Direct production of 4‐hydroxybenzoic acid from cellulose using cellulase‐displaying Pichia pastoris
4‐hydroxybenzoic acid (4‐HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to d...
Saved in:
Published in | Biotechnology and Bioengineering Vol. 120; no. 4; pp. 1097 - 1107 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley
01.04.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 4‐hydroxybenzoic acid (4‐HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4‐HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)‐anchoring system. β‐glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co‐displayed on the cell surface of P. pastoris using an appropriate GPI‐anchoring domain for each enzyme. The cell‐surface cellulase activity was further enhanced using P. pastoris SPI1 promoter‐ and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4‐HBA‐resistant chorismate pyruvate‐lyase (UbiC) from Providencia rustigianii in the cellulase‐displaying strain. This strain produced 975 mg/L of 4‐HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4‐HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase‐displaying yeast.
A recombinant Pichia pastoris strain co‐displaying three cellulases and expressing chorismate pyruvate‐lyase was constructed for direct production of 4‐hydroxybenzoic acid (4‐HBA) from cellulose. This strain produced 975 mg/L of 4‐HBA from phosphoric acid swollen cellulose, with a yield of 11.6% after 96 h of batch fermentation without commercial cellulase addition. |
---|---|
AbstractList | 4-hydroxybenzoic acid (4-HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4-HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)-anchoring system. β-glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co-displayed on the cell surface of P. pastoris using an appropriate GPI-anchoring domain for each enzyme. The cell-surface cellulase activity was further enhanced using P. pastoris SPI1 promoter- and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4-HBA-resistant chorismate pyruvate-lyase (UbiC) from Providencia rustigianii in the cellulase-displaying strain. This strain produced 975 mg/L of 4-HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4-HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase-displaying yeast. 4‐hydroxybenzoic acid (4‐HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4‐HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)‐anchoring system. β‐glucosidase (BGL) from Aspergillus aculeatus , endoglucanase (EG) from Trichoderma reesei , and cellobiohydrolase (CBH) from Talaromyces emersonii were co‐displayed on the cell surface of P. pastoris using an appropriate GPI‐anchoring domain for each enzyme. The cell‐surface cellulase activity was further enhanced using P. pastoris SPI1 promoter‐ and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4‐HBA‐resistant chorismate pyruvate‐lyase (UbiC) from Providencia rustigianii in the cellulase‐displaying strain. This strain produced 975 mg/L of 4‐HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4‐HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase‐displaying yeast. 4-hydroxybenzoic acid (4-HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4-HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)-anchoring system. β-glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co-displayed on the cell surface of P. pastoris using an appropriate GPI-anchoring domain for each enzyme. The cell-surface cellulase activity was further enhanced using P. pastoris SPI1 promoter- and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4-HBA-resistant chorismate pyruvate-lyase (UbiC) from Providencia rustigianii in the cellulase-displaying strain. This strain produced 975 mg/L of 4-HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4-HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase-displaying yeast.4-hydroxybenzoic acid (4-HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4-HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)-anchoring system. β-glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co-displayed on the cell surface of P. pastoris using an appropriate GPI-anchoring domain for each enzyme. The cell-surface cellulase activity was further enhanced using P. pastoris SPI1 promoter- and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4-HBA-resistant chorismate pyruvate-lyase (UbiC) from Providencia rustigianii in the cellulase-displaying strain. This strain produced 975 mg/L of 4-HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4-HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase-displaying yeast. 4‐hydroxybenzoic acid (4‐HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4‐HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)‐anchoring system. β‐glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co‐displayed on the cell surface of P. pastoris using an appropriate GPI‐anchoring domain for each enzyme. The cell‐surface cellulase activity was further enhanced using P. pastoris SPI1 promoter‐ and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4‐HBA‐resistant chorismate pyruvate‐lyase (UbiC) from Providencia rustigianii in the cellulase‐displaying strain. This strain produced 975 mg/L of 4‐HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4‐HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase‐displaying yeast. A recombinant Pichia pastoris strain co‐displaying three cellulases and expressing chorismate pyruvate‐lyase was constructed for direct production of 4‐hydroxybenzoic acid (4‐HBA) from cellulose. This strain produced 975 mg/L of 4‐HBA from phosphoric acid swollen cellulose, with a yield of 11.6% after 96 h of batch fermentation without commercial cellulase addition. |
Author | Shunya Miyamoto Kohei Morinaga Takahiro Bamba Tomohisa Hasunuma Akihiko Kondo Ryota Kumokita Kentaro Inokuma Yuma Kobayashi Yoichiro Ito |
Author_xml | – sequence: 1 givenname: Kentaro surname: Inokuma fullname: Inokuma, Kentaro organization: Kobe University – sequence: 2 givenname: Shunya surname: Miyamoto fullname: Miyamoto, Shunya organization: Kobe University – sequence: 3 givenname: Kohei surname: Morinaga fullname: Morinaga, Kohei organization: Kobe University – sequence: 4 givenname: Yuma surname: Kobayashi fullname: Kobayashi, Yuma organization: Kobe University – sequence: 5 givenname: Ryota surname: Kumokita fullname: Kumokita, Ryota organization: Kobe University – sequence: 6 givenname: Takahiro surname: Bamba fullname: Bamba, Takahiro organization: Kobe University – sequence: 7 givenname: Yoichiro surname: Ito fullname: Ito, Yoichiro organization: Kobe University – sequence: 8 givenname: Akihiko orcidid: 0000-0003-1527-5288 surname: Kondo fullname: Kondo, Akihiko organization: Biomass Engineering Program, RIKEN – sequence: 9 givenname: Tomohisa orcidid: 0000-0002-8382-2362 surname: Hasunuma fullname: Hasunuma, Tomohisa email: hasunuma@port.kobe-u.ac.jp organization: Kobe University |
BackLink | https://cir.nii.ac.jp/crid/1873398392369530880$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/36575132$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1u1DAUhS1URIfSBS-AIsECFmmvfeOJvYTyV6kSLMra8l8Yo0w82IkgrHgEnpEnwWFmNhV4Yeta3zm6vscPyckQB0_IYwoXFIBdmjBeMIGM3iMrCrKtgUk4ISsAWNfIJTsl5zkHA9AIXEvAB-QU17zlFNmKbF6H5O1Y7VJ0kx1DHKrYVc3vn782s0vx-2z88CMGW2kbXNWluK2s7_upj9lXUw7D50Otsy8iF_Ku1_Ny_THYTdDVTucxppAfkfud7rM_P5xn5NPbN7dX7-ubD--ur17e1JazltbOOCmNYI2l3FLdWGeo0xpdY9YNWBQWsEHvvNFG8w4byVHrtixpJPMSz8jzvW950dfJ51FtQ15a1IOPU1as5bKMDQAL-vQO-iVOaSjdFUqseWEEL9STAzWZrXdql8JWp1kdZ1iAyz1gU8w5-U7ZMOpllGPSoVcU1BKUKkGpv0EVxYs7iqPpv9iD-7fQ-_n_oHp1fXtUPNsrhhBKK8tORYsoBUpWfgBHEALwD2GLrr0 |
CitedBy_id | crossref_primary_10_1093_femsre_fuaf003 crossref_primary_10_1186_s13568_023_01590_3 crossref_primary_10_1038_s41598_024_69676_x crossref_primary_10_1016_j_fbio_2025_106180 |
Cites_doi | 10.1186/s12934-020-01476-0 10.1021/acssynbio.2c00047 10.1038/s41467-021-26361-1 10.1093/nar/gkaa1066 10.1128/AEM.00824-13 10.1093/mp/ssq048 10.1016/j.ymben.2006.08.005 10.1186/s13568-016-0267-z 10.1007/BF00166913 10.1007/s10529-010-0270-4 10.1016/j.ymben.2018.04.011 10.1021/cr50016a001 10.1128/AEM.02587-17 10.3389/fbioe.2016.00090 10.3390/biom10060874 10.1016/j.jbiotec.2012.04.014 10.1021/nn101598v 10.1016/j.biotechadv.2021.107695 10.1002/bit.10160 10.1021/acssynbio.1c00120 10.1111/1751-7915.14061 10.1016/j.mec.2021.e00188 10.1002/jcp.29583 10.1073/pnas.1903875116 10.3389/fbioe.2018.00032 10.1016/j.ymben.2019.11.004 10.1002/bit.26363 10.1016/j.copbio.2017.11.007 10.1016/s0167-7799(02)01935-2 10.1007/s00253-021-11440-6 10.1016/j.enzmictec.2014.02.005 10.1016/j.jbiotec.2007.08.031 10.1186/1754-6834-7-8 10.1002/bit.26008 10.1038/s41467-019-12961-5 10.1002/9783527803293.ch5 10.1038/srep24550 10.1007/s00253-011-3089-6 10.1186/s12934-020-01461-7 10.1186/s13068-020-01749-1 |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC. 2023 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC. – notice: 2023 Wiley Periodicals LLC. |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/bit.28321 |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 1107 |
ExternalDocumentID | 36575132 10_1002_bit_28321 BIT28321 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: New Energy and Industrial Technology Development Organization |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYH RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 ZZTAW ~02 ~IA ~KM ~WT .GJ .Y3 31~ 3EH AANHP AASGY ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AEUQT AFFNX AFPWT AI. ASPBG AVWKF AZFZN BLYAC EJD FEDTE HF~ HVGLF LH6 LW6 NDZJH PALCI RBB RIWAO RJQFR RWI SAMSI VH1 WRC WSB Y6R ZGI ZXP AAYXX AGQPQ CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c5271-dbd99b824c15c1a4cdb1daa3d4b640c38c0343edebaba5f34953aa77779b92e93 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 1097-0290 |
IngestDate | Fri Jul 11 01:58:07 EDT 2025 Fri Jul 25 19:07:33 EDT 2025 Thu Apr 03 07:01:37 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Tue Jul 01 01:09:09 EDT 2025 Wed Jan 22 16:23:03 EST 2025 Thu Jun 26 23:07:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | simultaneous saccharification and fermentation Pichia pastoris 4-hydroxybenzoic acid yeast surface display cellulase |
Language | English |
License | 2022 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5271-dbd99b824c15c1a4cdb1daa3d4b640c38c0343edebaba5f34953aa77779b92e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1527-5288 0000-0002-8382-2362 |
OpenAccessLink | https://hdl.handle.net/20.500.14094/0100479390 |
PMID | 36575132 |
PQID | 2786500385 |
PQPubID | 48814 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2759002003 proquest_journals_2786500385 pubmed_primary_36575132 crossref_citationtrail_10_1002_bit_28321 crossref_primary_10_1002_bit_28321 wiley_primary_10_1002_bit_28321_BIT28321 nii_cinii_1873398392369530880 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Biotechnology and Bioengineering |
PublicationTitleAlternate | Biotechnol Bioeng |
PublicationYear | 2023 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2021; 47 2010; 32 2013; 22 2019; 10 2021; 105 2020; 13 2020; 57 2013; 163 2018; 84 2020; 10 2017; 114 1957; 57 2020; 19 2016; 4 2018; 6 2021; 13 2016; 6 2021; 10 2021; 12 2014; 58‐59 2002; 20 2013; 79 2011; 90 2007; 132 1995; 43 2016; 113 2007; 9 2019; 116 2018 2020; 48 2022; 15 2020; 235 2018; 50 2022; 11 2010; 3 2014; 7 2010; 4 2001; 76 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 Manuja R. (e_1_2_10_29_1) 2013; 22 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 6 year: 2016 article-title: Engineering of a novel cellulose‐adherent cellulolytic for cellulosic biofuel production publication-title: Scientific Reports – volume: 6 year: 2018 article-title: Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds‐present and future strain construction strategies publication-title: Frontiers in Bioengineering and Biotechnology – volume: 4 start-page: 5498 issue: 9 year: 2010 end-page: 5504 article-title: Measuring cell wall thickness in living yeast cells using single molecular rulers publication-title: ACS Nano – volume: 11 start-page: 2098 issue: 6 year: 2022 end-page: 2107 article-title: Construction of anl‐tyrosine chassis inpichia pastorisenhances aromatic secondary metabolite production from glycerol publication-title: ACS Synthetic Biology – volume: 10 issue: 6 year: 2020 article-title: Advances and prospects of phenolic acids production, biorefinery and analysis publication-title: Biomolecules – volume: 58‐59 start-page: 22 year: 2014 end-page: 28 article-title: Bioproduction of 4‐vinylphenol from corn cob alkaline hydrolyzate in two‐phase extractive fermentation using free or immobilized recombinant expressing pad gene publication-title: Enzyme and Microbial Technology – volume: 90 start-page: 885 issue: 3 year: 2011 end-page: 893 article-title: Improved ‐hydroxybenzoate production by engineered S12 by using a mixed‐substrate feeding strategy publication-title: Applied Microbiology and Biotechnology – volume: 10 start-page: 4976 issue: 1 year: 2019 article-title: Rewiring carbon metabolism in yeast for high level production of aromatic chemicals publication-title: Nature Communications – volume: 7 year: 2014 article-title: Efficient yeast cell‐surface display of exo‐ and endo‐cellulase using the anchoring region and its original promoter publication-title: Biotechnology for Biofuels – volume: 20 start-page: 238 issue: 6 year: 2002 end-page: 242 article-title: Biocatalysis: Applications and potentials for the chemical industry publication-title: Trends in Biotechnology – volume: 43 start-page: 985 issue: 6 year: 1995 end-page: 988 article-title: Microbial production of specifically ring‐ C‐labelled 4‐hydroxybenzoic acid publication-title: Applied Microbiology and Biotechnology – volume: 22 start-page: 109 issue: 2 year: 2013 end-page: 115 article-title: A comparative review on biological activities of ‐hydroxy benzoic acid and its derivatives publication-title: International Journal of Pharmaceutical Sciences Review and Research – volume: 76 start-page: 376 issue: 4 year: 2001 end-page: 390 article-title: Microbial synthesis of ‐hydroxybenzoic acid from glucose publication-title: Biotechnology and Bioengineering – volume: 113 start-page: 2358 issue: 11 year: 2016 end-page: 2366 article-title: Enhanced cell‐surface display and secretory production of cellulolytic enzymes with Sed1 signal peptide publication-title: Biotechnology and Bioengineering – volume: 50 start-page: 85 year: 2018 end-page: 108 article-title: Recent advances in metabolic engineering of : New tools and their applications publication-title: Metabolic Engineering – volume: 13 start-page: 108 year: 2020 article-title: Engineering with surface‐display minicellulosomes for carboxymethyl cellulose hydrolysis and ethanol production publication-title: Biotechnology for Biofuels – volume: 57 start-page: 110 year: 2020 end-page: 117 article-title: Novel strategy for anchorage position control of GPI‐attached proteins in the yeast cell wall using different GPI‐anchoring domains publication-title: Metabolic Engineering – volume: 163 start-page: 184 issue: 2 year: 2013 end-page: 193 article-title: Production of aromatics in —A feasibility study publication-title: Journal of Biotechnology – volume: 114 start-page: 2319 issue: 10 year: 2017 end-page: 2327 article-title: Transcriptional engineering of the glyceraldehyde‐3‐phosphate dehydrogenase promoter for improved heterologous protein production in publication-title: Biotechnology and Bioengineering – volume: 10 start-page: 1895 issue: 8 year: 2021 end-page: 1903 article-title: Resveratrol production from hydrothermally pretreated eucalyptus wood using recombinant industrial strains publication-title: ACS Synthetic Biology – volume: 15 start-page: 2364 issue: 9 year: 2022 end-page: 2378 article-title: Avoiding entry into intracellular protein degradation pathways by signal mutations increases protein secretion in publication-title: Microbial Biotechnology – start-page: 81 year: 2018 end-page: 92 – volume: 84 issue: 6 year: 2018 article-title: Production of 4‐hydroxybenzoic acid by an aerobic growth‐arrested bioprocess using metabolically engineered publication-title: Applied and Environmental Microbiology – volume: 50 start-page: 72 year: 2018 end-page: 80 article-title: Advances in cellulosic conversion to fuels: Engineering yeasts for cellulosic bioethanol and biodiesel production publication-title: Current Opinion in Biotechnology – volume: 6 start-page: 83 issue: 1 year: 2016 article-title: Ethanol production from ‐acetyl‐ ‐glucosamine by strains publication-title: AMB Express – volume: 13 year: 2021 article-title: Resveratrol production from several types of saccharide sources by a recombinant strain publication-title: Metabolic Engineering Communications – volume: 4 year: 2016 article-title: Metabolic engineering of KT2440 for the production of ‐hydroxy benzoic acid publication-title: Frontiers in Bioengineering and Biotechnology – volume: 3 start-page: 956 issue: 6 year: 2010 end-page: 972 article-title: New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants publication-title: Molecular Plant – volume: 32 start-page: 1131 issue: 8 year: 2010 end-page: 1136 article-title: Surface display of active lipase in using Sed1 as an anchor protein publication-title: Biotechnology Letters – volume: 19 start-page: 218 issue: 1 year: 2020 article-title: Metabolic engineering of for high‐level production of gastrodin from glucose publication-title: Microbial Cell Factories – volume: 235 start-page: 5867 issue: 9 year: 2020 end-page: 5881 article-title: : A highly successful expression system for optimal synthesis of heterologous proteins publication-title: Journal of Cellular Physiology – volume: 132 start-page: 49 issue: 1 year: 2007 end-page: 56 article-title: Bioproduction of ‐hydroxybenzoate from renewable feedstock by solvent‐tolerant S12 publication-title: Journal of Biotechnology – volume: 12 start-page: 6085 issue: 1 year: 2021 article-title: De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories publication-title: Nature Communications – volume: 19 start-page: 207 issue: 1 year: 2020 article-title: Rational engineering of to create a chassis for the production of aromatic products publication-title: Microbial Cell Factories – volume: 9 start-page: 87 issue: 1 year: 2007 end-page: 94 article-title: Hydrolysis and fermentation of amorphous cellulose by recombinant publication-title: Metabolic Engineering – volume: 116 start-page: 10749 issue: 22 year: 2019 end-page: 10756 article-title: Microbial production of methyl anthranilate, a grape flavor compound publication-title: Proceedings of the National Academy of Sciences – volume: 48 start-page: 13000 issue: 22 year: 2020 end-page: 13012 article-title: Exchange of endogenous and heterogeneous yeast terminators in to tune mRNA stability and gene expression publication-title: Nucleic Acids Research – volume: 47 year: 2021 article-title: Recent advances in systems and synthetic biology approaches for developing novel cell‐factories in non‐conventional yeasts publication-title: Biotechnology Advances – volume: 105 start-page: 5895 issue: 14–15 year: 2021 end-page: 5904 article-title: Improving the functionality of surface‐engineered yeast cells by altering the cell wall morphology of the host strain publication-title: Applied Microbiology and Biotechnology – volume: 57 start-page: 583 issue: 4 year: 1957 end-page: 620 article-title: The Kolbe‐Schmitt reaction publication-title: Chemical Reviews – volume: 79 start-page: 5519 issue: 18 year: 2013 end-page: 5526 article-title: Screening for glycosylphosphatidylinositol‐modified cell wall proteins in and their recombinant expression on the cell surface publication-title: Applied and Environmental Microbiology – ident: e_1_2_10_40_1 doi: 10.1186/s12934-020-01476-0 – ident: e_1_2_10_22_1 doi: 10.1021/acssynbio.2c00047 – ident: e_1_2_10_25_1 doi: 10.1038/s41467-021-26361-1 – ident: e_1_2_10_16_1 doi: 10.1093/nar/gkaa1066 – ident: e_1_2_10_42_1 doi: 10.1128/AEM.00824-13 – ident: e_1_2_10_37_1 doi: 10.1093/mp/ssq048 – ident: e_1_2_10_6_1 doi: 10.1016/j.ymben.2006.08.005 – ident: e_1_2_10_11_1 doi: 10.1186/s13568-016-0267-z – ident: e_1_2_10_31_1 doi: 10.1007/BF00166913 – ident: e_1_2_10_35_1 doi: 10.1007/s10529-010-0270-4 – ident: e_1_2_10_23_1 doi: 10.1016/j.ymben.2018.04.011 – ident: e_1_2_10_24_1 doi: 10.1021/cr50016a001 – ident: e_1_2_10_18_1 doi: 10.1128/AEM.02587-17 – ident: e_1_2_10_41_1 doi: 10.3389/fbioe.2016.00090 – ident: e_1_2_10_38_1 doi: 10.3390/biom10060874 – ident: e_1_2_10_21_1 doi: 10.1016/j.jbiotec.2012.04.014 – ident: e_1_2_10_8_1 doi: 10.1021/nn101598v – ident: e_1_2_10_32_1 doi: 10.1016/j.biotechadv.2021.107695 – ident: e_1_2_10_4_1 doi: 10.1002/bit.10160 – ident: e_1_2_10_5_1 doi: 10.1021/acssynbio.1c00120 – ident: e_1_2_10_15_1 doi: 10.1111/1751-7915.14061 – ident: e_1_2_10_20_1 doi: 10.1016/j.mec.2021.e00188 – ident: e_1_2_10_17_1 doi: 10.1002/jcp.29583 – ident: e_1_2_10_28_1 doi: 10.1073/pnas.1903875116 – ident: e_1_2_10_3_1 doi: 10.3389/fbioe.2018.00032 – ident: e_1_2_10_14_1 doi: 10.1016/j.ymben.2019.11.004 – ident: e_1_2_10_2_1 doi: 10.1002/bit.26363 – ident: e_1_2_10_19_1 doi: 10.1016/j.copbio.2017.11.007 – ident: e_1_2_10_36_1 doi: 10.1016/s0167-7799(02)01935-2 – ident: e_1_2_10_13_1 doi: 10.1007/s00253-021-11440-6 – ident: e_1_2_10_34_1 doi: 10.1016/j.enzmictec.2014.02.005 – ident: e_1_2_10_39_1 doi: 10.1016/j.jbiotec.2007.08.031 – ident: e_1_2_10_10_1 doi: 10.1186/1754-6834-7-8 – ident: e_1_2_10_9_1 doi: 10.1002/bit.26008 – ident: e_1_2_10_26_1 doi: 10.1038/s41467-019-12961-5 – ident: e_1_2_10_12_1 doi: 10.1002/9783527803293.ch5 – volume: 22 start-page: 109 issue: 2 year: 2013 ident: e_1_2_10_29_1 article-title: A comparative review on biological activities of p‐hydroxy benzoic acid and its derivatives publication-title: International Journal of Pharmaceutical Sciences Review and Research – ident: e_1_2_10_27_1 doi: 10.1038/srep24550 – ident: e_1_2_10_30_1 doi: 10.1007/s00253-011-3089-6 – ident: e_1_2_10_33_1 doi: 10.1186/s12934-020-01461-7 – ident: e_1_2_10_7_1 doi: 10.1186/s13068-020-01749-1 |
SSID | ssib004836903 ssib000461943 ssib025269797 ssib022233878 ssj0007866 ssib003182589 |
Score | 2.4452925 |
Snippet | 4‐hydroxybenzoic acid (4‐HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in... 4-hydroxybenzoic acid (4-HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in... |
SourceID | proquest pubmed crossref wiley nii |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1097 |
SubjectTerms | 4‐hydroxybenzoic acid Aromatic compounds Cell surface Cellobiohydrolase Cellulase Cellulase - metabolism Cellulolytic enzymes Cellulose Cellulose - metabolism Fermentation Glucose Glucose - metabolism Glucosidase Glycosylphosphatidylinositol Phosphoric acid Pichia pastoris Pyruvic acid Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism simultaneous saccharification and fermentation Yeast yeast surface display |
Title | Direct production of 4‐hydroxybenzoic acid from cellulose using cellulase‐displaying Pichia pastoris |
URI | https://cir.nii.ac.jp/crid/1873398392369530880 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.28321 https://www.ncbi.nlm.nih.gov/pubmed/36575132 https://www.proquest.com/docview/2786500385 https://www.proquest.com/docview/2759002003 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSgg48NjyCLTIIIS4pN3Yzkuc2oqqcEAItVIPSNH4sTRiSVZk99Ce-An8Rn4JHjtJKSoSIocoUcaRH2PP2P78DcCLDBMjpcE4UzMbO4uHMRqt41RrUWg7K4zxKN_32eGxfHeSnqzB6-EsTOCHGBfcqGf48Zo6OKpu54I0VNVEvCr8IXLCapFD9PGCOiovwj4lzZhFWvKBVWjKd8aUl2zRtaaur3IzL3ut3uwc3IFPQ4YD2uTL9mqptvX5H1yO_1miu3C7d0fZbtCfe7Bmmwls7DZuKv71jL1kHiDqV94ncH1veLqxP4SJm8Ct3xgNN-A0DKFsEYhkXaOzdsbkz-8_Ts8MlUHZ5rytNUNdG0ZnWxhtHazmbWcZYfA_9-_OuLpEpu4Wc6STWOxDTahstkBPa9Ldh-ODN0f7h3EfzCHWKc-T2ChTlqrgUiepTlBqoxKDKIxUmZySYkyFFNZYhQrTmSDcK2LurlKV3JbiAaw3bWMfARMyFaowzrMrhMRSoOQJqlxLzLRSiBG8Gpq10j3TOQXcmFeBo5lXrqYrX9MRPB9FF4He4yqhLacb7ld0T4pciJLcSpG5LLpBehrB5qA1VT8CdBV3Cpj6fdcIno2fXdtQLWJj2xXJUMxWggdG8DBo25gL4XfEBHeF8Trz9-xVe2-P_MPjfxd9Aje589YCBGkT1pffVnbLeVdL9dR3o1_1iSEi |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIlQ48JPyE2hhQYC4uI1314594NAfqoSWCqFW6s3M_oRaBDsiiVB64hF4EF6Fl-BJ2FnbKUVF4tIDPli2vLbGs7M7szsz3wA8jTE0UhoMYjWwgdN4GKDROoi0Fom2g8QYH-W7H_cO5euj6GgBvje5MBU-xHzDjUaGn69pgNOG9PopaqjKCXlV8LAOqdy1sy9uwTZ-2d92vfuM851XB1u9oK4pEOiId8PAKJOmKuFSh5EOUWqjQoMojFSx7BB9HSGFNVahwmggKPwSseuOVKXcEvSSm_AvUwVxQurffncKVtVNKs8ordFFlPIGx6jD1-ekntF-l4o8P8-wPWsne0W3cwN-NCyq4ls-rk0nak2f_IEe-b_w8CZcry1utlENkVuwYIsWLG8UOCk_zdhz5mNgvXOhBVc2m6ulraYSXguu_QbauAzHlZZgowor18k1KwdM_vz67XhmiGnKFidlrhnq3DBK32HkHZkOy7FllGbwob539oN7yeTj0RAp2Yy9zSnwnI3QI7eMb8PhhfDlDiwWZWHvARMyEioxznhNhMRUoOQhqq6WGGulENvwopGjTNdg7lRTZJhVMNQ8cz2b-Z5tw5N501GFYHJeo1UnjO5TdA6TrhApWc4idiQ6PdRpw0ojplk9yY0z7iQ-8q7lNjyeP3Z9Q1zEwpZTakNlaSkCsg13K_GeUyG8009w9zNeSP9OXrbZP_AX9_-96SNY6h282cv2-vu7D-Aqd8ZpFXG1AouTz1O76ozJiXroxzCD9xct8L8ALSKBCA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIv4O_LT8BFpYEEVc3Ma7a8c-cGgbooaiqkKt1JuZ_Qm1CHZEEqH0xCPwHrwKT8GTsLO2U4qKxKUHfLDW8toaz87uzHpmvgF4HmNopDQYxGpgA6fxMECjdRBpLRJtB4kxPsp3L945lG-OoqMF-N7kwlT4EPMfbjQz_HpNE3xkBhunoKEqJ-BVwcM6onLXzr64_dr4Vb_rBneN897rg-2doC4pEOiId8LAKJOmKuFSh5EOUWqjQoMojFSxbBN5bSGFNVahwmggKPoSseOOVKXcEvKSW-8vy7idUp2I7rtTrKpOUjlGaYsuopQ3MEZtvjEn9Yzyu1Tk-Xl27Vkz2eu53i340XCoCm_5uD6dqHV98gd45H_Cwttws7a32WY1Qe7Agi2WYHmzwEn5acZeMB8B610LS3Blq2ld227q4C3Bjd8gG5fhuNIRbFQh5TqpZuWAyZ9fvx3PDPFM2eKkzDVDnRtGyTuMfCPTYTm2jJIMPtTXznpwD5l8PBoipZqx_ZzCztkIPW7L-C4cXghf7sFiURb2ATAhI6ES40zXREhMBUoeoupoibFWCrEFLxsxynQN5U4VRYZZBULNMzeymR_ZFjybdx1V-CXndVp1suheRecw6QiRkt0sYkei00LtFqw0UprVS9w4407gI-9YbsHT-W03NsRFLGw5pT5UlJbiH1twv5LuORXCu_wEdx_jZfTv5GVb_QPfePjvXZ_A1f1uL3vb39t9BNe5s0yrcKsVWJx8ntpVZ0lO1GM_gxm8v2h5_wUenX-3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+production+of+4-hydroxybenzoic+acid+from+cellulose+using+cellulase-displaying+Pichia+pastoris&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Inokuma%2C+Kentaro&rft.au=Miyamoto%2C+Shunya&rft.au=Morinaga%2C+Kohei&rft.au=Kobayashi%2C+Yuma&rft.date=2023-04-01&rft.eissn=1097-0290&rft.volume=120&rft.issue=4&rft.spage=1097&rft_id=info:doi/10.1002%2Fbit.28321&rft_id=info%3Apmid%2F36575132&rft.externalDocID=36575132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |