Single Mutations in the Transmembrane Domains of Maize Plasma Membrane Aquaporins Affect the Activity of Monomers within a Heterotetramer
Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes ecross biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) su...
Saved in:
Published in | Molecular plant Vol. 9; no. 7; pp. 986 - 1003 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
06.07.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-2052 1752-9867 1752-9867 |
DOI | 10.1016/j.molp.2016.04.006 |
Cover
Loading…
Abstract | Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes ecross biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interac- tion were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1 ;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity. |
---|---|
AbstractList | Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes ecross biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interac- tion were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1 ;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity. Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interaction were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity. Maize plasma membrane aquaporins PIP1;2 and PIP2;5 physically interact as homo- and heterodimers within heterotetramers to modulate their subcellular localization and their water- channel activity. Single-residue substitutions of amino acid located in the transmembrane domains at the interfaces between monomers were shown to either inactivate PIP2;5 or activated PIP1;2 without affecting their interaction. Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interaction were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity. Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interaction were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity.Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interaction were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity. Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interaction were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity. |
Author | Marie C. Berny Dimitri Gilis Marianne Rooman Francois Chaumont |
AuthorAffiliation | Institut des Sciences de la Vie, University catholique de Louvain, 1348 Louvain-la-Neuve, Belgium Bioinformatique genomique et structurale, Universite Libre de Bruxelles, 1050 Brussels, Belgium |
Author_xml | – sequence: 1 givenname: Marie C. surname: Berny fullname: Berny, Marie C. organization: Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium – sequence: 2 givenname: Dimitri surname: Gilis fullname: Gilis, Dimitri organization: Bioinformatique génomique et structurale, Université Libre de Bruxelles, 1050 Brussels, Belgium – sequence: 3 givenname: Marianne surname: Rooman fullname: Rooman, Marianne organization: Bioinformatique génomique et structurale, Université Libre de Bruxelles, 1050 Brussels, Belgium – sequence: 4 givenname: François surname: Chaumont fullname: Chaumont, François email: francois.chaumont@uclouvain.be organization: Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27109604$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9u1DAQxi1URP_AC3BAFicuCbaT2I7EZdUCReoKJMrZcpxJ16s43rWdovIGvDXe7i4HDuU0I83vm9HMN-foZPITIPSakpISyt-vS-fHTclyXpK6JIQ_Q2dUNKxoJRcnOeeiLhhp2Ck6j3GdASJ59QKdMkFJy0l9hn5_t9PdCHg5J52snyK2E04rwLdBT9GB63IEfOWdtrnoB7zU9hfgb6OOTuPlEVhsZ73xYccshgFMemyyMMne2_TwqPOTdxAi_mnTKg_R-BoSBJ8gBZ0LL9HzQY8RXh3iBfrx6ePt5XVx8_Xzl8vFTWEaxlMBxpB-aEHzWgyNyRuxZtBABKEtGyoheWfqFmTVd9IASNrLqjN93xoOhvW8ukDv9n03wW9niEk5Gw2MY17Dz1ExQkhV06qh_0WpJExUUhKR0TcHdO4c9GoTrNPhQR0vnQG5B0zwMQYYlLH7k-f17agoUTtT1VrtTFU7UxWpVfYsS9k_0mP3J0Uf9iLIt7y3EFQ0FiYDvQ3ZHtV7-7T87WHmyk932_wkf4dy3rZMNKKp_gBDoMjM |
CitedBy_id | crossref_primary_10_1016_j_cj_2023_04_010 crossref_primary_10_1093_pcp_pcaa142 crossref_primary_10_1146_annurev_arplant_081720_013608 crossref_primary_10_7554_eLife_70095 crossref_primary_10_1007_s11103_021_01164_6 crossref_primary_10_3389_fpls_2019_01671 crossref_primary_10_1002_smll_202202056 crossref_primary_10_1016_j_envexpbot_2021_104605 crossref_primary_10_3390_ijms18112255 crossref_primary_10_1007_s12551_017_0313_3 crossref_primary_10_1007_s12551_023_01095_0 crossref_primary_10_1016_j_plantsci_2017_07_021 crossref_primary_10_1111_pce_12844 crossref_primary_10_1016_j_envexpbot_2022_104908 crossref_primary_10_1042_BST20241630 crossref_primary_10_3390_ijms21134743 crossref_primary_10_1186_s12870_020_02412_5 crossref_primary_10_3390_cells7110209 crossref_primary_10_3390_ijpb16010028 crossref_primary_10_1093_pcp_pcaa005 crossref_primary_10_1155_2020_2895795 crossref_primary_10_3390_plants10030524 crossref_primary_10_1111_febs_16134 crossref_primary_10_1186_s12870_022_03962_6 crossref_primary_10_1093_jxb_erae500 crossref_primary_10_1038_s41598_018_30257_4 crossref_primary_10_1038_s41598_024_72828_8 crossref_primary_10_3389_fpls_2023_1204889 crossref_primary_10_3389_fpls_2018_00382 crossref_primary_10_1002_advs_202310159 crossref_primary_10_3389_fpls_2022_1012578 crossref_primary_10_1016_j_jmgm_2022_108310 crossref_primary_10_1111_ppl_13324 crossref_primary_10_3390_ijms19020521 crossref_primary_10_1111_pce_14763 crossref_primary_10_1111_febs_14922 crossref_primary_10_1038_s41438_018_0019_0 crossref_primary_10_1111_febs_14701 crossref_primary_10_1093_plphys_kiad567 crossref_primary_10_3389_fpls_2020_00458 crossref_primary_10_1016_j_envexpbot_2022_104981 crossref_primary_10_3389_fpls_2022_831916 crossref_primary_10_3390_biom11020338 |
Cites_doi | 10.1074/jbc.273.51.33949 10.1046/j.0016-8025.2003.01130.x 10.1042/BJ20111704 10.1093/bioinformatics/btm076 10.1074/jbc.M307424200 10.1104/pp.122.4.1025 10.1073/pnas.0701180104 10.1093/pcp/pcm083 10.1046/j.1365-313x.2000.00874.x 10.1016/j.plaphy.2011.06.002 10.1016/S0959-440X(00)00217-7 10.1093/nar/22.22.4673 10.1016/j.febslet.2015.10.018 10.1126/science.1068539 10.1104/pp.125.3.1206 10.1002/prot.20433 10.1038/nsmb1275 10.1111/j.1365-313X.2007.03324.x 10.1093/nar/gkh340 10.1016/j.tplants.2012.12.003 10.1093/pcp/pch120 10.1093/pcp/pcr027 10.1093/nar/gkm423 10.1038/nature04316 10.1046/j.1365-313X.1994.6020187.x 10.1111/febs.12653 10.1007/s11103-010-9658-8 10.1073/pnas.0507225103 10.1021/bi2004476 10.1074/jbc.M201179200 10.1016/S0021-9258(18)38133-X 10.1007/s11103-006-9022-1 10.1038/35036519 10.1152/ajpcell.00129.2013 10.1104/pp.114.240945 10.1371/journal.pone.0057993 10.1105/tpc.017194 10.1042/BJ20060569 10.1016/S0021-9258(17)34076-0 10.1110/ps.0217002 10.1016/S0021-9258(17)46181-3 10.1093/pcp/pci172 10.1110/ps.062416606 10.1104/pp.108.128645 10.1073/pnas.0801466105 10.1104/pp.118.1.315 10.1038/nature02503 10.1105/tpc.112.101758 10.4161/psb.24937 10.1006/jmbi.1993.1626 10.1002/yea.1908 10.1111/j.1365-313X.2011.04496.x 10.1111/j.1399-3054.2007.01046.x 10.1007/s11103-014-0232-7 10.1093/pcp/pcn054 10.1016/j.plaphy.2012.11.018 10.1002/prot.21373 10.1074/jbc.M110.101790 10.1042/bj3520183 10.1016/j.febslet.2005.06.082 10.1006/jmbi.2000.4042 10.1021/bi990941s 10.1093/pcp/pcn112 10.1152/ajpcell.00561.2003 10.1093/pcp/pcs154 10.1007/s11103-013-0084-6 10.1016/j.bpc.2012.09.004 10.1186/1472-6807-7-27 10.1126/science.256.5055.385 10.1016/j.abb.2014.07.031 10.1093/nar/gkl635 10.1093/pcp/pcu203 10.1093/jxb/erq210 10.1107/S0907444904026460 10.1074/jbc.M110.115881 10.1021/bi201266m 10.1007/s11103-008-9373-x 10.1038/nature01853 10.1093/emboj/18.9.2394 10.1006/jmbi.1994.1334 10.1073/pnas.1316537111 10.1111/j.1365-313X.2011.04617.x |
ContentType | Journal Article |
Copyright | 2016 The Author Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 The Author – notice: Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved. |
DBID | 2RA 92L CQIGP W94 WU4 ~WA 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molp.2016.04.006 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
DocumentTitleAlternate | Single Mutations in the Transmembrane Domains of Maize Plasma Membrane Aquaporins Affect the Activity of Monomers within a Heterotetramer |
EISSN | 1752-9867 |
EndPage | 1003 |
ExternalDocumentID | 27109604 10_1016_j_molp_2016_04_006 S1674205216300284 669927575 |
Genre | Journal Article |
GroupedDBID | --- --M .2P .I3 0R~ 123 1RT 2RA 2WC 4.4 457 53G 6I. 7-5 70D 8P~ 92L AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAIYJ AAKOC AALRI AAOAW AATLK AAVLN AAXUO ABFNM ABGRD ABJNI ABMAC ABNKS ABVKL ABXDB ABYKQ ABZBJ ACDAQ ACGFS ACPRK ACRLP ADBBV ADEYI ADEZE ADFTL ADOCK ADZTZ AEBSH AEGPL AEKER AENEX AEXQZ AFKWA AFRAH AFTJW AFXIZ AGHFR AGKEF AGUBO AHMBA AHXPO AIEXJ AIJHB AIKHN AITUG AJBFU AJOXV AKHUL ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CKLRP CQIGP CS3 CW9 CZ4 DU5 E3Z EBS EDH EE~ EFJIC EFLBG EJD ESX F5P F9B FDB FIRID FYGXN GBLVA H5~ HW0 HZ~ IOX IXB KOM M-Z M41 M49 N9A NCXOZ NU- O0~ O9- OAUVE OK1 OVD P2P PQQKQ Q1. RCE RD5 ROL RW1 RXO SPCBC SSA SSZ T5K TEORI TR2 W8F W94 WU4 X7H ~91 ~G- ~WA AAHBH AAMRU AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI ADVLN AEIPS AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION H13 SSH TGP 0SF CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c526t-ecc0df9ea647f5c60825fae070192f3786bc49e83db8cee81d83bcdd9c6ec2d63 |
IEDL.DBID | IXB |
ISSN | 1674-2052 1752-9867 |
IngestDate | Thu Sep 04 17:14:29 EDT 2025 Fri Sep 05 03:34:00 EDT 2025 Wed Feb 19 02:44:18 EST 2025 Tue Jul 01 01:40:46 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Fri Feb 23 02:27:16 EST 2024 Wed Feb 14 10:15:16 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | mutation heterotetramer oligomerization water-channel activity aquaporin |
Language | English |
License | This article is made available under the Elsevier license. https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c526t-ecc0df9ea647f5c60825fae070192f3786bc49e83db8cee81d83bcdd9c6ec2d63 |
Notes | aquaporin, heterotetramer, mutation, oligomerization, water-channel activity 31-2013/Q Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes ecross biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interac- tion were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1 ;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1674205216300284 |
PMID | 27109604 |
PQID | 1802738807 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2000341351 proquest_miscellaneous_1802738807 pubmed_primary_27109604 crossref_citationtrail_10_1016_j_molp_2016_04_006 crossref_primary_10_1016_j_molp_2016_04_006 elsevier_sciencedirect_doi_10_1016_j_molp_2016_04_006 chongqing_primary_669927575 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-06 |
PublicationDateYYYYMMDD | 2016-07-06 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Molecular plant |
PublicationTitleAlternate | Molecular Plant |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Marin-Olivier, Chevalier, Fobis-Loisy, Dumas, Gaude (bib48) 2000; 24 McDonald, Thornton (bib49) 1994; 238 Yaneff, Vitali, Amodeo (bib78) 2015; 589 Heinen, Bienert, Cohen, Chevalier, Uehlein, Hachez, Kaldenhoff, Le Thiec, Chaumont (bib30) 2014; 86 Mut, Bustamante, Martinez, Alleva, Sutka, Civello, Amodeo (bib51) 2008; 132 Horie, Kaneko, Sugimoto, Sasano, Panda, Shibasaka, Katsuhara (bib32) 2011; 52 Preston, Carroll, Guggino, Agre (bib58) 1992; 256 Zelazny, Borst, Muylaert, Batoko, Hemminga, Chaumont (bib80) 2007; 104 Almasalmeh, Krenc, Wu, Beitz (bib2) 2013; 281 Chen, Yin, Wang, Tian, Yang, Liu, Yu, Ma, Gao (bib17) 2013; 83 Chevalier, Bienert, Chaumont (bib19) 2014; 166 Veerappan, Cymer, Klein, Schneider (bib75) 2011; 50 Bansal, Sankararamakrishnan (bib4) 2007; 7 Sali, Blundell (bib61) 1993; 234 Lawrence, Novak, Xu, Cooke (bib43) 2013; 8 Qin, Boron (bib59) 2013; 305 Beese-Sims, Lee, Levin (bib6) 2011; 28 Shen, Sali (bib63) 2006; 15 Li, Choi, Wallace, Baudry, Roberts (bib44) 2011; 50 Jeanguenin, Alcon, Duby, Boeglin, Cherel, Gaillard, Zimmermann, Sentenac, Very (bib36) 2011; 67 Lagree, Froger, Deschamps, Pellerin, Delamarche, Bonnec, Gouranton, Thomas, Hubert (bib42) 1998; 273 Liu, Fukumoto, Matsumoto, Gena, Frascaria, Kaneko, Katsuhara, Zhong, Sun, Zhu (bib45) 2013; 63 Barone, Mu, Shih, Kashlan, Wasserman (bib5) 1998; 118 Kammerloher, Fischer, Piechottka, Schaffner (bib38) 1994; 6 Yaneff, Sigaut, Marquez, Alleva, Pietrasanta, Amodeo (bib77) 2014; 111 Notredame, Higgins, Heringa (bib53) 2000; 302 Chevalier, Chaumont (bib18) 2015; 56 Hachez, Moshelion, Zelazny, Cavez, Chaumont (bib26) 2006; 62 Santoni, Verdoucq, Sommerer, Vinh, Pflieger, Maurel (bib62) 2006; 400 Horsefield, Nordén, Fellert, Backmark, Törnroth-Horsefield, Terwisscha van Scheltinga, Kvassman, Kjellbom, Johanson, Neutze (bib33) 2008; 105 Jozefkowicz, Rosi, Sigaut, Soto, Pietrasanta, Amodeo, Alleva (bib37) 2013; 8 Van Wilder, Miecielica, Degand, Derua, Waelkens, Chaumont (bib73) 2008; 49 Edgar (bib23) 2004; 32 Hachez, Besserer, Chevalier, Chaumont (bib28) 2013; 18 Hu, Yuan, Wang, Cai, Deng, Wang, Zhou, Chen, Chen, Huang (bib34) 2012; 53 Vandeleur, Mayo, Shelden, Gilliham, Kaiser, Tyerman (bib74) 2009; 149 Gonen, Sliz, Kistler, Cheng, Walz (bib25) 2004; 429 Tournaire-Roux, Sutka, Javot, Gout, Gerbeau, Luu, Bligny, Maurel (bib71) 2003; 425 Beitz, Wu, Holm, Schultz, Zeuthen (bib7) 2006; 103 Duchesne, Pellerin, Delamarche, Deschamps, Lagree, Froger, Bonnec, Thomas, Hubert (bib22) 2002; 277 Ludewig, Wilken, Wu, Jost, Obrdlik, El Bakkoury, Marini, Andre, Hamacher, Boles (bib46) 2003; 278 Mahdieh, Mostajeran, Horie, Katsuhara (bib47) 2008; 49 Ayadi, Cavez, Miled, Chaumont, Masmoudi (bib3) 2011; 49 Hachez, Heinen, Draye, Chaumont (bib27) 2008; 68 Sakurai, Ishikawa, Yamaguchi, Uemura, Maeshima (bib60) 2005; 46 Zhou, Zhou (bib83) 2002; 11 Bellati, Alleva, Soto, Vitali, Jozefkowicz, Amodeo (bib8) 2010; 74 Bordner, Abagyan (bib12) 2005; 60 Suga, Maeshima (bib66) 2004; 45 Thompson, Higgins, Gibson (bib68) 1994; 22 Buck, Eledge, Skach (bib13) 2004; 287 Murata, Mitsuoka, Hirai, Walz, Agre, Heymann, Engel, Fujiyoshi (bib50) 2000; 407 Temmei, Uchida, Hoshino, Kanzawa, Kuwahara, Sasaki, Tsuchiya (bib67) 2005; 579 Bienert, Cavez, Besserer, Berny, Gilis, Rooman, Chaumont (bib11) 2012; 445 Nour-Eldin, Hansen, Norholm, Jensen, Halkier (bib54) 2006; 34 Ubarretxena-Belandia, Engelman (bib72) 2001; 11 Besserer, Burnotte, Bienert, Chevalier, Errachid, Grefen, Blatt, Chaumont (bib9) 2012; 24 Pierce, Weng (bib57) 2007; 67 Fetter, Van Wilder, Moshelion, Chaumont (bib24) 2004; 16 Krissinel, Henrick (bib41) 2004; 60 Chaumont, Barrieu, Wojcik, Chrispeels, Jung (bib16) 2001; 125 Smith, Agre (bib65) 1991; 266 Zacharias, Violin, Newton, Tsien (bib79) 2002; 296 Hong (bib31) 2014; 564 Buck, Wagner, Grund, Skach (bib14) 2007; 14 Chaumont, Barrieu, Jung, Chrispeels (bib15) 2000; 122 Janin, Chothia (bib35) 1990; 265 Kamsteeg, Wormhoudt, Rijss, van Os, Deen (bib39) 1999; 18 Wei, Alexandersson, Golldack, Miller, Kjellbom, Fricke (bib76) 2007; 48 Ding, Iwasaki, Kitagawa (bib20) 2004; 27 Neely, Christensen, Nielsen, Agre (bib52) 1999; 38 Duby, Hosy, Fizames, Alcon, Costa, Sentenac, Thibaud (bib21) 2008; 53 Papadopoulos, Agarwala (bib56) 2007; 23 Harvengt, Vlerick, Fuks, Wattiez, Ruysschaert, Homble (bib29) 2000; 352 Otto, Uehlein, Sdorra, Fischer, Ayaz, Belastegui-Macadam, Heckwolf, Lachnit, Pede, Priem (bib55) 2010; 285 Alleva, Marquez, Villarreal, Mut, Bustamante, Bellati, Martinez, Civello, Amodeo (bib1) 2010; 61 Shi, Skach, Verkman (bib64) 1994; 269 Tina, Bhadra, Srinivasan (bib69) 2007; 35 Zhang, Lu, Li, Mao, Yu, Sun, Tang, Long, Su (bib82) 2010; 285 Klotz, Darnall, Langerman (bib40) 1975 Bienert, Bienert, Jahn, Boutry, Chaumont (bib10) 2011; 66 Törnroth-Horsefield, Wang, Hedfalk, Johanson, Karlsson, Tajkhorshid, Neutze, Kjellbom (bib70) 2006; 439 Zhang, Chen (bib81) 2013; 171 Murata (10.1016/j.molp.2016.04.006_bib50) 2000; 407 Santoni (10.1016/j.molp.2016.04.006_bib62) 2006; 400 Zhou (10.1016/j.molp.2016.04.006_bib83) 2002; 11 Edgar (10.1016/j.molp.2016.04.006_bib23) 2004; 32 Hachez (10.1016/j.molp.2016.04.006_bib27) 2008; 68 Heinen (10.1016/j.molp.2016.04.006_bib30) 2014; 86 Smith (10.1016/j.molp.2016.04.006_bib65) 1991; 266 Buck (10.1016/j.molp.2016.04.006_bib14) 2007; 14 Gonen (10.1016/j.molp.2016.04.006_bib25) 2004; 429 Tina (10.1016/j.molp.2016.04.006_bib69) 2007; 35 Nour-Eldin (10.1016/j.molp.2016.04.006_bib54) 2006; 34 Hachez (10.1016/j.molp.2016.04.006_bib28) 2013; 18 Alleva (10.1016/j.molp.2016.04.006_bib1) 2010; 61 Chevalier (10.1016/j.molp.2016.04.006_bib18) 2015; 56 Beese-Sims (10.1016/j.molp.2016.04.006_bib6) 2011; 28 Ding (10.1016/j.molp.2016.04.006_bib20) 2004; 27 Barone (10.1016/j.molp.2016.04.006_bib5) 1998; 118 Veerappan (10.1016/j.molp.2016.04.006_bib75) 2011; 50 Horsefield (10.1016/j.molp.2016.04.006_bib33) 2008; 105 Hong (10.1016/j.molp.2016.04.006_bib31) 2014; 564 Buck (10.1016/j.molp.2016.04.006_bib13) 2004; 287 Chaumont (10.1016/j.molp.2016.04.006_bib15) 2000; 122 Fetter (10.1016/j.molp.2016.04.006_bib24) 2004; 16 Marin-Olivier (10.1016/j.molp.2016.04.006_bib48) 2000; 24 Chevalier (10.1016/j.molp.2016.04.006_bib19) 2014; 166 Duchesne (10.1016/j.molp.2016.04.006_bib22) 2002; 277 Vandeleur (10.1016/j.molp.2016.04.006_bib74) 2009; 149 Chen (10.1016/j.molp.2016.04.006_bib17) 2013; 83 Mut (10.1016/j.molp.2016.04.006_bib51) 2008; 132 Törnroth-Horsefield (10.1016/j.molp.2016.04.006_bib70) 2006; 439 Lagree (10.1016/j.molp.2016.04.006_bib42) 1998; 273 Bienert (10.1016/j.molp.2016.04.006_bib11) 2012; 445 Lawrence (10.1016/j.molp.2016.04.006_bib43) 2013; 8 Pierce (10.1016/j.molp.2016.04.006_bib57) 2007; 67 Thompson (10.1016/j.molp.2016.04.006_bib68) 1994; 22 Krissinel (10.1016/j.molp.2016.04.006_bib41) 2004; 60 Papadopoulos (10.1016/j.molp.2016.04.006_bib56) 2007; 23 Bordner (10.1016/j.molp.2016.04.006_bib12) 2005; 60 Yaneff (10.1016/j.molp.2016.04.006_bib78) 2015; 589 Qin (10.1016/j.molp.2016.04.006_bib59) 2013; 305 Tournaire-Roux (10.1016/j.molp.2016.04.006_bib71) 2003; 425 Bienert (10.1016/j.molp.2016.04.006_bib10) 2011; 66 Chaumont (10.1016/j.molp.2016.04.006_bib16) 2001; 125 Duby (10.1016/j.molp.2016.04.006_bib21) 2008; 53 Ludewig (10.1016/j.molp.2016.04.006_bib46) 2003; 278 Temmei (10.1016/j.molp.2016.04.006_bib67) 2005; 579 Shen (10.1016/j.molp.2016.04.006_bib63) 2006; 15 Van Wilder (10.1016/j.molp.2016.04.006_bib73) 2008; 49 Almasalmeh (10.1016/j.molp.2016.04.006_bib2) 2013; 281 Li (10.1016/j.molp.2016.04.006_bib44) 2011; 50 Preston (10.1016/j.molp.2016.04.006_bib58) 1992; 256 Hachez (10.1016/j.molp.2016.04.006_bib26) 2006; 62 Otto (10.1016/j.molp.2016.04.006_bib55) 2010; 285 Kamsteeg (10.1016/j.molp.2016.04.006_bib39) 1999; 18 Suga (10.1016/j.molp.2016.04.006_bib66) 2004; 45 Jozefkowicz (10.1016/j.molp.2016.04.006_bib37) 2013; 8 Horie (10.1016/j.molp.2016.04.006_bib32) 2011; 52 Ubarretxena-Belandia (10.1016/j.molp.2016.04.006_bib72) 2001; 11 Zhang (10.1016/j.molp.2016.04.006_bib81) 2013; 171 Beitz (10.1016/j.molp.2016.04.006_bib7) 2006; 103 Bansal (10.1016/j.molp.2016.04.006_bib4) 2007; 7 Sali (10.1016/j.molp.2016.04.006_bib61) 1993; 234 Kammerloher (10.1016/j.molp.2016.04.006_bib38) 1994; 6 Liu (10.1016/j.molp.2016.04.006_bib45) 2013; 63 Shi (10.1016/j.molp.2016.04.006_bib64) 1994; 269 Harvengt (10.1016/j.molp.2016.04.006_bib29) 2000; 352 McDonald (10.1016/j.molp.2016.04.006_bib49) 1994; 238 Wei (10.1016/j.molp.2016.04.006_bib76) 2007; 48 Janin (10.1016/j.molp.2016.04.006_bib35) 1990; 265 Jeanguenin (10.1016/j.molp.2016.04.006_bib36) 2011; 67 Zelazny (10.1016/j.molp.2016.04.006_bib80) 2007; 104 Zhang (10.1016/j.molp.2016.04.006_bib82) 2010; 285 Klotz (10.1016/j.molp.2016.04.006_bib40) 1975 Mahdieh (10.1016/j.molp.2016.04.006_bib47) 2008; 49 Hu (10.1016/j.molp.2016.04.006_bib34) 2012; 53 Notredame (10.1016/j.molp.2016.04.006_bib53) 2000; 302 Besserer (10.1016/j.molp.2016.04.006_bib9) 2012; 24 Neely (10.1016/j.molp.2016.04.006_bib52) 1999; 38 Ayadi (10.1016/j.molp.2016.04.006_bib3) 2011; 49 Yaneff (10.1016/j.molp.2016.04.006_bib77) 2014; 111 Sakurai (10.1016/j.molp.2016.04.006_bib60) 2005; 46 Bellati (10.1016/j.molp.2016.04.006_bib8) 2010; 74 Zacharias (10.1016/j.molp.2016.04.006_bib79) 2002; 296 |
References_xml | – volume: 83 start-page: 219 year: 2013 end-page: 233 ident: bib17 article-title: Involvement of rose aquaporin RhPIP1;1 in ethylene-regulated petal expansion through interaction with RhPIP2;1 publication-title: Plant Mol. Biol. – volume: 171 start-page: 24 year: 2013 end-page: 30 ident: bib81 article-title: In silico study of aquaporin V: effects and affinity of the central pore-occluding lipid publication-title: Biophys. Chem. – volume: 22 start-page: 4673 year: 1994 end-page: 4680 ident: bib68 article-title: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice publication-title: Nucleic Acids Res. – volume: 74 start-page: 105 year: 2010 end-page: 118 ident: bib8 article-title: Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression publication-title: Plant Mol. Biol. – volume: 579 start-page: 4417 year: 2005 end-page: 4422 ident: bib67 article-title: Water channel activities of publication-title: FEBS Lett. – volume: 166 start-page: 125 year: 2014 end-page: 138 ident: bib19 article-title: A new LxxxA motif in the transmembrane Helix3 of maize aquaporins belonging to the plasma membrane intrinsic protein PIP2 group is required for their trafficking to the plasma membrane publication-title: Plant Physiol. – volume: 48 start-page: 1132 year: 2007 end-page: 1147 ident: bib76 article-title: HvPIP1;6, a barley ( publication-title: Plant Cell Physiol. – volume: 285 start-page: 41982 year: 2010 end-page: 41992 ident: bib82 article-title: Identification of a residue in helix 2 of rice plasma membrane intrinsic proteins that influences water permeability publication-title: J. Biol. Chem. – volume: 61 start-page: 3935 year: 2010 end-page: 3945 ident: bib1 article-title: Cloning, functional characterization, and co-expression studies of a novel aquaporin (FaPIP2;1) of strawberry fruit publication-title: J. Exp. Bot. – volume: 564 start-page: 297 year: 2014 end-page: 313 ident: bib31 article-title: Toward understanding driving forces in membrane protein folding publication-title: Arch. Biochem. Biophys. – volume: 32 start-page: 1792 year: 2004 end-page: 1797 ident: bib23 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res. – volume: 125 start-page: 1206 year: 2001 end-page: 1215 ident: bib16 article-title: Aquaporins constitute a large and highly divergent protein family in maize publication-title: Plant Physiol. – volume: 34 start-page: e122 year: 2006 ident: bib54 article-title: Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments publication-title: Nucleic Acids Res. – volume: 28 start-page: 815 year: 2011 end-page: 819 ident: bib6 article-title: Yeast Fps1 glycerol facilitator functions as a homotetramer publication-title: Yeast – volume: 8 year: 2013 ident: bib43 article-title: Herbivory of maize by southern corn rootworm induces expression of the major intrinsic protein publication-title: Plant Signal. Behav. – volume: 234 start-page: 779 year: 1993 end-page: 815 ident: bib61 article-title: Comparative protein modelling by satisfaction of spatial restraints publication-title: J. Mol. Biol. – volume: 266 start-page: 6407 year: 1991 end-page: 6415 ident: bib65 article-title: Erythrocyte publication-title: J. Biol. Chem. – volume: 24 start-page: 3463 year: 2012 end-page: 3481 ident: bib9 article-title: Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121 publication-title: Plant Cell – volume: 238 start-page: 777 year: 1994 end-page: 793 ident: bib49 article-title: Satisfying hydrogen bonding potential in proteins publication-title: J. Mol. Biol. – volume: 118 start-page: 315 year: 1998 end-page: 322 ident: bib5 article-title: Distinct biochemical and topological properties of the 31- and 27-kilodalton plasma membrane intrinsic protein subgroups from red beet publication-title: Plant Physiol. – volume: 265 start-page: 16027 year: 1990 end-page: 16030 ident: bib35 article-title: The structure of protein-protein recognition sites publication-title: J. Biol. Chem. – volume: 11 start-page: 2714 year: 2002 end-page: 2726 ident: bib83 article-title: Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction publication-title: Protein Sci. – volume: 305 start-page: C663 year: 2013 end-page: C672 ident: bib59 article-title: Mutation of a single amino acid converts the human water channel aquaporin 5 into an anion channel publication-title: Am. J. Physiol. Cell Physiol. – volume: 122 start-page: 1025 year: 2000 end-page: 1034 ident: bib15 article-title: Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity publication-title: Plant Physiol. – volume: 273 start-page: 33949 year: 1998 end-page: 33953 ident: bib42 article-title: Oligomerization state of water channels and glycerol facilitators. Involvement of loop E publication-title: J. Biol. Chem. – volume: 63 start-page: 151 year: 2013 end-page: 158 ident: bib45 article-title: Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination publication-title: Plant Physiol. Biochem. – start-page: 293 year: 1975 end-page: 411 ident: bib40 article-title: Quaternary structure of proteins publication-title: The Proteins – volume: 60 start-page: 2256 year: 2004 end-page: 2268 ident: bib41 article-title: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 132 start-page: 538 year: 2008 end-page: 551 ident: bib51 article-title: A fruit-specific plasma membrane aquaporin subtype PIP1;1 is regulated during strawberry ( publication-title: Physiol. Plant – volume: 105 start-page: 13327 year: 2008 end-page: 13332 ident: bib33 article-title: High-resolution x-ray structure of human aquaporin 5 publication-title: Proc. Natl. Acad. Sci. USA – volume: 62 start-page: 305 year: 2006 end-page: 323 ident: bib26 article-title: Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers publication-title: Plant Mol. Biol. – volume: 111 start-page: 231 year: 2014 end-page: 236 ident: bib77 article-title: Heteromerization of PIP aquaporins affects their intrinsic permeability publication-title: Proc. Natl. Acad. Sci. USA – volume: 66 start-page: 306 year: 2011 end-page: 317 ident: bib10 article-title: XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates publication-title: Plant J. – volume: 24 start-page: 231 year: 2000 end-page: 240 ident: bib48 article-title: Aquaporin PIP genes are not expressed in the stigma papillae in publication-title: Plant J. – volume: 15 start-page: 2507 year: 2006 end-page: 2524 ident: bib63 article-title: Statistical potential for assessment and prediction of protein structures publication-title: Protein Sci. – volume: 285 start-page: 31253 year: 2010 end-page: 31260 ident: bib55 article-title: Aquaporin tetramer composition modifies the function of tobacco aquaporins publication-title: J. Biol. Chem. – volume: 445 start-page: 101 year: 2012 end-page: 111 ident: bib11 article-title: A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers publication-title: Biochem. J. – volume: 53 start-page: 2127 year: 2012 end-page: 2141 ident: bib34 article-title: Overexpression of a wheat aquaporin gene, publication-title: Plant Cell Physiol. – volume: 278 start-page: 45603 year: 2003 end-page: 45610 ident: bib46 article-title: Homo- and hetero-oligomerization of ammonium transporter-1 NH4 uniporters publication-title: J. Biol. Chem. – volume: 425 start-page: 393 year: 2003 end-page: 397 ident: bib71 article-title: Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins publication-title: Nature – volume: 302 start-page: 205 year: 2000 end-page: 217 ident: bib53 article-title: T-Coffee: a novel method for fast and accurate multiple sequence alignment publication-title: J. Mol. Biol. – volume: 104 start-page: 12359 year: 2007 end-page: 12364 ident: bib80 article-title: FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 27 year: 2007 ident: bib4 article-title: Homology modeling of major intrinsic proteins in rice, maize and publication-title: BMC Struct. Biol. – volume: 287 start-page: C1292 year: 2004 end-page: C1299 ident: bib13 article-title: Evidence for stabilization of aquaporin-2 folding mutants by N-linked glycosylation in endoplasmic reticulum publication-title: Am. J. Physiol. Cell Physiol. – volume: 429 start-page: 193 year: 2004 end-page: 197 ident: bib25 article-title: Aquaporin-0 membrane junctions reveal the structure of a closed water pore publication-title: Nature – volume: 149 start-page: 445 year: 2009 end-page: 460 ident: bib74 article-title: The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine publication-title: Plant Physiol. – volume: 14 start-page: 762 year: 2007 end-page: 769 ident: bib14 article-title: A novel tripartite motif involved in aquaporin topogenesis, monomer folding and tetramerization publication-title: Nat. Struct. Mol. Biol. – volume: 46 start-page: 1568 year: 2005 end-page: 1577 ident: bib60 article-title: Identification of 33 rice aquaporin genes and analysis of their expression and function publication-title: Plant Cell Physiol. – volume: 68 start-page: 337 year: 2008 end-page: 353 ident: bib27 article-title: The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation publication-title: Plant Mol. Biol. – volume: 27 start-page: 177 year: 2004 end-page: 186 ident: bib20 article-title: Overexpression of a lily PIP1 gene in tobacco increased the osmotic water permeability of leaf cells publication-title: Plant Cell Environ. – volume: 53 start-page: 115 year: 2008 end-page: 123 ident: bib21 article-title: AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K publication-title: Plant J. – volume: 35 start-page: W473 year: 2007 end-page: W476 ident: bib69 article-title: PIC: protein interactions calculator publication-title: Nucleic Acids Res. – volume: 16 start-page: 215 year: 2004 end-page: 228 ident: bib24 article-title: Interactions between plasma membrane aquaporins modulate their water channel activity publication-title: Plant Cell – volume: 103 start-page: 269 year: 2006 end-page: 274 ident: bib7 article-title: Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: e57993 year: 2013 ident: bib37 article-title: Loop A is critical for the functional interaction of two publication-title: PLoS One – volume: 407 start-page: 599 year: 2000 end-page: 605 ident: bib50 article-title: Structural determinants of water permeation through aquaporin-1 publication-title: Nature – volume: 50 start-page: 6633 year: 2011 end-page: 6641 ident: bib44 article-title: NIP7;1: an anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore publication-title: Biochemistry – volume: 56 start-page: 819 year: 2015 end-page: 829 ident: bib18 article-title: Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals publication-title: Plant Cell Physiol. – volume: 352 start-page: 183 year: 2000 end-page: 190 ident: bib29 article-title: Lentil seed aquaporins form a hetero-oligomer which is phosphorylated by a Mg publication-title: Biochem. J. – volume: 67 start-page: 570 year: 2011 end-page: 582 ident: bib36 article-title: AtKC1 is a general modulator of publication-title: Plant J. – volume: 50 start-page: 10223 year: 2011 end-page: 10230 ident: bib75 article-title: The tetrameric alpha-helical membrane protein GlpF unfolds via a dimeric folding intermediate publication-title: Biochemistry – volume: 269 start-page: 10417 year: 1994 end-page: 10422 ident: bib64 article-title: Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers publication-title: J. Biol. Chem. – volume: 589 start-page: 3508 year: 2015 end-page: 3515 ident: bib78 article-title: PIP1 aquaporins: intrinsic water channels or PIP2 aquaporin modulators? publication-title: FEBS Lett. – volume: 52 start-page: 663 year: 2011 end-page: 675 ident: bib32 article-title: Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots publication-title: Plant Cell Physiol. – volume: 6 start-page: 187 year: 1994 end-page: 199 ident: bib38 article-title: Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system publication-title: Plant J. – volume: 296 start-page: 913 year: 2002 end-page: 916 ident: bib79 article-title: Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells publication-title: Science – volume: 67 start-page: 1078 year: 2007 end-page: 1086 ident: bib57 article-title: ZRANK: reranking protein docking predictions with an optimized energy function publication-title: Proteins – volume: 11 start-page: 370 year: 2001 end-page: 376 ident: bib72 article-title: Helical membrane proteins: diversity of functions in the context of simple architecture publication-title: Curr. Opin. Struct. Biol. – volume: 49 start-page: 801 year: 2008 end-page: 813 ident: bib47 article-title: Drought stress alters water relations and expression of publication-title: Plant Cell Physiol. – volume: 45 start-page: 823 year: 2004 end-page: 830 ident: bib66 article-title: Water channel activity of radish plasma membrane aquaporins heterologously expressed in yeast and their modification by site-directed mutagenesis publication-title: Plant Cell Physiol. – volume: 60 start-page: 353 year: 2005 end-page: 366 ident: bib12 article-title: Statistical analysis and prediction of protein-protein interfaces publication-title: Proteins – volume: 18 start-page: 2394 year: 1999 end-page: 2400 ident: bib39 article-title: An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus publication-title: EMBO J. – volume: 23 start-page: 1073 year: 2007 end-page: 1079 ident: bib56 article-title: COBALT: constraint-based alignment tool for multiple protein sequences publication-title: Bioinformatics – volume: 277 start-page: 20598 year: 2002 end-page: 20604 ident: bib22 article-title: Role of C-terminal domain and transmembrane helices 5 and 6 in function and quaternary structure of major intrinsic proteins: analysis of aquaporin/glycerol facilitator chimeric proteins publication-title: J. Biol. Chem. – volume: 256 start-page: 385 year: 1992 end-page: 387 ident: bib58 article-title: Appearance of water channels in publication-title: Science – volume: 38 start-page: 11156 year: 1999 end-page: 11163 ident: bib52 article-title: Heterotetrameric composition of aquaporin-4 water channels publication-title: Biochemistry – volume: 281 start-page: 647 year: 2013 end-page: 656 ident: bib2 article-title: Structural determinants of the hydrogen peroxide permeability of aquaporins publication-title: FEBS J. – volume: 49 start-page: 1364 year: 2008 end-page: 1377 ident: bib73 article-title: Maize plasma membrane aquaporins belonging to the PIP1 and PIP2 subgroups are publication-title: Plant Cell Physiol. – volume: 439 start-page: 688 year: 2006 end-page: 694 ident: bib70 article-title: Structural mechanism of plant aquaporin gating publication-title: Nature – volume: 400 start-page: 189 year: 2006 end-page: 197 ident: bib62 article-title: Methylation of aquaporins in plant plasma membrane publication-title: Biochem. J. – volume: 18 start-page: 344 year: 2013 end-page: 352 ident: bib28 article-title: Insights into plant plasma membrane aquaporin trafficking publication-title: Trends Plant Sci. – volume: 86 start-page: 335 year: 2014 end-page: 350 ident: bib30 article-title: Expression and characterization of plasma membrane aquaporins in stomatal complexes of publication-title: Plant Mol. Biol. – volume: 49 start-page: 1029 year: 2011 end-page: 1039 ident: bib3 article-title: Identification and characterization of two plasma membrane aquaporins in durum wheat ( publication-title: Plant Physiol. Biochem. – volume: 273 start-page: 33949 year: 1998 ident: 10.1016/j.molp.2016.04.006_bib42 article-title: Oligomerization state of water channels and glycerol facilitators. Involvement of loop E publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.51.33949 – volume: 27 start-page: 177 year: 2004 ident: 10.1016/j.molp.2016.04.006_bib20 article-title: Overexpression of a lily PIP1 gene in tobacco increased the osmotic water permeability of leaf cells publication-title: Plant Cell Environ. doi: 10.1046/j.0016-8025.2003.01130.x – volume: 445 start-page: 101 year: 2012 ident: 10.1016/j.molp.2016.04.006_bib11 article-title: A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers publication-title: Biochem. J. doi: 10.1042/BJ20111704 – volume: 23 start-page: 1073 year: 2007 ident: 10.1016/j.molp.2016.04.006_bib56 article-title: COBALT: constraint-based alignment tool for multiple protein sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm076 – start-page: 293 year: 1975 ident: 10.1016/j.molp.2016.04.006_bib40 article-title: Quaternary structure of proteins – volume: 278 start-page: 45603 year: 2003 ident: 10.1016/j.molp.2016.04.006_bib46 article-title: Homo- and hetero-oligomerization of ammonium transporter-1 NH4 uniporters publication-title: J. Biol. Chem. doi: 10.1074/jbc.M307424200 – volume: 122 start-page: 1025 year: 2000 ident: 10.1016/j.molp.2016.04.006_bib15 article-title: Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity publication-title: Plant Physiol. doi: 10.1104/pp.122.4.1025 – volume: 104 start-page: 12359 year: 2007 ident: 10.1016/j.molp.2016.04.006_bib80 article-title: FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0701180104 – volume: 48 start-page: 1132 year: 2007 ident: 10.1016/j.molp.2016.04.006_bib76 article-title: HvPIP1;6, a barley (Hordeum vulgare L.) plasma membrane water channel particularly expressed in growing compared with non-growing leaf tissues publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcm083 – volume: 24 start-page: 231 year: 2000 ident: 10.1016/j.molp.2016.04.006_bib48 article-title: Aquaporin PIP genes are not expressed in the stigma papillae in Brassica oleracea publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00874.x – volume: 49 start-page: 1029 year: 2011 ident: 10.1016/j.molp.2016.04.006_bib3 article-title: Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2011.06.002 – volume: 11 start-page: 370 year: 2001 ident: 10.1016/j.molp.2016.04.006_bib72 article-title: Helical membrane proteins: diversity of functions in the context of simple architecture publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(00)00217-7 – volume: 22 start-page: 4673 year: 1994 ident: 10.1016/j.molp.2016.04.006_bib68 article-title: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice publication-title: Nucleic Acids Res. doi: 10.1093/nar/22.22.4673 – volume: 589 start-page: 3508 year: 2015 ident: 10.1016/j.molp.2016.04.006_bib78 article-title: PIP1 aquaporins: intrinsic water channels or PIP2 aquaporin modulators? publication-title: FEBS Lett. doi: 10.1016/j.febslet.2015.10.018 – volume: 296 start-page: 913 year: 2002 ident: 10.1016/j.molp.2016.04.006_bib79 article-title: Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells publication-title: Science doi: 10.1126/science.1068539 – volume: 125 start-page: 1206 year: 2001 ident: 10.1016/j.molp.2016.04.006_bib16 article-title: Aquaporins constitute a large and highly divergent protein family in maize publication-title: Plant Physiol. doi: 10.1104/pp.125.3.1206 – volume: 60 start-page: 353 year: 2005 ident: 10.1016/j.molp.2016.04.006_bib12 article-title: Statistical analysis and prediction of protein-protein interfaces publication-title: Proteins doi: 10.1002/prot.20433 – volume: 14 start-page: 762 year: 2007 ident: 10.1016/j.molp.2016.04.006_bib14 article-title: A novel tripartite motif involved in aquaporin topogenesis, monomer folding and tetramerization publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1275 – volume: 53 start-page: 115 year: 2008 ident: 10.1016/j.molp.2016.04.006_bib21 article-title: AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03324.x – volume: 32 start-page: 1792 year: 2004 ident: 10.1016/j.molp.2016.04.006_bib23 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh340 – volume: 18 start-page: 344 year: 2013 ident: 10.1016/j.molp.2016.04.006_bib28 article-title: Insights into plant plasma membrane aquaporin trafficking publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.12.003 – volume: 45 start-page: 823 year: 2004 ident: 10.1016/j.molp.2016.04.006_bib66 article-title: Water channel activity of radish plasma membrane aquaporins heterologously expressed in yeast and their modification by site-directed mutagenesis publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pch120 – volume: 52 start-page: 663 year: 2011 ident: 10.1016/j.molp.2016.04.006_bib32 article-title: Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcr027 – volume: 35 start-page: W473 year: 2007 ident: 10.1016/j.molp.2016.04.006_bib69 article-title: PIC: protein interactions calculator publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm423 – volume: 439 start-page: 688 year: 2006 ident: 10.1016/j.molp.2016.04.006_bib70 article-title: Structural mechanism of plant aquaporin gating publication-title: Nature doi: 10.1038/nature04316 – volume: 6 start-page: 187 year: 1994 ident: 10.1016/j.molp.2016.04.006_bib38 article-title: Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system publication-title: Plant J. doi: 10.1046/j.1365-313X.1994.6020187.x – volume: 281 start-page: 647 year: 2013 ident: 10.1016/j.molp.2016.04.006_bib2 article-title: Structural determinants of the hydrogen peroxide permeability of aquaporins publication-title: FEBS J. doi: 10.1111/febs.12653 – volume: 74 start-page: 105 year: 2010 ident: 10.1016/j.molp.2016.04.006_bib8 article-title: Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression publication-title: Plant Mol. Biol. doi: 10.1007/s11103-010-9658-8 – volume: 103 start-page: 269 year: 2006 ident: 10.1016/j.molp.2016.04.006_bib7 article-title: Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0507225103 – volume: 50 start-page: 6633 year: 2011 ident: 10.1016/j.molp.2016.04.006_bib44 article-title: Arabidopsis thaliana NIP7;1: an anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore publication-title: Biochemistry doi: 10.1021/bi2004476 – volume: 277 start-page: 20598 year: 2002 ident: 10.1016/j.molp.2016.04.006_bib22 article-title: Role of C-terminal domain and transmembrane helices 5 and 6 in function and quaternary structure of major intrinsic proteins: analysis of aquaporin/glycerol facilitator chimeric proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M201179200 – volume: 266 start-page: 6407 year: 1991 ident: 10.1016/j.molp.2016.04.006_bib65 article-title: Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)38133-X – volume: 62 start-page: 305 year: 2006 ident: 10.1016/j.molp.2016.04.006_bib26 article-title: Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers publication-title: Plant Mol. Biol. doi: 10.1007/s11103-006-9022-1 – volume: 407 start-page: 599 year: 2000 ident: 10.1016/j.molp.2016.04.006_bib50 article-title: Structural determinants of water permeation through aquaporin-1 publication-title: Nature doi: 10.1038/35036519 – volume: 305 start-page: C663 year: 2013 ident: 10.1016/j.molp.2016.04.006_bib59 article-title: Mutation of a single amino acid converts the human water channel aquaporin 5 into an anion channel publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00129.2013 – volume: 166 start-page: 125 year: 2014 ident: 10.1016/j.molp.2016.04.006_bib19 article-title: A new LxxxA motif in the transmembrane Helix3 of maize aquaporins belonging to the plasma membrane intrinsic protein PIP2 group is required for their trafficking to the plasma membrane publication-title: Plant Physiol. doi: 10.1104/pp.114.240945 – volume: 8 start-page: e57993 year: 2013 ident: 10.1016/j.molp.2016.04.006_bib37 article-title: Loop A is critical for the functional interaction of two Beta vulgaris PIP aquaporins publication-title: PLoS One doi: 10.1371/journal.pone.0057993 – volume: 16 start-page: 215 year: 2004 ident: 10.1016/j.molp.2016.04.006_bib24 article-title: Interactions between plasma membrane aquaporins modulate their water channel activity publication-title: Plant Cell doi: 10.1105/tpc.017194 – volume: 400 start-page: 189 year: 2006 ident: 10.1016/j.molp.2016.04.006_bib62 article-title: Methylation of aquaporins in plant plasma membrane publication-title: Biochem. J. doi: 10.1042/BJ20060569 – volume: 269 start-page: 10417 year: 1994 ident: 10.1016/j.molp.2016.04.006_bib64 article-title: Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)34076-0 – volume: 11 start-page: 2714 year: 2002 ident: 10.1016/j.molp.2016.04.006_bib83 article-title: Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction publication-title: Protein Sci. doi: 10.1110/ps.0217002 – volume: 265 start-page: 16027 year: 1990 ident: 10.1016/j.molp.2016.04.006_bib35 article-title: The structure of protein-protein recognition sites publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)46181-3 – volume: 46 start-page: 1568 year: 2005 ident: 10.1016/j.molp.2016.04.006_bib60 article-title: Identification of 33 rice aquaporin genes and analysis of their expression and function publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pci172 – volume: 15 start-page: 2507 year: 2006 ident: 10.1016/j.molp.2016.04.006_bib63 article-title: Statistical potential for assessment and prediction of protein structures publication-title: Protein Sci. doi: 10.1110/ps.062416606 – volume: 149 start-page: 445 year: 2009 ident: 10.1016/j.molp.2016.04.006_bib74 article-title: The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine publication-title: Plant Physiol. doi: 10.1104/pp.108.128645 – volume: 105 start-page: 13327 year: 2008 ident: 10.1016/j.molp.2016.04.006_bib33 article-title: High-resolution x-ray structure of human aquaporin 5 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0801466105 – volume: 118 start-page: 315 year: 1998 ident: 10.1016/j.molp.2016.04.006_bib5 article-title: Distinct biochemical and topological properties of the 31- and 27-kilodalton plasma membrane intrinsic protein subgroups from red beet publication-title: Plant Physiol. doi: 10.1104/pp.118.1.315 – volume: 429 start-page: 193 year: 2004 ident: 10.1016/j.molp.2016.04.006_bib25 article-title: Aquaporin-0 membrane junctions reveal the structure of a closed water pore publication-title: Nature doi: 10.1038/nature02503 – volume: 24 start-page: 3463 year: 2012 ident: 10.1016/j.molp.2016.04.006_bib9 article-title: Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121 publication-title: Plant Cell doi: 10.1105/tpc.112.101758 – volume: 8 year: 2013 ident: 10.1016/j.molp.2016.04.006_bib43 article-title: Herbivory of maize by southern corn rootworm induces expression of the major intrinsic protein ZmNIP1;1 and leads to the discovery of a novel aquaporin ZmPIP2;8 publication-title: Plant Signal. Behav. doi: 10.4161/psb.24937 – volume: 234 start-page: 779 year: 1993 ident: 10.1016/j.molp.2016.04.006_bib61 article-title: Comparative protein modelling by satisfaction of spatial restraints publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1993.1626 – volume: 28 start-page: 815 year: 2011 ident: 10.1016/j.molp.2016.04.006_bib6 article-title: Yeast Fps1 glycerol facilitator functions as a homotetramer publication-title: Yeast doi: 10.1002/yea.1908 – volume: 66 start-page: 306 year: 2011 ident: 10.1016/j.molp.2016.04.006_bib10 article-title: Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04496.x – volume: 132 start-page: 538 year: 2008 ident: 10.1016/j.molp.2016.04.006_bib51 article-title: A fruit-specific plasma membrane aquaporin subtype PIP1;1 is regulated during strawberry (Fragaria x ananassa) fruit ripening publication-title: Physiol. Plant doi: 10.1111/j.1399-3054.2007.01046.x – volume: 86 start-page: 335 year: 2014 ident: 10.1016/j.molp.2016.04.006_bib30 article-title: Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays publication-title: Plant Mol. Biol. doi: 10.1007/s11103-014-0232-7 – volume: 49 start-page: 801 year: 2008 ident: 10.1016/j.molp.2016.04.006_bib47 article-title: Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcn054 – volume: 63 start-page: 151 year: 2013 ident: 10.1016/j.molp.2016.04.006_bib45 article-title: Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2012.11.018 – volume: 67 start-page: 1078 year: 2007 ident: 10.1016/j.molp.2016.04.006_bib57 article-title: ZRANK: reranking protein docking predictions with an optimized energy function publication-title: Proteins doi: 10.1002/prot.21373 – volume: 285 start-page: 41982 year: 2010 ident: 10.1016/j.molp.2016.04.006_bib82 article-title: Identification of a residue in helix 2 of rice plasma membrane intrinsic proteins that influences water permeability publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.101790 – volume: 352 start-page: 183 issue: Pt 1 year: 2000 ident: 10.1016/j.molp.2016.04.006_bib29 article-title: Lentil seed aquaporins form a hetero-oligomer which is phosphorylated by a Mg2+-dependent and Ca2+-regulated kinase publication-title: Biochem. J. doi: 10.1042/bj3520183 – volume: 579 start-page: 4417 year: 2005 ident: 10.1016/j.molp.2016.04.006_bib67 article-title: Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.06.082 – volume: 302 start-page: 205 year: 2000 ident: 10.1016/j.molp.2016.04.006_bib53 article-title: T-Coffee: a novel method for fast and accurate multiple sequence alignment publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.4042 – volume: 38 start-page: 11156 year: 1999 ident: 10.1016/j.molp.2016.04.006_bib52 article-title: Heterotetrameric composition of aquaporin-4 water channels publication-title: Biochemistry doi: 10.1021/bi990941s – volume: 49 start-page: 1364 year: 2008 ident: 10.1016/j.molp.2016.04.006_bib73 article-title: Maize plasma membrane aquaporins belonging to the PIP1 and PIP2 subgroups are in vivo phosphorylated publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcn112 – volume: 287 start-page: C1292 year: 2004 ident: 10.1016/j.molp.2016.04.006_bib13 article-title: Evidence for stabilization of aquaporin-2 folding mutants by N-linked glycosylation in endoplasmic reticulum publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00561.2003 – volume: 53 start-page: 2127 year: 2012 ident: 10.1016/j.molp.2016.04.006_bib34 article-title: Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcs154 – volume: 83 start-page: 219 year: 2013 ident: 10.1016/j.molp.2016.04.006_bib17 article-title: Involvement of rose aquaporin RhPIP1;1 in ethylene-regulated petal expansion through interaction with RhPIP2;1 publication-title: Plant Mol. Biol. doi: 10.1007/s11103-013-0084-6 – volume: 171 start-page: 24 year: 2013 ident: 10.1016/j.molp.2016.04.006_bib81 article-title: In silico study of aquaporin V: effects and affinity of the central pore-occluding lipid publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2012.09.004 – volume: 7 start-page: 27 year: 2007 ident: 10.1016/j.molp.2016.04.006_bib4 article-title: Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters publication-title: BMC Struct. Biol. doi: 10.1186/1472-6807-7-27 – volume: 256 start-page: 385 year: 1992 ident: 10.1016/j.molp.2016.04.006_bib58 article-title: Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein publication-title: Science doi: 10.1126/science.256.5055.385 – volume: 564 start-page: 297 year: 2014 ident: 10.1016/j.molp.2016.04.006_bib31 article-title: Toward understanding driving forces in membrane protein folding publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2014.07.031 – volume: 34 start-page: e122 year: 2006 ident: 10.1016/j.molp.2016.04.006_bib54 article-title: Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl635 – volume: 56 start-page: 819 year: 2015 ident: 10.1016/j.molp.2016.04.006_bib18 article-title: Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu203 – volume: 61 start-page: 3935 year: 2010 ident: 10.1016/j.molp.2016.04.006_bib1 article-title: Cloning, functional characterization, and co-expression studies of a novel aquaporin (FaPIP2;1) of strawberry fruit publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq210 – volume: 60 start-page: 2256 year: 2004 ident: 10.1016/j.molp.2016.04.006_bib41 article-title: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904026460 – volume: 285 start-page: 31253 year: 2010 ident: 10.1016/j.molp.2016.04.006_bib55 article-title: Aquaporin tetramer composition modifies the function of tobacco aquaporins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.115881 – volume: 50 start-page: 10223 year: 2011 ident: 10.1016/j.molp.2016.04.006_bib75 article-title: The tetrameric alpha-helical membrane protein GlpF unfolds via a dimeric folding intermediate publication-title: Biochemistry doi: 10.1021/bi201266m – volume: 68 start-page: 337 year: 2008 ident: 10.1016/j.molp.2016.04.006_bib27 article-title: The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation publication-title: Plant Mol. Biol. doi: 10.1007/s11103-008-9373-x – volume: 425 start-page: 393 year: 2003 ident: 10.1016/j.molp.2016.04.006_bib71 article-title: Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins publication-title: Nature doi: 10.1038/nature01853 – volume: 18 start-page: 2394 year: 1999 ident: 10.1016/j.molp.2016.04.006_bib39 article-title: An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus publication-title: EMBO J. doi: 10.1093/emboj/18.9.2394 – volume: 238 start-page: 777 year: 1994 ident: 10.1016/j.molp.2016.04.006_bib49 article-title: Satisfying hydrogen bonding potential in proteins publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1994.1334 – volume: 111 start-page: 231 year: 2014 ident: 10.1016/j.molp.2016.04.006_bib77 article-title: Heteromerization of PIP aquaporins affects their intrinsic permeability publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1316537111 – volume: 67 start-page: 570 year: 2011 ident: 10.1016/j.molp.2016.04.006_bib36 article-title: AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04617.x |
SSID | ssj0060863 |
Score | 2.349999 |
Snippet | Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes ecross biological membranes. They assemble as homotetramers but some... Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some... |
SourceID | proquest pubmed crossref elsevier chongqing |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 986 |
SubjectTerms | affinity chromatography amino acids Animals aquaporin aquaporins Aquaporins - genetics Aquaporins - metabolism Biological Transport Cell Membrane - metabolism corn heterotetramer mutagenesis mutation Mutation - genetics oligomerization oocytes Plant Proteins - genetics Plant Proteins - metabolism plasma membrane Protein Multimerization solutes spinach water-channel activity X-radiation Xenopus Xenopus laevis Zea mays Zea mays - genetics Zea mays - metabolism 单体 单突变 异源二聚体 水通道蛋白 活性 结构域 跨膜 非洲爪蟾卵母细胞 |
Title | Single Mutations in the Transmembrane Domains of Maize Plasma Membrane Aquaporins Affect the Activity of Monomers within a Heterotetramer |
URI | http://lib.cqvip.com/qk/90143B/201607/669927575.html https://dx.doi.org/10.1016/j.molp.2016.04.006 https://www.ncbi.nlm.nih.gov/pubmed/27109604 https://www.proquest.com/docview/1802738807 https://www.proquest.com/docview/2000341351 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQ22GXCdivAkOetNsU1UlcJzmGbqiwFSF-SL1ZtuNAUJMUmh7gP9h_vfecpBKHctipbfrsWHnOe5-T730m5DvnoQ59pZDnpz1uotBTWmSeUDpAYWvD3POO6bmY3PCz2Wi2RcZ9LQzSKrvY38Z0F627I8Puag4XRTG8Qv58gLWnqBoFURbiMCq1YBHf7LiPxgIguyPZg7GH1l3hTMvxKus5alb6wsmdMiewcFdXtw-QNjYlqk1A1CWkkx3yvkOSNG0Hu0u2bLVH3h7XgPaePpC_V9D53NLpqn3XvqRFRQHsUZecSlvCKrmy9GddqgL-rHM6VcWzpReApktFp71B-rBSCyTpLWnqqB-uk9S0m064dlgWASCS4iNdOImiE6TY1I1tkPj1-JHcnPy6Hk-8btsFz4wC0XjgVJbliVWCR_nICFxE5soyFG4P8jCKhTY8sXGY6RhSLADeONQmyxIjrAkyEX4i21Vd2S-ERooz6EcwbXP4ZmPu51nIrPFhDmhfDMjB-nrLRSuvIYVIkiACGDkgfu8BaTrFctw4Yy57atq9RA9K9KBkXIIHB-THuk3f4WvWo96x8sWsk5BQXm33rZ8FEm5HfMcCLqlXS4mCehEK7ESbbQKnCoRbIw7I53YKrccaIDdWML7_nyM7IO_wlyMUi0Oy3Tyu7FeATY0-Im_S8eWfC_w8_T05P3L3yT9FchoI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VggSXqry3DzASNxRtHl4nOW4L1RaaCqmttDfLdhwI2iTbbvYA_4B_zYyTrMRhe-gtSsaO5bFnPiefPwN85DzSUaAU8fy0x00ceUqL3BNKhyRsbXz3vSO7FLMb_nU-me_A6bAXhmiVfezvYrqL1v2dcd-b42VZjq-IPx_S3lNSjcIo-wgeIxoQxOs6n58M4VggZncse7T2yLzfOdORvKpmQaKVgXB6p75TWPjZ1D9uMW9sy1TbkKjLSGf7sNdDSTbtWvscdmz9Ap6cNAj3fr-Ev1dY-cKybN39bF-xsmaI9pjLTpWtcJlcW_a5qVSJD5uCZar8Y9l3hNOVYtlgML1dqyWx9FZs6rgfrpKp6U6dcOVoXwSiSEbfdPElis2IY9O0tiXm190ruDn7cn068_pzFzwzCUXroVf9vEitEjwuJkbQKrJQ1ifl9rCI4kRow1ObRLlOMMci4k0ibfI8NcKaMBfRa9itm9q-BRYr7mM9wte2wCub8KDII9-aAAeBDsQIDjf9LZedvoYUIk3DGHHkCILBA9L0kuV0csZCDty0X5I8KMmD0ucSPTiCT5syQ4X3WU8Gx8r_hp3EjHJvuQ_DKJA4H-knC7qkWa8kKerFpLATb7cJnSwQnY04gjfdENq0NSRyrPD5wQNb9h6ezq6zC3lxfvntEJ7RE8cuFkew296t7TFiqFa_c3PkH9WBGgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Mutations+in+the+Transmembrane+Domains+of+Maize+Plasma+Membrane+Aquaporins+Affect+the+Activity+of+Monomers+within+a+Heterotetramer&rft.jtitle=Molecular+plant&rft.au=Berny%2C+Marie%C2%A0C.&rft.au=Gilis%2C+Dimitri&rft.au=Rooman%2C+Marianne&rft.au=Chaumont%2C+Fran%C3%A7ois&rft.date=2016-07-06&rft.pub=Elsevier+Inc&rft.issn=1674-2052&rft.eissn=1752-9867&rft.volume=9&rft.issue=7&rft.spage=986&rft.epage=1003&rft_id=info:doi/10.1016%2Fj.molp.2016.04.006&rft.externalDocID=S1674205216300284 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90143B%2F90143B.jpg |