Glymphatic Cerebrospinal Fluid and Solute Transport Quantified by MRI and PET Imaging
•DCE-MRI is a robust imaging platform for quantifying glymphatic transport.•Glymphatic transport and CSF flow dynamics is dependent on body posture.•T1 mapping can quantify glymphatic transport and cervical lymph node drainage concurrently.•Glymphatic transport kinetics are heterogenous across brain...
Saved in:
Published in | Neuroscience Vol. 474; pp. 63 - 79 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
15.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •DCE-MRI is a robust imaging platform for quantifying glymphatic transport.•Glymphatic transport and CSF flow dynamics is dependent on body posture.•T1 mapping can quantify glymphatic transport and cervical lymph node drainage concurrently.•Glymphatic transport kinetics are heterogenous across brain regions.•Regularized optimal mass transport analysis incorporates advective as well as diffusion terms.•Glymphatic transport can be measured by positron emission tomography.
Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to a number of factors, including important developments in whole brain imaging technology and computational fluid dynamics analysis employed for the elucidation of glymphatic transport function in the live animal and human brain. In this paper, we review the technical aspects of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in combination with administration of Gd-based tracers into the cerebrospinal fluid (CSF) for tracking glymphatic solute and fluid transport in the CNS as well as lymphatic drainage. Used in conjunction with advanced computational processing methods including optimal mass transport analysis, one gains new insights into the biophysical forces governing solute transport in the CNS which leads to intriguing new research directions. Considering drainage pathways, we review the novel T1 mapping technique for quantifying glymphatic transport and cervical lymph node drainage concurrently in the same subject. We provide an overview of knowledge gleaned from DCE-MRI studies of glymphatic transport and meningeal lymphatic drainage. Finally, we introduce positron emission tomography (PET) and CSF administration of radiotracers as an alternative method to explore other pharmacokinetic aspects of CSF transport into brain parenchyma as well as efflux pathways. |
---|---|
AbstractList | Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to a number of factors, including important developments in whole brain imaging technology and computational fluid dynamics analysis employed for the elucidation of glymphatic transport function in the live animal and human brain. In this paper, we review the technical aspects of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in combination with administration of Gd-based tracers into the cerebrospinal fluid (CSF) for tracking glymphatic solute and fluid transport in the CNS as well as lymphatic drainage. Used in conjunction with advanced computational processing methods including optimal mass transport analysis, one gains new insights into the biophysical forces governing solute transport in the CNS which leads to intriguing new research directions. Considering drainage pathways, we review the novel T1 mapping technique for quantifying glymphatic transport and cervical lymph node drainage concurrently in the same subject. We provide an overview of knowledge gleaned from DCE-MRI studies of glymphatic transport and meningeal lymphatic drainage. Finally, we introduce positron emission tomography (PET) and CSF administration of radiotracers as an alternative method to explore other pharmacokinetic aspects of CSF transport into brain parenchyma as well as efflux pathways.Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to a number of factors, including important developments in whole brain imaging technology and computational fluid dynamics analysis employed for the elucidation of glymphatic transport function in the live animal and human brain. In this paper, we review the technical aspects of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in combination with administration of Gd-based tracers into the cerebrospinal fluid (CSF) for tracking glymphatic solute and fluid transport in the CNS as well as lymphatic drainage. Used in conjunction with advanced computational processing methods including optimal mass transport analysis, one gains new insights into the biophysical forces governing solute transport in the CNS which leads to intriguing new research directions. Considering drainage pathways, we review the novel T1 mapping technique for quantifying glymphatic transport and cervical lymph node drainage concurrently in the same subject. We provide an overview of knowledge gleaned from DCE-MRI studies of glymphatic transport and meningeal lymphatic drainage. Finally, we introduce positron emission tomography (PET) and CSF administration of radiotracers as an alternative method to explore other pharmacokinetic aspects of CSF transport into brain parenchyma as well as efflux pathways. Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to a number of factors, including important developments in whole brain imaging technology and computational fluid dynamics analysis employed for the elucidation of glymphatic transport function in the live animal and human brain. In this paper, we review the technical aspects of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in combination with administration of Gd-based tracers into the cerebrospinal fluid (CSF) for tracking glymphatic solute and fluid transport in the CNS as well as lymphatic drainage. Used in conjunction with advanced computational processing methods including optimal mass transport analysis, one gains new insights into the biophysical forces governing solute transport in the CNS which leads to intriguing new research directions. Considering drainage pathways, we review the novel T1 mapping technique for quantifying glymphatic transport and cervical lymph node drainage concurrently in the same subject. We provide an overview of knowledge gleaned from DCE-MRI studies of glymphatic transport and meningeal lymphatic drainage. Finally, we introduce positron emission tomography (PET) and CSF administration of radiotracers as an alternative method to explore other pharmacokinetic aspects of CSF transport into brain parenchyma as well as efflux pathways. •DCE-MRI is a robust imaging platform for quantifying glymphatic transport.•Glymphatic transport and CSF flow dynamics is dependent on body posture.•T1 mapping can quantify glymphatic transport and cervical lymph node drainage concurrently.•Glymphatic transport kinetics are heterogenous across brain regions.•Regularized optimal mass transport analysis incorporates advective as well as diffusion terms.•Glymphatic transport can be measured by positron emission tomography. Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to a number of factors, including important developments in whole brain imaging technology and computational fluid dynamics analysis employed for the elucidation of glymphatic transport function in the live animal and human brain. In this paper, we review the technical aspects of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in combination with administration of Gd-based tracers into the cerebrospinal fluid (CSF) for tracking glymphatic solute and fluid transport in the CNS as well as lymphatic drainage. Used in conjunction with advanced computational processing methods including optimal mass transport analysis, one gains new insights into the biophysical forces governing solute transport in the CNS which leads to intriguing new research directions. Considering drainage pathways, we review the novel T1 mapping technique for quantifying glymphatic transport and cervical lymph node drainage concurrently in the same subject. We provide an overview of knowledge gleaned from DCE-MRI studies of glymphatic transport and meningeal lymphatic drainage. Finally, we introduce positron emission tomography (PET) and CSF administration of radiotracers as an alternative method to explore other pharmacokinetic aspects of CSF transport into brain parenchyma as well as efflux pathways. |
Author | Chen, Xinan Lee, Hedok Vaska, Paul Benveniste, Helene Ozturk, Burhan Volkow, Nora D. Koundal, Sunil Tannenbaum, Allen |
AuthorAffiliation | 1 Department of Anesthesiology, Yale School of Medicine, New Haven, CT 2 Department of Biomedical Engineering, Yale School of Medicine, New Haven CT 4 Department of Radiology, Stony Brook University, Stony Brook, NY 5 Laboratory for Neuroimaging, NIAAA, Bethesda, MD 3 Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook NY |
AuthorAffiliation_xml | – name: 2 Department of Biomedical Engineering, Yale School of Medicine, New Haven CT – name: 3 Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook NY – name: 4 Department of Radiology, Stony Brook University, Stony Brook, NY – name: 5 Laboratory for Neuroimaging, NIAAA, Bethesda, MD – name: 1 Department of Anesthesiology, Yale School of Medicine, New Haven, CT |
Author_xml | – sequence: 1 givenname: Helene surname: Benveniste fullname: Benveniste, Helene email: Helene.benveniste@yale.edu organization: Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States – sequence: 2 givenname: Hedok surname: Lee fullname: Lee, Hedok organization: Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States – sequence: 3 givenname: Burhan surname: Ozturk fullname: Ozturk, Burhan organization: Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States – sequence: 4 givenname: Xinan surname: Chen fullname: Chen, Xinan organization: Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY, United States – sequence: 5 givenname: Sunil surname: Koundal fullname: Koundal, Sunil organization: Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States – sequence: 6 givenname: Paul surname: Vaska fullname: Vaska, Paul organization: Department of Radiology and Biomedical Engineering, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States – sequence: 7 givenname: Allen surname: Tannenbaum fullname: Tannenbaum, Allen organization: Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY, United States – sequence: 8 givenname: Nora D. surname: Volkow fullname: Volkow, Nora D. organization: Laboratory for Neuroimaging, NIAAA, Bethesda, MD, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33248153$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v1DAQxS1URLeFr4AsTlyy2LHjJBwQsLRlpSL-bc-W44y3Xhw7OEml_fZ42S0qPe1c5jBvfk967wyd-OABoVeUzCmh4s1m7mGKYdAWvIZ5TvJ0oHNC-RM0o1XJsrLg_ATNCCMi40Wen6KzYdiQNAVnz9ApYzmvaMFm6ObKbbv-Vo1W4wVEaBK3t145fOkm22LlW_wzuGkEvIrKD32II_4-KT9aY6HFzRZ_-bH8K_t2scLLTq2tXz9HT41yA7w47HN0c3mxWnzOrr9eLRcfrjNd5CXPeMlUy7huSsGhNkYZVgtDBVWKkaoRpdasgrapKyqYAcJFrVmpWAFGQFHX7By923P7qemg1eDHqJzso-1U3MqgrPz_4u2tXIc7WVFe8ypPgNcHQAy_JxhG2dlBg3PKQ5gGmXOREhO83klfPvT6Z3KfZRK83wt0ynCIYKS2Ywo27Kytk5TIXX1yIx_WJ3f1SUplqi8h3j5C3Lsc9fxp_wwp8TsLUR5UrY2gR9kGexzm4yOMdtZbrdwv2B4L-QN3UNXF |
CitedBy_id | crossref_primary_10_1146_annurev_fluid_120720_011638 crossref_primary_10_1016_j_isci_2024_111463 crossref_primary_10_1186_s12987_021_00290_z crossref_primary_10_1016_j_bbrc_2022_03_025 crossref_primary_10_1186_s12987_021_00258_z crossref_primary_10_1038_s41598_024_76592_7 crossref_primary_10_1186_s12987_023_00443_2 crossref_primary_10_3389_fnins_2023_1061039 crossref_primary_10_1007_s00018_023_04736_5 crossref_primary_10_3389_fnins_2022_823701 crossref_primary_10_1016_j_isci_2022_105250 crossref_primary_10_3389_fpsyt_2024_1368489 crossref_primary_10_1152_physiol_00015_2022 crossref_primary_10_1186_s40478_021_01198_3 crossref_primary_10_3390_biomedicines10092261 crossref_primary_10_1038_s41598_023_43920_2 crossref_primary_10_1161_STR_0000000000000431 crossref_primary_10_1172_jci_insight_170270 crossref_primary_10_1002_glia_24639 crossref_primary_10_1007_s00018_024_05277_1 crossref_primary_10_1016_j_wneu_2024_07_062 crossref_primary_10_1002_jnr_24935 crossref_primary_10_1007_s10915_023_02337_9 crossref_primary_10_3174_ajnr_A7841 crossref_primary_10_1136_bmjopen_2021_054885 crossref_primary_10_1038_s41598_024_77615_z crossref_primary_10_1002_alz_13512 crossref_primary_10_1038_s43587_022_00181_4 crossref_primary_10_3389_fneur_2021_767470 crossref_primary_10_1016_j_biopsych_2023_09_003 crossref_primary_10_1002_jgm_3457 crossref_primary_10_1016_j_acra_2024_11_010 crossref_primary_10_1186_s12987_023_00459_8 crossref_primary_10_1186_s12987_024_00571_3 crossref_primary_10_1038_s41573_022_00500_9 crossref_primary_10_1186_s12987_022_00318_y crossref_primary_10_1016_j_nbd_2022_105776 crossref_primary_10_1093_stmcls_sxac039 crossref_primary_10_1016_j_neuroimage_2022_119464 crossref_primary_10_1111_ejn_15974 crossref_primary_10_1177_0271678X231156982 crossref_primary_10_1016_j_neurad_2023_03_002 crossref_primary_10_3390_biomedicines13030603 crossref_primary_10_1002_jmri_29034 crossref_primary_10_1097_WCO_0000000000001252 crossref_primary_10_1007_s12028_021_01224_1 crossref_primary_10_3233_JAD_230553 crossref_primary_10_3390_brainsci13091292 crossref_primary_10_1002_jcph_2219 crossref_primary_10_1002_nbm_5314 crossref_primary_10_1016_j_neuroscience_2021_08_017 crossref_primary_10_14336_AD_2023_1229 crossref_primary_10_1038_s41598_023_40896_x crossref_primary_10_1152_japplphysiol_00861_2019 crossref_primary_10_3389_fneur_2025_1554813 crossref_primary_10_1038_s44323_025_00025_5 crossref_primary_10_1016_j_nic_2024_12_001 crossref_primary_10_1016_j_nic_2024_12_004 crossref_primary_10_3390_ijms22105343 crossref_primary_10_3389_fnagi_2023_1179988 crossref_primary_10_3389_fncel_2021_683676 |
Cites_doi | 10.1159/000490349 10.1016/j.neuroimage.2018.11.051 10.1007/s00401-016-1555-z 10.1172/jci.insight.121537 10.1172/JCI90603 10.1161/STROKEAHA.117.017014 10.1016/j.jneumeth.2014.12.015 10.1517/17425247.2016.1171315 10.1038/nmeth.1582 10.1038/s41467-018-07318-3 10.1523/JNEUROSCI.3020-14.2014 10.1007/s11604-019-00828-0 10.1084/jem.20170391 10.1073/pnas.1414821112 10.3174/ajnr.A6136 10.1523/JNEUROSCI.3742-14.2015 10.1016/j.tins.2016.07.001 10.7554/eLife.40070 10.1002/mrm.26779 10.1016/j.mri.2020.05.001 10.1053/snuc.2003.127300 10.1001/jamapsychiatry.2017.0135 10.1097/RLI.0000000000000473 10.1126/science.1241224 10.1186/1479-5876-11-107 10.1093/brain/awx191 10.1016/0006-8993(85)91383-6 10.1038/s41598-020-71582-x 10.1002/nbm.979 10.1007/s00401-018-1812-4 10.1016/j.neuroimage.2018.12.039 10.1053/snuc.2003.127297 10.1523/JNEUROSCI.1974-18.2019 10.1172/JCI67677 10.1002/dneu.22622 10.1038/nature14432 10.1016/j.jstrokecerebrovasdis.2020.104828 10.1038/s41598-020-59045-9 10.2463/mrms.bc.2019-0099 10.1016/j.neuroimage.2019.02.064 10.1089/15396850360495682 10.1089/lrb.2013.0013 10.1097/WNR.0000000000000990 10.1016/j.neuroimage.2012.08.057 10.1016/j.jhep.2018.08.021 10.1038/s41582-020-0312-z 10.1167/iovs.19-26997 10.1002/j.1552-4604.1999.tb05932.x 10.1002/jnr.24325 10.1016/j.brainres.2020.147062 10.1038/s41598-018-25666-4 10.7150/thno.19154 10.1016/j.neuchi.2018.08.003 10.1177/0271678X16654702 10.1186/2045-8118-11-26 10.1097/RLI.0000000000000533 10.1093/brain/awaa179 10.1016/j.neuroscience.2019.01.030 10.1016/j.it.2015.08.006 10.2463/mrms.mp.2016-0039 10.1016/j.neuron.2018.09.022 10.1177/0271678X18754732 10.1126/science.aax7171 10.1016/j.neuropharm.2017.01.012 10.1161/STROKEAHA.114.006617 10.1016/j.tins.2020.04.003 10.1016/j.omtm.2018.12.001 10.1053/snuc.2002.29270 10.1073/pnas.1914017117 10.1097/ALN.0000000000001888 10.1093/sleep/15.2.143 10.1084/jem.20142290 10.1016/j.clinimag.2020.04.043 10.1016/j.neuroimage.2017.03.021 10.1186/2045-8118-11-10 10.1016/S0140-6736(00)52276-4 10.3389/neuro.05.001.2008 10.1038/s41593-018-0227-9 10.1126/scitranslmed.3003748 10.1111/j.1750-3639.1992.tb00704.x 10.1038/s41467-019-12568-w 10.1002/ana.25670 10.1152/physrev.1922.2.2.171 10.1002/ana.25604 10.1053/j.semnuclmed.2004.01.002 10.1523/JNEUROSCI.1625-15.2015 |
ContentType | Journal Article |
Copyright | 2020 IBRO Copyright © 2020 IBRO. All rights reserved. |
Copyright_xml | – notice: 2020 IBRO – notice: Copyright © 2020 IBRO. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.neuroscience.2020.11.014 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-7544 |
EndPage | 79 |
ExternalDocumentID | PMC8149482 33248153 10_1016_j_neuroscience_2020_11_014 S0306452220307302 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: RF1 AG053991 – fundername: NIA NIH HHS grantid: R01 AG048769 |
GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5RE 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABTEW ACDAQ ACGFO ACGFS ACIUM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMQ IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSN SSZ T5K UNMZH Z5R ~G- AACTN AADPK AAIAV ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG .55 .GJ 29N 53G 5VS AAQXK AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AHHHB ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M YYP ZGI ZXP NPM 7X8 5PM |
ID | FETCH-LOGICAL-c5274-473ad34cb764e9ffaf396f161aa308b67cc38edb98163fe0469c37a35ef6e5993 |
IEDL.DBID | .~1 |
ISSN | 0306-4522 1873-7544 |
IngestDate | Thu Aug 21 18:40:10 EDT 2025 Sun Aug 24 04:07:37 EDT 2025 Wed Feb 19 02:29:47 EST 2025 Thu Apr 24 22:52:18 EDT 2025 Tue Jul 01 02:21:51 EDT 2025 Fri Feb 23 02:44:10 EST 2024 Tue Aug 26 17:32:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | VFA-SPGR magnetic resonance imaging DCE-MRI TSC CNS MW ER CSF cerebrospinal fluid glymphatic positron emission tomography ISF PET gadolinium lymphatic |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2020 IBRO. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5274-473ad34cb764e9ffaf396f161aa308b67cc38edb98163fe0469c37a35ef6e5993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8149482 |
PMID | 33248153 |
PQID | 2465436492 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8149482 proquest_miscellaneous_2465436492 pubmed_primary_33248153 crossref_citationtrail_10_1016_j_neuroscience_2020_11_014 crossref_primary_10_1016_j_neuroscience_2020_11_014 elsevier_sciencedirect_doi_10_1016_j_neuroscience_2020_11_014 elsevier_clinicalkey_doi_10_1016_j_neuroscience_2020_11_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-15 |
PublicationDateYYYYMMDD | 2021-10-15 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neuroscience |
PublicationTitleAlternate | Neuroscience |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ohno, Samaranch, Hadaczek, Bringas, Allen, Sudhakar, Stockinger, Snieckus (b0360) 2019; 13 Mestre, Mori, Nedergaard (b0320) 2020; 43 Louveau, Herz, Alme, Salvador, Dong, Viar, Herod, Knopp (b0285) 2018; 21 Iliff, Lee, Yu, Feng, Logan, Nedergaard, Benveniste (b0195) 2013; 123 Edeklev, Halvorsen, Lovland, Vatnehol, Gjertsen, Nedregaard, Sletteberg, Ringstad (b0090) 2019; 40 Benveniste, Liu, Koundal, Sanggaard, Lee, Wardlaw (b0040) 2019; 65 Di Palma, Goulay, Chagnot, Martinez De Lizarrondo, Anfray, Salaun, Maubert, Lechapt-Zalcman (b0075) 2018; 78 Li, Chopp, Ding, Davoodi-Bojd, Zhang, Li, Zhang, Xiong (b0270) 2020; 1747 Taoka, Jost, Frenzel, Naganawa, Pietsch (b0420) 2018; 53 Goulay, Flament, Gauberti, Naveau, Pasquet, Gakuba, Emery, Hantraye (b0155) 2017; 48 Ratner, Zhu, Kolesov, Nedergaard, Benveniste, Tannenbaum (b0385) 2015; 9413 Volkow, Kim, Wang, Alexoff, Logan, Muench, Shea, Telang (b0440) 2013; 64 Ringstad, Vatnehol, Eide (b0400) 2017; 140 Truman LA, N A.G., Bentley KL, Ruddle NH. (2013), Lymphatic vessel function in head and neck inflammation. Lymphat Res Biol 11:187-192. Mestre, Tithof, Du, Song, Peng, Sweeney, Olveda, Thomas (b0325) 2018; 9 Shimoji, Ravasi, Schmidt, Soto-Montenegro, Esaki, Seidel, Jagoda, Sokoloff (b0410) 2004; 45 Eide, Ringstad (b0095) 2015; 4 Iliff, Wang, Liao, Plogg, Peng, Gundersen, Benveniste, Vates (b0200) 2012; 4 Da Mesquita, Fu, Kipnis (b0055) 2018; 100 Lee, Mortensen, Sanggaard, Koch, Brunner, Quistorff, Nedergaard, Benveniste (b0255) 2018; 79 Iliff, Chen, Plog, Zeppenfeld, Soltero, Yang, Singh, Deane (b0190) 2014; 34 Jiang, Zhang, Ding, Davoodi-Bojd, Li, Li, Sadry, Nedergaard (b0220) 2017; 37 Fowler, Volkow, Wang, Ding (b0135) 2004; 34 Mott FW. (1910), The Oliver-Sharpey Lectures on the cerebrospinal fluid. The Lancet (British edition) ii:1-8. Mortensen, Sanggaard, Mestre, Lee, Kostrikov, Xavier, Gjedde, Benveniste (b0340) 2019; 39 Mestre, Hablitz, Xavier, Feng, Zou, Pu, Monai, Murlidharan (b0315) 2018; 7 Karimy, Kahle, Kurland, Yu, Gerzanich, Simard (b0230) 2015; 241 Ratner, Gao, Lee, Elkin, Nedergaard, Benveniste, Tannenbaum (b0380) 2017; 152 Meng, Abrahao, Heyn, Bethune, Huang, Pople, Aubert, Hamani (b0305) 2019; 86 Weed (b0465) 1922; 2 Mestre, Du, Sweeney, Liu, Samson, Peng, Mortensen, Staeger (b0310) 2020; 367 Weller, Kida, Zhang (b0470) 1992; 2 Jacobsen, Ringstad, Jorstad, Moe, Sandell, Eide (b0210) 2019; 60 De Koninck, Lorrain, Gagnon (b0065) 1992; 15 Wang, Lang, Huang, Wang, Jacobson, Kiesewetter, Ali, Teng (b0450) 2015; 112 Jiang, Zhang, Ding, Davoodi-Bojd, Li, Li, Sadry, Nedergaard (b0215) 2016 Benveniste, Lee, Ding, Sun, Al-Bizri, Makaryus, Probst, Nedergaard (b0035) 2017; 127 Gaberel, Gakuba, Goulay, Martinez De Lizarrondo, Hanouz, Emery, Touze, Vivien (b0140) 2014; 45 Koundal, Liu, Sanggaard, Mortensen, Wardlaw, Nedergaard, Benveniste, Lee (b0245) 2019; 404 Raper, Louveau, Kipnis (b0375) 2016; 39 Antila, Karaman, Nurmi, Airavaara, Voutilainen, Mathivet, Chilov, Li (b0015) 2017; 214 Elkin, Nadeem, Haber, Steklova, Lee, Benveniste, Tannenbaum (b0110) 2018; 11070 Fournier, Gauberti, Quenault, Vivien, Macrez, Docagne (b0115) 2019; 39 Davoodi-Bojd, Ding, Zhang, Li, Li, Chopp, Zhang, Jiang (b0060) 2019; 188 Volkow, Wiers, Shokri-Kojori, Tomasi, Wang, Baler (b0445) 2017; 122 Takano, Yamada (b0415) 2020; 71 Eide, Vatnehol, Emblem, Ringstad (b0105) 2018; 8 Louveau, Plog, Antila, Alitalo, Nedergaard, Kipnis (b0290) 2017; 127 Eide, Ringstad (b0100) 2018 Jacob, Boisserand, Geraldo, de Brito Neto, Mathivet, Antila, Barka, Xu (b0205) 2019; 10 Fowler, Ido (b0125) 2002; 32 Dyke, Xu, Verma, Voss, Chazen (b0085) 2020; 68 Kyme, Angelis, Eisenhuth, Fulton, Zhou, Hart, Popovic, Akhtar (b0250) 2018; 188 Huber, Igarashi, Ueki, Kwee, Nakada (b0185) 2018; 29 Wardlaw, Benveniste, Nedergaard, Zlokovic, Mestre, Lee, Doubal, Brown (b0455) 2020; 16 Villani (b0430) 2009; 338 Brinker, Stopa, Morrison, Klinge (b0045) 2014; 11 Xie, Kang, Xu, Chen, Liao, Thiyagarajan, O'Donnell, Christensen (b0475) 2013; 342 Agency, Dotarem, Alluri, Kim, Volkow, Kil (b0010) 2020; 25 Deike-Hofmann, Reuter, Haase, Paech, Gnirs, Bickelhaupt, Forsting, Heussel (b0070) 2019; 54 Volkow, Fowler, Wang (b0435) 2003; 33 Ding, Chopp, Li, Zhang, Davoodi-Bojd, Li, Zhang, Jiang (b0080) 2018; 96 Xue, Liu, Koundal, Constantinou, Dai, Santambrogio, Lee, Benveniste (b0480) 2020; 10 Aspelund, Antila, Proulx, Karlsen, Karaman, Detmar, Wiig, Alitalo (b0025) 2015; 212 Abbott, Pizzo, Preston, Janigro, Thorne (b0005) 2018; 135 Koundal, Elkin, Nadeem, Xue, Constantinou, Sanggaard, Liu, Monte (b0240) 2020; 10 Louveau, Smirnov, Keyes, Eccles, Rouhani, Peske, Derecki, Castle (b0295) 2015; 523 Haughton, Korosec, Medow, Dolar, Iskandar (b0175) 2003; 24 Yang, Kress, Weber, Thiyagarajan, Wang, Deane, Benveniste, Iliff (b0485) 2013; 11 Goulay, Aron, Flament, Emery, Hantraye, Vivien, Gaberel (b0150) 2018; 64 Plog, Dashnaw, Hitomi, Peng, Liao, Lou, Deane, Nedergaard (b0370) 2015; 35 Barbier, Liu, Grillon, Payen, Lebas, Segebarth, Remy (b0030) 2005; 18 Kato, Bokura, Taoka, Naganawa (b0235) 2019; 37 Cai, Qiao, Kulkarni, Harding, Ebong, Ferris (b0050) 2020; 117 Fowler, Volkow, Ding, Wang, Dewey, Fischman, Foltin, Hitzemann (b0130) 1999; 39 Ashok, Mizuno, Volkow, Howes (b0020) 2017; 74 Gakuba, Gaberel, Goursaud, Bourges, Di Palma, Quenault, Martinez de Lizarrondo, Vivien (b0145) 2018; 8 Naganawa, Nakane, Kawai, Taoka (b0355) 2017; 16 Watts, Steinklein, Waldman, Zhou, Filippi (b0460) 2019; 40 Miranda, Kang, Blinder, Bouhachi, Soucy, Aliaga-Aliaga, Massarweh, Stroobants (b0330) 2019; 191 Lin, Hao, Li, Sun, Wang, Yin, Zhang, Tian (b0275) 2020; 29 Rennels, Gregory, Blaumanis, Fujimoto, Grady (b0390) 1985; 326 Hadjihambi, Harrison, Costas-Rodriguez, Vanhaecke, Arias, Gallego-Duran, Mastitskaya, Hosford (b0160) 2019; 70 Harrison, Ismail, Machhada, Colgan, Ohene, Nahavandi, Ahmed, Fisher (b0170) 2020; 143 Johnston (b0225) 2003; 1 Naganawa, Ito, Taoka, Yoshida, Sone (b0350) 2020; 19 Hladky, Barrand (b0180) 2014; 11 Louveau, Harris, Kipnis (b0280) 2015; 36 Morris, Sharp, Albargothy, Fernandes, Hawkes, Verma, Weller, Carare (b0335) 2016; 131 Ringstad, Valnes, Dale, Pripp, Vatnehol, Emblem, Mardal, Eide (b0395) 2018; 3 Pardridge (b0365) 2016; 13 Schulz, Southekal, Junnarkar, Pratte, Purschke, Stoll, Ravindranath, Maramraju (b0405) 2011; 8 Zhou, Cai, Zhang, Gong, Yan, Zhang, Luo, Sun (b0490) 2020; 87 Fowler, Ding, Volkow (b0120) 2003; 33 Lee, Xie, Yu, Kang, Feng, Deane, Logan, Nedergaard (b0260) 2015; 35 Ma, Smith, Hof, Foerster, Hamilton, Blackband, Yu, Benveniste (b0300) 2008; 2 Lee, Xu, Liu, Koundal, Zhu, Davis, Yanez, Schrader (b0265) 2020 Halliburton (b0165) 1917; 10 Watts (10.1016/j.neuroscience.2020.11.014_b0460) 2019; 40 Volkow (10.1016/j.neuroscience.2020.11.014_b0435) 2003; 33 Iliff (10.1016/j.neuroscience.2020.11.014_b0190) 2014; 34 Hladky (10.1016/j.neuroscience.2020.11.014_b0180) 2014; 11 Jiang (10.1016/j.neuroscience.2020.11.014_b0220) 2017; 37 Di Palma (10.1016/j.neuroscience.2020.11.014_b0075) 2018; 78 Koundal (10.1016/j.neuroscience.2020.11.014_b0240) 2020; 10 Fowler (10.1016/j.neuroscience.2020.11.014_b0135) 2004; 34 Da Mesquita (10.1016/j.neuroscience.2020.11.014_b0055) 2018; 100 Miranda (10.1016/j.neuroscience.2020.11.014_b0330) 2019; 191 Gakuba (10.1016/j.neuroscience.2020.11.014_b0145) 2018; 8 Mestre (10.1016/j.neuroscience.2020.11.014_b0320) 2020; 43 Jiang (10.1016/j.neuroscience.2020.11.014_b0215) 2016 Eide (10.1016/j.neuroscience.2020.11.014_b0105) 2018; 8 Lee (10.1016/j.neuroscience.2020.11.014_b0255) 2018; 79 Harrison (10.1016/j.neuroscience.2020.11.014_b0170) 2020; 143 Naganawa (10.1016/j.neuroscience.2020.11.014_b0350) 2020; 19 Meng (10.1016/j.neuroscience.2020.11.014_b0305) 2019; 86 Mestre (10.1016/j.neuroscience.2020.11.014_b0325) 2018; 9 Gaberel (10.1016/j.neuroscience.2020.11.014_b0140) 2014; 45 Kyme (10.1016/j.neuroscience.2020.11.014_b0250) 2018; 188 Eide (10.1016/j.neuroscience.2020.11.014_b0095) 2015; 4 Ratner (10.1016/j.neuroscience.2020.11.014_b0385) 2015; 9413 Antila (10.1016/j.neuroscience.2020.11.014_b0015) 2017; 214 Rennels (10.1016/j.neuroscience.2020.11.014_b0390) 1985; 326 Barbier (10.1016/j.neuroscience.2020.11.014_b0030) 2005; 18 Yang (10.1016/j.neuroscience.2020.11.014_b0485) 2013; 11 Xie (10.1016/j.neuroscience.2020.11.014_b0475) 2013; 342 10.1016/j.neuroscience.2020.11.014_b0425 Wang (10.1016/j.neuroscience.2020.11.014_b0450) 2015; 112 Jacobsen (10.1016/j.neuroscience.2020.11.014_b0210) 2019; 60 De Koninck (10.1016/j.neuroscience.2020.11.014_b0065) 1992; 15 Benveniste (10.1016/j.neuroscience.2020.11.014_b0035) 2017; 127 Jacob (10.1016/j.neuroscience.2020.11.014_b0205) 2019; 10 Abbott (10.1016/j.neuroscience.2020.11.014_b0005) 2018; 135 Schulz (10.1016/j.neuroscience.2020.11.014_b0405) 2011; 8 Dyke (10.1016/j.neuroscience.2020.11.014_b0085) 2020; 68 Taoka (10.1016/j.neuroscience.2020.11.014_b0420) 2018; 53 Goulay (10.1016/j.neuroscience.2020.11.014_b0155) 2017; 48 Shimoji (10.1016/j.neuroscience.2020.11.014_b0410) 2004; 45 Agency (10.1016/j.neuroscience.2020.11.014_b0010) 2020; 25 Louveau (10.1016/j.neuroscience.2020.11.014_b0295) 2015; 523 Aspelund (10.1016/j.neuroscience.2020.11.014_b0025) 2015; 212 Ringstad (10.1016/j.neuroscience.2020.11.014_b0395) 2018; 3 Louveau (10.1016/j.neuroscience.2020.11.014_b0290) 2017; 127 Weed (10.1016/j.neuroscience.2020.11.014_b0465) 1922; 2 Johnston (10.1016/j.neuroscience.2020.11.014_b0225) 2003; 1 Eide (10.1016/j.neuroscience.2020.11.014_b0100) 2018 Morris (10.1016/j.neuroscience.2020.11.014_b0335) 2016; 131 Takano (10.1016/j.neuroscience.2020.11.014_b0415) 2020; 71 Ratner (10.1016/j.neuroscience.2020.11.014_b0380) 2017; 152 Mortensen (10.1016/j.neuroscience.2020.11.014_b0340) 2019; 39 Pardridge (10.1016/j.neuroscience.2020.11.014_b0365) 2016; 13 Fowler (10.1016/j.neuroscience.2020.11.014_b0130) 1999; 39 Ma (10.1016/j.neuroscience.2020.11.014_b0300) 2008; 2 Zhou (10.1016/j.neuroscience.2020.11.014_b0490) 2020; 87 Benveniste (10.1016/j.neuroscience.2020.11.014_b0040) 2019; 65 Volkow (10.1016/j.neuroscience.2020.11.014_b0440) 2013; 64 Ashok (10.1016/j.neuroscience.2020.11.014_b0020) 2017; 74 Lin (10.1016/j.neuroscience.2020.11.014_b0275) 2020; 29 Hadjihambi (10.1016/j.neuroscience.2020.11.014_b0160) 2019; 70 Louveau (10.1016/j.neuroscience.2020.11.014_b0285) 2018; 21 Fowler (10.1016/j.neuroscience.2020.11.014_b0120) 2003; 33 Ohno (10.1016/j.neuroscience.2020.11.014_b0360) 2019; 13 Karimy (10.1016/j.neuroscience.2020.11.014_b0230) 2015; 241 Koundal (10.1016/j.neuroscience.2020.11.014_b0245) 2019; 404 Plog (10.1016/j.neuroscience.2020.11.014_b0370) 2015; 35 Wardlaw (10.1016/j.neuroscience.2020.11.014_b0455) 2020; 16 Iliff (10.1016/j.neuroscience.2020.11.014_b0195) 2013; 123 Lee (10.1016/j.neuroscience.2020.11.014_b0265) 2020 Volkow (10.1016/j.neuroscience.2020.11.014_b0445) 2017; 122 Weller (10.1016/j.neuroscience.2020.11.014_b0470) 1992; 2 Mestre (10.1016/j.neuroscience.2020.11.014_b0310) 2020; 367 Raper (10.1016/j.neuroscience.2020.11.014_b0375) 2016; 39 Haughton (10.1016/j.neuroscience.2020.11.014_b0175) 2003; 24 Villani (10.1016/j.neuroscience.2020.11.014_b0430) 2009; 338 Iliff (10.1016/j.neuroscience.2020.11.014_b0200) 2012; 4 Cai (10.1016/j.neuroscience.2020.11.014_b0050) 2020; 117 Halliburton (10.1016/j.neuroscience.2020.11.014_b0165) 1917; 10 Huber (10.1016/j.neuroscience.2020.11.014_b0185) 2018; 29 Li (10.1016/j.neuroscience.2020.11.014_b0270) 2020; 1747 Elkin (10.1016/j.neuroscience.2020.11.014_b0110) 2018; 11070 Brinker (10.1016/j.neuroscience.2020.11.014_b0045) 2014; 11 Fournier (10.1016/j.neuroscience.2020.11.014_b0115) 2019; 39 Davoodi-Bojd (10.1016/j.neuroscience.2020.11.014_b0060) 2019; 188 Mestre (10.1016/j.neuroscience.2020.11.014_b0315) 2018; 7 Fowler (10.1016/j.neuroscience.2020.11.014_b0125) 2002; 32 Deike-Hofmann (10.1016/j.neuroscience.2020.11.014_b0070) 2019; 54 Xue (10.1016/j.neuroscience.2020.11.014_b0480) 2020; 10 Lee (10.1016/j.neuroscience.2020.11.014_b0260) 2015; 35 Ringstad (10.1016/j.neuroscience.2020.11.014_b0400) 2017; 140 Ding (10.1016/j.neuroscience.2020.11.014_b0080) 2018; 96 Louveau (10.1016/j.neuroscience.2020.11.014_b0280) 2015; 36 10.1016/j.neuroscience.2020.11.014_b0345 Naganawa (10.1016/j.neuroscience.2020.11.014_b0355) 2017; 16 Edeklev (10.1016/j.neuroscience.2020.11.014_b0090) 2019; 40 Goulay (10.1016/j.neuroscience.2020.11.014_b0150) 2018; 64 Kato (10.1016/j.neuroscience.2020.11.014_b0235) 2019; 37 |
References_xml | – volume: 122 start-page: 175 year: 2017 end-page: 188 ident: b0445 article-title: Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: Studies with positron emission tomography publication-title: Neuropharmacology – volume: 16 start-page: 61 year: 2017 end-page: 65 ident: b0355 article-title: Gd-based contrast enhancement of the perivascular spaces in the basal ganglia publication-title: Magn Reson Med Sci – volume: 9413 year: 2015 ident: b0385 article-title: Optimal-mass-transfer-based estimation of glymphatic transport in living brain publication-title: Proc SPIE Int Soc Opt Eng – volume: 140 start-page: 2691 year: 2017 end-page: 2705 ident: b0400 article-title: Glymphatic MRI in idiopathic normal pressure hydrocephalus publication-title: Brain – volume: 2 start-page: 171 year: 1922 end-page: 203 ident: b0465 article-title: The cerebrospinal fluid publication-title: Physiol Rev – volume: 10 start-page: 1990 year: 2020 ident: b0240 article-title: Optimal mass transport with lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system publication-title: Sci Rep – volume: 191 start-page: 560 year: 2019 end-page: 567 ident: b0330 article-title: PET imaging of freely moving interacting rats publication-title: Neuroimage – volume: 342 start-page: 373 year: 2013 end-page: 377 ident: b0475 article-title: Sleep drives metabolite clearance from the adult brain publication-title: Science – volume: 40 start-page: 1257 year: 2019 end-page: 1264 ident: b0090 article-title: Intrathecal use of gadobutrol for glymphatic MR imaging: prospective safety study of 100 patients publication-title: AJNR Am J Neuroradiol – year: 2018 ident: b0100 article-title: Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study publication-title: J Cereb Blood Flow – volume: 9 start-page: 4878 year: 2018 ident: b0325 article-title: Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension publication-title: Nat Commun – volume: 338 start-page: 1 year: 2009 end-page: 973 ident: b0430 article-title: Optimal transport: old and new publication-title: Grundlehr Math Wiss – volume: 35 start-page: 518 year: 2015 end-page: 526 ident: b0370 article-title: Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system publication-title: J Neurosci – volume: 123 start-page: 1299 year: 2013 end-page: 1309 ident: b0195 article-title: Brain-wide pathway for waste clearance captured by contrast-enhanced MRI publication-title: J Clin Invest – volume: 3 year: 2018 ident: b0395 article-title: Brain-wide glymphatic enhancement and clearance in humans assessed with MRI publication-title: JCI Insight – volume: 152 start-page: 530 year: 2017 end-page: 537 ident: b0380 article-title: Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport publication-title: Neuroimage – volume: 2 start-page: 277 year: 1992 end-page: 284 ident: b0470 article-title: Pathways of fluid drainage from the brain–morphological aspects and immunological significance in rat and man publication-title: Brain Pathol – reference: Mott FW. (1910), The Oliver-Sharpey Lectures on the cerebrospinal fluid. The Lancet (British edition) ii:1-8. – volume: 54 start-page: 229 year: 2019 end-page: 237 ident: b0070 article-title: Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted publication-title: Invest Radiol – volume: 10 start-page: 14592 year: 2020 ident: b0480 article-title: In vivo T1 mapping for quantifying glymphatic system transport and cervical lymph node drainage publication-title: Sci Rep – volume: 78 start-page: 851 year: 2018 end-page: 858 ident: b0075 article-title: Cerebrospinal fluid flow increases from newborn to adult stages publication-title: Dev Neurobiol – volume: 100 start-page: 375 year: 2018 end-page: 388 ident: b0055 article-title: The meningeal lymphatic system: a new player in neurophysiology publication-title: Neuron – volume: 10 start-page: 4594 year: 2019 ident: b0205 article-title: Anatomy and function of the vertebral column lymphatic network in mice publication-title: Nat Commun – volume: 79 start-page: 1568 year: 2018 end-page: 1578 ident: b0255 article-title: Quantitative Gd-DOTA uptake from cerebrospinal fluid into rat brain using 3D VFA-SPGR at 9.4T publication-title: Magn Reson Med – volume: 87 start-page: 357 year: 2020 end-page: 369 ident: b0490 article-title: Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human publication-title: Ann Neurol – volume: 34 start-page: 16180 year: 2014 end-page: 16193 ident: b0190 article-title: Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury publication-title: J Neurosci – volume: 135 start-page: 387 year: 2018 end-page: 407 ident: b0005 article-title: The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? publication-title: Acta Neuropathol – volume: 8 start-page: 710 year: 2018 end-page: 722 ident: b0145 article-title: General anesthesia inhibits the activity of the “Glymphatic System” publication-title: Theranostics – volume: 1 start-page: 41 year: 2003 end-page: 44 ident: b0225 article-title: The importance of lymphatics in cerebrospinal fluid transport publication-title: Lymphat Res Biol – volume: 96 start-page: 1876 year: 2018 end-page: 1886 ident: b0080 article-title: MRI investigation of glymphatic responses to Gd-DTPA infusion rates publication-title: J Neurosci Res – volume: 39 start-page: 1258 year: 2019 end-page: 1265 ident: b0115 article-title: Reduced spinal cord parenchymal cerebrospinal fluid circulation in experimental autoimmune encephalomyelitis publication-title: J Cereb Blood Flow Metab – volume: 39 start-page: 13S year: 1999 end-page: 16S ident: b0130 article-title: Positron emission tomography studies of dopamine-enhancing drugs publication-title: J Clin Pharmacol – volume: 143 start-page: 2576 year: 2020 end-page: 2593 ident: b0170 article-title: Impaired glymphatic function and clearance of tau in an Alzheimer's disease model publication-title: Brain – volume: 15 start-page: 143 year: 1992 end-page: 149 ident: b0065 article-title: Sleep positions and position shifts in five age groups: an ontogenetic picture publication-title: Sleep – volume: 43 start-page: 458 year: 2020 end-page: 466 ident: b0320 article-title: The brain's glymphatic system: current controversies publication-title: Trends Neurosci – volume: 367 year: 2020 ident: b0310 article-title: Cerebrospinal fluid influx drives acute ischemic tissue swelling publication-title: Science – volume: 37 start-page: 431 year: 2019 end-page: 435 ident: b0235 article-title: Increased signal intensity of low-concentration gadolinium contrast agent by longer repetition time in heavily T2-weighted-3D-FLAIR publication-title: Jpn J Radiol – volume: 64 start-page: 422 year: 2018 end-page: 424 ident: b0150 article-title: Cerebrospinal fluid leakage after posterior fossa surgery may impair brain metabolite clearance publication-title: Neurochirurgie – volume: 112 start-page: 208 year: 2015 end-page: 213 ident: b0450 article-title: In vivo albumin labeling and lymphatic imaging publication-title: Proc Natl Acad Sci U S A – volume: 39 start-page: 6365 year: 2019 end-page: 6377 ident: b0340 article-title: Impaired glymphatic transport in spontaneously hypertensive rats publication-title: J Neurosci – volume: 4 start-page: 147ra111 year: 2012 ident: b0200 article-title: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta publication-title: Sci Transl Med – volume: 214 start-page: 3645 year: 2017 end-page: 3667 ident: b0015 article-title: Development and plasticity of meningeal lymphatic vessels publication-title: J Exp Med – volume: 11 start-page: 10 year: 2014 ident: b0045 article-title: A new look at cerebrospinal fluid circulation publication-title: Fluids Barriers CNS – volume: 326 start-page: 47 year: 1985 end-page: 63 ident: b0390 article-title: Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space publication-title: Brain Res – volume: 241 start-page: 78 year: 2015 end-page: 84 ident: b0230 article-title: A novel method to study cerebrospinal fluid dynamics in rats publication-title: J Neurosci Methods – volume: 404 start-page: 14 year: 2019 end-page: 26 ident: b0245 article-title: Brain morphometry and longitudinal relaxation time of spontaneously hypertensive rats (SHRs) in early and intermediate stages of hypertension investigated by 3D VFA-SPGR MRI publication-title: Neuroscience – volume: 127 start-page: 3210 year: 2017 end-page: 3219 ident: b0290 article-title: Understanding the functions and relationships of the glymphatic system and meningeal lymphatics publication-title: J Clin Invest – volume: 68 start-page: 1 year: 2020 end-page: 6 ident: b0085 article-title: MRI characterization of early CNS transport kinetics post intrathecal gadolinium injection: trends of subarachnoid and parenchymal distribution in healthy volunteers publication-title: Clin Imaging – volume: 45 start-page: 3092 year: 2014 end-page: 3096 ident: b0140 article-title: Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? publication-title: Stroke – volume: 117 start-page: 668 year: 2020 end-page: 676 ident: b0050 article-title: Imaging the effect of the circadian light-dark cycle on the glymphatic system in awake rats publication-title: Proc Natl Acad Sci U S A – volume: 11070 start-page: 844 year: 2018 end-page: 852 ident: b0110 article-title: GlymphVIS: visualizing glymphatic transport pathways using regularized optimal transport publication-title: Med Image Comput Comput Assist Interv – volume: 24 start-page: 169 year: 2003 end-page: 176 ident: b0175 article-title: Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants publication-title: AJNR Am J Neuroradiol – volume: 7 year: 2018 ident: b0315 article-title: Aquaporin-4-dependent glymphatic solute transport in the rodent brain publication-title: Elife – volume: 25 year: 2020 ident: b0010 article-title: PET radiotracers for CNS-adrenergic receptors: developments and perspectives publication-title: Molecules – volume: 523 start-page: 337 year: 2015 end-page: 341 ident: b0295 article-title: Structural and functional features of central nervous system lymphatic vessels publication-title: Nature – volume: 33 start-page: 114 year: 2003 end-page: 128 ident: b0435 article-title: Positron emission tomography and single-photon emission computed tomography in substance abuse research publication-title: Semin Nucl Med – volume: 33 start-page: 14 year: 2003 end-page: 27 ident: b0120 article-title: Radiotracers for positron emission tomography imaging publication-title: Semin Nucl Med – volume: 4 year: 2015 ident: b0095 article-title: MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain publication-title: Acta Radiol Open – volume: 13 start-page: 47 year: 2019 end-page: 54 ident: b0360 article-title: Kinetics and MR-based monitoring of AAV9 vector delivery into cerebrospinal fluid of nonhuman primates publication-title: Mol Ther Methods Clin Dev – volume: 131 start-page: 725 year: 2016 end-page: 736 ident: b0335 article-title: Vascular basement membranes as pathways for the passage of fluid into and out of the brain publication-title: Acta Neuropathol – volume: 40 start-page: 648 year: 2019 end-page: 651 ident: b0460 article-title: Measuring glymphatic flow in man using quantitative contrast-enhanced MRI publication-title: AJNR Am J Neuroradiol – year: 2020 ident: b0265 article-title: Diffuse white matter loss in a transgenic rat model of cerebral amyloid angiopathy publication-title: J Cereb Blood Flow – volume: 36 start-page: 569 year: 2015 end-page: 577 ident: b0280 article-title: Revisiting the mechanisms of CNS immune privilege publication-title: Trends Immunol – volume: 64 start-page: 277 year: 2013 end-page: 283 ident: b0440 article-title: Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain publication-title: Neuroimage – volume: 32 start-page: 6 year: 2002 end-page: 12 ident: b0125 article-title: Initial and subsequent approach for the synthesis of 18FDG publication-title: Semin Nucl Med – volume: 34 start-page: 112 year: 2004 end-page: 121 ident: b0135 article-title: 2-deoxy-2-[18F]fluoro-D-glucose and alternative radiotracers for positron emission tomography imaging using the human brain as a model publication-title: Semin Nucl Med – volume: 70 start-page: 40 year: 2019 end-page: 49 ident: b0160 article-title: Impaired brain glymphatic flow in experimental hepatic encephalopathy publication-title: J Hepatol – volume: 127 start-page: 976 year: 2017 end-page: 988 ident: b0035 article-title: Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane publication-title: Anesthesiology – volume: 53 start-page: 529 year: 2018 end-page: 534 ident: b0420 article-title: Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the rat brain: observations by dynamic MRI and effect of circadian rhythm on tissue gadolinium concentrations publication-title: Invest Radiol – reference: Truman LA, N A.G., Bentley KL, Ruddle NH. (2013), Lymphatic vessel function in head and neck inflammation. Lymphat Res Biol 11:187-192. – volume: 18 start-page: 499 year: 2005 end-page: 506 ident: b0030 article-title: Focal brain ischemia in rat: acute changes in brain tissue T1 reflect acute increase in brain tissue water content publication-title: NMR Biomed – volume: 29 start-page: 697 year: 2018 end-page: 703 ident: b0185 article-title: Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [17O]H2O JJVCPE MRI study publication-title: Neuroreport – volume: 188 start-page: 616 year: 2019 end-page: 627 ident: b0060 article-title: Modeling glymphatic system of the brain using MRI publication-title: Neuroimage – volume: 35 start-page: 11034 year: 2015 end-page: 11044 ident: b0260 article-title: The effect of body posture on brain glymphatic transport publication-title: J Neurosci – volume: 16 start-page: 137 year: 2020 end-page: 153 ident: b0455 article-title: Perivascular spaces in the brain: anatomy, physiology and pathology publication-title: Nat Rev Neurol – volume: 74 start-page: 511 year: 2017 end-page: 519 ident: b0020 article-title: Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta-analysis publication-title: JAMA Psychiatry – volume: 19 start-page: 1 year: 2020 end-page: 4 ident: b0350 article-title: The space between the pial sheath and the cortical venous wall may connect to the meningeal lymphatics publication-title: Magn Reson Med Sci – volume: 212 start-page: 991 year: 2015 end-page: 999 ident: b0025 article-title: A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules publication-title: J Exp Med – volume: 188 start-page: 92 year: 2018 end-page: 101 ident: b0250 article-title: Open-field PET: Simultaneous brain functional imaging and behavioural response measurements in freely moving small animals publication-title: Neuroimage – volume: 39 start-page: 581 year: 2016 end-page: 586 ident: b0375 article-title: How do meningeal lymphatic vessels drain the CNS? publication-title: Trends Neurosci – volume: 13 start-page: 963 year: 2016 end-page: 975 ident: b0365 article-title: CSF, blood-brain barrier, and brain drug delivery publication-title: Expert Opin Drug Deliv – volume: 65 start-page: 106 year: 2019 end-page: 119 ident: b0040 article-title: The glymphatic system and waste clearance with brain aging: a review publication-title: Gerontology – volume: 8 start-page: 347 year: 2011 end-page: 352 ident: b0405 article-title: Simultaneous assessment of rodent behavior and neurochemistry using a miniature positron emission tomograph publication-title: Nat Meth – volume: 29 year: 2020 ident: b0275 article-title: Impaired glymphatic system in secondary degeneration areas after ischemic stroke in rats publication-title: J Stroke Cerebrovasc Dis – volume: 45 start-page: 665 year: 2004 end-page: 672 ident: b0410 article-title: Measurement of cerebral glucose metabolic rates in the anesthetized rat by dynamic scanning with 18F-FDG, the ATLAS small animal PET scanner, and arterial blood sampling publication-title: J Nucl Med – volume: 86 start-page: 975 year: 2019 end-page: 980 ident: b0305 article-title: Glymphatics visualization after focused ultrasound-induced blood-brain barrier opening in humans publication-title: Ann Neurol – volume: 37 start-page: 1326 year: 2017 end-page: 1337 ident: b0220 article-title: Impairment of the glymphatic system after diabetes publication-title: J Cereb Blood Flow Metab – volume: 2 start-page: 1 year: 2008 ident: b0300 article-title: In vivo 3D digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy publication-title: Front Neuroanat – volume: 8 start-page: 7194 year: 2018 ident: b0105 article-title: Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes publication-title: Sci Rep – volume: 60 start-page: 2773 year: 2019 end-page: 2780 ident: b0210 article-title: The human visual pathway communicates directly with the subarachnoid space publication-title: Invest Ophthalmol Vis Sci – year: 2016 ident: b0215 article-title: Impairment of the glymphatic system after diabetes publication-title: J Cereb Blood Flow Metab – volume: 10 start-page: 1 year: 1917 end-page: 12 ident: b0165 article-title: Presidential address: the possible functions of the cerebrospinal fluid publication-title: Proc R Soc Med – volume: 1747 year: 2020 ident: b0270 article-title: MRI detection of impairment of glymphatic function in rat after mild traumatic brain injury publication-title: Brain Res – volume: 48 start-page: 2301 year: 2017 end-page: 2305 ident: b0155 article-title: Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate publication-title: Stroke – volume: 71 start-page: 11 year: 2020 end-page: 16 ident: b0415 article-title: Contrast-enhanced magnetic resonance imaging evidence for the role of astrocytic aquaporin-4 water channels in glymphatic influx and interstitial solute transport publication-title: Magn Reson Imaging – volume: 11 start-page: 26 year: 2014 ident: b0180 article-title: Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence publication-title: Fluids Barriers CNS – volume: 11 start-page: 107 year: 2013 ident: b0485 article-title: Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer publication-title: J Transl Med – volume: 21 start-page: 1380 year: 2018 end-page: 1391 ident: b0285 article-title: CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature publication-title: Nat Neurosci – volume: 65 start-page: 106 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0040 article-title: The glymphatic system and waste clearance with brain aging: a review publication-title: Gerontology doi: 10.1159/000490349 – volume: 188 start-page: 92 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0250 article-title: Open-field PET: Simultaneous brain functional imaging and behavioural response measurements in freely moving small animals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.11.051 – volume: 131 start-page: 725 year: 2016 ident: 10.1016/j.neuroscience.2020.11.014_b0335 article-title: Vascular basement membranes as pathways for the passage of fluid into and out of the brain publication-title: Acta Neuropathol doi: 10.1007/s00401-016-1555-z – volume: 3 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0395 article-title: Brain-wide glymphatic enhancement and clearance in humans assessed with MRI publication-title: JCI Insight doi: 10.1172/jci.insight.121537 – volume: 127 start-page: 3210 year: 2017 ident: 10.1016/j.neuroscience.2020.11.014_b0290 article-title: Understanding the functions and relationships of the glymphatic system and meningeal lymphatics publication-title: J Clin Invest doi: 10.1172/JCI90603 – year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0100 article-title: Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study publication-title: J Cereb Blood Flow – volume: 48 start-page: 2301 year: 2017 ident: 10.1016/j.neuroscience.2020.11.014_b0155 article-title: Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate publication-title: Stroke doi: 10.1161/STROKEAHA.117.017014 – volume: 241 start-page: 78 year: 2015 ident: 10.1016/j.neuroscience.2020.11.014_b0230 article-title: A novel method to study cerebrospinal fluid dynamics in rats publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2014.12.015 – volume: 13 start-page: 963 year: 2016 ident: 10.1016/j.neuroscience.2020.11.014_b0365 article-title: CSF, blood-brain barrier, and brain drug delivery publication-title: Expert Opin Drug Deliv doi: 10.1517/17425247.2016.1171315 – volume: 8 start-page: 347 year: 2011 ident: 10.1016/j.neuroscience.2020.11.014_b0405 article-title: Simultaneous assessment of rodent behavior and neurochemistry using a miniature positron emission tomograph publication-title: Nat Meth doi: 10.1038/nmeth.1582 – volume: 9 start-page: 4878 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0325 article-title: Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension publication-title: Nat Commun doi: 10.1038/s41467-018-07318-3 – volume: 34 start-page: 16180 year: 2014 ident: 10.1016/j.neuroscience.2020.11.014_b0190 article-title: Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3020-14.2014 – volume: 37 start-page: 431 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0235 article-title: Increased signal intensity of low-concentration gadolinium contrast agent by longer repetition time in heavily T2-weighted-3D-FLAIR publication-title: Jpn J Radiol doi: 10.1007/s11604-019-00828-0 – volume: 214 start-page: 3645 year: 2017 ident: 10.1016/j.neuroscience.2020.11.014_b0015 article-title: Development and plasticity of meningeal lymphatic vessels publication-title: J Exp Med doi: 10.1084/jem.20170391 – volume: 10 start-page: 1 year: 1917 ident: 10.1016/j.neuroscience.2020.11.014_b0165 article-title: Presidential address: the possible functions of the cerebrospinal fluid publication-title: Proc R Soc Med – volume: 112 start-page: 208 year: 2015 ident: 10.1016/j.neuroscience.2020.11.014_b0450 article-title: In vivo albumin labeling and lymphatic imaging publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1414821112 – volume: 40 start-page: 1257 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0090 article-title: Intrathecal use of gadobutrol for glymphatic MR imaging: prospective safety study of 100 patients publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A6136 – volume: 35 start-page: 518 year: 2015 ident: 10.1016/j.neuroscience.2020.11.014_b0370 article-title: Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3742-14.2015 – year: 2016 ident: 10.1016/j.neuroscience.2020.11.014_b0215 article-title: Impairment of the glymphatic system after diabetes publication-title: J Cereb Blood Flow Metab – volume: 39 start-page: 581 year: 2016 ident: 10.1016/j.neuroscience.2020.11.014_b0375 article-title: How do meningeal lymphatic vessels drain the CNS? publication-title: Trends Neurosci doi: 10.1016/j.tins.2016.07.001 – volume: 25 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0010 article-title: PET radiotracers for CNS-adrenergic receptors: developments and perspectives publication-title: Molecules – volume: 7 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0315 article-title: Aquaporin-4-dependent glymphatic solute transport in the rodent brain publication-title: Elife doi: 10.7554/eLife.40070 – volume: 79 start-page: 1568 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0255 article-title: Quantitative Gd-DOTA uptake from cerebrospinal fluid into rat brain using 3D VFA-SPGR at 9.4T publication-title: Magn Reson Med doi: 10.1002/mrm.26779 – volume: 71 start-page: 11 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0415 article-title: Contrast-enhanced magnetic resonance imaging evidence for the role of astrocytic aquaporin-4 water channels in glymphatic influx and interstitial solute transport publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2020.05.001 – volume: 40 start-page: 648 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0460 article-title: Measuring glymphatic flow in man using quantitative contrast-enhanced MRI publication-title: AJNR Am J Neuroradiol – volume: 33 start-page: 114 year: 2003 ident: 10.1016/j.neuroscience.2020.11.014_b0435 article-title: Positron emission tomography and single-photon emission computed tomography in substance abuse research publication-title: Semin Nucl Med doi: 10.1053/snuc.2003.127300 – volume: 74 start-page: 511 year: 2017 ident: 10.1016/j.neuroscience.2020.11.014_b0020 article-title: Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta-analysis publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2017.0135 – volume: 53 start-page: 529 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0420 article-title: Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the rat brain: observations by dynamic MRI and effect of circadian rhythm on tissue gadolinium concentrations publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000473 – volume: 342 start-page: 373 year: 2013 ident: 10.1016/j.neuroscience.2020.11.014_b0475 article-title: Sleep drives metabolite clearance from the adult brain publication-title: Science doi: 10.1126/science.1241224 – volume: 11 start-page: 107 year: 2013 ident: 10.1016/j.neuroscience.2020.11.014_b0485 article-title: Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer publication-title: J Transl Med doi: 10.1186/1479-5876-11-107 – volume: 140 start-page: 2691 year: 2017 ident: 10.1016/j.neuroscience.2020.11.014_b0400 article-title: Glymphatic MRI in idiopathic normal pressure hydrocephalus publication-title: Brain doi: 10.1093/brain/awx191 – volume: 326 start-page: 47 year: 1985 ident: 10.1016/j.neuroscience.2020.11.014_b0390 article-title: Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space publication-title: Brain Res doi: 10.1016/0006-8993(85)91383-6 – volume: 10 start-page: 14592 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0480 article-title: In vivo T1 mapping for quantifying glymphatic system transport and cervical lymph node drainage publication-title: Sci Rep doi: 10.1038/s41598-020-71582-x – volume: 18 start-page: 499 year: 2005 ident: 10.1016/j.neuroscience.2020.11.014_b0030 article-title: Focal brain ischemia in rat: acute changes in brain tissue T1 reflect acute increase in brain tissue water content publication-title: NMR Biomed doi: 10.1002/nbm.979 – volume: 135 start-page: 387 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0005 article-title: The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? publication-title: Acta Neuropathol doi: 10.1007/s00401-018-1812-4 – volume: 188 start-page: 616 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0060 article-title: Modeling glymphatic system of the brain using MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.12.039 – volume: 33 start-page: 14 year: 2003 ident: 10.1016/j.neuroscience.2020.11.014_b0120 article-title: Radiotracers for positron emission tomography imaging publication-title: Semin Nucl Med doi: 10.1053/snuc.2003.127297 – year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0265 article-title: Diffuse white matter loss in a transgenic rat model of cerebral amyloid angiopathy publication-title: J Cereb Blood Flow – volume: 39 start-page: 6365 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0340 article-title: Impaired glymphatic transport in spontaneously hypertensive rats publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1974-18.2019 – volume: 123 start-page: 1299 year: 2013 ident: 10.1016/j.neuroscience.2020.11.014_b0195 article-title: Brain-wide pathway for waste clearance captured by contrast-enhanced MRI publication-title: J Clin Invest doi: 10.1172/JCI67677 – volume: 9413 year: 2015 ident: 10.1016/j.neuroscience.2020.11.014_b0385 article-title: Optimal-mass-transfer-based estimation of glymphatic transport in living brain publication-title: Proc SPIE Int Soc Opt Eng – volume: 78 start-page: 851 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0075 article-title: Cerebrospinal fluid flow increases from newborn to adult stages publication-title: Dev Neurobiol doi: 10.1002/dneu.22622 – volume: 11070 start-page: 844 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0110 article-title: GlymphVIS: visualizing glymphatic transport pathways using regularized optimal transport publication-title: Med Image Comput Comput Assist Interv – volume: 523 start-page: 337 year: 2015 ident: 10.1016/j.neuroscience.2020.11.014_b0295 article-title: Structural and functional features of central nervous system lymphatic vessels publication-title: Nature doi: 10.1038/nature14432 – volume: 29 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0275 article-title: Impaired glymphatic system in secondary degeneration areas after ischemic stroke in rats publication-title: J Stroke Cerebrovasc Dis doi: 10.1016/j.jstrokecerebrovasdis.2020.104828 – volume: 10 start-page: 1990 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0240 article-title: Optimal mass transport with lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system publication-title: Sci Rep doi: 10.1038/s41598-020-59045-9 – volume: 19 start-page: 1 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0350 article-title: The space between the pial sheath and the cortical venous wall may connect to the meningeal lymphatics publication-title: Magn Reson Med Sci doi: 10.2463/mrms.bc.2019-0099 – volume: 191 start-page: 560 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0330 article-title: PET imaging of freely moving interacting rats publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.02.064 – volume: 1 start-page: 41 year: 2003 ident: 10.1016/j.neuroscience.2020.11.014_b0225 article-title: The importance of lymphatics in cerebrospinal fluid transport publication-title: Lymphat Res Biol doi: 10.1089/15396850360495682 – ident: 10.1016/j.neuroscience.2020.11.014_b0425 doi: 10.1089/lrb.2013.0013 – volume: 29 start-page: 697 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0185 article-title: Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [17O]H2O JJVCPE MRI study publication-title: Neuroreport doi: 10.1097/WNR.0000000000000990 – volume: 64 start-page: 277 year: 2013 ident: 10.1016/j.neuroscience.2020.11.014_b0440 article-title: Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.08.057 – volume: 70 start-page: 40 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0160 article-title: Impaired brain glymphatic flow in experimental hepatic encephalopathy publication-title: J Hepatol doi: 10.1016/j.jhep.2018.08.021 – volume: 16 start-page: 137 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0455 article-title: Perivascular spaces in the brain: anatomy, physiology and pathology publication-title: Nat Rev Neurol doi: 10.1038/s41582-020-0312-z – volume: 60 start-page: 2773 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0210 article-title: The human visual pathway communicates directly with the subarachnoid space publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.19-26997 – volume: 39 start-page: 13S year: 1999 ident: 10.1016/j.neuroscience.2020.11.014_b0130 article-title: Positron emission tomography studies of dopamine-enhancing drugs publication-title: J Clin Pharmacol doi: 10.1002/j.1552-4604.1999.tb05932.x – volume: 96 start-page: 1876 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0080 article-title: MRI investigation of glymphatic responses to Gd-DTPA infusion rates publication-title: J Neurosci Res doi: 10.1002/jnr.24325 – volume: 1747 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0270 article-title: MRI detection of impairment of glymphatic function in rat after mild traumatic brain injury publication-title: Brain Res doi: 10.1016/j.brainres.2020.147062 – volume: 8 start-page: 7194 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0105 article-title: Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes publication-title: Sci Rep doi: 10.1038/s41598-018-25666-4 – volume: 8 start-page: 710 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0145 article-title: General anesthesia inhibits the activity of the “Glymphatic System” publication-title: Theranostics doi: 10.7150/thno.19154 – volume: 64 start-page: 422 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0150 article-title: Cerebrospinal fluid leakage after posterior fossa surgery may impair brain metabolite clearance publication-title: Neurochirurgie doi: 10.1016/j.neuchi.2018.08.003 – volume: 37 start-page: 1326 year: 2017 ident: 10.1016/j.neuroscience.2020.11.014_b0220 article-title: Impairment of the glymphatic system after diabetes publication-title: J Cereb Blood Flow Metab doi: 10.1177/0271678X16654702 – volume: 45 start-page: 665 year: 2004 ident: 10.1016/j.neuroscience.2020.11.014_b0410 article-title: Measurement of cerebral glucose metabolic rates in the anesthetized rat by dynamic scanning with 18F-FDG, the ATLAS small animal PET scanner, and arterial blood sampling publication-title: J Nucl Med – volume: 11 start-page: 26 year: 2014 ident: 10.1016/j.neuroscience.2020.11.014_b0180 article-title: Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence publication-title: Fluids Barriers CNS doi: 10.1186/2045-8118-11-26 – volume: 54 start-page: 229 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0070 article-title: Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000533 – volume: 143 start-page: 2576 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0170 article-title: Impaired glymphatic function and clearance of tau in an Alzheimer's disease model publication-title: Brain doi: 10.1093/brain/awaa179 – volume: 404 start-page: 14 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0245 article-title: Brain morphometry and longitudinal relaxation time of spontaneously hypertensive rats (SHRs) in early and intermediate stages of hypertension investigated by 3D VFA-SPGR MRI publication-title: Neuroscience doi: 10.1016/j.neuroscience.2019.01.030 – volume: 36 start-page: 569 year: 2015 ident: 10.1016/j.neuroscience.2020.11.014_b0280 article-title: Revisiting the mechanisms of CNS immune privilege publication-title: Trends Immunol doi: 10.1016/j.it.2015.08.006 – volume: 16 start-page: 61 year: 2017 ident: 10.1016/j.neuroscience.2020.11.014_b0355 article-title: Gd-based contrast enhancement of the perivascular spaces in the basal ganglia publication-title: Magn Reson Med Sci doi: 10.2463/mrms.mp.2016-0039 – volume: 100 start-page: 375 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0055 article-title: The meningeal lymphatic system: a new player in neurophysiology publication-title: Neuron doi: 10.1016/j.neuron.2018.09.022 – volume: 39 start-page: 1258 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0115 article-title: Reduced spinal cord parenchymal cerebrospinal fluid circulation in experimental autoimmune encephalomyelitis publication-title: J Cereb Blood Flow Metab doi: 10.1177/0271678X18754732 – volume: 367 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0310 article-title: Cerebrospinal fluid influx drives acute ischemic tissue swelling publication-title: Science doi: 10.1126/science.aax7171 – volume: 122 start-page: 175 year: 2017 ident: 10.1016/j.neuroscience.2020.11.014_b0445 article-title: Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: Studies with positron emission tomography publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2017.01.012 – volume: 45 start-page: 3092 year: 2014 ident: 10.1016/j.neuroscience.2020.11.014_b0140 article-title: Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? publication-title: Stroke doi: 10.1161/STROKEAHA.114.006617 – volume: 43 start-page: 458 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0320 article-title: The brain's glymphatic system: current controversies publication-title: Trends Neurosci doi: 10.1016/j.tins.2020.04.003 – volume: 338 start-page: 1 year: 2009 ident: 10.1016/j.neuroscience.2020.11.014_b0430 article-title: Optimal transport: old and new publication-title: Grundlehr Math Wiss – volume: 13 start-page: 47 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0360 article-title: Kinetics and MR-based monitoring of AAV9 vector delivery into cerebrospinal fluid of nonhuman primates publication-title: Mol Ther Methods Clin Dev doi: 10.1016/j.omtm.2018.12.001 – volume: 32 start-page: 6 year: 2002 ident: 10.1016/j.neuroscience.2020.11.014_b0125 article-title: Initial and subsequent approach for the synthesis of 18FDG publication-title: Semin Nucl Med doi: 10.1053/snuc.2002.29270 – volume: 117 start-page: 668 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0050 article-title: Imaging the effect of the circadian light-dark cycle on the glymphatic system in awake rats publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1914017117 – volume: 127 start-page: 976 year: 2017 ident: 10.1016/j.neuroscience.2020.11.014_b0035 article-title: Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane publication-title: Anesthesiology doi: 10.1097/ALN.0000000000001888 – volume: 15 start-page: 143 year: 1992 ident: 10.1016/j.neuroscience.2020.11.014_b0065 article-title: Sleep positions and position shifts in five age groups: an ontogenetic picture publication-title: Sleep doi: 10.1093/sleep/15.2.143 – volume: 212 start-page: 991 year: 2015 ident: 10.1016/j.neuroscience.2020.11.014_b0025 article-title: A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules publication-title: J Exp Med doi: 10.1084/jem.20142290 – volume: 68 start-page: 1 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0085 article-title: MRI characterization of early CNS transport kinetics post intrathecal gadolinium injection: trends of subarachnoid and parenchymal distribution in healthy volunteers publication-title: Clin Imaging doi: 10.1016/j.clinimag.2020.04.043 – volume: 152 start-page: 530 year: 2017 ident: 10.1016/j.neuroscience.2020.11.014_b0380 article-title: Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.021 – volume: 11 start-page: 10 year: 2014 ident: 10.1016/j.neuroscience.2020.11.014_b0045 article-title: A new look at cerebrospinal fluid circulation publication-title: Fluids Barriers CNS doi: 10.1186/2045-8118-11-10 – ident: 10.1016/j.neuroscience.2020.11.014_b0345 doi: 10.1016/S0140-6736(00)52276-4 – volume: 2 start-page: 1 year: 2008 ident: 10.1016/j.neuroscience.2020.11.014_b0300 article-title: In vivo 3D digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy publication-title: Front Neuroanat doi: 10.3389/neuro.05.001.2008 – volume: 4 year: 2015 ident: 10.1016/j.neuroscience.2020.11.014_b0095 article-title: MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain publication-title: Acta Radiol Open – volume: 21 start-page: 1380 year: 2018 ident: 10.1016/j.neuroscience.2020.11.014_b0285 article-title: CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature publication-title: Nat Neurosci doi: 10.1038/s41593-018-0227-9 – volume: 4 start-page: 147ra111 year: 2012 ident: 10.1016/j.neuroscience.2020.11.014_b0200 article-title: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3003748 – volume: 2 start-page: 277 year: 1992 ident: 10.1016/j.neuroscience.2020.11.014_b0470 article-title: Pathways of fluid drainage from the brain–morphological aspects and immunological significance in rat and man publication-title: Brain Pathol doi: 10.1111/j.1750-3639.1992.tb00704.x – volume: 10 start-page: 4594 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0205 article-title: Anatomy and function of the vertebral column lymphatic network in mice publication-title: Nat Commun doi: 10.1038/s41467-019-12568-w – volume: 87 start-page: 357 year: 2020 ident: 10.1016/j.neuroscience.2020.11.014_b0490 article-title: Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human publication-title: Ann Neurol doi: 10.1002/ana.25670 – volume: 24 start-page: 169 year: 2003 ident: 10.1016/j.neuroscience.2020.11.014_b0175 article-title: Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants publication-title: AJNR Am J Neuroradiol – volume: 2 start-page: 171 year: 1922 ident: 10.1016/j.neuroscience.2020.11.014_b0465 article-title: The cerebrospinal fluid publication-title: Physiol Rev doi: 10.1152/physrev.1922.2.2.171 – volume: 86 start-page: 975 year: 2019 ident: 10.1016/j.neuroscience.2020.11.014_b0305 article-title: Glymphatics visualization after focused ultrasound-induced blood-brain barrier opening in humans publication-title: Ann Neurol doi: 10.1002/ana.25604 – volume: 34 start-page: 112 year: 2004 ident: 10.1016/j.neuroscience.2020.11.014_b0135 article-title: 2-deoxy-2-[18F]fluoro-D-glucose and alternative radiotracers for positron emission tomography imaging using the human brain as a model publication-title: Semin Nucl Med doi: 10.1053/j.semnuclmed.2004.01.002 – volume: 35 start-page: 11034 year: 2015 ident: 10.1016/j.neuroscience.2020.11.014_b0260 article-title: The effect of body posture on brain glymphatic transport publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1625-15.2015 |
SSID | ssj0000543 |
Score | 2.5448992 |
SecondaryResourceType | review_article |
Snippet | •DCE-MRI is a robust imaging platform for quantifying glymphatic transport.•Glymphatic transport and CSF flow dynamics is dependent on body posture.•T1 mapping... Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 63 |
SubjectTerms | cerebrospinal fluid gadolinium glymphatic lymphatic magnetic resonance imaging positron emission tomography |
Title | Glymphatic Cerebrospinal Fluid and Solute Transport Quantified by MRI and PET Imaging |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0306452220307302 https://dx.doi.org/10.1016/j.neuroscience.2020.11.014 https://www.ncbi.nlm.nih.gov/pubmed/33248153 https://www.proquest.com/docview/2465436492 https://pubmed.ncbi.nlm.nih.gov/PMC8149482 |
Volume | 474 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5V5cIFAeURKNUiIW5ukt31PlRxiKKGBNSKRyP1Zq3tWRGUulVpDrnw25lZP0hASJG42juS7RnPfGN_-w1jb8QwCEitTLC0Q6I8mMRbUSaFd3lhXQAzoM3JZ-d6OlcfLtPLPTZu98IQrbLJ_XVOj9m6OdJvnmb_ZrHofyW0S3rgoo5TysNKGYry45-_aR4ISeoRydg50-pWeDRyvDY0I0kyU1AGOR4M1b-K1N8g9E8u5UZxmjxkDxpUyUf1hT9ie1A9ZgejCjvqqzV_yyPPM35AP2Dz98s1upCUWvkYbrEnptEhZD5ZrhYl91XJ48cy4J3yOf-88pFVBCXP1_zsyywu-3R6wWdXcc7REzafnF6Mp0kzXCEpUuxEE2WkL6UqcqMVuBB8kE4HxH_ey4HNtSkKaaHMnUXEFoDa6EIaL1MIGlJENU_ZfnVdwXPGxSAEsFaCczTfL_jSG-0MKIWdutaqx1z7NLOiUR6nARjLrKWYfc82PZGRJ7A1ydATPSY725taf2Mnq5PWaVm7wxRzYoZlYifrd531VizubP-6jZMMX1b6A-MruF79yASp10mtnOixZ3XcdHclEdparD89ZrYiqltAQuDbZ6rFtygIbock8iNe_Od1v2T3BTF2iK-THrL9u9sVvELIdZcfxXfqiN0bzT5Oz38BcTcvjw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaK7rBdhq3dI3tVA4bd3CSSbEsYdiiCZsnWFHskQG-CbFNohtQtuuaQy377SPnRpMOAALs6ImCbFPnR-fSRsXei7wXEWkZY2iFSDtLIaVFEuTNZro2HtEeHkyenyWimPp_FZzts0JyFIVplnfurnB6ydX2lW7_N7tV83v1BaJf0wEUVp5iH7yncvjTG4PD3Lc8DMUk1IxlbZ1reKI8GkteaaCRpZgpKIYe9vvpXlfobhd4lU65Vp-Ej9rCGlfyouvPHbAfKPbZ_VGJLfbHi73kgeoYv6Pts9mmxQh-SVCsfwDU2xTQ7hMyHi-W84K4sePhaBryVPuffli7QiqDg2YpPvo_Dsq_HUz6-CIOOnrDZ8Hg6GEX1dIUoj7EVjVQqXSFVnqWJAuO989IkHgGgc7KnsyTNc6mhyIxGyOaB-uhcpk7G4BOIEdY8ZbvlZQnPGRc970FrCcbQgD_vCpcmJgWlsFVPEtVhpnmbNq-lx2kCxsI2HLOfdt0TljyBvYlFT3SYbG2vKgGOraw-NE6zzRFTTIoW68RW1h9b641g3Nr-bRMnFncr_QXjSrhc_rKC5OtkoozosGdV3LRPJRHbaixAHZZuRFS7gJTAN38p5-dBEVz3SeVHvPjP-z5g90fTyYk9GZ9-eckeCKLvEHknfsV2b66X8Brx1032JuyvPxOMMR0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glymphatic+Cerebrospinal+Fluid+and+Solute+Transport+Quantified+by+MRI+and+PET+Imaging&rft.jtitle=Neuroscience&rft.au=Benveniste%2C+Helene&rft.au=Lee%2C+Hedok&rft.au=Ozturk%2C+Burhan&rft.au=Chen%2C+Xinan&rft.date=2021-10-15&rft.pub=Elsevier+Ltd&rft.issn=0306-4522&rft.volume=474&rft.spage=63&rft.epage=79&rft_id=info:doi/10.1016%2Fj.neuroscience.2020.11.014&rft.externalDocID=S0306452220307302 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon |