Direct production of 4‐hydroxybenzoic acid from cellulose using cellulase‐displaying Pichia pastoris

4‐hydroxybenzoic acid (4‐HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to d...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and Bioengineering Vol. 120; no. 4; pp. 1097 - 1107
Main Authors Inokuma, Kentaro, Miyamoto, Shunya, Morinaga, Kohei, Kobayashi, Yuma, Kumokita, Ryota, Bamba, Takahiro, Ito, Yoichiro, Kondo, Akihiko, Hasunuma, Tomohisa
Format Journal Article
LanguageEnglish
Published United States Wiley 01.04.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 4‐hydroxybenzoic acid (4‐HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4‐HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)‐anchoring system. β‐glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co‐displayed on the cell surface of P. pastoris using an appropriate GPI‐anchoring domain for each enzyme. The cell‐surface cellulase activity was further enhanced using P. pastoris SPI1 promoter‐ and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4‐HBA‐resistant chorismate pyruvate‐lyase (UbiC) from Providencia rustigianii in the cellulase‐displaying strain. This strain produced 975 mg/L of 4‐HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4‐HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase‐displaying yeast. A recombinant Pichia pastoris strain co‐displaying three cellulases and expressing chorismate pyruvate‐lyase was constructed for direct production of 4‐hydroxybenzoic acid (4‐HBA) from cellulose. This strain produced 975 mg/L of 4‐HBA from phosphoric acid swollen cellulose, with a yield of 11.6% after 96 h of batch fermentation without commercial cellulase addition.
AbstractList 4-hydroxybenzoic acid (4-HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4-HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)-anchoring system. β-glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co-displayed on the cell surface of P. pastoris using an appropriate GPI-anchoring domain for each enzyme. The cell-surface cellulase activity was further enhanced using P. pastoris SPI1 promoter- and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4-HBA-resistant chorismate pyruvate-lyase (UbiC) from Providencia rustigianii in the cellulase-displaying strain. This strain produced 975 mg/L of 4-HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4-HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase-displaying yeast.
4‐hydroxybenzoic acid (4‐HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4‐HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)‐anchoring system. β‐glucosidase (BGL) from Aspergillus aculeatus , endoglucanase (EG) from Trichoderma reesei , and cellobiohydrolase (CBH) from Talaromyces emersonii were co‐displayed on the cell surface of P. pastoris using an appropriate GPI‐anchoring domain for each enzyme. The cell‐surface cellulase activity was further enhanced using P. pastoris SPI1 promoter‐ and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4‐HBA‐resistant chorismate pyruvate‐lyase (UbiC) from Providencia rustigianii in the cellulase‐displaying strain. This strain produced 975 mg/L of 4‐HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4‐HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase‐displaying yeast.
4-hydroxybenzoic acid (4-HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4-HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)-anchoring system. β-glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co-displayed on the cell surface of P. pastoris using an appropriate GPI-anchoring domain for each enzyme. The cell-surface cellulase activity was further enhanced using P. pastoris SPI1 promoter- and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4-HBA-resistant chorismate pyruvate-lyase (UbiC) from Providencia rustigianii in the cellulase-displaying strain. This strain produced 975 mg/L of 4-HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4-HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase-displaying yeast.4-hydroxybenzoic acid (4-HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4-HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)-anchoring system. β-glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co-displayed on the cell surface of P. pastoris using an appropriate GPI-anchoring domain for each enzyme. The cell-surface cellulase activity was further enhanced using P. pastoris SPI1 promoter- and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4-HBA-resistant chorismate pyruvate-lyase (UbiC) from Providencia rustigianii in the cellulase-displaying strain. This strain produced 975 mg/L of 4-HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4-HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase-displaying yeast.
4‐hydroxybenzoic acid (4‐HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4‐HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)‐anchoring system. β‐glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co‐displayed on the cell surface of P. pastoris using an appropriate GPI‐anchoring domain for each enzyme. The cell‐surface cellulase activity was further enhanced using P. pastoris SPI1 promoter‐ and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4‐HBA‐resistant chorismate pyruvate‐lyase (UbiC) from Providencia rustigianii in the cellulase‐displaying strain. This strain produced 975 mg/L of 4‐HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4‐HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase‐displaying yeast. A recombinant Pichia pastoris strain co‐displaying three cellulases and expressing chorismate pyruvate‐lyase was constructed for direct production of 4‐hydroxybenzoic acid (4‐HBA) from cellulose. This strain produced 975 mg/L of 4‐HBA from phosphoric acid swollen cellulose, with a yield of 11.6% after 96 h of batch fermentation without commercial cellulase addition.
Author Shunya Miyamoto
Kohei Morinaga
Takahiro Bamba
Tomohisa Hasunuma
Akihiko Kondo
Ryota Kumokita
Kentaro Inokuma
Yuma Kobayashi
Yoichiro Ito
Author_xml – sequence: 1
  givenname: Kentaro
  surname: Inokuma
  fullname: Inokuma, Kentaro
  organization: Kobe University
– sequence: 2
  givenname: Shunya
  surname: Miyamoto
  fullname: Miyamoto, Shunya
  organization: Kobe University
– sequence: 3
  givenname: Kohei
  surname: Morinaga
  fullname: Morinaga, Kohei
  organization: Kobe University
– sequence: 4
  givenname: Yuma
  surname: Kobayashi
  fullname: Kobayashi, Yuma
  organization: Kobe University
– sequence: 5
  givenname: Ryota
  surname: Kumokita
  fullname: Kumokita, Ryota
  organization: Kobe University
– sequence: 6
  givenname: Takahiro
  surname: Bamba
  fullname: Bamba, Takahiro
  organization: Kobe University
– sequence: 7
  givenname: Yoichiro
  surname: Ito
  fullname: Ito, Yoichiro
  organization: Kobe University
– sequence: 8
  givenname: Akihiko
  orcidid: 0000-0003-1527-5288
  surname: Kondo
  fullname: Kondo, Akihiko
  organization: Biomass Engineering Program, RIKEN
– sequence: 9
  givenname: Tomohisa
  orcidid: 0000-0002-8382-2362
  surname: Hasunuma
  fullname: Hasunuma, Tomohisa
  email: hasunuma@port.kobe-u.ac.jp
  organization: Kobe University
BackLink https://cir.nii.ac.jp/crid/1873398392369530880$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/36575132$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1u1DAUhS1URIfSBS-AIsECFmmvfeOJvYTyV6kSLMra8l8Yo0w82IkgrHgEnpEnwWFmNhV4Yeta3zm6vscPyckQB0_IYwoXFIBdmjBeMIGM3iMrCrKtgUk4ISsAWNfIJTsl5zkHA9AIXEvAB-QU17zlFNmKbF6H5O1Y7VJ0kx1DHKrYVc3vn782s0vx-2z88CMGW2kbXNWluK2s7_upj9lXUw7D50Otsy8iF_Ku1_Ny_THYTdDVTucxppAfkfud7rM_P5xn5NPbN7dX7-ubD--ur17e1JazltbOOCmNYI2l3FLdWGeo0xpdY9YNWBQWsEHvvNFG8w4byVHrtixpJPMSz8jzvW950dfJ51FtQ15a1IOPU1as5bKMDQAL-vQO-iVOaSjdFUqseWEEL9STAzWZrXdql8JWp1kdZ1iAyz1gU8w5-U7ZMOpllGPSoVcU1BKUKkGpv0EVxYs7iqPpv9iD-7fQ-_n_oHp1fXtUPNsrhhBKK8tORYsoBUpWfgBHEALwD2GLrr0
CitedBy_id crossref_primary_10_1093_femsre_fuaf003
crossref_primary_10_1186_s13568_023_01590_3
crossref_primary_10_1038_s41598_024_69676_x
crossref_primary_10_1016_j_fbio_2025_106180
Cites_doi 10.1186/s12934-020-01476-0
10.1021/acssynbio.2c00047
10.1038/s41467-021-26361-1
10.1093/nar/gkaa1066
10.1128/AEM.00824-13
10.1093/mp/ssq048
10.1016/j.ymben.2006.08.005
10.1186/s13568-016-0267-z
10.1007/BF00166913
10.1007/s10529-010-0270-4
10.1016/j.ymben.2018.04.011
10.1021/cr50016a001
10.1128/AEM.02587-17
10.3389/fbioe.2016.00090
10.3390/biom10060874
10.1016/j.jbiotec.2012.04.014
10.1021/nn101598v
10.1016/j.biotechadv.2021.107695
10.1002/bit.10160
10.1021/acssynbio.1c00120
10.1111/1751-7915.14061
10.1016/j.mec.2021.e00188
10.1002/jcp.29583
10.1073/pnas.1903875116
10.3389/fbioe.2018.00032
10.1016/j.ymben.2019.11.004
10.1002/bit.26363
10.1016/j.copbio.2017.11.007
10.1016/s0167-7799(02)01935-2
10.1007/s00253-021-11440-6
10.1016/j.enzmictec.2014.02.005
10.1016/j.jbiotec.2007.08.031
10.1186/1754-6834-7-8
10.1002/bit.26008
10.1038/s41467-019-12961-5
10.1002/9783527803293.ch5
10.1038/srep24550
10.1007/s00253-011-3089-6
10.1186/s12934-020-01461-7
10.1186/s13068-020-01749-1
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
– notice: 2023 Wiley Periodicals LLC.
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/bit.28321
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 1107
ExternalDocumentID 36575132
10_1002_bit_28321
BIT28321
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: New Energy and Industrial Technology Development Organization
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYH
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
ZZTAW
~02
~IA
~KM
~WT
.GJ
.Y3
31~
3EH
AANHP
AASGY
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AEUQT
AFFNX
AFPWT
AI.
ASPBG
AVWKF
AZFZN
BLYAC
EJD
FEDTE
HF~
HVGLF
LH6
LW6
NDZJH
PALCI
RBB
RIWAO
RJQFR
RWI
SAMSI
VH1
WRC
WSB
Y6R
ZGI
ZXP
AAYXX
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c5271-dbd99b824c15c1a4cdb1daa3d4b640c38c0343edebaba5f34953aa77779b92e93
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Fri Jul 11 01:58:07 EDT 2025
Fri Jul 25 19:07:33 EDT 2025
Thu Apr 03 07:01:37 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Tue Jul 01 01:09:09 EDT 2025
Wed Jan 22 16:23:03 EST 2025
Thu Jun 26 23:07:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords simultaneous saccharification and fermentation
Pichia pastoris
4-hydroxybenzoic acid
yeast surface display
cellulase
Language English
License 2022 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5271-dbd99b824c15c1a4cdb1daa3d4b640c38c0343edebaba5f34953aa77779b92e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1527-5288
0000-0002-8382-2362
OpenAccessLink https://hdl.handle.net/20.500.14094/0100479390
PMID 36575132
PQID 2786500385
PQPubID 48814
PageCount 11
ParticipantIDs proquest_miscellaneous_2759002003
proquest_journals_2786500385
pubmed_primary_36575132
crossref_citationtrail_10_1002_bit_28321
crossref_primary_10_1002_bit_28321
wiley_primary_10_1002_bit_28321_BIT28321
nii_cinii_1873398392369530880
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Biotechnology and Bioengineering
PublicationTitleAlternate Biotechnol Bioeng
PublicationYear 2023
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2021; 47
2010; 32
2013; 22
2019; 10
2021; 105
2020; 13
2020; 57
2013; 163
2018; 84
2020; 10
2017; 114
1957; 57
2020; 19
2016; 4
2018; 6
2021; 13
2016; 6
2021; 10
2021; 12
2014; 58‐59
2002; 20
2013; 79
2011; 90
2007; 132
1995; 43
2016; 113
2007; 9
2019; 116
2018
2020; 48
2022; 15
2020; 235
2018; 50
2022; 11
2010; 3
2014; 7
2010; 4
2001; 76
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
Manuja R. (e_1_2_10_29_1) 2013; 22
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 6
  year: 2016
  article-title: Engineering of a novel cellulose‐adherent cellulolytic for cellulosic biofuel production
  publication-title: Scientific Reports
– volume: 6
  year: 2018
  article-title: Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds‐present and future strain construction strategies
  publication-title: Frontiers in Bioengineering and Biotechnology
– volume: 4
  start-page: 5498
  issue: 9
  year: 2010
  end-page: 5504
  article-title: Measuring cell wall thickness in living yeast cells using single molecular rulers
  publication-title: ACS Nano
– volume: 11
  start-page: 2098
  issue: 6
  year: 2022
  end-page: 2107
  article-title: Construction of anl‐tyrosine chassis inpichia pastorisenhances aromatic secondary metabolite production from glycerol
  publication-title: ACS Synthetic Biology
– volume: 10
  issue: 6
  year: 2020
  article-title: Advances and prospects of phenolic acids production, biorefinery and analysis
  publication-title: Biomolecules
– volume: 58‐59
  start-page: 22
  year: 2014
  end-page: 28
  article-title: Bioproduction of 4‐vinylphenol from corn cob alkaline hydrolyzate in two‐phase extractive fermentation using free or immobilized recombinant expressing pad gene
  publication-title: Enzyme and Microbial Technology
– volume: 90
  start-page: 885
  issue: 3
  year: 2011
  end-page: 893
  article-title: Improved ‐hydroxybenzoate production by engineered S12 by using a mixed‐substrate feeding strategy
  publication-title: Applied Microbiology and Biotechnology
– volume: 10
  start-page: 4976
  issue: 1
  year: 2019
  article-title: Rewiring carbon metabolism in yeast for high level production of aromatic chemicals
  publication-title: Nature Communications
– volume: 7
  year: 2014
  article-title: Efficient yeast cell‐surface display of exo‐ and endo‐cellulase using the anchoring region and its original promoter
  publication-title: Biotechnology for Biofuels
– volume: 20
  start-page: 238
  issue: 6
  year: 2002
  end-page: 242
  article-title: Biocatalysis: Applications and potentials for the chemical industry
  publication-title: Trends in Biotechnology
– volume: 43
  start-page: 985
  issue: 6
  year: 1995
  end-page: 988
  article-title: Microbial production of specifically ring‐ C‐labelled 4‐hydroxybenzoic acid
  publication-title: Applied Microbiology and Biotechnology
– volume: 22
  start-page: 109
  issue: 2
  year: 2013
  end-page: 115
  article-title: A comparative review on biological activities of ‐hydroxy benzoic acid and its derivatives
  publication-title: International Journal of Pharmaceutical Sciences Review and Research
– volume: 76
  start-page: 376
  issue: 4
  year: 2001
  end-page: 390
  article-title: Microbial synthesis of ‐hydroxybenzoic acid from glucose
  publication-title: Biotechnology and Bioengineering
– volume: 113
  start-page: 2358
  issue: 11
  year: 2016
  end-page: 2366
  article-title: Enhanced cell‐surface display and secretory production of cellulolytic enzymes with Sed1 signal peptide
  publication-title: Biotechnology and Bioengineering
– volume: 50
  start-page: 85
  year: 2018
  end-page: 108
  article-title: Recent advances in metabolic engineering of : New tools and their applications
  publication-title: Metabolic Engineering
– volume: 13
  start-page: 108
  year: 2020
  article-title: Engineering with surface‐display minicellulosomes for carboxymethyl cellulose hydrolysis and ethanol production
  publication-title: Biotechnology for Biofuels
– volume: 57
  start-page: 110
  year: 2020
  end-page: 117
  article-title: Novel strategy for anchorage position control of GPI‐attached proteins in the yeast cell wall using different GPI‐anchoring domains
  publication-title: Metabolic Engineering
– volume: 163
  start-page: 184
  issue: 2
  year: 2013
  end-page: 193
  article-title: Production of aromatics in —A feasibility study
  publication-title: Journal of Biotechnology
– volume: 114
  start-page: 2319
  issue: 10
  year: 2017
  end-page: 2327
  article-title: Transcriptional engineering of the glyceraldehyde‐3‐phosphate dehydrogenase promoter for improved heterologous protein production in
  publication-title: Biotechnology and Bioengineering
– volume: 10
  start-page: 1895
  issue: 8
  year: 2021
  end-page: 1903
  article-title: Resveratrol production from hydrothermally pretreated eucalyptus wood using recombinant industrial strains
  publication-title: ACS Synthetic Biology
– volume: 15
  start-page: 2364
  issue: 9
  year: 2022
  end-page: 2378
  article-title: Avoiding entry into intracellular protein degradation pathways by signal mutations increases protein secretion in
  publication-title: Microbial Biotechnology
– start-page: 81
  year: 2018
  end-page: 92
– volume: 84
  issue: 6
  year: 2018
  article-title: Production of 4‐hydroxybenzoic acid by an aerobic growth‐arrested bioprocess using metabolically engineered
  publication-title: Applied and Environmental Microbiology
– volume: 50
  start-page: 72
  year: 2018
  end-page: 80
  article-title: Advances in cellulosic conversion to fuels: Engineering yeasts for cellulosic bioethanol and biodiesel production
  publication-title: Current Opinion in Biotechnology
– volume: 6
  start-page: 83
  issue: 1
  year: 2016
  article-title: Ethanol production from ‐acetyl‐ ‐glucosamine by strains
  publication-title: AMB Express
– volume: 13
  year: 2021
  article-title: Resveratrol production from several types of saccharide sources by a recombinant strain
  publication-title: Metabolic Engineering Communications
– volume: 4
  year: 2016
  article-title: Metabolic engineering of KT2440 for the production of ‐hydroxy benzoic acid
  publication-title: Frontiers in Bioengineering and Biotechnology
– volume: 3
  start-page: 956
  issue: 6
  year: 2010
  end-page: 972
  article-title: New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants
  publication-title: Molecular Plant
– volume: 32
  start-page: 1131
  issue: 8
  year: 2010
  end-page: 1136
  article-title: Surface display of active lipase in using Sed1 as an anchor protein
  publication-title: Biotechnology Letters
– volume: 19
  start-page: 218
  issue: 1
  year: 2020
  article-title: Metabolic engineering of for high‐level production of gastrodin from glucose
  publication-title: Microbial Cell Factories
– volume: 235
  start-page: 5867
  issue: 9
  year: 2020
  end-page: 5881
  article-title: : A highly successful expression system for optimal synthesis of heterologous proteins
  publication-title: Journal of Cellular Physiology
– volume: 132
  start-page: 49
  issue: 1
  year: 2007
  end-page: 56
  article-title: Bioproduction of ‐hydroxybenzoate from renewable feedstock by solvent‐tolerant S12
  publication-title: Journal of Biotechnology
– volume: 12
  start-page: 6085
  issue: 1
  year: 2021
  article-title: De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories
  publication-title: Nature Communications
– volume: 19
  start-page: 207
  issue: 1
  year: 2020
  article-title: Rational engineering of to create a chassis for the production of aromatic products
  publication-title: Microbial Cell Factories
– volume: 9
  start-page: 87
  issue: 1
  year: 2007
  end-page: 94
  article-title: Hydrolysis and fermentation of amorphous cellulose by recombinant
  publication-title: Metabolic Engineering
– volume: 116
  start-page: 10749
  issue: 22
  year: 2019
  end-page: 10756
  article-title: Microbial production of methyl anthranilate, a grape flavor compound
  publication-title: Proceedings of the National Academy of Sciences
– volume: 48
  start-page: 13000
  issue: 22
  year: 2020
  end-page: 13012
  article-title: Exchange of endogenous and heterogeneous yeast terminators in to tune mRNA stability and gene expression
  publication-title: Nucleic Acids Research
– volume: 47
  year: 2021
  article-title: Recent advances in systems and synthetic biology approaches for developing novel cell‐factories in non‐conventional yeasts
  publication-title: Biotechnology Advances
– volume: 105
  start-page: 5895
  issue: 14–15
  year: 2021
  end-page: 5904
  article-title: Improving the functionality of surface‐engineered yeast cells by altering the cell wall morphology of the host strain
  publication-title: Applied Microbiology and Biotechnology
– volume: 57
  start-page: 583
  issue: 4
  year: 1957
  end-page: 620
  article-title: The Kolbe‐Schmitt reaction
  publication-title: Chemical Reviews
– volume: 79
  start-page: 5519
  issue: 18
  year: 2013
  end-page: 5526
  article-title: Screening for glycosylphosphatidylinositol‐modified cell wall proteins in and their recombinant expression on the cell surface
  publication-title: Applied and Environmental Microbiology
– ident: e_1_2_10_40_1
  doi: 10.1186/s12934-020-01476-0
– ident: e_1_2_10_22_1
  doi: 10.1021/acssynbio.2c00047
– ident: e_1_2_10_25_1
  doi: 10.1038/s41467-021-26361-1
– ident: e_1_2_10_16_1
  doi: 10.1093/nar/gkaa1066
– ident: e_1_2_10_42_1
  doi: 10.1128/AEM.00824-13
– ident: e_1_2_10_37_1
  doi: 10.1093/mp/ssq048
– ident: e_1_2_10_6_1
  doi: 10.1016/j.ymben.2006.08.005
– ident: e_1_2_10_11_1
  doi: 10.1186/s13568-016-0267-z
– ident: e_1_2_10_31_1
  doi: 10.1007/BF00166913
– ident: e_1_2_10_35_1
  doi: 10.1007/s10529-010-0270-4
– ident: e_1_2_10_23_1
  doi: 10.1016/j.ymben.2018.04.011
– ident: e_1_2_10_24_1
  doi: 10.1021/cr50016a001
– ident: e_1_2_10_18_1
  doi: 10.1128/AEM.02587-17
– ident: e_1_2_10_41_1
  doi: 10.3389/fbioe.2016.00090
– ident: e_1_2_10_38_1
  doi: 10.3390/biom10060874
– ident: e_1_2_10_21_1
  doi: 10.1016/j.jbiotec.2012.04.014
– ident: e_1_2_10_8_1
  doi: 10.1021/nn101598v
– ident: e_1_2_10_32_1
  doi: 10.1016/j.biotechadv.2021.107695
– ident: e_1_2_10_4_1
  doi: 10.1002/bit.10160
– ident: e_1_2_10_5_1
  doi: 10.1021/acssynbio.1c00120
– ident: e_1_2_10_15_1
  doi: 10.1111/1751-7915.14061
– ident: e_1_2_10_20_1
  doi: 10.1016/j.mec.2021.e00188
– ident: e_1_2_10_17_1
  doi: 10.1002/jcp.29583
– ident: e_1_2_10_28_1
  doi: 10.1073/pnas.1903875116
– ident: e_1_2_10_3_1
  doi: 10.3389/fbioe.2018.00032
– ident: e_1_2_10_14_1
  doi: 10.1016/j.ymben.2019.11.004
– ident: e_1_2_10_2_1
  doi: 10.1002/bit.26363
– ident: e_1_2_10_19_1
  doi: 10.1016/j.copbio.2017.11.007
– ident: e_1_2_10_36_1
  doi: 10.1016/s0167-7799(02)01935-2
– ident: e_1_2_10_13_1
  doi: 10.1007/s00253-021-11440-6
– ident: e_1_2_10_34_1
  doi: 10.1016/j.enzmictec.2014.02.005
– ident: e_1_2_10_39_1
  doi: 10.1016/j.jbiotec.2007.08.031
– ident: e_1_2_10_10_1
  doi: 10.1186/1754-6834-7-8
– ident: e_1_2_10_9_1
  doi: 10.1002/bit.26008
– ident: e_1_2_10_26_1
  doi: 10.1038/s41467-019-12961-5
– ident: e_1_2_10_12_1
  doi: 10.1002/9783527803293.ch5
– volume: 22
  start-page: 109
  issue: 2
  year: 2013
  ident: e_1_2_10_29_1
  article-title: A comparative review on biological activities of p‐hydroxy benzoic acid and its derivatives
  publication-title: International Journal of Pharmaceutical Sciences Review and Research
– ident: e_1_2_10_27_1
  doi: 10.1038/srep24550
– ident: e_1_2_10_30_1
  doi: 10.1007/s00253-011-3089-6
– ident: e_1_2_10_33_1
  doi: 10.1186/s12934-020-01461-7
– ident: e_1_2_10_7_1
  doi: 10.1186/s13068-020-01749-1
SSID ssib004836903
ssib000461943
ssib025269797
ssib022233878
ssj0007866
ssib003182589
Score 2.4452925
Snippet 4‐hydroxybenzoic acid (4‐HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in...
4-hydroxybenzoic acid (4-HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in...
SourceID proquest
pubmed
crossref
wiley
nii
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1097
SubjectTerms 4‐hydroxybenzoic acid
Aromatic compounds
Cell surface
Cellobiohydrolase
Cellulase
Cellulase - metabolism
Cellulolytic enzymes
Cellulose
Cellulose - metabolism
Fermentation
Glucose
Glucose - metabolism
Glucosidase
Glycosylphosphatidylinositol
Phosphoric acid
Pichia pastoris
Pyruvic acid
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
simultaneous saccharification and fermentation
Yeast
yeast surface display
Title Direct production of 4‐hydroxybenzoic acid from cellulose using cellulase‐displaying Pichia pastoris
URI https://cir.nii.ac.jp/crid/1873398392369530880
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.28321
https://www.ncbi.nlm.nih.gov/pubmed/36575132
https://www.proquest.com/docview/2786500385
https://www.proquest.com/docview/2759002003
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSgg48NjyCLTIIIS4pN3Yzkuc2oqqcEAItVIPSNH4sTRiSVZk99Ce-An8Rn4JHjtJKSoSIocoUcaRH2PP2P78DcCLDBMjpcE4UzMbO4uHMRqt41RrUWg7K4zxKN_32eGxfHeSnqzB6-EsTOCHGBfcqGf48Zo6OKpu54I0VNVEvCr8IXLCapFD9PGCOiovwj4lzZhFWvKBVWjKd8aUl2zRtaaur3IzL3ut3uwc3IFPQ4YD2uTL9mqptvX5H1yO_1miu3C7d0fZbtCfe7Bmmwls7DZuKv71jL1kHiDqV94ncH1veLqxP4SJm8Ct3xgNN-A0DKFsEYhkXaOzdsbkz-8_Ts8MlUHZ5rytNUNdG0ZnWxhtHazmbWcZYfA_9-_OuLpEpu4Wc6STWOxDTahstkBPa9Ldh-ODN0f7h3EfzCHWKc-T2ChTlqrgUiepTlBqoxKDKIxUmZySYkyFFNZYhQrTmSDcK2LurlKV3JbiAaw3bWMfARMyFaowzrMrhMRSoOQJqlxLzLRSiBG8Gpq10j3TOQXcmFeBo5lXrqYrX9MRPB9FF4He4yqhLacb7ld0T4pciJLcSpG5LLpBehrB5qA1VT8CdBV3Cpj6fdcIno2fXdtQLWJj2xXJUMxWggdG8DBo25gL4XfEBHeF8Trz9-xVe2-P_MPjfxd9Aje589YCBGkT1pffVnbLeVdL9dR3o1_1iSEi
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIlQ48JPyE2hhQYC4uI1314594NAfqoSWCqFW6s3M_oRaBDsiiVB64hF4EF6Fl-BJ2FnbKUVF4tIDPli2vLbGs7M7szsz3wA8jTE0UhoMYjWwgdN4GKDROoi0Fom2g8QYH-W7H_cO5euj6GgBvje5MBU-xHzDjUaGn69pgNOG9PopaqjKCXlV8LAOqdy1sy9uwTZ-2d92vfuM851XB1u9oK4pEOiId8PAKJOmKuFSh5EOUWqjQoMojFSx7BB9HSGFNVahwmggKPwSseuOVKXcEvSSm_AvUwVxQurffncKVtVNKs8ordFFlPIGx6jD1-ekntF-l4o8P8-wPWsne0W3cwN-NCyq4ls-rk0nak2f_IEe-b_w8CZcry1utlENkVuwYIsWLG8UOCk_zdhz5mNgvXOhBVc2m6ulraYSXguu_QbauAzHlZZgowor18k1KwdM_vz67XhmiGnKFidlrhnq3DBK32HkHZkOy7FllGbwob539oN7yeTj0RAp2Yy9zSnwnI3QI7eMb8PhhfDlDiwWZWHvARMyEioxznhNhMRUoOQhqq6WGGulENvwopGjTNdg7lRTZJhVMNQ8cz2b-Z5tw5N501GFYHJeo1UnjO5TdA6TrhApWc4idiQ6PdRpw0ojplk9yY0z7iQ-8q7lNjyeP3Z9Q1zEwpZTakNlaSkCsg13K_GeUyG8009w9zNeSP9OXrbZP_AX9_-96SNY6h282cv2-vu7D-Aqd8ZpFXG1AouTz1O76ozJiXroxzCD9xct8L8ALSKBCA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIv4O_LT8BFpYEEVc3Ma7a8c-cGgbooaiqkKt1JuZ_Qm1CHZEEqH0xCPwHrwKT8GTsLO2U4qKxKUHfLDW8toaz87uzHpmvgF4HmNopDQYxGpgA6fxMECjdRBpLRJtB4kxPsp3L945lG-OoqMF-N7kwlT4EPMfbjQz_HpNE3xkBhunoKEqJ-BVwcM6onLXzr64_dr4Vb_rBneN897rg-2doC4pEOiId8LAKJOmKuFSh5EOUWqjQoMojFSxbBN5bSGFNVahwmggKPoSseOOVKXcEvKSW-8vy7idUp2I7rtTrKpOUjlGaYsuopQ3MEZtvjEn9Yzyu1Tk-Xl27Vkz2eu53i340XCoCm_5uD6dqHV98gd45H_Cwttws7a32WY1Qe7Agi2WYHmzwEn5acZeMB8B610LS3Blq2ld227q4C3Bjd8gG5fhuNIRbFQh5TqpZuWAyZ9fvx3PDPFM2eKkzDVDnRtGyTuMfCPTYTm2jJIMPtTXznpwD5l8PBoipZqx_ZzCztkIPW7L-C4cXghf7sFiURb2ATAhI6ES40zXREhMBUoeoupoibFWCrEFLxsxynQN5U4VRYZZBULNMzeymR_ZFjybdx1V-CXndVp1suheRecw6QiRkt0sYkei00LtFqw0UprVS9w4407gI-9YbsHT-W03NsRFLGw5pT5UlJbiH1twv5LuORXCu_wEdx_jZfTv5GVb_QPfePjvXZ_A1f1uL3vb39t9BNe5s0yrcKsVWJx8ntpVZ0lO1GM_gxm8v2h5_wUenX-3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+production+of+4-hydroxybenzoic+acid+from+cellulose+using+cellulase-displaying+Pichia+pastoris&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Inokuma%2C+Kentaro&rft.au=Miyamoto%2C+Shunya&rft.au=Morinaga%2C+Kohei&rft.au=Kobayashi%2C+Yuma&rft.date=2023-04-01&rft.eissn=1097-0290&rft.volume=120&rft.issue=4&rft.spage=1097&rft_id=info:doi/10.1002%2Fbit.28321&rft_id=info%3Apmid%2F36575132&rft.externalDocID=36575132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon