Glymphatic Cerebrospinal Fluid and Solute Transport Quantified by MRI and PET Imaging

•DCE-MRI is a robust imaging platform for quantifying glymphatic transport.•Glymphatic transport and CSF flow dynamics is dependent on body posture.•T1 mapping can quantify glymphatic transport and cervical lymph node drainage concurrently.•Glymphatic transport kinetics are heterogenous across brain...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 474; pp. 63 - 79
Main Authors Benveniste, Helene, Lee, Hedok, Ozturk, Burhan, Chen, Xinan, Koundal, Sunil, Vaska, Paul, Tannenbaum, Allen, Volkow, Nora D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 15.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •DCE-MRI is a robust imaging platform for quantifying glymphatic transport.•Glymphatic transport and CSF flow dynamics is dependent on body posture.•T1 mapping can quantify glymphatic transport and cervical lymph node drainage concurrently.•Glymphatic transport kinetics are heterogenous across brain regions.•Regularized optimal mass transport analysis incorporates advective as well as diffusion terms.•Glymphatic transport can be measured by positron emission tomography. Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to a number of factors, including important developments in whole brain imaging technology and computational fluid dynamics analysis employed for the elucidation of glymphatic transport function in the live animal and human brain. In this paper, we review the technical aspects of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in combination with administration of Gd-based tracers into the cerebrospinal fluid (CSF) for tracking glymphatic solute and fluid transport in the CNS as well as lymphatic drainage. Used in conjunction with advanced computational processing methods including optimal mass transport analysis, one gains new insights into the biophysical forces governing solute transport in the CNS which leads to intriguing new research directions. Considering drainage pathways, we review the novel T1 mapping technique for quantifying glymphatic transport and cervical lymph node drainage concurrently in the same subject. We provide an overview of knowledge gleaned from DCE-MRI studies of glymphatic transport and meningeal lymphatic drainage. Finally, we introduce positron emission tomography (PET) and CSF administration of radiotracers as an alternative method to explore other pharmacokinetic aspects of CSF transport into brain parenchyma as well as efflux pathways.
AbstractList Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to a number of factors, including important developments in whole brain imaging technology and computational fluid dynamics analysis employed for the elucidation of glymphatic transport function in the live animal and human brain. In this paper, we review the technical aspects of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in combination with administration of Gd-based tracers into the cerebrospinal fluid (CSF) for tracking glymphatic solute and fluid transport in the CNS as well as lymphatic drainage. Used in conjunction with advanced computational processing methods including optimal mass transport analysis, one gains new insights into the biophysical forces governing solute transport in the CNS which leads to intriguing new research directions. Considering drainage pathways, we review the novel T1 mapping technique for quantifying glymphatic transport and cervical lymph node drainage concurrently in the same subject. We provide an overview of knowledge gleaned from DCE-MRI studies of glymphatic transport and meningeal lymphatic drainage. Finally, we introduce positron emission tomography (PET) and CSF administration of radiotracers as an alternative method to explore other pharmacokinetic aspects of CSF transport into brain parenchyma as well as efflux pathways.Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to a number of factors, including important developments in whole brain imaging technology and computational fluid dynamics analysis employed for the elucidation of glymphatic transport function in the live animal and human brain. In this paper, we review the technical aspects of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in combination with administration of Gd-based tracers into the cerebrospinal fluid (CSF) for tracking glymphatic solute and fluid transport in the CNS as well as lymphatic drainage. Used in conjunction with advanced computational processing methods including optimal mass transport analysis, one gains new insights into the biophysical forces governing solute transport in the CNS which leads to intriguing new research directions. Considering drainage pathways, we review the novel T1 mapping technique for quantifying glymphatic transport and cervical lymph node drainage concurrently in the same subject. We provide an overview of knowledge gleaned from DCE-MRI studies of glymphatic transport and meningeal lymphatic drainage. Finally, we introduce positron emission tomography (PET) and CSF administration of radiotracers as an alternative method to explore other pharmacokinetic aspects of CSF transport into brain parenchyma as well as efflux pathways.
Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to a number of factors, including important developments in whole brain imaging technology and computational fluid dynamics analysis employed for the elucidation of glymphatic transport function in the live animal and human brain. In this paper, we review the technical aspects of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in combination with administration of Gd-based tracers into the cerebrospinal fluid (CSF) for tracking glymphatic solute and fluid transport in the CNS as well as lymphatic drainage. Used in conjunction with advanced computational processing methods including optimal mass transport analysis, one gains new insights into the biophysical forces governing solute transport in the CNS which leads to intriguing new research directions. Considering drainage pathways, we review the novel T1 mapping technique for quantifying glymphatic transport and cervical lymph node drainage concurrently in the same subject. We provide an overview of knowledge gleaned from DCE-MRI studies of glymphatic transport and meningeal lymphatic drainage. Finally, we introduce positron emission tomography (PET) and CSF administration of radiotracers as an alternative method to explore other pharmacokinetic aspects of CSF transport into brain parenchyma as well as efflux pathways.
•DCE-MRI is a robust imaging platform for quantifying glymphatic transport.•Glymphatic transport and CSF flow dynamics is dependent on body posture.•T1 mapping can quantify glymphatic transport and cervical lymph node drainage concurrently.•Glymphatic transport kinetics are heterogenous across brain regions.•Regularized optimal mass transport analysis incorporates advective as well as diffusion terms.•Glymphatic transport can be measured by positron emission tomography. Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to a number of factors, including important developments in whole brain imaging technology and computational fluid dynamics analysis employed for the elucidation of glymphatic transport function in the live animal and human brain. In this paper, we review the technical aspects of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in combination with administration of Gd-based tracers into the cerebrospinal fluid (CSF) for tracking glymphatic solute and fluid transport in the CNS as well as lymphatic drainage. Used in conjunction with advanced computational processing methods including optimal mass transport analysis, one gains new insights into the biophysical forces governing solute transport in the CNS which leads to intriguing new research directions. Considering drainage pathways, we review the novel T1 mapping technique for quantifying glymphatic transport and cervical lymph node drainage concurrently in the same subject. We provide an overview of knowledge gleaned from DCE-MRI studies of glymphatic transport and meningeal lymphatic drainage. Finally, we introduce positron emission tomography (PET) and CSF administration of radiotracers as an alternative method to explore other pharmacokinetic aspects of CSF transport into brain parenchyma as well as efflux pathways.
Author Chen, Xinan
Lee, Hedok
Vaska, Paul
Benveniste, Helene
Ozturk, Burhan
Volkow, Nora D.
Koundal, Sunil
Tannenbaum, Allen
AuthorAffiliation 1 Department of Anesthesiology, Yale School of Medicine, New Haven, CT
2 Department of Biomedical Engineering, Yale School of Medicine, New Haven CT
4 Department of Radiology, Stony Brook University, Stony Brook, NY
5 Laboratory for Neuroimaging, NIAAA, Bethesda, MD
3 Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook NY
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering, Yale School of Medicine, New Haven CT
– name: 3 Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook NY
– name: 4 Department of Radiology, Stony Brook University, Stony Brook, NY
– name: 5 Laboratory for Neuroimaging, NIAAA, Bethesda, MD
– name: 1 Department of Anesthesiology, Yale School of Medicine, New Haven, CT
Author_xml – sequence: 1
  givenname: Helene
  surname: Benveniste
  fullname: Benveniste, Helene
  email: Helene.benveniste@yale.edu
  organization: Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States
– sequence: 2
  givenname: Hedok
  surname: Lee
  fullname: Lee, Hedok
  organization: Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States
– sequence: 3
  givenname: Burhan
  surname: Ozturk
  fullname: Ozturk, Burhan
  organization: Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States
– sequence: 4
  givenname: Xinan
  surname: Chen
  fullname: Chen, Xinan
  organization: Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY, United States
– sequence: 5
  givenname: Sunil
  surname: Koundal
  fullname: Koundal, Sunil
  organization: Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States
– sequence: 6
  givenname: Paul
  surname: Vaska
  fullname: Vaska, Paul
  organization: Department of Radiology and Biomedical Engineering, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
– sequence: 7
  givenname: Allen
  surname: Tannenbaum
  fullname: Tannenbaum, Allen
  organization: Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY, United States
– sequence: 8
  givenname: Nora D.
  surname: Volkow
  fullname: Volkow, Nora D.
  organization: Laboratory for Neuroimaging, NIAAA, Bethesda, MD, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33248153$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URLeFr4AsTlyy2LHjJBwQsLRlpSL-bc-W44y3Xhw7OEml_fZ42S0qPe1c5jBvfk967wyd-OABoVeUzCmh4s1m7mGKYdAWvIZ5TvJ0oHNC-RM0o1XJsrLg_ATNCCMi40Wen6KzYdiQNAVnz9ApYzmvaMFm6ObKbbv-Vo1W4wVEaBK3t145fOkm22LlW_wzuGkEvIrKD32II_4-KT9aY6HFzRZ_-bH8K_t2scLLTq2tXz9HT41yA7w47HN0c3mxWnzOrr9eLRcfrjNd5CXPeMlUy7huSsGhNkYZVgtDBVWKkaoRpdasgrapKyqYAcJFrVmpWAFGQFHX7By923P7qemg1eDHqJzso-1U3MqgrPz_4u2tXIc7WVFe8ypPgNcHQAy_JxhG2dlBg3PKQ5gGmXOREhO83klfPvT6Z3KfZRK83wt0ynCIYKS2Ywo27Kytk5TIXX1yIx_WJ3f1SUplqi8h3j5C3Lsc9fxp_wwp8TsLUR5UrY2gR9kGexzm4yOMdtZbrdwv2B4L-QN3UNXF
CitedBy_id crossref_primary_10_1146_annurev_fluid_120720_011638
crossref_primary_10_1016_j_isci_2024_111463
crossref_primary_10_1186_s12987_021_00290_z
crossref_primary_10_1016_j_bbrc_2022_03_025
crossref_primary_10_1186_s12987_021_00258_z
crossref_primary_10_1038_s41598_024_76592_7
crossref_primary_10_1186_s12987_023_00443_2
crossref_primary_10_3389_fnins_2023_1061039
crossref_primary_10_1007_s00018_023_04736_5
crossref_primary_10_3389_fnins_2022_823701
crossref_primary_10_1016_j_isci_2022_105250
crossref_primary_10_3389_fpsyt_2024_1368489
crossref_primary_10_1152_physiol_00015_2022
crossref_primary_10_1186_s40478_021_01198_3
crossref_primary_10_3390_biomedicines10092261
crossref_primary_10_1038_s41598_023_43920_2
crossref_primary_10_1161_STR_0000000000000431
crossref_primary_10_1172_jci_insight_170270
crossref_primary_10_1002_glia_24639
crossref_primary_10_1007_s00018_024_05277_1
crossref_primary_10_1016_j_wneu_2024_07_062
crossref_primary_10_1002_jnr_24935
crossref_primary_10_1007_s10915_023_02337_9
crossref_primary_10_3174_ajnr_A7841
crossref_primary_10_1136_bmjopen_2021_054885
crossref_primary_10_1038_s41598_024_77615_z
crossref_primary_10_1002_alz_13512
crossref_primary_10_1038_s43587_022_00181_4
crossref_primary_10_3389_fneur_2021_767470
crossref_primary_10_1016_j_biopsych_2023_09_003
crossref_primary_10_1002_jgm_3457
crossref_primary_10_1016_j_acra_2024_11_010
crossref_primary_10_1186_s12987_023_00459_8
crossref_primary_10_1186_s12987_024_00571_3
crossref_primary_10_1038_s41573_022_00500_9
crossref_primary_10_1186_s12987_022_00318_y
crossref_primary_10_1016_j_nbd_2022_105776
crossref_primary_10_1093_stmcls_sxac039
crossref_primary_10_1016_j_neuroimage_2022_119464
crossref_primary_10_1111_ejn_15974
crossref_primary_10_1177_0271678X231156982
crossref_primary_10_1016_j_neurad_2023_03_002
crossref_primary_10_3390_biomedicines13030603
crossref_primary_10_1002_jmri_29034
crossref_primary_10_1097_WCO_0000000000001252
crossref_primary_10_1007_s12028_021_01224_1
crossref_primary_10_3233_JAD_230553
crossref_primary_10_3390_brainsci13091292
crossref_primary_10_1002_jcph_2219
crossref_primary_10_1002_nbm_5314
crossref_primary_10_1016_j_neuroscience_2021_08_017
crossref_primary_10_14336_AD_2023_1229
crossref_primary_10_1038_s41598_023_40896_x
crossref_primary_10_1152_japplphysiol_00861_2019
crossref_primary_10_3389_fneur_2025_1554813
crossref_primary_10_1038_s44323_025_00025_5
crossref_primary_10_1016_j_nic_2024_12_001
crossref_primary_10_1016_j_nic_2024_12_004
crossref_primary_10_3390_ijms22105343
crossref_primary_10_3389_fnagi_2023_1179988
crossref_primary_10_3389_fncel_2021_683676
Cites_doi 10.1159/000490349
10.1016/j.neuroimage.2018.11.051
10.1007/s00401-016-1555-z
10.1172/jci.insight.121537
10.1172/JCI90603
10.1161/STROKEAHA.117.017014
10.1016/j.jneumeth.2014.12.015
10.1517/17425247.2016.1171315
10.1038/nmeth.1582
10.1038/s41467-018-07318-3
10.1523/JNEUROSCI.3020-14.2014
10.1007/s11604-019-00828-0
10.1084/jem.20170391
10.1073/pnas.1414821112
10.3174/ajnr.A6136
10.1523/JNEUROSCI.3742-14.2015
10.1016/j.tins.2016.07.001
10.7554/eLife.40070
10.1002/mrm.26779
10.1016/j.mri.2020.05.001
10.1053/snuc.2003.127300
10.1001/jamapsychiatry.2017.0135
10.1097/RLI.0000000000000473
10.1126/science.1241224
10.1186/1479-5876-11-107
10.1093/brain/awx191
10.1016/0006-8993(85)91383-6
10.1038/s41598-020-71582-x
10.1002/nbm.979
10.1007/s00401-018-1812-4
10.1016/j.neuroimage.2018.12.039
10.1053/snuc.2003.127297
10.1523/JNEUROSCI.1974-18.2019
10.1172/JCI67677
10.1002/dneu.22622
10.1038/nature14432
10.1016/j.jstrokecerebrovasdis.2020.104828
10.1038/s41598-020-59045-9
10.2463/mrms.bc.2019-0099
10.1016/j.neuroimage.2019.02.064
10.1089/15396850360495682
10.1089/lrb.2013.0013
10.1097/WNR.0000000000000990
10.1016/j.neuroimage.2012.08.057
10.1016/j.jhep.2018.08.021
10.1038/s41582-020-0312-z
10.1167/iovs.19-26997
10.1002/j.1552-4604.1999.tb05932.x
10.1002/jnr.24325
10.1016/j.brainres.2020.147062
10.1038/s41598-018-25666-4
10.7150/thno.19154
10.1016/j.neuchi.2018.08.003
10.1177/0271678X16654702
10.1186/2045-8118-11-26
10.1097/RLI.0000000000000533
10.1093/brain/awaa179
10.1016/j.neuroscience.2019.01.030
10.1016/j.it.2015.08.006
10.2463/mrms.mp.2016-0039
10.1016/j.neuron.2018.09.022
10.1177/0271678X18754732
10.1126/science.aax7171
10.1016/j.neuropharm.2017.01.012
10.1161/STROKEAHA.114.006617
10.1016/j.tins.2020.04.003
10.1016/j.omtm.2018.12.001
10.1053/snuc.2002.29270
10.1073/pnas.1914017117
10.1097/ALN.0000000000001888
10.1093/sleep/15.2.143
10.1084/jem.20142290
10.1016/j.clinimag.2020.04.043
10.1016/j.neuroimage.2017.03.021
10.1186/2045-8118-11-10
10.1016/S0140-6736(00)52276-4
10.3389/neuro.05.001.2008
10.1038/s41593-018-0227-9
10.1126/scitranslmed.3003748
10.1111/j.1750-3639.1992.tb00704.x
10.1038/s41467-019-12568-w
10.1002/ana.25670
10.1152/physrev.1922.2.2.171
10.1002/ana.25604
10.1053/j.semnuclmed.2004.01.002
10.1523/JNEUROSCI.1625-15.2015
ContentType Journal Article
Copyright 2020 IBRO
Copyright © 2020 IBRO. All rights reserved.
Copyright_xml – notice: 2020 IBRO
– notice: Copyright © 2020 IBRO. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.neuroscience.2020.11.014
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-7544
EndPage 79
ExternalDocumentID PMC8149482
33248153
10_1016_j_neuroscience_2020_11_014
S0306452220307302
Genre Journal Article
Review
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: RF1 AG053991
– fundername: NIA NIH HHS
  grantid: R01 AG048769
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5RE
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABTEW
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMQ
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
UNMZH
Z5R
~G-
AACTN
AADPK
AAIAV
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
.55
.GJ
29N
53G
5VS
AAQXK
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AHHHB
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
YYP
ZGI
ZXP
NPM
7X8
5PM
ID FETCH-LOGICAL-c5274-473ad34cb764e9ffaf396f161aa308b67cc38edb98163fe0469c37a35ef6e5993
IEDL.DBID .~1
ISSN 0306-4522
1873-7544
IngestDate Thu Aug 21 18:40:10 EDT 2025
Sun Aug 24 04:07:37 EDT 2025
Wed Feb 19 02:29:47 EST 2025
Thu Apr 24 22:52:18 EDT 2025
Tue Jul 01 02:21:51 EDT 2025
Fri Feb 23 02:44:10 EST 2024
Tue Aug 26 17:32:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords VFA-SPGR
magnetic resonance imaging
DCE-MRI
TSC
CNS
MW
ER
CSF
cerebrospinal fluid
glymphatic
positron emission tomography
ISF
PET
gadolinium
lymphatic
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2020 IBRO. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5274-473ad34cb764e9ffaf396f161aa308b67cc38edb98163fe0469c37a35ef6e5993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8149482
PMID 33248153
PQID 2465436492
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8149482
proquest_miscellaneous_2465436492
pubmed_primary_33248153
crossref_citationtrail_10_1016_j_neuroscience_2020_11_014
crossref_primary_10_1016_j_neuroscience_2020_11_014
elsevier_sciencedirect_doi_10_1016_j_neuroscience_2020_11_014
elsevier_clinicalkey_doi_10_1016_j_neuroscience_2020_11_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-15
PublicationDateYYYYMMDD 2021-10-15
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuroscience
PublicationTitleAlternate Neuroscience
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ohno, Samaranch, Hadaczek, Bringas, Allen, Sudhakar, Stockinger, Snieckus (b0360) 2019; 13
Mestre, Mori, Nedergaard (b0320) 2020; 43
Louveau, Herz, Alme, Salvador, Dong, Viar, Herod, Knopp (b0285) 2018; 21
Iliff, Lee, Yu, Feng, Logan, Nedergaard, Benveniste (b0195) 2013; 123
Edeklev, Halvorsen, Lovland, Vatnehol, Gjertsen, Nedregaard, Sletteberg, Ringstad (b0090) 2019; 40
Benveniste, Liu, Koundal, Sanggaard, Lee, Wardlaw (b0040) 2019; 65
Di Palma, Goulay, Chagnot, Martinez De Lizarrondo, Anfray, Salaun, Maubert, Lechapt-Zalcman (b0075) 2018; 78
Li, Chopp, Ding, Davoodi-Bojd, Zhang, Li, Zhang, Xiong (b0270) 2020; 1747
Taoka, Jost, Frenzel, Naganawa, Pietsch (b0420) 2018; 53
Goulay, Flament, Gauberti, Naveau, Pasquet, Gakuba, Emery, Hantraye (b0155) 2017; 48
Ratner, Zhu, Kolesov, Nedergaard, Benveniste, Tannenbaum (b0385) 2015; 9413
Volkow, Kim, Wang, Alexoff, Logan, Muench, Shea, Telang (b0440) 2013; 64
Ringstad, Vatnehol, Eide (b0400) 2017; 140
Truman LA, N A.G., Bentley KL, Ruddle NH. (2013), Lymphatic vessel function in head and neck inflammation. Lymphat Res Biol 11:187-192.
Mestre, Tithof, Du, Song, Peng, Sweeney, Olveda, Thomas (b0325) 2018; 9
Shimoji, Ravasi, Schmidt, Soto-Montenegro, Esaki, Seidel, Jagoda, Sokoloff (b0410) 2004; 45
Eide, Ringstad (b0095) 2015; 4
Iliff, Wang, Liao, Plogg, Peng, Gundersen, Benveniste, Vates (b0200) 2012; 4
Da Mesquita, Fu, Kipnis (b0055) 2018; 100
Lee, Mortensen, Sanggaard, Koch, Brunner, Quistorff, Nedergaard, Benveniste (b0255) 2018; 79
Iliff, Chen, Plog, Zeppenfeld, Soltero, Yang, Singh, Deane (b0190) 2014; 34
Jiang, Zhang, Ding, Davoodi-Bojd, Li, Li, Sadry, Nedergaard (b0220) 2017; 37
Fowler, Volkow, Wang, Ding (b0135) 2004; 34
Mott FW. (1910), The Oliver-Sharpey Lectures on the cerebrospinal fluid. The Lancet (British edition) ii:1-8.
Mortensen, Sanggaard, Mestre, Lee, Kostrikov, Xavier, Gjedde, Benveniste (b0340) 2019; 39
Mestre, Hablitz, Xavier, Feng, Zou, Pu, Monai, Murlidharan (b0315) 2018; 7
Karimy, Kahle, Kurland, Yu, Gerzanich, Simard (b0230) 2015; 241
Ratner, Gao, Lee, Elkin, Nedergaard, Benveniste, Tannenbaum (b0380) 2017; 152
Meng, Abrahao, Heyn, Bethune, Huang, Pople, Aubert, Hamani (b0305) 2019; 86
Weed (b0465) 1922; 2
Mestre, Du, Sweeney, Liu, Samson, Peng, Mortensen, Staeger (b0310) 2020; 367
Weller, Kida, Zhang (b0470) 1992; 2
Jacobsen, Ringstad, Jorstad, Moe, Sandell, Eide (b0210) 2019; 60
De Koninck, Lorrain, Gagnon (b0065) 1992; 15
Wang, Lang, Huang, Wang, Jacobson, Kiesewetter, Ali, Teng (b0450) 2015; 112
Jiang, Zhang, Ding, Davoodi-Bojd, Li, Li, Sadry, Nedergaard (b0215) 2016
Benveniste, Lee, Ding, Sun, Al-Bizri, Makaryus, Probst, Nedergaard (b0035) 2017; 127
Gaberel, Gakuba, Goulay, Martinez De Lizarrondo, Hanouz, Emery, Touze, Vivien (b0140) 2014; 45
Koundal, Liu, Sanggaard, Mortensen, Wardlaw, Nedergaard, Benveniste, Lee (b0245) 2019; 404
Raper, Louveau, Kipnis (b0375) 2016; 39
Antila, Karaman, Nurmi, Airavaara, Voutilainen, Mathivet, Chilov, Li (b0015) 2017; 214
Elkin, Nadeem, Haber, Steklova, Lee, Benveniste, Tannenbaum (b0110) 2018; 11070
Fournier, Gauberti, Quenault, Vivien, Macrez, Docagne (b0115) 2019; 39
Davoodi-Bojd, Ding, Zhang, Li, Li, Chopp, Zhang, Jiang (b0060) 2019; 188
Volkow, Wiers, Shokri-Kojori, Tomasi, Wang, Baler (b0445) 2017; 122
Takano, Yamada (b0415) 2020; 71
Eide, Vatnehol, Emblem, Ringstad (b0105) 2018; 8
Louveau, Plog, Antila, Alitalo, Nedergaard, Kipnis (b0290) 2017; 127
Eide, Ringstad (b0100) 2018
Jacob, Boisserand, Geraldo, de Brito Neto, Mathivet, Antila, Barka, Xu (b0205) 2019; 10
Fowler, Ido (b0125) 2002; 32
Dyke, Xu, Verma, Voss, Chazen (b0085) 2020; 68
Kyme, Angelis, Eisenhuth, Fulton, Zhou, Hart, Popovic, Akhtar (b0250) 2018; 188
Huber, Igarashi, Ueki, Kwee, Nakada (b0185) 2018; 29
Wardlaw, Benveniste, Nedergaard, Zlokovic, Mestre, Lee, Doubal, Brown (b0455) 2020; 16
Villani (b0430) 2009; 338
Brinker, Stopa, Morrison, Klinge (b0045) 2014; 11
Xie, Kang, Xu, Chen, Liao, Thiyagarajan, O'Donnell, Christensen (b0475) 2013; 342
Agency, Dotarem, Alluri, Kim, Volkow, Kil (b0010) 2020; 25
Deike-Hofmann, Reuter, Haase, Paech, Gnirs, Bickelhaupt, Forsting, Heussel (b0070) 2019; 54
Volkow, Fowler, Wang (b0435) 2003; 33
Ding, Chopp, Li, Zhang, Davoodi-Bojd, Li, Zhang, Jiang (b0080) 2018; 96
Xue, Liu, Koundal, Constantinou, Dai, Santambrogio, Lee, Benveniste (b0480) 2020; 10
Aspelund, Antila, Proulx, Karlsen, Karaman, Detmar, Wiig, Alitalo (b0025) 2015; 212
Abbott, Pizzo, Preston, Janigro, Thorne (b0005) 2018; 135
Koundal, Elkin, Nadeem, Xue, Constantinou, Sanggaard, Liu, Monte (b0240) 2020; 10
Louveau, Smirnov, Keyes, Eccles, Rouhani, Peske, Derecki, Castle (b0295) 2015; 523
Haughton, Korosec, Medow, Dolar, Iskandar (b0175) 2003; 24
Yang, Kress, Weber, Thiyagarajan, Wang, Deane, Benveniste, Iliff (b0485) 2013; 11
Goulay, Aron, Flament, Emery, Hantraye, Vivien, Gaberel (b0150) 2018; 64
Plog, Dashnaw, Hitomi, Peng, Liao, Lou, Deane, Nedergaard (b0370) 2015; 35
Barbier, Liu, Grillon, Payen, Lebas, Segebarth, Remy (b0030) 2005; 18
Kato, Bokura, Taoka, Naganawa (b0235) 2019; 37
Cai, Qiao, Kulkarni, Harding, Ebong, Ferris (b0050) 2020; 117
Fowler, Volkow, Ding, Wang, Dewey, Fischman, Foltin, Hitzemann (b0130) 1999; 39
Ashok, Mizuno, Volkow, Howes (b0020) 2017; 74
Gakuba, Gaberel, Goursaud, Bourges, Di Palma, Quenault, Martinez de Lizarrondo, Vivien (b0145) 2018; 8
Naganawa, Nakane, Kawai, Taoka (b0355) 2017; 16
Watts, Steinklein, Waldman, Zhou, Filippi (b0460) 2019; 40
Miranda, Kang, Blinder, Bouhachi, Soucy, Aliaga-Aliaga, Massarweh, Stroobants (b0330) 2019; 191
Lin, Hao, Li, Sun, Wang, Yin, Zhang, Tian (b0275) 2020; 29
Rennels, Gregory, Blaumanis, Fujimoto, Grady (b0390) 1985; 326
Hadjihambi, Harrison, Costas-Rodriguez, Vanhaecke, Arias, Gallego-Duran, Mastitskaya, Hosford (b0160) 2019; 70
Harrison, Ismail, Machhada, Colgan, Ohene, Nahavandi, Ahmed, Fisher (b0170) 2020; 143
Johnston (b0225) 2003; 1
Naganawa, Ito, Taoka, Yoshida, Sone (b0350) 2020; 19
Hladky, Barrand (b0180) 2014; 11
Louveau, Harris, Kipnis (b0280) 2015; 36
Morris, Sharp, Albargothy, Fernandes, Hawkes, Verma, Weller, Carare (b0335) 2016; 131
Ringstad, Valnes, Dale, Pripp, Vatnehol, Emblem, Mardal, Eide (b0395) 2018; 3
Pardridge (b0365) 2016; 13
Schulz, Southekal, Junnarkar, Pratte, Purschke, Stoll, Ravindranath, Maramraju (b0405) 2011; 8
Zhou, Cai, Zhang, Gong, Yan, Zhang, Luo, Sun (b0490) 2020; 87
Fowler, Ding, Volkow (b0120) 2003; 33
Lee, Xie, Yu, Kang, Feng, Deane, Logan, Nedergaard (b0260) 2015; 35
Ma, Smith, Hof, Foerster, Hamilton, Blackband, Yu, Benveniste (b0300) 2008; 2
Lee, Xu, Liu, Koundal, Zhu, Davis, Yanez, Schrader (b0265) 2020
Halliburton (b0165) 1917; 10
Watts (10.1016/j.neuroscience.2020.11.014_b0460) 2019; 40
Volkow (10.1016/j.neuroscience.2020.11.014_b0435) 2003; 33
Iliff (10.1016/j.neuroscience.2020.11.014_b0190) 2014; 34
Hladky (10.1016/j.neuroscience.2020.11.014_b0180) 2014; 11
Jiang (10.1016/j.neuroscience.2020.11.014_b0220) 2017; 37
Di Palma (10.1016/j.neuroscience.2020.11.014_b0075) 2018; 78
Koundal (10.1016/j.neuroscience.2020.11.014_b0240) 2020; 10
Fowler (10.1016/j.neuroscience.2020.11.014_b0135) 2004; 34
Da Mesquita (10.1016/j.neuroscience.2020.11.014_b0055) 2018; 100
Miranda (10.1016/j.neuroscience.2020.11.014_b0330) 2019; 191
Gakuba (10.1016/j.neuroscience.2020.11.014_b0145) 2018; 8
Mestre (10.1016/j.neuroscience.2020.11.014_b0320) 2020; 43
Jiang (10.1016/j.neuroscience.2020.11.014_b0215) 2016
Eide (10.1016/j.neuroscience.2020.11.014_b0105) 2018; 8
Lee (10.1016/j.neuroscience.2020.11.014_b0255) 2018; 79
Harrison (10.1016/j.neuroscience.2020.11.014_b0170) 2020; 143
Naganawa (10.1016/j.neuroscience.2020.11.014_b0350) 2020; 19
Meng (10.1016/j.neuroscience.2020.11.014_b0305) 2019; 86
Mestre (10.1016/j.neuroscience.2020.11.014_b0325) 2018; 9
Gaberel (10.1016/j.neuroscience.2020.11.014_b0140) 2014; 45
Kyme (10.1016/j.neuroscience.2020.11.014_b0250) 2018; 188
Eide (10.1016/j.neuroscience.2020.11.014_b0095) 2015; 4
Ratner (10.1016/j.neuroscience.2020.11.014_b0385) 2015; 9413
Antila (10.1016/j.neuroscience.2020.11.014_b0015) 2017; 214
Rennels (10.1016/j.neuroscience.2020.11.014_b0390) 1985; 326
Barbier (10.1016/j.neuroscience.2020.11.014_b0030) 2005; 18
Yang (10.1016/j.neuroscience.2020.11.014_b0485) 2013; 11
Xie (10.1016/j.neuroscience.2020.11.014_b0475) 2013; 342
10.1016/j.neuroscience.2020.11.014_b0425
Wang (10.1016/j.neuroscience.2020.11.014_b0450) 2015; 112
Jacobsen (10.1016/j.neuroscience.2020.11.014_b0210) 2019; 60
De Koninck (10.1016/j.neuroscience.2020.11.014_b0065) 1992; 15
Benveniste (10.1016/j.neuroscience.2020.11.014_b0035) 2017; 127
Jacob (10.1016/j.neuroscience.2020.11.014_b0205) 2019; 10
Abbott (10.1016/j.neuroscience.2020.11.014_b0005) 2018; 135
Schulz (10.1016/j.neuroscience.2020.11.014_b0405) 2011; 8
Dyke (10.1016/j.neuroscience.2020.11.014_b0085) 2020; 68
Taoka (10.1016/j.neuroscience.2020.11.014_b0420) 2018; 53
Goulay (10.1016/j.neuroscience.2020.11.014_b0155) 2017; 48
Shimoji (10.1016/j.neuroscience.2020.11.014_b0410) 2004; 45
Agency (10.1016/j.neuroscience.2020.11.014_b0010) 2020; 25
Louveau (10.1016/j.neuroscience.2020.11.014_b0295) 2015; 523
Aspelund (10.1016/j.neuroscience.2020.11.014_b0025) 2015; 212
Ringstad (10.1016/j.neuroscience.2020.11.014_b0395) 2018; 3
Louveau (10.1016/j.neuroscience.2020.11.014_b0290) 2017; 127
Weed (10.1016/j.neuroscience.2020.11.014_b0465) 1922; 2
Johnston (10.1016/j.neuroscience.2020.11.014_b0225) 2003; 1
Eide (10.1016/j.neuroscience.2020.11.014_b0100) 2018
Morris (10.1016/j.neuroscience.2020.11.014_b0335) 2016; 131
Takano (10.1016/j.neuroscience.2020.11.014_b0415) 2020; 71
Ratner (10.1016/j.neuroscience.2020.11.014_b0380) 2017; 152
Mortensen (10.1016/j.neuroscience.2020.11.014_b0340) 2019; 39
Pardridge (10.1016/j.neuroscience.2020.11.014_b0365) 2016; 13
Fowler (10.1016/j.neuroscience.2020.11.014_b0130) 1999; 39
Ma (10.1016/j.neuroscience.2020.11.014_b0300) 2008; 2
Zhou (10.1016/j.neuroscience.2020.11.014_b0490) 2020; 87
Benveniste (10.1016/j.neuroscience.2020.11.014_b0040) 2019; 65
Volkow (10.1016/j.neuroscience.2020.11.014_b0440) 2013; 64
Ashok (10.1016/j.neuroscience.2020.11.014_b0020) 2017; 74
Lin (10.1016/j.neuroscience.2020.11.014_b0275) 2020; 29
Hadjihambi (10.1016/j.neuroscience.2020.11.014_b0160) 2019; 70
Louveau (10.1016/j.neuroscience.2020.11.014_b0285) 2018; 21
Fowler (10.1016/j.neuroscience.2020.11.014_b0120) 2003; 33
Ohno (10.1016/j.neuroscience.2020.11.014_b0360) 2019; 13
Karimy (10.1016/j.neuroscience.2020.11.014_b0230) 2015; 241
Koundal (10.1016/j.neuroscience.2020.11.014_b0245) 2019; 404
Plog (10.1016/j.neuroscience.2020.11.014_b0370) 2015; 35
Wardlaw (10.1016/j.neuroscience.2020.11.014_b0455) 2020; 16
Iliff (10.1016/j.neuroscience.2020.11.014_b0195) 2013; 123
Lee (10.1016/j.neuroscience.2020.11.014_b0265) 2020
Volkow (10.1016/j.neuroscience.2020.11.014_b0445) 2017; 122
Weller (10.1016/j.neuroscience.2020.11.014_b0470) 1992; 2
Mestre (10.1016/j.neuroscience.2020.11.014_b0310) 2020; 367
Raper (10.1016/j.neuroscience.2020.11.014_b0375) 2016; 39
Haughton (10.1016/j.neuroscience.2020.11.014_b0175) 2003; 24
Villani (10.1016/j.neuroscience.2020.11.014_b0430) 2009; 338
Iliff (10.1016/j.neuroscience.2020.11.014_b0200) 2012; 4
Cai (10.1016/j.neuroscience.2020.11.014_b0050) 2020; 117
Halliburton (10.1016/j.neuroscience.2020.11.014_b0165) 1917; 10
Huber (10.1016/j.neuroscience.2020.11.014_b0185) 2018; 29
Li (10.1016/j.neuroscience.2020.11.014_b0270) 2020; 1747
Elkin (10.1016/j.neuroscience.2020.11.014_b0110) 2018; 11070
Brinker (10.1016/j.neuroscience.2020.11.014_b0045) 2014; 11
Fournier (10.1016/j.neuroscience.2020.11.014_b0115) 2019; 39
Davoodi-Bojd (10.1016/j.neuroscience.2020.11.014_b0060) 2019; 188
Mestre (10.1016/j.neuroscience.2020.11.014_b0315) 2018; 7
Fowler (10.1016/j.neuroscience.2020.11.014_b0125) 2002; 32
Deike-Hofmann (10.1016/j.neuroscience.2020.11.014_b0070) 2019; 54
Xue (10.1016/j.neuroscience.2020.11.014_b0480) 2020; 10
Lee (10.1016/j.neuroscience.2020.11.014_b0260) 2015; 35
Ringstad (10.1016/j.neuroscience.2020.11.014_b0400) 2017; 140
Ding (10.1016/j.neuroscience.2020.11.014_b0080) 2018; 96
Louveau (10.1016/j.neuroscience.2020.11.014_b0280) 2015; 36
10.1016/j.neuroscience.2020.11.014_b0345
Naganawa (10.1016/j.neuroscience.2020.11.014_b0355) 2017; 16
Edeklev (10.1016/j.neuroscience.2020.11.014_b0090) 2019; 40
Goulay (10.1016/j.neuroscience.2020.11.014_b0150) 2018; 64
Kato (10.1016/j.neuroscience.2020.11.014_b0235) 2019; 37
References_xml – volume: 122
  start-page: 175
  year: 2017
  end-page: 188
  ident: b0445
  article-title: Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: Studies with positron emission tomography
  publication-title: Neuropharmacology
– volume: 16
  start-page: 61
  year: 2017
  end-page: 65
  ident: b0355
  article-title: Gd-based contrast enhancement of the perivascular spaces in the basal ganglia
  publication-title: Magn Reson Med Sci
– volume: 9413
  year: 2015
  ident: b0385
  article-title: Optimal-mass-transfer-based estimation of glymphatic transport in living brain
  publication-title: Proc SPIE Int Soc Opt Eng
– volume: 140
  start-page: 2691
  year: 2017
  end-page: 2705
  ident: b0400
  article-title: Glymphatic MRI in idiopathic normal pressure hydrocephalus
  publication-title: Brain
– volume: 2
  start-page: 171
  year: 1922
  end-page: 203
  ident: b0465
  article-title: The cerebrospinal fluid
  publication-title: Physiol Rev
– volume: 10
  start-page: 1990
  year: 2020
  ident: b0240
  article-title: Optimal mass transport with lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system
  publication-title: Sci Rep
– volume: 191
  start-page: 560
  year: 2019
  end-page: 567
  ident: b0330
  article-title: PET imaging of freely moving interacting rats
  publication-title: Neuroimage
– volume: 342
  start-page: 373
  year: 2013
  end-page: 377
  ident: b0475
  article-title: Sleep drives metabolite clearance from the adult brain
  publication-title: Science
– volume: 40
  start-page: 1257
  year: 2019
  end-page: 1264
  ident: b0090
  article-title: Intrathecal use of gadobutrol for glymphatic MR imaging: prospective safety study of 100 patients
  publication-title: AJNR Am J Neuroradiol
– year: 2018
  ident: b0100
  article-title: Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study
  publication-title: J Cereb Blood Flow
– volume: 9
  start-page: 4878
  year: 2018
  ident: b0325
  article-title: Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension
  publication-title: Nat Commun
– volume: 338
  start-page: 1
  year: 2009
  end-page: 973
  ident: b0430
  article-title: Optimal transport: old and new
  publication-title: Grundlehr Math Wiss
– volume: 35
  start-page: 518
  year: 2015
  end-page: 526
  ident: b0370
  article-title: Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system
  publication-title: J Neurosci
– volume: 123
  start-page: 1299
  year: 2013
  end-page: 1309
  ident: b0195
  article-title: Brain-wide pathway for waste clearance captured by contrast-enhanced MRI
  publication-title: J Clin Invest
– volume: 3
  year: 2018
  ident: b0395
  article-title: Brain-wide glymphatic enhancement and clearance in humans assessed with MRI
  publication-title: JCI Insight
– volume: 152
  start-page: 530
  year: 2017
  end-page: 537
  ident: b0380
  article-title: Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport
  publication-title: Neuroimage
– volume: 2
  start-page: 277
  year: 1992
  end-page: 284
  ident: b0470
  article-title: Pathways of fluid drainage from the brain–morphological aspects and immunological significance in rat and man
  publication-title: Brain Pathol
– reference: Mott FW. (1910), The Oliver-Sharpey Lectures on the cerebrospinal fluid. The Lancet (British edition) ii:1-8.
– volume: 54
  start-page: 229
  year: 2019
  end-page: 237
  ident: b0070
  article-title: Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted
  publication-title: Invest Radiol
– volume: 10
  start-page: 14592
  year: 2020
  ident: b0480
  article-title: In vivo T1 mapping for quantifying glymphatic system transport and cervical lymph node drainage
  publication-title: Sci Rep
– volume: 78
  start-page: 851
  year: 2018
  end-page: 858
  ident: b0075
  article-title: Cerebrospinal fluid flow increases from newborn to adult stages
  publication-title: Dev Neurobiol
– volume: 100
  start-page: 375
  year: 2018
  end-page: 388
  ident: b0055
  article-title: The meningeal lymphatic system: a new player in neurophysiology
  publication-title: Neuron
– volume: 10
  start-page: 4594
  year: 2019
  ident: b0205
  article-title: Anatomy and function of the vertebral column lymphatic network in mice
  publication-title: Nat Commun
– volume: 79
  start-page: 1568
  year: 2018
  end-page: 1578
  ident: b0255
  article-title: Quantitative Gd-DOTA uptake from cerebrospinal fluid into rat brain using 3D VFA-SPGR at 9.4T
  publication-title: Magn Reson Med
– volume: 87
  start-page: 357
  year: 2020
  end-page: 369
  ident: b0490
  article-title: Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human
  publication-title: Ann Neurol
– volume: 34
  start-page: 16180
  year: 2014
  end-page: 16193
  ident: b0190
  article-title: Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury
  publication-title: J Neurosci
– volume: 135
  start-page: 387
  year: 2018
  end-page: 407
  ident: b0005
  article-title: The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system?
  publication-title: Acta Neuropathol
– volume: 8
  start-page: 710
  year: 2018
  end-page: 722
  ident: b0145
  article-title: General anesthesia inhibits the activity of the “Glymphatic System”
  publication-title: Theranostics
– volume: 1
  start-page: 41
  year: 2003
  end-page: 44
  ident: b0225
  article-title: The importance of lymphatics in cerebrospinal fluid transport
  publication-title: Lymphat Res Biol
– volume: 96
  start-page: 1876
  year: 2018
  end-page: 1886
  ident: b0080
  article-title: MRI investigation of glymphatic responses to Gd-DTPA infusion rates
  publication-title: J Neurosci Res
– volume: 39
  start-page: 1258
  year: 2019
  end-page: 1265
  ident: b0115
  article-title: Reduced spinal cord parenchymal cerebrospinal fluid circulation in experimental autoimmune encephalomyelitis
  publication-title: J Cereb Blood Flow Metab
– volume: 39
  start-page: 13S
  year: 1999
  end-page: 16S
  ident: b0130
  article-title: Positron emission tomography studies of dopamine-enhancing drugs
  publication-title: J Clin Pharmacol
– volume: 143
  start-page: 2576
  year: 2020
  end-page: 2593
  ident: b0170
  article-title: Impaired glymphatic function and clearance of tau in an Alzheimer's disease model
  publication-title: Brain
– volume: 15
  start-page: 143
  year: 1992
  end-page: 149
  ident: b0065
  article-title: Sleep positions and position shifts in five age groups: an ontogenetic picture
  publication-title: Sleep
– volume: 43
  start-page: 458
  year: 2020
  end-page: 466
  ident: b0320
  article-title: The brain's glymphatic system: current controversies
  publication-title: Trends Neurosci
– volume: 367
  year: 2020
  ident: b0310
  article-title: Cerebrospinal fluid influx drives acute ischemic tissue swelling
  publication-title: Science
– volume: 37
  start-page: 431
  year: 2019
  end-page: 435
  ident: b0235
  article-title: Increased signal intensity of low-concentration gadolinium contrast agent by longer repetition time in heavily T2-weighted-3D-FLAIR
  publication-title: Jpn J Radiol
– volume: 64
  start-page: 422
  year: 2018
  end-page: 424
  ident: b0150
  article-title: Cerebrospinal fluid leakage after posterior fossa surgery may impair brain metabolite clearance
  publication-title: Neurochirurgie
– volume: 112
  start-page: 208
  year: 2015
  end-page: 213
  ident: b0450
  article-title: In vivo albumin labeling and lymphatic imaging
  publication-title: Proc Natl Acad Sci U S A
– volume: 39
  start-page: 6365
  year: 2019
  end-page: 6377
  ident: b0340
  article-title: Impaired glymphatic transport in spontaneously hypertensive rats
  publication-title: J Neurosci
– volume: 4
  start-page: 147ra111
  year: 2012
  ident: b0200
  article-title: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta
  publication-title: Sci Transl Med
– volume: 214
  start-page: 3645
  year: 2017
  end-page: 3667
  ident: b0015
  article-title: Development and plasticity of meningeal lymphatic vessels
  publication-title: J Exp Med
– volume: 11
  start-page: 10
  year: 2014
  ident: b0045
  article-title: A new look at cerebrospinal fluid circulation
  publication-title: Fluids Barriers CNS
– volume: 326
  start-page: 47
  year: 1985
  end-page: 63
  ident: b0390
  article-title: Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space
  publication-title: Brain Res
– volume: 241
  start-page: 78
  year: 2015
  end-page: 84
  ident: b0230
  article-title: A novel method to study cerebrospinal fluid dynamics in rats
  publication-title: J Neurosci Methods
– volume: 404
  start-page: 14
  year: 2019
  end-page: 26
  ident: b0245
  article-title: Brain morphometry and longitudinal relaxation time of spontaneously hypertensive rats (SHRs) in early and intermediate stages of hypertension investigated by 3D VFA-SPGR MRI
  publication-title: Neuroscience
– volume: 127
  start-page: 3210
  year: 2017
  end-page: 3219
  ident: b0290
  article-title: Understanding the functions and relationships of the glymphatic system and meningeal lymphatics
  publication-title: J Clin Invest
– volume: 68
  start-page: 1
  year: 2020
  end-page: 6
  ident: b0085
  article-title: MRI characterization of early CNS transport kinetics post intrathecal gadolinium injection: trends of subarachnoid and parenchymal distribution in healthy volunteers
  publication-title: Clin Imaging
– volume: 45
  start-page: 3092
  year: 2014
  end-page: 3096
  ident: b0140
  article-title: Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis?
  publication-title: Stroke
– volume: 117
  start-page: 668
  year: 2020
  end-page: 676
  ident: b0050
  article-title: Imaging the effect of the circadian light-dark cycle on the glymphatic system in awake rats
  publication-title: Proc Natl Acad Sci U S A
– volume: 11070
  start-page: 844
  year: 2018
  end-page: 852
  ident: b0110
  article-title: GlymphVIS: visualizing glymphatic transport pathways using regularized optimal transport
  publication-title: Med Image Comput Comput Assist Interv
– volume: 24
  start-page: 169
  year: 2003
  end-page: 176
  ident: b0175
  article-title: Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants
  publication-title: AJNR Am J Neuroradiol
– volume: 7
  year: 2018
  ident: b0315
  article-title: Aquaporin-4-dependent glymphatic solute transport in the rodent brain
  publication-title: Elife
– volume: 25
  year: 2020
  ident: b0010
  article-title: PET radiotracers for CNS-adrenergic receptors: developments and perspectives
  publication-title: Molecules
– volume: 523
  start-page: 337
  year: 2015
  end-page: 341
  ident: b0295
  article-title: Structural and functional features of central nervous system lymphatic vessels
  publication-title: Nature
– volume: 33
  start-page: 114
  year: 2003
  end-page: 128
  ident: b0435
  article-title: Positron emission tomography and single-photon emission computed tomography in substance abuse research
  publication-title: Semin Nucl Med
– volume: 33
  start-page: 14
  year: 2003
  end-page: 27
  ident: b0120
  article-title: Radiotracers for positron emission tomography imaging
  publication-title: Semin Nucl Med
– volume: 4
  year: 2015
  ident: b0095
  article-title: MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain
  publication-title: Acta Radiol Open
– volume: 13
  start-page: 47
  year: 2019
  end-page: 54
  ident: b0360
  article-title: Kinetics and MR-based monitoring of AAV9 vector delivery into cerebrospinal fluid of nonhuman primates
  publication-title: Mol Ther Methods Clin Dev
– volume: 131
  start-page: 725
  year: 2016
  end-page: 736
  ident: b0335
  article-title: Vascular basement membranes as pathways for the passage of fluid into and out of the brain
  publication-title: Acta Neuropathol
– volume: 40
  start-page: 648
  year: 2019
  end-page: 651
  ident: b0460
  article-title: Measuring glymphatic flow in man using quantitative contrast-enhanced MRI
  publication-title: AJNR Am J Neuroradiol
– year: 2020
  ident: b0265
  article-title: Diffuse white matter loss in a transgenic rat model of cerebral amyloid angiopathy
  publication-title: J Cereb Blood Flow
– volume: 36
  start-page: 569
  year: 2015
  end-page: 577
  ident: b0280
  article-title: Revisiting the mechanisms of CNS immune privilege
  publication-title: Trends Immunol
– volume: 64
  start-page: 277
  year: 2013
  end-page: 283
  ident: b0440
  article-title: Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain
  publication-title: Neuroimage
– volume: 32
  start-page: 6
  year: 2002
  end-page: 12
  ident: b0125
  article-title: Initial and subsequent approach for the synthesis of 18FDG
  publication-title: Semin Nucl Med
– volume: 34
  start-page: 112
  year: 2004
  end-page: 121
  ident: b0135
  article-title: 2-deoxy-2-[18F]fluoro-D-glucose and alternative radiotracers for positron emission tomography imaging using the human brain as a model
  publication-title: Semin Nucl Med
– volume: 70
  start-page: 40
  year: 2019
  end-page: 49
  ident: b0160
  article-title: Impaired brain glymphatic flow in experimental hepatic encephalopathy
  publication-title: J Hepatol
– volume: 127
  start-page: 976
  year: 2017
  end-page: 988
  ident: b0035
  article-title: Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane
  publication-title: Anesthesiology
– volume: 53
  start-page: 529
  year: 2018
  end-page: 534
  ident: b0420
  article-title: Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the rat brain: observations by dynamic MRI and effect of circadian rhythm on tissue gadolinium concentrations
  publication-title: Invest Radiol
– reference: Truman LA, N A.G., Bentley KL, Ruddle NH. (2013), Lymphatic vessel function in head and neck inflammation. Lymphat Res Biol 11:187-192.
– volume: 18
  start-page: 499
  year: 2005
  end-page: 506
  ident: b0030
  article-title: Focal brain ischemia in rat: acute changes in brain tissue T1 reflect acute increase in brain tissue water content
  publication-title: NMR Biomed
– volume: 29
  start-page: 697
  year: 2018
  end-page: 703
  ident: b0185
  article-title: Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [17O]H2O JJVCPE MRI study
  publication-title: Neuroreport
– volume: 188
  start-page: 616
  year: 2019
  end-page: 627
  ident: b0060
  article-title: Modeling glymphatic system of the brain using MRI
  publication-title: Neuroimage
– volume: 35
  start-page: 11034
  year: 2015
  end-page: 11044
  ident: b0260
  article-title: The effect of body posture on brain glymphatic transport
  publication-title: J Neurosci
– volume: 16
  start-page: 137
  year: 2020
  end-page: 153
  ident: b0455
  article-title: Perivascular spaces in the brain: anatomy, physiology and pathology
  publication-title: Nat Rev Neurol
– volume: 74
  start-page: 511
  year: 2017
  end-page: 519
  ident: b0020
  article-title: Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta-analysis
  publication-title: JAMA Psychiatry
– volume: 19
  start-page: 1
  year: 2020
  end-page: 4
  ident: b0350
  article-title: The space between the pial sheath and the cortical venous wall may connect to the meningeal lymphatics
  publication-title: Magn Reson Med Sci
– volume: 212
  start-page: 991
  year: 2015
  end-page: 999
  ident: b0025
  article-title: A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules
  publication-title: J Exp Med
– volume: 188
  start-page: 92
  year: 2018
  end-page: 101
  ident: b0250
  article-title: Open-field PET: Simultaneous brain functional imaging and behavioural response measurements in freely moving small animals
  publication-title: Neuroimage
– volume: 39
  start-page: 581
  year: 2016
  end-page: 586
  ident: b0375
  article-title: How do meningeal lymphatic vessels drain the CNS?
  publication-title: Trends Neurosci
– volume: 13
  start-page: 963
  year: 2016
  end-page: 975
  ident: b0365
  article-title: CSF, blood-brain barrier, and brain drug delivery
  publication-title: Expert Opin Drug Deliv
– volume: 65
  start-page: 106
  year: 2019
  end-page: 119
  ident: b0040
  article-title: The glymphatic system and waste clearance with brain aging: a review
  publication-title: Gerontology
– volume: 8
  start-page: 347
  year: 2011
  end-page: 352
  ident: b0405
  article-title: Simultaneous assessment of rodent behavior and neurochemistry using a miniature positron emission tomograph
  publication-title: Nat Meth
– volume: 29
  year: 2020
  ident: b0275
  article-title: Impaired glymphatic system in secondary degeneration areas after ischemic stroke in rats
  publication-title: J Stroke Cerebrovasc Dis
– volume: 45
  start-page: 665
  year: 2004
  end-page: 672
  ident: b0410
  article-title: Measurement of cerebral glucose metabolic rates in the anesthetized rat by dynamic scanning with 18F-FDG, the ATLAS small animal PET scanner, and arterial blood sampling
  publication-title: J Nucl Med
– volume: 86
  start-page: 975
  year: 2019
  end-page: 980
  ident: b0305
  article-title: Glymphatics visualization after focused ultrasound-induced blood-brain barrier opening in humans
  publication-title: Ann Neurol
– volume: 37
  start-page: 1326
  year: 2017
  end-page: 1337
  ident: b0220
  article-title: Impairment of the glymphatic system after diabetes
  publication-title: J Cereb Blood Flow Metab
– volume: 2
  start-page: 1
  year: 2008
  ident: b0300
  article-title: In vivo 3D digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy
  publication-title: Front Neuroanat
– volume: 8
  start-page: 7194
  year: 2018
  ident: b0105
  article-title: Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes
  publication-title: Sci Rep
– volume: 60
  start-page: 2773
  year: 2019
  end-page: 2780
  ident: b0210
  article-title: The human visual pathway communicates directly with the subarachnoid space
  publication-title: Invest Ophthalmol Vis Sci
– year: 2016
  ident: b0215
  article-title: Impairment of the glymphatic system after diabetes
  publication-title: J Cereb Blood Flow Metab
– volume: 10
  start-page: 1
  year: 1917
  end-page: 12
  ident: b0165
  article-title: Presidential address: the possible functions of the cerebrospinal fluid
  publication-title: Proc R Soc Med
– volume: 1747
  year: 2020
  ident: b0270
  article-title: MRI detection of impairment of glymphatic function in rat after mild traumatic brain injury
  publication-title: Brain Res
– volume: 48
  start-page: 2301
  year: 2017
  end-page: 2305
  ident: b0155
  article-title: Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate
  publication-title: Stroke
– volume: 71
  start-page: 11
  year: 2020
  end-page: 16
  ident: b0415
  article-title: Contrast-enhanced magnetic resonance imaging evidence for the role of astrocytic aquaporin-4 water channels in glymphatic influx and interstitial solute transport
  publication-title: Magn Reson Imaging
– volume: 11
  start-page: 26
  year: 2014
  ident: b0180
  article-title: Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence
  publication-title: Fluids Barriers CNS
– volume: 11
  start-page: 107
  year: 2013
  ident: b0485
  article-title: Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer
  publication-title: J Transl Med
– volume: 21
  start-page: 1380
  year: 2018
  end-page: 1391
  ident: b0285
  article-title: CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature
  publication-title: Nat Neurosci
– volume: 65
  start-page: 106
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0040
  article-title: The glymphatic system and waste clearance with brain aging: a review
  publication-title: Gerontology
  doi: 10.1159/000490349
– volume: 188
  start-page: 92
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0250
  article-title: Open-field PET: Simultaneous brain functional imaging and behavioural response measurements in freely moving small animals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.11.051
– volume: 131
  start-page: 725
  year: 2016
  ident: 10.1016/j.neuroscience.2020.11.014_b0335
  article-title: Vascular basement membranes as pathways for the passage of fluid into and out of the brain
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-016-1555-z
– volume: 3
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0395
  article-title: Brain-wide glymphatic enhancement and clearance in humans assessed with MRI
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.121537
– volume: 127
  start-page: 3210
  year: 2017
  ident: 10.1016/j.neuroscience.2020.11.014_b0290
  article-title: Understanding the functions and relationships of the glymphatic system and meningeal lymphatics
  publication-title: J Clin Invest
  doi: 10.1172/JCI90603
– year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0100
  article-title: Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study
  publication-title: J Cereb Blood Flow
– volume: 48
  start-page: 2301
  year: 2017
  ident: 10.1016/j.neuroscience.2020.11.014_b0155
  article-title: Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.117.017014
– volume: 241
  start-page: 78
  year: 2015
  ident: 10.1016/j.neuroscience.2020.11.014_b0230
  article-title: A novel method to study cerebrospinal fluid dynamics in rats
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2014.12.015
– volume: 13
  start-page: 963
  year: 2016
  ident: 10.1016/j.neuroscience.2020.11.014_b0365
  article-title: CSF, blood-brain barrier, and brain drug delivery
  publication-title: Expert Opin Drug Deliv
  doi: 10.1517/17425247.2016.1171315
– volume: 8
  start-page: 347
  year: 2011
  ident: 10.1016/j.neuroscience.2020.11.014_b0405
  article-title: Simultaneous assessment of rodent behavior and neurochemistry using a miniature positron emission tomograph
  publication-title: Nat Meth
  doi: 10.1038/nmeth.1582
– volume: 9
  start-page: 4878
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0325
  article-title: Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07318-3
– volume: 34
  start-page: 16180
  year: 2014
  ident: 10.1016/j.neuroscience.2020.11.014_b0190
  article-title: Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3020-14.2014
– volume: 37
  start-page: 431
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0235
  article-title: Increased signal intensity of low-concentration gadolinium contrast agent by longer repetition time in heavily T2-weighted-3D-FLAIR
  publication-title: Jpn J Radiol
  doi: 10.1007/s11604-019-00828-0
– volume: 214
  start-page: 3645
  year: 2017
  ident: 10.1016/j.neuroscience.2020.11.014_b0015
  article-title: Development and plasticity of meningeal lymphatic vessels
  publication-title: J Exp Med
  doi: 10.1084/jem.20170391
– volume: 10
  start-page: 1
  year: 1917
  ident: 10.1016/j.neuroscience.2020.11.014_b0165
  article-title: Presidential address: the possible functions of the cerebrospinal fluid
  publication-title: Proc R Soc Med
– volume: 112
  start-page: 208
  year: 2015
  ident: 10.1016/j.neuroscience.2020.11.014_b0450
  article-title: In vivo albumin labeling and lymphatic imaging
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1414821112
– volume: 40
  start-page: 1257
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0090
  article-title: Intrathecal use of gadobutrol for glymphatic MR imaging: prospective safety study of 100 patients
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A6136
– volume: 35
  start-page: 518
  year: 2015
  ident: 10.1016/j.neuroscience.2020.11.014_b0370
  article-title: Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3742-14.2015
– year: 2016
  ident: 10.1016/j.neuroscience.2020.11.014_b0215
  article-title: Impairment of the glymphatic system after diabetes
  publication-title: J Cereb Blood Flow Metab
– volume: 39
  start-page: 581
  year: 2016
  ident: 10.1016/j.neuroscience.2020.11.014_b0375
  article-title: How do meningeal lymphatic vessels drain the CNS?
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2016.07.001
– volume: 25
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0010
  article-title: PET radiotracers for CNS-adrenergic receptors: developments and perspectives
  publication-title: Molecules
– volume: 7
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0315
  article-title: Aquaporin-4-dependent glymphatic solute transport in the rodent brain
  publication-title: Elife
  doi: 10.7554/eLife.40070
– volume: 79
  start-page: 1568
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0255
  article-title: Quantitative Gd-DOTA uptake from cerebrospinal fluid into rat brain using 3D VFA-SPGR at 9.4T
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26779
– volume: 71
  start-page: 11
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0415
  article-title: Contrast-enhanced magnetic resonance imaging evidence for the role of astrocytic aquaporin-4 water channels in glymphatic influx and interstitial solute transport
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2020.05.001
– volume: 40
  start-page: 648
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0460
  article-title: Measuring glymphatic flow in man using quantitative contrast-enhanced MRI
  publication-title: AJNR Am J Neuroradiol
– volume: 33
  start-page: 114
  year: 2003
  ident: 10.1016/j.neuroscience.2020.11.014_b0435
  article-title: Positron emission tomography and single-photon emission computed tomography in substance abuse research
  publication-title: Semin Nucl Med
  doi: 10.1053/snuc.2003.127300
– volume: 74
  start-page: 511
  year: 2017
  ident: 10.1016/j.neuroscience.2020.11.014_b0020
  article-title: Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta-analysis
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2017.0135
– volume: 53
  start-page: 529
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0420
  article-title: Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the rat brain: observations by dynamic MRI and effect of circadian rhythm on tissue gadolinium concentrations
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000473
– volume: 342
  start-page: 373
  year: 2013
  ident: 10.1016/j.neuroscience.2020.11.014_b0475
  article-title: Sleep drives metabolite clearance from the adult brain
  publication-title: Science
  doi: 10.1126/science.1241224
– volume: 11
  start-page: 107
  year: 2013
  ident: 10.1016/j.neuroscience.2020.11.014_b0485
  article-title: Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer
  publication-title: J Transl Med
  doi: 10.1186/1479-5876-11-107
– volume: 140
  start-page: 2691
  year: 2017
  ident: 10.1016/j.neuroscience.2020.11.014_b0400
  article-title: Glymphatic MRI in idiopathic normal pressure hydrocephalus
  publication-title: Brain
  doi: 10.1093/brain/awx191
– volume: 326
  start-page: 47
  year: 1985
  ident: 10.1016/j.neuroscience.2020.11.014_b0390
  article-title: Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space
  publication-title: Brain Res
  doi: 10.1016/0006-8993(85)91383-6
– volume: 10
  start-page: 14592
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0480
  article-title: In vivo T1 mapping for quantifying glymphatic system transport and cervical lymph node drainage
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-71582-x
– volume: 18
  start-page: 499
  year: 2005
  ident: 10.1016/j.neuroscience.2020.11.014_b0030
  article-title: Focal brain ischemia in rat: acute changes in brain tissue T1 reflect acute increase in brain tissue water content
  publication-title: NMR Biomed
  doi: 10.1002/nbm.979
– volume: 135
  start-page: 387
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0005
  article-title: The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system?
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-018-1812-4
– volume: 188
  start-page: 616
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0060
  article-title: Modeling glymphatic system of the brain using MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.12.039
– volume: 33
  start-page: 14
  year: 2003
  ident: 10.1016/j.neuroscience.2020.11.014_b0120
  article-title: Radiotracers for positron emission tomography imaging
  publication-title: Semin Nucl Med
  doi: 10.1053/snuc.2003.127297
– year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0265
  article-title: Diffuse white matter loss in a transgenic rat model of cerebral amyloid angiopathy
  publication-title: J Cereb Blood Flow
– volume: 39
  start-page: 6365
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0340
  article-title: Impaired glymphatic transport in spontaneously hypertensive rats
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1974-18.2019
– volume: 123
  start-page: 1299
  year: 2013
  ident: 10.1016/j.neuroscience.2020.11.014_b0195
  article-title: Brain-wide pathway for waste clearance captured by contrast-enhanced MRI
  publication-title: J Clin Invest
  doi: 10.1172/JCI67677
– volume: 9413
  year: 2015
  ident: 10.1016/j.neuroscience.2020.11.014_b0385
  article-title: Optimal-mass-transfer-based estimation of glymphatic transport in living brain
  publication-title: Proc SPIE Int Soc Opt Eng
– volume: 78
  start-page: 851
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0075
  article-title: Cerebrospinal fluid flow increases from newborn to adult stages
  publication-title: Dev Neurobiol
  doi: 10.1002/dneu.22622
– volume: 11070
  start-page: 844
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0110
  article-title: GlymphVIS: visualizing glymphatic transport pathways using regularized optimal transport
  publication-title: Med Image Comput Comput Assist Interv
– volume: 523
  start-page: 337
  year: 2015
  ident: 10.1016/j.neuroscience.2020.11.014_b0295
  article-title: Structural and functional features of central nervous system lymphatic vessels
  publication-title: Nature
  doi: 10.1038/nature14432
– volume: 29
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0275
  article-title: Impaired glymphatic system in secondary degeneration areas after ischemic stroke in rats
  publication-title: J Stroke Cerebrovasc Dis
  doi: 10.1016/j.jstrokecerebrovasdis.2020.104828
– volume: 10
  start-page: 1990
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0240
  article-title: Optimal mass transport with lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-59045-9
– volume: 19
  start-page: 1
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0350
  article-title: The space between the pial sheath and the cortical venous wall may connect to the meningeal lymphatics
  publication-title: Magn Reson Med Sci
  doi: 10.2463/mrms.bc.2019-0099
– volume: 191
  start-page: 560
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0330
  article-title: PET imaging of freely moving interacting rats
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.02.064
– volume: 1
  start-page: 41
  year: 2003
  ident: 10.1016/j.neuroscience.2020.11.014_b0225
  article-title: The importance of lymphatics in cerebrospinal fluid transport
  publication-title: Lymphat Res Biol
  doi: 10.1089/15396850360495682
– ident: 10.1016/j.neuroscience.2020.11.014_b0425
  doi: 10.1089/lrb.2013.0013
– volume: 29
  start-page: 697
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0185
  article-title: Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [17O]H2O JJVCPE MRI study
  publication-title: Neuroreport
  doi: 10.1097/WNR.0000000000000990
– volume: 64
  start-page: 277
  year: 2013
  ident: 10.1016/j.neuroscience.2020.11.014_b0440
  article-title: Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.08.057
– volume: 70
  start-page: 40
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0160
  article-title: Impaired brain glymphatic flow in experimental hepatic encephalopathy
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2018.08.021
– volume: 16
  start-page: 137
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0455
  article-title: Perivascular spaces in the brain: anatomy, physiology and pathology
  publication-title: Nat Rev Neurol
  doi: 10.1038/s41582-020-0312-z
– volume: 60
  start-page: 2773
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0210
  article-title: The human visual pathway communicates directly with the subarachnoid space
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.19-26997
– volume: 39
  start-page: 13S
  year: 1999
  ident: 10.1016/j.neuroscience.2020.11.014_b0130
  article-title: Positron emission tomography studies of dopamine-enhancing drugs
  publication-title: J Clin Pharmacol
  doi: 10.1002/j.1552-4604.1999.tb05932.x
– volume: 96
  start-page: 1876
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0080
  article-title: MRI investigation of glymphatic responses to Gd-DTPA infusion rates
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.24325
– volume: 1747
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0270
  article-title: MRI detection of impairment of glymphatic function in rat after mild traumatic brain injury
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2020.147062
– volume: 8
  start-page: 7194
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0105
  article-title: Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-25666-4
– volume: 8
  start-page: 710
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0145
  article-title: General anesthesia inhibits the activity of the “Glymphatic System”
  publication-title: Theranostics
  doi: 10.7150/thno.19154
– volume: 64
  start-page: 422
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0150
  article-title: Cerebrospinal fluid leakage after posterior fossa surgery may impair brain metabolite clearance
  publication-title: Neurochirurgie
  doi: 10.1016/j.neuchi.2018.08.003
– volume: 37
  start-page: 1326
  year: 2017
  ident: 10.1016/j.neuroscience.2020.11.014_b0220
  article-title: Impairment of the glymphatic system after diabetes
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1177/0271678X16654702
– volume: 45
  start-page: 665
  year: 2004
  ident: 10.1016/j.neuroscience.2020.11.014_b0410
  article-title: Measurement of cerebral glucose metabolic rates in the anesthetized rat by dynamic scanning with 18F-FDG, the ATLAS small animal PET scanner, and arterial blood sampling
  publication-title: J Nucl Med
– volume: 11
  start-page: 26
  year: 2014
  ident: 10.1016/j.neuroscience.2020.11.014_b0180
  article-title: Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence
  publication-title: Fluids Barriers CNS
  doi: 10.1186/2045-8118-11-26
– volume: 54
  start-page: 229
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0070
  article-title: Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000533
– volume: 143
  start-page: 2576
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0170
  article-title: Impaired glymphatic function and clearance of tau in an Alzheimer's disease model
  publication-title: Brain
  doi: 10.1093/brain/awaa179
– volume: 404
  start-page: 14
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0245
  article-title: Brain morphometry and longitudinal relaxation time of spontaneously hypertensive rats (SHRs) in early and intermediate stages of hypertension investigated by 3D VFA-SPGR MRI
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2019.01.030
– volume: 36
  start-page: 569
  year: 2015
  ident: 10.1016/j.neuroscience.2020.11.014_b0280
  article-title: Revisiting the mechanisms of CNS immune privilege
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2015.08.006
– volume: 16
  start-page: 61
  year: 2017
  ident: 10.1016/j.neuroscience.2020.11.014_b0355
  article-title: Gd-based contrast enhancement of the perivascular spaces in the basal ganglia
  publication-title: Magn Reson Med Sci
  doi: 10.2463/mrms.mp.2016-0039
– volume: 100
  start-page: 375
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0055
  article-title: The meningeal lymphatic system: a new player in neurophysiology
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.09.022
– volume: 39
  start-page: 1258
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0115
  article-title: Reduced spinal cord parenchymal cerebrospinal fluid circulation in experimental autoimmune encephalomyelitis
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1177/0271678X18754732
– volume: 367
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0310
  article-title: Cerebrospinal fluid influx drives acute ischemic tissue swelling
  publication-title: Science
  doi: 10.1126/science.aax7171
– volume: 122
  start-page: 175
  year: 2017
  ident: 10.1016/j.neuroscience.2020.11.014_b0445
  article-title: Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: Studies with positron emission tomography
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2017.01.012
– volume: 45
  start-page: 3092
  year: 2014
  ident: 10.1016/j.neuroscience.2020.11.014_b0140
  article-title: Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis?
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.114.006617
– volume: 43
  start-page: 458
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0320
  article-title: The brain's glymphatic system: current controversies
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2020.04.003
– volume: 338
  start-page: 1
  year: 2009
  ident: 10.1016/j.neuroscience.2020.11.014_b0430
  article-title: Optimal transport: old and new
  publication-title: Grundlehr Math Wiss
– volume: 13
  start-page: 47
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0360
  article-title: Kinetics and MR-based monitoring of AAV9 vector delivery into cerebrospinal fluid of nonhuman primates
  publication-title: Mol Ther Methods Clin Dev
  doi: 10.1016/j.omtm.2018.12.001
– volume: 32
  start-page: 6
  year: 2002
  ident: 10.1016/j.neuroscience.2020.11.014_b0125
  article-title: Initial and subsequent approach for the synthesis of 18FDG
  publication-title: Semin Nucl Med
  doi: 10.1053/snuc.2002.29270
– volume: 117
  start-page: 668
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0050
  article-title: Imaging the effect of the circadian light-dark cycle on the glymphatic system in awake rats
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1914017117
– volume: 127
  start-page: 976
  year: 2017
  ident: 10.1016/j.neuroscience.2020.11.014_b0035
  article-title: Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000001888
– volume: 15
  start-page: 143
  year: 1992
  ident: 10.1016/j.neuroscience.2020.11.014_b0065
  article-title: Sleep positions and position shifts in five age groups: an ontogenetic picture
  publication-title: Sleep
  doi: 10.1093/sleep/15.2.143
– volume: 212
  start-page: 991
  year: 2015
  ident: 10.1016/j.neuroscience.2020.11.014_b0025
  article-title: A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules
  publication-title: J Exp Med
  doi: 10.1084/jem.20142290
– volume: 68
  start-page: 1
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0085
  article-title: MRI characterization of early CNS transport kinetics post intrathecal gadolinium injection: trends of subarachnoid and parenchymal distribution in healthy volunteers
  publication-title: Clin Imaging
  doi: 10.1016/j.clinimag.2020.04.043
– volume: 152
  start-page: 530
  year: 2017
  ident: 10.1016/j.neuroscience.2020.11.014_b0380
  article-title: Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.021
– volume: 11
  start-page: 10
  year: 2014
  ident: 10.1016/j.neuroscience.2020.11.014_b0045
  article-title: A new look at cerebrospinal fluid circulation
  publication-title: Fluids Barriers CNS
  doi: 10.1186/2045-8118-11-10
– ident: 10.1016/j.neuroscience.2020.11.014_b0345
  doi: 10.1016/S0140-6736(00)52276-4
– volume: 2
  start-page: 1
  year: 2008
  ident: 10.1016/j.neuroscience.2020.11.014_b0300
  article-title: In vivo 3D digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy
  publication-title: Front Neuroanat
  doi: 10.3389/neuro.05.001.2008
– volume: 4
  year: 2015
  ident: 10.1016/j.neuroscience.2020.11.014_b0095
  article-title: MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain
  publication-title: Acta Radiol Open
– volume: 21
  start-page: 1380
  year: 2018
  ident: 10.1016/j.neuroscience.2020.11.014_b0285
  article-title: CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-018-0227-9
– volume: 4
  start-page: 147ra111
  year: 2012
  ident: 10.1016/j.neuroscience.2020.11.014_b0200
  article-title: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3003748
– volume: 2
  start-page: 277
  year: 1992
  ident: 10.1016/j.neuroscience.2020.11.014_b0470
  article-title: Pathways of fluid drainage from the brain–morphological aspects and immunological significance in rat and man
  publication-title: Brain Pathol
  doi: 10.1111/j.1750-3639.1992.tb00704.x
– volume: 10
  start-page: 4594
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0205
  article-title: Anatomy and function of the vertebral column lymphatic network in mice
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12568-w
– volume: 87
  start-page: 357
  year: 2020
  ident: 10.1016/j.neuroscience.2020.11.014_b0490
  article-title: Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human
  publication-title: Ann Neurol
  doi: 10.1002/ana.25670
– volume: 24
  start-page: 169
  year: 2003
  ident: 10.1016/j.neuroscience.2020.11.014_b0175
  article-title: Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants
  publication-title: AJNR Am J Neuroradiol
– volume: 2
  start-page: 171
  year: 1922
  ident: 10.1016/j.neuroscience.2020.11.014_b0465
  article-title: The cerebrospinal fluid
  publication-title: Physiol Rev
  doi: 10.1152/physrev.1922.2.2.171
– volume: 86
  start-page: 975
  year: 2019
  ident: 10.1016/j.neuroscience.2020.11.014_b0305
  article-title: Glymphatics visualization after focused ultrasound-induced blood-brain barrier opening in humans
  publication-title: Ann Neurol
  doi: 10.1002/ana.25604
– volume: 34
  start-page: 112
  year: 2004
  ident: 10.1016/j.neuroscience.2020.11.014_b0135
  article-title: 2-deoxy-2-[18F]fluoro-D-glucose and alternative radiotracers for positron emission tomography imaging using the human brain as a model
  publication-title: Semin Nucl Med
  doi: 10.1053/j.semnuclmed.2004.01.002
– volume: 35
  start-page: 11034
  year: 2015
  ident: 10.1016/j.neuroscience.2020.11.014_b0260
  article-title: The effect of body posture on brain glymphatic transport
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1625-15.2015
SSID ssj0000543
Score 2.5448992
SecondaryResourceType review_article
Snippet •DCE-MRI is a robust imaging platform for quantifying glymphatic transport.•Glymphatic transport and CSF flow dynamics is dependent on body posture.•T1 mapping...
Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
SubjectTerms cerebrospinal fluid
gadolinium
glymphatic
lymphatic
magnetic resonance imaging
positron emission tomography
Title Glymphatic Cerebrospinal Fluid and Solute Transport Quantified by MRI and PET Imaging
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0306452220307302
https://dx.doi.org/10.1016/j.neuroscience.2020.11.014
https://www.ncbi.nlm.nih.gov/pubmed/33248153
https://www.proquest.com/docview/2465436492
https://pubmed.ncbi.nlm.nih.gov/PMC8149482
Volume 474
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5V5cIFAeURKNUiIW5ukt31PlRxiKKGBNSKRyP1Zq3tWRGUulVpDrnw25lZP0hASJG42juS7RnPfGN_-w1jb8QwCEitTLC0Q6I8mMRbUSaFd3lhXQAzoM3JZ-d6OlcfLtPLPTZu98IQrbLJ_XVOj9m6OdJvnmb_ZrHofyW0S3rgoo5TysNKGYry45-_aR4ISeoRydg50-pWeDRyvDY0I0kyU1AGOR4M1b-K1N8g9E8u5UZxmjxkDxpUyUf1hT9ie1A9ZgejCjvqqzV_yyPPM35AP2Dz98s1upCUWvkYbrEnptEhZD5ZrhYl91XJ48cy4J3yOf-88pFVBCXP1_zsyywu-3R6wWdXcc7REzafnF6Mp0kzXCEpUuxEE2WkL6UqcqMVuBB8kE4HxH_ey4HNtSkKaaHMnUXEFoDa6EIaL1MIGlJENU_ZfnVdwXPGxSAEsFaCczTfL_jSG-0MKIWdutaqx1z7NLOiUR6nARjLrKWYfc82PZGRJ7A1ydATPSY725taf2Mnq5PWaVm7wxRzYoZlYifrd531VizubP-6jZMMX1b6A-MruF79yASp10mtnOixZ3XcdHclEdparD89ZrYiqltAQuDbZ6rFtygIbock8iNe_Od1v2T3BTF2iK-THrL9u9sVvELIdZcfxXfqiN0bzT5Oz38BcTcvjw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaK7rBdhq3dI3tVA4bd3CSSbEsYdiiCZsnWFHskQG-CbFNohtQtuuaQy377SPnRpMOAALs6ImCbFPnR-fSRsXei7wXEWkZY2iFSDtLIaVFEuTNZro2HtEeHkyenyWimPp_FZzts0JyFIVplnfurnB6ydX2lW7_N7tV83v1BaJf0wEUVp5iH7yncvjTG4PD3Lc8DMUk1IxlbZ1reKI8GkteaaCRpZgpKIYe9vvpXlfobhd4lU65Vp-Ej9rCGlfyouvPHbAfKPbZ_VGJLfbHi73kgeoYv6Pts9mmxQh-SVCsfwDU2xTQ7hMyHi-W84K4sePhaBryVPuffli7QiqDg2YpPvo_Dsq_HUz6-CIOOnrDZ8Hg6GEX1dIUoj7EVjVQqXSFVnqWJAuO989IkHgGgc7KnsyTNc6mhyIxGyOaB-uhcpk7G4BOIEdY8ZbvlZQnPGRc970FrCcbQgD_vCpcmJgWlsFVPEtVhpnmbNq-lx2kCxsI2HLOfdt0TljyBvYlFT3SYbG2vKgGOraw-NE6zzRFTTIoW68RW1h9b641g3Nr-bRMnFncr_QXjSrhc_rKC5OtkoozosGdV3LRPJRHbaixAHZZuRFS7gJTAN38p5-dBEVz3SeVHvPjP-z5g90fTyYk9GZ9-eckeCKLvEHknfsV2b66X8Brx1032JuyvPxOMMR0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glymphatic+Cerebrospinal+Fluid+and+Solute+Transport+Quantified+by+MRI+and+PET+Imaging&rft.jtitle=Neuroscience&rft.au=Benveniste%2C+Helene&rft.au=Lee%2C+Hedok&rft.au=Ozturk%2C+Burhan&rft.au=Chen%2C+Xinan&rft.date=2021-10-15&rft.pub=Elsevier+Ltd&rft.issn=0306-4522&rft.volume=474&rft.spage=63&rft.epage=79&rft_id=info:doi/10.1016%2Fj.neuroscience.2020.11.014&rft.externalDocID=S0306452220307302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon