong Verhandl
– volume: 110
  start-page: 349
  year: 2004
  end-page: 55
  article-title: Improvement of postnatal neovascularization by human adipose tissue‐derived stem cells
  publication-title: Circulation
– volume: 48
  start-page: 326
  year: 1991
  end-page: 334
  article-title: Partial characterization of rat marrow stromal cells
  publication-title: Calcified Tissue Int
– volume: 118
  start-page: 121S
  year: 2006
  end-page: 128S
  article-title: Adipose‐derived stem and progenitor cells as fillers in plastic and reconstructive surgery
  publication-title: Plast Reconstr Surg
– volume: 13
  start-page: 537
  year: 2003
  end-page: 542
  article-title: Mesoangioblasts—Vascular progenitors for extravascular mesodermal tissues
  publication-title: Curr Opin Genet Dev
– volume: 314
  start-page: 2951
  year: 2008
  end-page: 2964
  article-title: Non‐cultured adipose‐derived CD45− side population cells are enriched for progenitors that give rise to myofibres in vivo
  publication-title: Exp Cell Res
– volume: 3
  start-page: 301
  year: 2008
  end-page: 313
  article-title: A perivascular origin for mesenchymal stem cells in multiple human organs
  publication-title: Cell Stem Cell
– volume: 322
  start-page: 583
  year: 2008
  end-page: 586
  article-title: White fat progenitor cells reside in the adipose vasculature
  publication-title: Science
– volume: 32
  start-page: 48
  year: 2008
  end-page: 55
  article-title: Cell‐assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose‐derived stem/stromal cells
  publication-title: Aesthetic Plast Surg
– volume: 134
  start-page: 2283
  year: 2007
  end-page: 2292
  article-title: The generation of adipocytes by the neural crest
  publication-title: Development
– start-page: 29
  year: 2008
  end-page: 62
– volume: 77A
  start-page: 22
  year: 2010
  end-page: 30
  article-title: Stromal vascular progenitors in adult human adipose tissue
  publication-title: Cytometry A
– volume: 36
  start-page: 642
  year: 2008
  end-page: 654
  article-title: Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene‐expression profile with CD146(+) perivascular cells and fibroblasts
  publication-title: Exp Hematol
– volume: 109
  start-page: 656
  year: 2004
  end-page: 663
  article-title: Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives
  publication-title: Circulation
– volume: 189
  start-page: 54
  year: 2001
  end-page: 63
  article-title: Surface protein characterization of human adipose tissue‐derived stromal cells
  publication-title: J Cell Physiol
– volume: 7
  start-page: 211
  year: 2001
  end-page: 228
  article-title: Multilineage cells from human adipose tissue: implications for cell‐based therapies
  publication-title: Tissue Eng
– volume: 94
  start-page: 223
  year: 2004
  end-page: 229
  article-title: Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells
  publication-title: Circ Res
– start-page: 261
  year: 2010
  end-page: 272
– volume: 17
  start-page: 1053
  year: 2008
  end-page: 1063
  article-title: Defining stem and progenitor cells within adipose tissue
  publication-title: Stem Cells Dev
– volume: 22
  start-page: 66
  year: 1893
  article-title: Fettransplantation
  publication-title: Chir Kongr Verhandl Deutsche Gesellschaft für Chirurgie
– volume: 284
  start-page: 143
  year: 1999
  end-page: 147
  article-title: Multilineage potential of adult human mesenchymal stem cells
  publication-title: Science
– volume: 8
  start-page: 315
  year: 2006
  end-page: 317
  article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
  publication-title: Cytotherapy
– volume: 24
  start-page: 376
  year: 2006
  end-page: 385
  article-title: Immunophenotype of human adipose‐derived cells: Temporal changes in stromal‐associated and stem cell‐associated markers
  publication-title: Stem Cells
– volume: 58
  start-page: 699
  year: 1976
  end-page: 704
  article-title: Cytological and enzymological characterization of adult human adipocyte precursors in culture
  publication-title: J Clin Invest
– volume: 128
  start-page: 663
  year: 2011
  end-page: 672
  article-title: Adipogenic potential of adipose stem cell subpopulations
  publication-title: Plast Reconstr Surg
– volume: 10
  start-page: R74
  year: 2008
  article-title: Human infrapatellar fat pad‐derived stem cells express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor‐2
  publication-title: Arthritis Res Ther
– volume: 102
  start-page: 77
  year: 2008
  end-page: 85
  article-title: A population of multipotent CD34‐positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks
  publication-title: Circ Res
– volume: 17
  start-page: 93
  year: 2011
  end-page: 106
  article-title: Regenerative therapy and cancer: In vitro and in vivo studies of the interaction between adipose‐derived stem cells and breast cancer cells from clinical isolates
  publication-title: Tissue Eng Part A
– volume: 3
  start-page: e1453
  year: 2008
  article-title: The neuro‐glial properties of adipose‐derived adult stromal (ADAS) cells are not regulated by Notch 1 and are not derived from neural crest lineage
  publication-title: PLoS One
– volume: 13
  start-page: 4279
  year: 2002
  end-page: 4295
  article-title: Human adipose tissue is a source of multipotent stem cells
  publication-title: Mol Biol Cell
– volume: 95
  start-page: 9
  year: 2004
  end-page: 20
  article-title: Mesenchymal stem cells and their potential as cardiac therapeutics
  publication-title: Circ Res
– volume: 7
  start-page: 718
  year: 2010
  end-page: 729
  article-title: A mesoderm‐derived precursor for mesenchymal stem and endothelial cells
  publication-title: Cell Stem Cell
– volume: 12
  start-page: 3375
  year: 2006
  end-page: 3382
  article-title: Cell‐assisted lipotransfer: supportive use of human adipose‐derived cells for soft tissue augmentation with lipoinjection
  publication-title: Tissue Eng
– volume: 9
  start-page: 641
  year: 1991
  end-page: 650
  article-title: Mesenchymal stem cells
  publication-title: J Orthop Res
– volume: 122
  start-page: 385
  year: 2007
  end-page: 391
  article-title: Tumorigenic stem and progenitor cells: Implications for the therapeutic index of anti‐cancer agents
  publication-title: J Control Release
– volume: 129
  start-page: 1377
  year: 2007
  end-page: 1388
  article-title: Neuroepithelial cells supply an initial transient wave of MSC differentiation
  publication-title: Cell
– volume: 64
  start-page: 222
  year: 2010
  end-page: 228
  article-title: Supplementation of fat grafts with adipose‐derived regenerative cells improves long‐term graft retention
  publication-title: Ann Plast Surg
– volume: 47
  start-page: 718
  year: 2010
  end-page: 728
  article-title: Human embryonic stem cell‐derived CD34+ cells function as MSC progenitor cells
  publication-title: Bone
– volume: 699
  start-page: 251
  year: 2011
  end-page: 273
  article-title: Rare event detection and analysis in flow cytometry: Bone marrow mesenchymal stem cells, breast cancer stem/progenitor cells in malignant effusions, and pericytes in disaggregated adipose tissue
  publication-title: Methods Mol Biol
– volume: 9
  start-page: 439
  year: 2007
  end-page: 450
  article-title: BM cells giving rise to MSC in culture have a heterogeneous CD34 and CD45 phenotype
  publication-title: Cytotherapy
– volume: 21
  start-page: 78
  year: 2012
  end-page: 80
  article-title: Perivascular localization of dermal stem cells in human scalp
  publication-title: Exp Dermatol
– volume: 206
  start-page: 2483
  year: 2009
  end-page: 2496
  article-title: Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow
  publication-title: J Exp Med
– volume: 116
  start-page: 5762
  year: 2010
  end-page: 5772
  article-title: Efficient differentiation of human pluripotent stem cells into functional CD34+ progenitor cells by combined modulation of the MEK/ERK and BMP4 signaling pathways
  publication-title: Blood
– volume: 8
  start-page: 561
  year: 1976
  end-page: 571
  article-title: Ultrastructural observations on differentiating human preadipocytes cultured in vitro
  publication-title: Tissue Cell
– volume: 418
  start-page: 41
  year: 2002
  end-page: 49
  article-title: Pluripotency of mesenchymal stem cells derived from adult marrow
  publication-title: Nature
– volume: 135
  start-page: 240
  year: 2008
  end-page: 249
  article-title: Identification of white adipocyte progenitor cells in vivo
  publication-title: Cell
– volume: 21
  start-page: 1299
  year: 2012
  end-page: 1308
  article-title: The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells
  publication-title: Stem Cells Dev
– article-title: Human mesenchymal stem cells: From immunophenotyping by flow cytometry to clinical applications
  publication-title: Cytometry A
– volume: 125
  start-page: 87
  year: 2012
  end-page: 99
  article-title: Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb
  publication-title: Circulation
– ident: e_1_2_6_52_2
  doi: 10.1182/blood-2010-04-280719
– ident: e_1_2_6_12_2
  doi: 10.1089/ten.tea.2010.0248
– ident: e_1_2_6_39_2
  doi: 10.1126/science.1156232
– ident: e_1_2_6_41_2
  doi: 10.1111/j.1600-0625.2011.01407.x
– ident: e_1_2_6_47_2
  doi: 10.4061/2011/368192
– ident: e_1_2_6_24_2
  article-title: Human mesenchymal stem cells: From immunophenotyping by flow cytometry to clinical applications
  publication-title: Cytometry A
  contributor:
    fullname: Nery AA
– ident: e_1_2_6_4_2
  doi: 10.1089/scd.2008.0117
– ident: e_1_2_6_18_2
  doi: 10.1097/01.prs.0000234609.74811.2e
– volume: 2
  start-page: 216
  year: 1895
  ident: e_1_2_6_13_2
  article-title: Plastischer Ersatz der Brustdruse durch ein Lipom
  publication-title: Chir Kong Verhandl
  contributor:
    fullname: Czerny V
– ident: e_1_2_6_6_2
  doi: 10.1002/cyto.a.21168
– ident: e_1_2_6_11_2
  doi: 10.1161/01.RES.0000109792.43271.47
– ident: e_1_2_6_45_2
  doi: 10.1084/jem.20091046
– ident: e_1_2_6_2_2
  doi: 10.1002/cyto.a.20813
– ident: e_1_2_6_8_2
  doi: 10.1002/jcp.1138
– ident: e_1_2_6_27_2
  doi: 10.1038/nature00870
– ident: e_1_2_6_32_2
  doi: 10.1016/0040-8166(76)90013-6
– ident: e_1_2_6_44_2
  doi: 10.1016/j.cell.2007.04.028
– ident: e_1_2_6_33_2
  doi: 10.1097/PRS.0b013e318221db33
– ident: e_1_2_6_20_2
  doi: 10.1634/stemcells.2005-0234
– ident: e_1_2_6_9_2
  doi: 10.1161/01.CIR.0000135466.16823.D0
– ident: e_1_2_6_53_2
  doi: 10.1016/j.stem.2010.11.011
– volume: 22
  start-page: 66
  year: 1893
  ident: e_1_2_6_14_2
  article-title: Fettransplantation
  publication-title: Chir Kongr Verhandl Deutsche Gesellschaft für Chirurgie
  contributor:
    fullname: Neuber GA
– ident: e_1_2_6_37_2
  doi: 10.1002/jcp.20636
– ident: e_1_2_6_36_2
  doi: 10.1186/ar2448
– ident: e_1_2_6_28_2
  doi: 10.1080/14653240600855905
– ident: e_1_2_6_55_2
  doi: 10.1016/j.gde.2003.08.001
– ident: e_1_2_6_22_2
  doi: 10.1016/j.jconrel.2007.05.005
– ident: e_1_2_6_50_2
  doi: 10.1161/01.RES.0000135902.99383.6f
– ident: e_1_2_6_40_2
  doi: 10.1016/j.cell.2008.09.036
– ident: e_1_2_6_7_2
  doi: 10.1091/mbc.e02-02-0105
– ident: e_1_2_6_3_2
  doi: 10.1089/107632701300062859
– ident: e_1_2_6_19_2
  doi: 10.1097/SAP.0b013e31819ae05c
– ident: e_1_2_6_21_2
  doi: 10.1007/978-1-61737-950-5_12
– ident: e_1_2_6_26_2
  doi: 10.1002/jor.1100090504
– ident: e_1_2_6_34_2
  doi: 10.1161/CIRCRESAHA.107.159475
– ident: e_1_2_6_38_2
  doi: 10.1089/scd.2011.0200
– ident: e_1_2_6_43_2
  doi: 10.1371/journal.pone.0001453
– ident: e_1_2_6_10_2
  doi: 10.1161/01.CIR.0000114522.38265.61
– ident: e_1_2_6_25_2
  doi: 10.1002/jor.1100090504
– ident: e_1_2_6_29_2
  doi: 10.1016/j.exphem.2007.12.015
– ident: e_1_2_6_48_2
  doi: 10.1080/14653240701358445
– ident: e_1_2_6_46_2
  doi: 10.1016/j.bone.2010.06.020
– ident: e_1_2_6_5_2
  doi: 10.1089/scd.2011.0200
– ident: e_1_2_6_49_2
  doi: 10.1007/BF02556152
– ident: e_1_2_6_54_2
  doi: 10.1161/CIRCULATIONAHA.111.048264
– ident: e_1_2_6_31_2
  doi: 10.1172/JCI108516
– ident: e_1_2_6_42_2
  doi: 10.1242/dev.002642
– ident: e_1_2_6_51_2
  doi: 10.1038/nprot.2010.31
– ident: e_1_2_6_16_2
  doi: 10.1007/s00266-007-9019-4
– ident: e_1_2_6_17_2
  doi: 10.1089/ten.2006.12.3375
– ident: e_1_2_6_23_2
  doi: 10.1201/9781420003710.ch2
– start-page: 261
  volume-title: Cell‐assisted lipotransfer for breast augmentation: Grafting of progenitor‐enriched fat tissue
  year: 2010
  ident: e_1_2_6_15_2
  contributor:
    fullname: Yoshimura K
– ident: e_1_2_6_35_2
  doi: 10.1016/j.yexcr.2008.06.018
– ident: e_1_2_6_30_2
  doi: 10.1016/j.stem.2008.07.003
SSID ssj0035032
Score 2.4836717
Snippet The stromal‐vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described three major populations of...
The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described three major populations of...
Abstract The stromal‐vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described three major populations...
The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described 3 major populations of...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 134
SubjectTerms adipose stromal vascular fraction
Adipose tissue
Adipose Tissue - cytology
Adipose Tissue - metabolism
Antigens, CD34 - metabolism
Biomarkers - metabolism
CD146 Antigen - metabolism
endothelial progenitor cells
Female
Humans
immunofluorescent microscopy
Leukocyte Common Antigens - metabolism
mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
multiparameter flow cytometry
pericytes
perivascular cells
Phenotype
Platelet Endothelial Cell Adhesion Molecule-1 - metabolism
Stem Cells - cytology
Stem Cells - metabolism
supra‐adventitial adipose stromal cells
Title Mesenchymal markers on human adipose stem/progenitor cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.22227
https://www.ncbi.nlm.nih.gov/pubmed/23184564
https://www.proquest.com/docview/1273120644/abstract/
https://search.proquest.com/docview/1492647631
https://pubmed.ncbi.nlm.nih.gov/PMC4157311
Volume 83A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4iCL54v8wbFfTNbm2WtI1vIsoQpiAb6FNI0pSJrJV1e5i_3nPSbToHA31qoSfXk5x8TXK-Q8hFQi38-ATaF0pxn8UZ91UzZn4zE9SwSCWRRkfh9mPU6rKHF_4y2XBDX5iKH2K24YYzw9lrnOBKl41v0lAzHhZ1VafozAkmGLn0EBM9z9ijmjxw8cmQZMxngtLJvXdI3viZeH5FWoCZi7clf6JYtwzdbxI5bUB1--S9Phrquvn8xe34_xZukY0JQvVuqiG1TVZsvkPWqpiV411y3UZ_JdMb90Goj5d7BqVX5J4L9uep9O2jKK2H9NBYSRieYDIGHp4PlHuke3_XuW35kwAMvuF4tGvijGVWcBPaSBgtYp5ak9EkDVRoMlheM2S3T3VkRGxTIVIVhhoZ61LdpMgVt09W8yK3h8RLbRIFGtBCZiIWqEiEmBs8bMwFD8IauZwqQX5UPBuyYlSmEvtBKun6oUbOpxqSMBGw9iq3xaiUIQCxkALCYktkkB6RgUmF8g4qrc5KA6CbILdOjcRz-p4JIBH3_Jf8recIuaFZUDbkeeXUubQB8va18-Tejv4mfkzWqQvFgds_J2R1OBjZUwBEQ33mhv0XwUMIcQ
link.rule.ids 230,315,786,790,891,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xoQleYGwDChsEib2Rkrh2Eu9tQkPlo0yaigRPnu04AiES1I-H8tdz57SFgoQ07SmRco59Pp99tu9-B7CfMYcbn8iEUmsR8rQQoW6lPGwVklme6CwxFCjcuUjal_z0SlyN85xSLEyNDzE9cCPN8PM1KTgdSB8-o4ba0aBq6iajaM55WESNF35P9WeKH9USkc9QRjBjIZeMjT3fsfzhy9Kza9IbQ_Otv-RLO9YvRMer8HfCQu1_ctccDkzTPr5Cd_wPHj_CythIDX7Wo2oN5lz5CT7UaStHn-FHh0KW7M3oHonuyb-n1w-qMvD5_gKd3z5UfRcQQjS1Ekcozhq9gK4I-l_g8vhX96gdjnMwhFbQ7a5NC144KWzsEmmNTEXubMGyPNKxLXCFLQjgPjeJlanLpcx1HBsCrctNixFc3DoslFXpNiHIXZZEBg2GwiY80omM6W_4cKmQIoob8H0iBfVQQ22oGlSZKeoHpZXvhwbsTUSkUBeo9bp01bCvYrTFYoZGFn-HhhASOc6qWN9GLdZpbWjrZgSv04B0RuBTAsLinv1S3t54TG5kC-vGfx54eb7LgDq67v72b1v_Rr4LS-1u51ydn1ycbcMy85k56DToKywMekP3De2jgdnxOvAEROIMkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BEYgX7mM5gwRvZJs4thPzhlpW5WhBqJXKk-VTrVCT1R4Py69nxtldulSqBE-JlPExHo89sWe-AXjdsIA_PoXNlTEi53UUualqnldRMcelaaSlQOH9A7l3xD8di-PlgRvFwvT4EOsDN9KMtF6Tgo993P4DGuoWs25ohoyCOa_CNS4rRrN69_saPqoSRUpQRihjOVeMLR3fsfz2-dKbW9IFO_Oiu-R5MzbtQ6PboFcc9O4nP4fzmR26X3-BO_4_i3fg1tJEzd73c-ouXAntPbjeJ61c3Id3-xSw5E4WZ0h0Rt49k2nWtVnK9pcZfzrupiEjfGjqJM5PXDMmGV0QTB_A0ejD4c5evszAkDtBd7uujjwGJVwZpHJW1cIHF1njC1O6iPtrJHh7b6VTdfBKeVOWliDrvK0YgcU9hK22a8NjyHxoZGHRXIhO8sJIVVJt-Ai1UKIoB_BmJQQ97oE2dA-pzDSNgzY6jcMAXq0kpFETqPemDd18qku0xEqGJha_hIbwETmuqdjeo16q69bQ0m0IXGcA9Ya81wSExL35pT09SYjcyBa2jXW-TeK8lAG98-Pwa3p78m_kL-HGt92R_vLx4PNTuMlSWg46CnoGW7PJPDxH42hmXyQN-A0izAtC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesenchymal+markers+on+human+adipose+stem%2Fprogenitor+cells&rft.jtitle=Cytometry.+Part+A&rft.au=Zimmerlin%2C+Ludovic&rft.au=Donnenberg%2C+Vera+S.&rft.au=Rubin%2C+J.+Peter&rft.au=Donnenberg%2C+Albert+D.&rft.date=2013-01-01&rft.issn=1552-4922&rft.eissn=1552-4930&rft.volume=83A&rft.issue=1&rft.spage=134&rft.epage=140&rft_id=info:doi/10.1002%2Fcyto.a.22227&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cyto_a_22227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon