Single Mutations in the Transmembrane Domains of Maize Plasma Membrane Aquaporins Affect the Activity of Monomers within a Heterotetramer

Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes ecross biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) su...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant Vol. 9; no. 7; pp. 986 - 1003
Main Authors Berny, Marie C., Gilis, Dimitri, Rooman, Marianne, Chaumont, François
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 06.07.2016
Subjects
Online AccessGet full text
ISSN1674-2052
1752-9867
1752-9867
DOI10.1016/j.molp.2016.04.006

Cover

Loading…
Abstract Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes ecross biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interac- tion were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1 ;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity.
AbstractList Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes ecross biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interac- tion were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1 ;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity.
Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interaction were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity. Maize plasma membrane aquaporins PIP1;2 and PIP2;5 physically interact as homo- and heterodimers within heterotetramers to modulate their subcellular localization and their water- channel activity. Single-residue substitutions of amino acid located in the transmembrane domains at the interfaces between monomers were shown to either inactivate PIP2;5 or activated PIP1;2 without affecting their interaction.
Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interaction were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity.
Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interaction were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity.Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interaction were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity.
Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interaction were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity.
Author Marie C. Berny Dimitri Gilis Marianne Rooman Francois Chaumont
AuthorAffiliation Institut des Sciences de la Vie, University catholique de Louvain, 1348 Louvain-la-Neuve, Belgium Bioinformatique genomique et structurale, Universite Libre de Bruxelles, 1050 Brussels, Belgium
Author_xml – sequence: 1
  givenname: Marie C.
  surname: Berny
  fullname: Berny, Marie C.
  organization: Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
– sequence: 2
  givenname: Dimitri
  surname: Gilis
  fullname: Gilis, Dimitri
  organization: Bioinformatique génomique et structurale, Université Libre de Bruxelles, 1050 Brussels, Belgium
– sequence: 3
  givenname: Marianne
  surname: Rooman
  fullname: Rooman, Marianne
  organization: Bioinformatique génomique et structurale, Université Libre de Bruxelles, 1050 Brussels, Belgium
– sequence: 4
  givenname: François
  surname: Chaumont
  fullname: Chaumont, François
  email: francois.chaumont@uclouvain.be
  organization: Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27109604$$D View this record in MEDLINE/PubMed
BookMark eNqFks9u1DAQxi1URP_AC3BAFicuCbaT2I7EZdUCReoKJMrZcpxJ16s43rWdovIGvDXe7i4HDuU0I83vm9HMN-foZPITIPSakpISyt-vS-fHTclyXpK6JIQ_Q2dUNKxoJRcnOeeiLhhp2Ck6j3GdASJ59QKdMkFJy0l9hn5_t9PdCHg5J52snyK2E04rwLdBT9GB63IEfOWdtrnoB7zU9hfgb6OOTuPlEVhsZ73xYccshgFMemyyMMne2_TwqPOTdxAi_mnTKg_R-BoSBJ8gBZ0LL9HzQY8RXh3iBfrx6ePt5XVx8_Xzl8vFTWEaxlMBxpB-aEHzWgyNyRuxZtBABKEtGyoheWfqFmTVd9IASNrLqjN93xoOhvW8ukDv9n03wW9niEk5Gw2MY17Dz1ExQkhV06qh_0WpJExUUhKR0TcHdO4c9GoTrNPhQR0vnQG5B0zwMQYYlLH7k-f17agoUTtT1VrtTFU7UxWpVfYsS9k_0mP3J0Uf9iLIt7y3EFQ0FiYDvQ3ZHtV7-7T87WHmyk932_wkf4dy3rZMNKKp_gBDoMjM
CitedBy_id crossref_primary_10_1016_j_cj_2023_04_010
crossref_primary_10_1093_pcp_pcaa142
crossref_primary_10_1146_annurev_arplant_081720_013608
crossref_primary_10_7554_eLife_70095
crossref_primary_10_1007_s11103_021_01164_6
crossref_primary_10_3389_fpls_2019_01671
crossref_primary_10_1002_smll_202202056
crossref_primary_10_1016_j_envexpbot_2021_104605
crossref_primary_10_3390_ijms18112255
crossref_primary_10_1007_s12551_017_0313_3
crossref_primary_10_1007_s12551_023_01095_0
crossref_primary_10_1016_j_plantsci_2017_07_021
crossref_primary_10_1111_pce_12844
crossref_primary_10_1016_j_envexpbot_2022_104908
crossref_primary_10_1042_BST20241630
crossref_primary_10_3390_ijms21134743
crossref_primary_10_1186_s12870_020_02412_5
crossref_primary_10_3390_cells7110209
crossref_primary_10_3390_ijpb16010028
crossref_primary_10_1093_pcp_pcaa005
crossref_primary_10_1155_2020_2895795
crossref_primary_10_3390_plants10030524
crossref_primary_10_1111_febs_16134
crossref_primary_10_1186_s12870_022_03962_6
crossref_primary_10_1093_jxb_erae500
crossref_primary_10_1038_s41598_018_30257_4
crossref_primary_10_1038_s41598_024_72828_8
crossref_primary_10_3389_fpls_2023_1204889
crossref_primary_10_3389_fpls_2018_00382
crossref_primary_10_1002_advs_202310159
crossref_primary_10_3389_fpls_2022_1012578
crossref_primary_10_1016_j_jmgm_2022_108310
crossref_primary_10_1111_ppl_13324
crossref_primary_10_3390_ijms19020521
crossref_primary_10_1111_pce_14763
crossref_primary_10_1111_febs_14922
crossref_primary_10_1038_s41438_018_0019_0
crossref_primary_10_1111_febs_14701
crossref_primary_10_1093_plphys_kiad567
crossref_primary_10_3389_fpls_2020_00458
crossref_primary_10_1016_j_envexpbot_2022_104981
crossref_primary_10_3389_fpls_2022_831916
crossref_primary_10_3390_biom11020338
Cites_doi 10.1074/jbc.273.51.33949
10.1046/j.0016-8025.2003.01130.x
10.1042/BJ20111704
10.1093/bioinformatics/btm076
10.1074/jbc.M307424200
10.1104/pp.122.4.1025
10.1073/pnas.0701180104
10.1093/pcp/pcm083
10.1046/j.1365-313x.2000.00874.x
10.1016/j.plaphy.2011.06.002
10.1016/S0959-440X(00)00217-7
10.1093/nar/22.22.4673
10.1016/j.febslet.2015.10.018
10.1126/science.1068539
10.1104/pp.125.3.1206
10.1002/prot.20433
10.1038/nsmb1275
10.1111/j.1365-313X.2007.03324.x
10.1093/nar/gkh340
10.1016/j.tplants.2012.12.003
10.1093/pcp/pch120
10.1093/pcp/pcr027
10.1093/nar/gkm423
10.1038/nature04316
10.1046/j.1365-313X.1994.6020187.x
10.1111/febs.12653
10.1007/s11103-010-9658-8
10.1073/pnas.0507225103
10.1021/bi2004476
10.1074/jbc.M201179200
10.1016/S0021-9258(18)38133-X
10.1007/s11103-006-9022-1
10.1038/35036519
10.1152/ajpcell.00129.2013
10.1104/pp.114.240945
10.1371/journal.pone.0057993
10.1105/tpc.017194
10.1042/BJ20060569
10.1016/S0021-9258(17)34076-0
10.1110/ps.0217002
10.1016/S0021-9258(17)46181-3
10.1093/pcp/pci172
10.1110/ps.062416606
10.1104/pp.108.128645
10.1073/pnas.0801466105
10.1104/pp.118.1.315
10.1038/nature02503
10.1105/tpc.112.101758
10.4161/psb.24937
10.1006/jmbi.1993.1626
10.1002/yea.1908
10.1111/j.1365-313X.2011.04496.x
10.1111/j.1399-3054.2007.01046.x
10.1007/s11103-014-0232-7
10.1093/pcp/pcn054
10.1016/j.plaphy.2012.11.018
10.1002/prot.21373
10.1074/jbc.M110.101790
10.1042/bj3520183
10.1016/j.febslet.2005.06.082
10.1006/jmbi.2000.4042
10.1021/bi990941s
10.1093/pcp/pcn112
10.1152/ajpcell.00561.2003
10.1093/pcp/pcs154
10.1007/s11103-013-0084-6
10.1016/j.bpc.2012.09.004
10.1186/1472-6807-7-27
10.1126/science.256.5055.385
10.1016/j.abb.2014.07.031
10.1093/nar/gkl635
10.1093/pcp/pcu203
10.1093/jxb/erq210
10.1107/S0907444904026460
10.1074/jbc.M110.115881
10.1021/bi201266m
10.1007/s11103-008-9373-x
10.1038/nature01853
10.1093/emboj/18.9.2394
10.1006/jmbi.1994.1334
10.1073/pnas.1316537111
10.1111/j.1365-313X.2011.04617.x
ContentType Journal Article
Copyright 2016 The Author
Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 The Author
– notice: Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
DBID 2RA
92L
CQIGP
W94
WU4
~WA
6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.molp.2016.04.006
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
DocumentTitleAlternate Single Mutations in the Transmembrane Domains of Maize Plasma Membrane Aquaporins Affect the Activity of Monomers within a Heterotetramer
EISSN 1752-9867
EndPage 1003
ExternalDocumentID 27109604
10_1016_j_molp_2016_04_006
S1674205216300284
669927575
Genre Journal Article
GroupedDBID ---
--M
.2P
.I3
0R~
123
1RT
2RA
2WC
4.4
457
53G
6I.
7-5
70D
8P~
92L
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAIYJ
AAKOC
AALRI
AAOAW
AATLK
AAVLN
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABNKS
ABVKL
ABXDB
ABYKQ
ABZBJ
ACDAQ
ACGFS
ACPRK
ACRLP
ADBBV
ADEYI
ADEZE
ADFTL
ADOCK
ADZTZ
AEBSH
AEGPL
AEKER
AENEX
AEXQZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGKEF
AGUBO
AHMBA
AHXPO
AIEXJ
AIJHB
AIKHN
AITUG
AJBFU
AJOXV
AKHUL
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CKLRP
CQIGP
CS3
CW9
CZ4
DU5
E3Z
EBS
EDH
EE~
EFJIC
EFLBG
EJD
ESX
F5P
F9B
FDB
FIRID
FYGXN
GBLVA
H5~
HW0
HZ~
IOX
IXB
KOM
M-Z
M41
M49
N9A
NCXOZ
NU-
O0~
O9-
OAUVE
OK1
OVD
P2P
PQQKQ
Q1.
RCE
RD5
ROL
RW1
RXO
SPCBC
SSA
SSZ
T5K
TEORI
TR2
W8F
W94
WU4
X7H
~91
~G-
~WA
AAHBH
AAMRU
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
H13
SSH
TGP
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c526t-ecc0df9ea647f5c60825fae070192f3786bc49e83db8cee81d83bcdd9c6ec2d63
IEDL.DBID IXB
ISSN 1674-2052
1752-9867
IngestDate Thu Sep 04 17:14:29 EDT 2025
Fri Sep 05 03:34:00 EDT 2025
Wed Feb 19 02:44:18 EST 2025
Tue Jul 01 01:40:46 EDT 2025
Thu Apr 24 23:11:18 EDT 2025
Fri Feb 23 02:27:16 EST 2024
Wed Feb 14 10:15:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords mutation
heterotetramer
oligomerization
water-channel activity
aquaporin
Language English
License This article is made available under the Elsevier license.
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-ecc0df9ea647f5c60825fae070192f3786bc49e83db8cee81d83bcdd9c6ec2d63
Notes aquaporin, heterotetramer, mutation, oligomerization, water-channel activity
31-2013/Q
Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes ecross biological membranes. They assemble as homotetramers but some of them also form heterotetramers, especially in plants. In Zea mays, aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily are clustered into two groups, PIP1 and PIP2, which exhibit different water-channel activities when expressed in Xenopus oocytes. When PIP1 and PIP2 isoforms are co-expressed, they physically interact to modulate their subcellular localization and channel activity. Here, we demonstrated by affinity chromatography purification that, when co-expressed in Xenopus oocytes, the maize PIP1;2 and PIP2;5 isoforms assemble as homo- and heterodimers within heterotetramers. We built the 3D structure of such heterotetramers by comparative modeling on the basis of the spinach SoPIP2;1 X-ray structure and identified amino acid residues in the transmembrane domains which putatively interact at the interfaces between monomers. Their roles in the water-channel activity, subcellular localization, protein abundance, and physical interac- tion were investigated by mutagenesis. We highlighted single-residue substitutions that either inactivated PIP2;5 or activated PIP1;2 without affecting their interaction. Interestingly, the Phe220Ala mutation in the transmembrane domain 5 of PIP1 ;2 activated its water-channel activity and, at the same time, inactivated PIP2;5 within a heterotetramer. Altogether, these data contribute to a better understanding of the interaction mechanisms between PIP isoforms and the role of heterotetramerization on their water-channel activity.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1674205216300284
PMID 27109604
PQID 1802738807
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2000341351
proquest_miscellaneous_1802738807
pubmed_primary_27109604
crossref_citationtrail_10_1016_j_molp_2016_04_006
crossref_primary_10_1016_j_molp_2016_04_006
elsevier_sciencedirect_doi_10_1016_j_molp_2016_04_006
chongqing_primary_669927575
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-06
PublicationDateYYYYMMDD 2016-07-06
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-06
  day: 06
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Molecular plant
PublicationTitleAlternate Molecular Plant
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Marin-Olivier, Chevalier, Fobis-Loisy, Dumas, Gaude (bib48) 2000; 24
McDonald, Thornton (bib49) 1994; 238
Yaneff, Vitali, Amodeo (bib78) 2015; 589
Heinen, Bienert, Cohen, Chevalier, Uehlein, Hachez, Kaldenhoff, Le Thiec, Chaumont (bib30) 2014; 86
Mut, Bustamante, Martinez, Alleva, Sutka, Civello, Amodeo (bib51) 2008; 132
Horie, Kaneko, Sugimoto, Sasano, Panda, Shibasaka, Katsuhara (bib32) 2011; 52
Preston, Carroll, Guggino, Agre (bib58) 1992; 256
Zelazny, Borst, Muylaert, Batoko, Hemminga, Chaumont (bib80) 2007; 104
Almasalmeh, Krenc, Wu, Beitz (bib2) 2013; 281
Chen, Yin, Wang, Tian, Yang, Liu, Yu, Ma, Gao (bib17) 2013; 83
Chevalier, Bienert, Chaumont (bib19) 2014; 166
Veerappan, Cymer, Klein, Schneider (bib75) 2011; 50
Bansal, Sankararamakrishnan (bib4) 2007; 7
Sali, Blundell (bib61) 1993; 234
Lawrence, Novak, Xu, Cooke (bib43) 2013; 8
Qin, Boron (bib59) 2013; 305
Beese-Sims, Lee, Levin (bib6) 2011; 28
Shen, Sali (bib63) 2006; 15
Li, Choi, Wallace, Baudry, Roberts (bib44) 2011; 50
Jeanguenin, Alcon, Duby, Boeglin, Cherel, Gaillard, Zimmermann, Sentenac, Very (bib36) 2011; 67
Lagree, Froger, Deschamps, Pellerin, Delamarche, Bonnec, Gouranton, Thomas, Hubert (bib42) 1998; 273
Liu, Fukumoto, Matsumoto, Gena, Frascaria, Kaneko, Katsuhara, Zhong, Sun, Zhu (bib45) 2013; 63
Barone, Mu, Shih, Kashlan, Wasserman (bib5) 1998; 118
Kammerloher, Fischer, Piechottka, Schaffner (bib38) 1994; 6
Yaneff, Sigaut, Marquez, Alleva, Pietrasanta, Amodeo (bib77) 2014; 111
Notredame, Higgins, Heringa (bib53) 2000; 302
Chevalier, Chaumont (bib18) 2015; 56
Hachez, Moshelion, Zelazny, Cavez, Chaumont (bib26) 2006; 62
Santoni, Verdoucq, Sommerer, Vinh, Pflieger, Maurel (bib62) 2006; 400
Horsefield, Nordén, Fellert, Backmark, Törnroth-Horsefield, Terwisscha van Scheltinga, Kvassman, Kjellbom, Johanson, Neutze (bib33) 2008; 105
Jozefkowicz, Rosi, Sigaut, Soto, Pietrasanta, Amodeo, Alleva (bib37) 2013; 8
Van Wilder, Miecielica, Degand, Derua, Waelkens, Chaumont (bib73) 2008; 49
Edgar (bib23) 2004; 32
Hachez, Besserer, Chevalier, Chaumont (bib28) 2013; 18
Hu, Yuan, Wang, Cai, Deng, Wang, Zhou, Chen, Chen, Huang (bib34) 2012; 53
Vandeleur, Mayo, Shelden, Gilliham, Kaiser, Tyerman (bib74) 2009; 149
Gonen, Sliz, Kistler, Cheng, Walz (bib25) 2004; 429
Tournaire-Roux, Sutka, Javot, Gout, Gerbeau, Luu, Bligny, Maurel (bib71) 2003; 425
Beitz, Wu, Holm, Schultz, Zeuthen (bib7) 2006; 103
Duchesne, Pellerin, Delamarche, Deschamps, Lagree, Froger, Bonnec, Thomas, Hubert (bib22) 2002; 277
Ludewig, Wilken, Wu, Jost, Obrdlik, El Bakkoury, Marini, Andre, Hamacher, Boles (bib46) 2003; 278
Mahdieh, Mostajeran, Horie, Katsuhara (bib47) 2008; 49
Ayadi, Cavez, Miled, Chaumont, Masmoudi (bib3) 2011; 49
Hachez, Heinen, Draye, Chaumont (bib27) 2008; 68
Sakurai, Ishikawa, Yamaguchi, Uemura, Maeshima (bib60) 2005; 46
Zhou, Zhou (bib83) 2002; 11
Bellati, Alleva, Soto, Vitali, Jozefkowicz, Amodeo (bib8) 2010; 74
Bordner, Abagyan (bib12) 2005; 60
Suga, Maeshima (bib66) 2004; 45
Thompson, Higgins, Gibson (bib68) 1994; 22
Buck, Eledge, Skach (bib13) 2004; 287
Murata, Mitsuoka, Hirai, Walz, Agre, Heymann, Engel, Fujiyoshi (bib50) 2000; 407
Temmei, Uchida, Hoshino, Kanzawa, Kuwahara, Sasaki, Tsuchiya (bib67) 2005; 579
Bienert, Cavez, Besserer, Berny, Gilis, Rooman, Chaumont (bib11) 2012; 445
Nour-Eldin, Hansen, Norholm, Jensen, Halkier (bib54) 2006; 34
Ubarretxena-Belandia, Engelman (bib72) 2001; 11
Besserer, Burnotte, Bienert, Chevalier, Errachid, Grefen, Blatt, Chaumont (bib9) 2012; 24
Pierce, Weng (bib57) 2007; 67
Fetter, Van Wilder, Moshelion, Chaumont (bib24) 2004; 16
Krissinel, Henrick (bib41) 2004; 60
Chaumont, Barrieu, Wojcik, Chrispeels, Jung (bib16) 2001; 125
Smith, Agre (bib65) 1991; 266
Zacharias, Violin, Newton, Tsien (bib79) 2002; 296
Hong (bib31) 2014; 564
Buck, Wagner, Grund, Skach (bib14) 2007; 14
Chaumont, Barrieu, Jung, Chrispeels (bib15) 2000; 122
Janin, Chothia (bib35) 1990; 265
Kamsteeg, Wormhoudt, Rijss, van Os, Deen (bib39) 1999; 18
Wei, Alexandersson, Golldack, Miller, Kjellbom, Fricke (bib76) 2007; 48
Ding, Iwasaki, Kitagawa (bib20) 2004; 27
Neely, Christensen, Nielsen, Agre (bib52) 1999; 38
Duby, Hosy, Fizames, Alcon, Costa, Sentenac, Thibaud (bib21) 2008; 53
Papadopoulos, Agarwala (bib56) 2007; 23
Harvengt, Vlerick, Fuks, Wattiez, Ruysschaert, Homble (bib29) 2000; 352
Otto, Uehlein, Sdorra, Fischer, Ayaz, Belastegui-Macadam, Heckwolf, Lachnit, Pede, Priem (bib55) 2010; 285
Alleva, Marquez, Villarreal, Mut, Bustamante, Bellati, Martinez, Civello, Amodeo (bib1) 2010; 61
Shi, Skach, Verkman (bib64) 1994; 269
Tina, Bhadra, Srinivasan (bib69) 2007; 35
Zhang, Lu, Li, Mao, Yu, Sun, Tang, Long, Su (bib82) 2010; 285
Klotz, Darnall, Langerman (bib40) 1975
Bienert, Bienert, Jahn, Boutry, Chaumont (bib10) 2011; 66
Törnroth-Horsefield, Wang, Hedfalk, Johanson, Karlsson, Tajkhorshid, Neutze, Kjellbom (bib70) 2006; 439
Zhang, Chen (bib81) 2013; 171
Murata (10.1016/j.molp.2016.04.006_bib50) 2000; 407
Santoni (10.1016/j.molp.2016.04.006_bib62) 2006; 400
Zhou (10.1016/j.molp.2016.04.006_bib83) 2002; 11
Edgar (10.1016/j.molp.2016.04.006_bib23) 2004; 32
Hachez (10.1016/j.molp.2016.04.006_bib27) 2008; 68
Heinen (10.1016/j.molp.2016.04.006_bib30) 2014; 86
Smith (10.1016/j.molp.2016.04.006_bib65) 1991; 266
Buck (10.1016/j.molp.2016.04.006_bib14) 2007; 14
Gonen (10.1016/j.molp.2016.04.006_bib25) 2004; 429
Tina (10.1016/j.molp.2016.04.006_bib69) 2007; 35
Nour-Eldin (10.1016/j.molp.2016.04.006_bib54) 2006; 34
Hachez (10.1016/j.molp.2016.04.006_bib28) 2013; 18
Alleva (10.1016/j.molp.2016.04.006_bib1) 2010; 61
Chevalier (10.1016/j.molp.2016.04.006_bib18) 2015; 56
Beese-Sims (10.1016/j.molp.2016.04.006_bib6) 2011; 28
Ding (10.1016/j.molp.2016.04.006_bib20) 2004; 27
Barone (10.1016/j.molp.2016.04.006_bib5) 1998; 118
Veerappan (10.1016/j.molp.2016.04.006_bib75) 2011; 50
Horsefield (10.1016/j.molp.2016.04.006_bib33) 2008; 105
Hong (10.1016/j.molp.2016.04.006_bib31) 2014; 564
Buck (10.1016/j.molp.2016.04.006_bib13) 2004; 287
Chaumont (10.1016/j.molp.2016.04.006_bib15) 2000; 122
Fetter (10.1016/j.molp.2016.04.006_bib24) 2004; 16
Marin-Olivier (10.1016/j.molp.2016.04.006_bib48) 2000; 24
Chevalier (10.1016/j.molp.2016.04.006_bib19) 2014; 166
Duchesne (10.1016/j.molp.2016.04.006_bib22) 2002; 277
Vandeleur (10.1016/j.molp.2016.04.006_bib74) 2009; 149
Chen (10.1016/j.molp.2016.04.006_bib17) 2013; 83
Mut (10.1016/j.molp.2016.04.006_bib51) 2008; 132
Törnroth-Horsefield (10.1016/j.molp.2016.04.006_bib70) 2006; 439
Lagree (10.1016/j.molp.2016.04.006_bib42) 1998; 273
Bienert (10.1016/j.molp.2016.04.006_bib11) 2012; 445
Lawrence (10.1016/j.molp.2016.04.006_bib43) 2013; 8
Pierce (10.1016/j.molp.2016.04.006_bib57) 2007; 67
Thompson (10.1016/j.molp.2016.04.006_bib68) 1994; 22
Krissinel (10.1016/j.molp.2016.04.006_bib41) 2004; 60
Papadopoulos (10.1016/j.molp.2016.04.006_bib56) 2007; 23
Bordner (10.1016/j.molp.2016.04.006_bib12) 2005; 60
Yaneff (10.1016/j.molp.2016.04.006_bib78) 2015; 589
Qin (10.1016/j.molp.2016.04.006_bib59) 2013; 305
Tournaire-Roux (10.1016/j.molp.2016.04.006_bib71) 2003; 425
Bienert (10.1016/j.molp.2016.04.006_bib10) 2011; 66
Chaumont (10.1016/j.molp.2016.04.006_bib16) 2001; 125
Duby (10.1016/j.molp.2016.04.006_bib21) 2008; 53
Ludewig (10.1016/j.molp.2016.04.006_bib46) 2003; 278
Temmei (10.1016/j.molp.2016.04.006_bib67) 2005; 579
Shen (10.1016/j.molp.2016.04.006_bib63) 2006; 15
Van Wilder (10.1016/j.molp.2016.04.006_bib73) 2008; 49
Almasalmeh (10.1016/j.molp.2016.04.006_bib2) 2013; 281
Li (10.1016/j.molp.2016.04.006_bib44) 2011; 50
Preston (10.1016/j.molp.2016.04.006_bib58) 1992; 256
Hachez (10.1016/j.molp.2016.04.006_bib26) 2006; 62
Otto (10.1016/j.molp.2016.04.006_bib55) 2010; 285
Kamsteeg (10.1016/j.molp.2016.04.006_bib39) 1999; 18
Suga (10.1016/j.molp.2016.04.006_bib66) 2004; 45
Jozefkowicz (10.1016/j.molp.2016.04.006_bib37) 2013; 8
Horie (10.1016/j.molp.2016.04.006_bib32) 2011; 52
Ubarretxena-Belandia (10.1016/j.molp.2016.04.006_bib72) 2001; 11
Zhang (10.1016/j.molp.2016.04.006_bib81) 2013; 171
Beitz (10.1016/j.molp.2016.04.006_bib7) 2006; 103
Bansal (10.1016/j.molp.2016.04.006_bib4) 2007; 7
Sali (10.1016/j.molp.2016.04.006_bib61) 1993; 234
Kammerloher (10.1016/j.molp.2016.04.006_bib38) 1994; 6
Liu (10.1016/j.molp.2016.04.006_bib45) 2013; 63
Shi (10.1016/j.molp.2016.04.006_bib64) 1994; 269
Harvengt (10.1016/j.molp.2016.04.006_bib29) 2000; 352
McDonald (10.1016/j.molp.2016.04.006_bib49) 1994; 238
Wei (10.1016/j.molp.2016.04.006_bib76) 2007; 48
Janin (10.1016/j.molp.2016.04.006_bib35) 1990; 265
Jeanguenin (10.1016/j.molp.2016.04.006_bib36) 2011; 67
Zelazny (10.1016/j.molp.2016.04.006_bib80) 2007; 104
Zhang (10.1016/j.molp.2016.04.006_bib82) 2010; 285
Klotz (10.1016/j.molp.2016.04.006_bib40) 1975
Mahdieh (10.1016/j.molp.2016.04.006_bib47) 2008; 49
Hu (10.1016/j.molp.2016.04.006_bib34) 2012; 53
Notredame (10.1016/j.molp.2016.04.006_bib53) 2000; 302
Besserer (10.1016/j.molp.2016.04.006_bib9) 2012; 24
Neely (10.1016/j.molp.2016.04.006_bib52) 1999; 38
Ayadi (10.1016/j.molp.2016.04.006_bib3) 2011; 49
Yaneff (10.1016/j.molp.2016.04.006_bib77) 2014; 111
Sakurai (10.1016/j.molp.2016.04.006_bib60) 2005; 46
Bellati (10.1016/j.molp.2016.04.006_bib8) 2010; 74
Zacharias (10.1016/j.molp.2016.04.006_bib79) 2002; 296
References_xml – volume: 83
  start-page: 219
  year: 2013
  end-page: 233
  ident: bib17
  article-title: Involvement of rose aquaporin RhPIP1;1 in ethylene-regulated petal expansion through interaction with RhPIP2;1
  publication-title: Plant Mol. Biol.
– volume: 171
  start-page: 24
  year: 2013
  end-page: 30
  ident: bib81
  article-title: In silico study of aquaporin V: effects and affinity of the central pore-occluding lipid
  publication-title: Biophys. Chem.
– volume: 22
  start-page: 4673
  year: 1994
  end-page: 4680
  ident: bib68
  article-title: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
  publication-title: Nucleic Acids Res.
– volume: 74
  start-page: 105
  year: 2010
  end-page: 118
  ident: bib8
  article-title: Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression
  publication-title: Plant Mol. Biol.
– volume: 579
  start-page: 4417
  year: 2005
  end-page: 4422
  ident: bib67
  article-title: Water channel activities of
  publication-title: FEBS Lett.
– volume: 166
  start-page: 125
  year: 2014
  end-page: 138
  ident: bib19
  article-title: A new LxxxA motif in the transmembrane Helix3 of maize aquaporins belonging to the plasma membrane intrinsic protein PIP2 group is required for their trafficking to the plasma membrane
  publication-title: Plant Physiol.
– volume: 48
  start-page: 1132
  year: 2007
  end-page: 1147
  ident: bib76
  article-title: HvPIP1;6, a barley (
  publication-title: Plant Cell Physiol.
– volume: 285
  start-page: 41982
  year: 2010
  end-page: 41992
  ident: bib82
  article-title: Identification of a residue in helix 2 of rice plasma membrane intrinsic proteins that influences water permeability
  publication-title: J. Biol. Chem.
– volume: 61
  start-page: 3935
  year: 2010
  end-page: 3945
  ident: bib1
  article-title: Cloning, functional characterization, and co-expression studies of a novel aquaporin (FaPIP2;1) of strawberry fruit
  publication-title: J. Exp. Bot.
– volume: 564
  start-page: 297
  year: 2014
  end-page: 313
  ident: bib31
  article-title: Toward understanding driving forces in membrane protein folding
  publication-title: Arch. Biochem. Biophys.
– volume: 32
  start-page: 1792
  year: 2004
  end-page: 1797
  ident: bib23
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Res.
– volume: 125
  start-page: 1206
  year: 2001
  end-page: 1215
  ident: bib16
  article-title: Aquaporins constitute a large and highly divergent protein family in maize
  publication-title: Plant Physiol.
– volume: 34
  start-page: e122
  year: 2006
  ident: bib54
  article-title: Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments
  publication-title: Nucleic Acids Res.
– volume: 28
  start-page: 815
  year: 2011
  end-page: 819
  ident: bib6
  article-title: Yeast Fps1 glycerol facilitator functions as a homotetramer
  publication-title: Yeast
– volume: 8
  year: 2013
  ident: bib43
  article-title: Herbivory of maize by southern corn rootworm induces expression of the major intrinsic protein
  publication-title: Plant Signal. Behav.
– volume: 234
  start-page: 779
  year: 1993
  end-page: 815
  ident: bib61
  article-title: Comparative protein modelling by satisfaction of spatial restraints
  publication-title: J. Mol. Biol.
– volume: 266
  start-page: 6407
  year: 1991
  end-page: 6415
  ident: bib65
  article-title: Erythrocyte
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 3463
  year: 2012
  end-page: 3481
  ident: bib9
  article-title: Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121
  publication-title: Plant Cell
– volume: 238
  start-page: 777
  year: 1994
  end-page: 793
  ident: bib49
  article-title: Satisfying hydrogen bonding potential in proteins
  publication-title: J. Mol. Biol.
– volume: 118
  start-page: 315
  year: 1998
  end-page: 322
  ident: bib5
  article-title: Distinct biochemical and topological properties of the 31- and 27-kilodalton plasma membrane intrinsic protein subgroups from red beet
  publication-title: Plant Physiol.
– volume: 265
  start-page: 16027
  year: 1990
  end-page: 16030
  ident: bib35
  article-title: The structure of protein-protein recognition sites
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 2714
  year: 2002
  end-page: 2726
  ident: bib83
  article-title: Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction
  publication-title: Protein Sci.
– volume: 305
  start-page: C663
  year: 2013
  end-page: C672
  ident: bib59
  article-title: Mutation of a single amino acid converts the human water channel aquaporin 5 into an anion channel
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 122
  start-page: 1025
  year: 2000
  end-page: 1034
  ident: bib15
  article-title: Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity
  publication-title: Plant Physiol.
– volume: 273
  start-page: 33949
  year: 1998
  end-page: 33953
  ident: bib42
  article-title: Oligomerization state of water channels and glycerol facilitators. Involvement of loop E
  publication-title: J. Biol. Chem.
– volume: 63
  start-page: 151
  year: 2013
  end-page: 158
  ident: bib45
  article-title: Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination
  publication-title: Plant Physiol. Biochem.
– start-page: 293
  year: 1975
  end-page: 411
  ident: bib40
  article-title: Quaternary structure of proteins
  publication-title: The Proteins
– volume: 60
  start-page: 2256
  year: 2004
  end-page: 2268
  ident: bib41
  article-title: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 132
  start-page: 538
  year: 2008
  end-page: 551
  ident: bib51
  article-title: A fruit-specific plasma membrane aquaporin subtype PIP1;1 is regulated during strawberry (
  publication-title: Physiol. Plant
– volume: 105
  start-page: 13327
  year: 2008
  end-page: 13332
  ident: bib33
  article-title: High-resolution x-ray structure of human aquaporin 5
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 62
  start-page: 305
  year: 2006
  end-page: 323
  ident: bib26
  article-title: Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers
  publication-title: Plant Mol. Biol.
– volume: 111
  start-page: 231
  year: 2014
  end-page: 236
  ident: bib77
  article-title: Heteromerization of PIP aquaporins affects their intrinsic permeability
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 66
  start-page: 306
  year: 2011
  end-page: 317
  ident: bib10
  article-title: XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates
  publication-title: Plant J.
– volume: 24
  start-page: 231
  year: 2000
  end-page: 240
  ident: bib48
  article-title: Aquaporin PIP genes are not expressed in the stigma papillae in
  publication-title: Plant J.
– volume: 15
  start-page: 2507
  year: 2006
  end-page: 2524
  ident: bib63
  article-title: Statistical potential for assessment and prediction of protein structures
  publication-title: Protein Sci.
– volume: 285
  start-page: 31253
  year: 2010
  end-page: 31260
  ident: bib55
  article-title: Aquaporin tetramer composition modifies the function of tobacco aquaporins
  publication-title: J. Biol. Chem.
– volume: 445
  start-page: 101
  year: 2012
  end-page: 111
  ident: bib11
  article-title: A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers
  publication-title: Biochem. J.
– volume: 53
  start-page: 2127
  year: 2012
  end-page: 2141
  ident: bib34
  article-title: Overexpression of a wheat aquaporin gene,
  publication-title: Plant Cell Physiol.
– volume: 278
  start-page: 45603
  year: 2003
  end-page: 45610
  ident: bib46
  article-title: Homo- and hetero-oligomerization of ammonium transporter-1 NH4 uniporters
  publication-title: J. Biol. Chem.
– volume: 425
  start-page: 393
  year: 2003
  end-page: 397
  ident: bib71
  article-title: Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins
  publication-title: Nature
– volume: 302
  start-page: 205
  year: 2000
  end-page: 217
  ident: bib53
  article-title: T-Coffee: a novel method for fast and accurate multiple sequence alignment
  publication-title: J. Mol. Biol.
– volume: 104
  start-page: 12359
  year: 2007
  end-page: 12364
  ident: bib80
  article-title: FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 27
  year: 2007
  ident: bib4
  article-title: Homology modeling of major intrinsic proteins in rice, maize and
  publication-title: BMC Struct. Biol.
– volume: 287
  start-page: C1292
  year: 2004
  end-page: C1299
  ident: bib13
  article-title: Evidence for stabilization of aquaporin-2 folding mutants by N-linked glycosylation in endoplasmic reticulum
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 429
  start-page: 193
  year: 2004
  end-page: 197
  ident: bib25
  article-title: Aquaporin-0 membrane junctions reveal the structure of a closed water pore
  publication-title: Nature
– volume: 149
  start-page: 445
  year: 2009
  end-page: 460
  ident: bib74
  article-title: The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine
  publication-title: Plant Physiol.
– volume: 14
  start-page: 762
  year: 2007
  end-page: 769
  ident: bib14
  article-title: A novel tripartite motif involved in aquaporin topogenesis, monomer folding and tetramerization
  publication-title: Nat. Struct. Mol. Biol.
– volume: 46
  start-page: 1568
  year: 2005
  end-page: 1577
  ident: bib60
  article-title: Identification of 33 rice aquaporin genes and analysis of their expression and function
  publication-title: Plant Cell Physiol.
– volume: 68
  start-page: 337
  year: 2008
  end-page: 353
  ident: bib27
  article-title: The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation
  publication-title: Plant Mol. Biol.
– volume: 27
  start-page: 177
  year: 2004
  end-page: 186
  ident: bib20
  article-title: Overexpression of a lily PIP1 gene in tobacco increased the osmotic water permeability of leaf cells
  publication-title: Plant Cell Environ.
– volume: 53
  start-page: 115
  year: 2008
  end-page: 123
  ident: bib21
  article-title: AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K
  publication-title: Plant J.
– volume: 35
  start-page: W473
  year: 2007
  end-page: W476
  ident: bib69
  article-title: PIC: protein interactions calculator
  publication-title: Nucleic Acids Res.
– volume: 16
  start-page: 215
  year: 2004
  end-page: 228
  ident: bib24
  article-title: Interactions between plasma membrane aquaporins modulate their water channel activity
  publication-title: Plant Cell
– volume: 103
  start-page: 269
  year: 2006
  end-page: 274
  ident: bib7
  article-title: Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: e57993
  year: 2013
  ident: bib37
  article-title: Loop A is critical for the functional interaction of two
  publication-title: PLoS One
– volume: 407
  start-page: 599
  year: 2000
  end-page: 605
  ident: bib50
  article-title: Structural determinants of water permeation through aquaporin-1
  publication-title: Nature
– volume: 50
  start-page: 6633
  year: 2011
  end-page: 6641
  ident: bib44
  article-title: NIP7;1: an anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore
  publication-title: Biochemistry
– volume: 56
  start-page: 819
  year: 2015
  end-page: 829
  ident: bib18
  article-title: Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals
  publication-title: Plant Cell Physiol.
– volume: 352
  start-page: 183
  year: 2000
  end-page: 190
  ident: bib29
  article-title: Lentil seed aquaporins form a hetero-oligomer which is phosphorylated by a Mg
  publication-title: Biochem. J.
– volume: 67
  start-page: 570
  year: 2011
  end-page: 582
  ident: bib36
  article-title: AtKC1 is a general modulator of
  publication-title: Plant J.
– volume: 50
  start-page: 10223
  year: 2011
  end-page: 10230
  ident: bib75
  article-title: The tetrameric alpha-helical membrane protein GlpF unfolds via a dimeric folding intermediate
  publication-title: Biochemistry
– volume: 269
  start-page: 10417
  year: 1994
  end-page: 10422
  ident: bib64
  article-title: Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers
  publication-title: J. Biol. Chem.
– volume: 589
  start-page: 3508
  year: 2015
  end-page: 3515
  ident: bib78
  article-title: PIP1 aquaporins: intrinsic water channels or PIP2 aquaporin modulators?
  publication-title: FEBS Lett.
– volume: 52
  start-page: 663
  year: 2011
  end-page: 675
  ident: bib32
  article-title: Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots
  publication-title: Plant Cell Physiol.
– volume: 6
  start-page: 187
  year: 1994
  end-page: 199
  ident: bib38
  article-title: Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system
  publication-title: Plant J.
– volume: 296
  start-page: 913
  year: 2002
  end-page: 916
  ident: bib79
  article-title: Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells
  publication-title: Science
– volume: 67
  start-page: 1078
  year: 2007
  end-page: 1086
  ident: bib57
  article-title: ZRANK: reranking protein docking predictions with an optimized energy function
  publication-title: Proteins
– volume: 11
  start-page: 370
  year: 2001
  end-page: 376
  ident: bib72
  article-title: Helical membrane proteins: diversity of functions in the context of simple architecture
  publication-title: Curr. Opin. Struct. Biol.
– volume: 49
  start-page: 801
  year: 2008
  end-page: 813
  ident: bib47
  article-title: Drought stress alters water relations and expression of
  publication-title: Plant Cell Physiol.
– volume: 45
  start-page: 823
  year: 2004
  end-page: 830
  ident: bib66
  article-title: Water channel activity of radish plasma membrane aquaporins heterologously expressed in yeast and their modification by site-directed mutagenesis
  publication-title: Plant Cell Physiol.
– volume: 60
  start-page: 353
  year: 2005
  end-page: 366
  ident: bib12
  article-title: Statistical analysis and prediction of protein-protein interfaces
  publication-title: Proteins
– volume: 18
  start-page: 2394
  year: 1999
  end-page: 2400
  ident: bib39
  article-title: An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus
  publication-title: EMBO J.
– volume: 23
  start-page: 1073
  year: 2007
  end-page: 1079
  ident: bib56
  article-title: COBALT: constraint-based alignment tool for multiple protein sequences
  publication-title: Bioinformatics
– volume: 277
  start-page: 20598
  year: 2002
  end-page: 20604
  ident: bib22
  article-title: Role of C-terminal domain and transmembrane helices 5 and 6 in function and quaternary structure of major intrinsic proteins: analysis of aquaporin/glycerol facilitator chimeric proteins
  publication-title: J. Biol. Chem.
– volume: 256
  start-page: 385
  year: 1992
  end-page: 387
  ident: bib58
  article-title: Appearance of water channels in
  publication-title: Science
– volume: 38
  start-page: 11156
  year: 1999
  end-page: 11163
  ident: bib52
  article-title: Heterotetrameric composition of aquaporin-4 water channels
  publication-title: Biochemistry
– volume: 281
  start-page: 647
  year: 2013
  end-page: 656
  ident: bib2
  article-title: Structural determinants of the hydrogen peroxide permeability of aquaporins
  publication-title: FEBS J.
– volume: 49
  start-page: 1364
  year: 2008
  end-page: 1377
  ident: bib73
  article-title: Maize plasma membrane aquaporins belonging to the PIP1 and PIP2 subgroups are
  publication-title: Plant Cell Physiol.
– volume: 439
  start-page: 688
  year: 2006
  end-page: 694
  ident: bib70
  article-title: Structural mechanism of plant aquaporin gating
  publication-title: Nature
– volume: 400
  start-page: 189
  year: 2006
  end-page: 197
  ident: bib62
  article-title: Methylation of aquaporins in plant plasma membrane
  publication-title: Biochem. J.
– volume: 18
  start-page: 344
  year: 2013
  end-page: 352
  ident: bib28
  article-title: Insights into plant plasma membrane aquaporin trafficking
  publication-title: Trends Plant Sci.
– volume: 86
  start-page: 335
  year: 2014
  end-page: 350
  ident: bib30
  article-title: Expression and characterization of plasma membrane aquaporins in stomatal complexes of
  publication-title: Plant Mol. Biol.
– volume: 49
  start-page: 1029
  year: 2011
  end-page: 1039
  ident: bib3
  article-title: Identification and characterization of two plasma membrane aquaporins in durum wheat (
  publication-title: Plant Physiol. Biochem.
– volume: 273
  start-page: 33949
  year: 1998
  ident: 10.1016/j.molp.2016.04.006_bib42
  article-title: Oligomerization state of water channels and glycerol facilitators. Involvement of loop E
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.51.33949
– volume: 27
  start-page: 177
  year: 2004
  ident: 10.1016/j.molp.2016.04.006_bib20
  article-title: Overexpression of a lily PIP1 gene in tobacco increased the osmotic water permeability of leaf cells
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.0016-8025.2003.01130.x
– volume: 445
  start-page: 101
  year: 2012
  ident: 10.1016/j.molp.2016.04.006_bib11
  article-title: A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers
  publication-title: Biochem. J.
  doi: 10.1042/BJ20111704
– volume: 23
  start-page: 1073
  year: 2007
  ident: 10.1016/j.molp.2016.04.006_bib56
  article-title: COBALT: constraint-based alignment tool for multiple protein sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm076
– start-page: 293
  year: 1975
  ident: 10.1016/j.molp.2016.04.006_bib40
  article-title: Quaternary structure of proteins
– volume: 278
  start-page: 45603
  year: 2003
  ident: 10.1016/j.molp.2016.04.006_bib46
  article-title: Homo- and hetero-oligomerization of ammonium transporter-1 NH4 uniporters
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M307424200
– volume: 122
  start-page: 1025
  year: 2000
  ident: 10.1016/j.molp.2016.04.006_bib15
  article-title: Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity
  publication-title: Plant Physiol.
  doi: 10.1104/pp.122.4.1025
– volume: 104
  start-page: 12359
  year: 2007
  ident: 10.1016/j.molp.2016.04.006_bib80
  article-title: FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0701180104
– volume: 48
  start-page: 1132
  year: 2007
  ident: 10.1016/j.molp.2016.04.006_bib76
  article-title: HvPIP1;6, a barley (Hordeum vulgare L.) plasma membrane water channel particularly expressed in growing compared with non-growing leaf tissues
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcm083
– volume: 24
  start-page: 231
  year: 2000
  ident: 10.1016/j.molp.2016.04.006_bib48
  article-title: Aquaporin PIP genes are not expressed in the stigma papillae in Brassica oleracea
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.2000.00874.x
– volume: 49
  start-page: 1029
  year: 2011
  ident: 10.1016/j.molp.2016.04.006_bib3
  article-title: Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2011.06.002
– volume: 11
  start-page: 370
  year: 2001
  ident: 10.1016/j.molp.2016.04.006_bib72
  article-title: Helical membrane proteins: diversity of functions in the context of simple architecture
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(00)00217-7
– volume: 22
  start-page: 4673
  year: 1994
  ident: 10.1016/j.molp.2016.04.006_bib68
  article-title: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/22.22.4673
– volume: 589
  start-page: 3508
  year: 2015
  ident: 10.1016/j.molp.2016.04.006_bib78
  article-title: PIP1 aquaporins: intrinsic water channels or PIP2 aquaporin modulators?
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2015.10.018
– volume: 296
  start-page: 913
  year: 2002
  ident: 10.1016/j.molp.2016.04.006_bib79
  article-title: Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells
  publication-title: Science
  doi: 10.1126/science.1068539
– volume: 125
  start-page: 1206
  year: 2001
  ident: 10.1016/j.molp.2016.04.006_bib16
  article-title: Aquaporins constitute a large and highly divergent protein family in maize
  publication-title: Plant Physiol.
  doi: 10.1104/pp.125.3.1206
– volume: 60
  start-page: 353
  year: 2005
  ident: 10.1016/j.molp.2016.04.006_bib12
  article-title: Statistical analysis and prediction of protein-protein interfaces
  publication-title: Proteins
  doi: 10.1002/prot.20433
– volume: 14
  start-page: 762
  year: 2007
  ident: 10.1016/j.molp.2016.04.006_bib14
  article-title: A novel tripartite motif involved in aquaporin topogenesis, monomer folding and tetramerization
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1275
– volume: 53
  start-page: 115
  year: 2008
  ident: 10.1016/j.molp.2016.04.006_bib21
  article-title: AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03324.x
– volume: 32
  start-page: 1792
  year: 2004
  ident: 10.1016/j.molp.2016.04.006_bib23
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh340
– volume: 18
  start-page: 344
  year: 2013
  ident: 10.1016/j.molp.2016.04.006_bib28
  article-title: Insights into plant plasma membrane aquaporin trafficking
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.12.003
– volume: 45
  start-page: 823
  year: 2004
  ident: 10.1016/j.molp.2016.04.006_bib66
  article-title: Water channel activity of radish plasma membrane aquaporins heterologously expressed in yeast and their modification by site-directed mutagenesis
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pch120
– volume: 52
  start-page: 663
  year: 2011
  ident: 10.1016/j.molp.2016.04.006_bib32
  article-title: Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcr027
– volume: 35
  start-page: W473
  year: 2007
  ident: 10.1016/j.molp.2016.04.006_bib69
  article-title: PIC: protein interactions calculator
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm423
– volume: 439
  start-page: 688
  year: 2006
  ident: 10.1016/j.molp.2016.04.006_bib70
  article-title: Structural mechanism of plant aquaporin gating
  publication-title: Nature
  doi: 10.1038/nature04316
– volume: 6
  start-page: 187
  year: 1994
  ident: 10.1016/j.molp.2016.04.006_bib38
  article-title: Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1994.6020187.x
– volume: 281
  start-page: 647
  year: 2013
  ident: 10.1016/j.molp.2016.04.006_bib2
  article-title: Structural determinants of the hydrogen peroxide permeability of aquaporins
  publication-title: FEBS J.
  doi: 10.1111/febs.12653
– volume: 74
  start-page: 105
  year: 2010
  ident: 10.1016/j.molp.2016.04.006_bib8
  article-title: Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-010-9658-8
– volume: 103
  start-page: 269
  year: 2006
  ident: 10.1016/j.molp.2016.04.006_bib7
  article-title: Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0507225103
– volume: 50
  start-page: 6633
  year: 2011
  ident: 10.1016/j.molp.2016.04.006_bib44
  article-title: Arabidopsis thaliana NIP7;1: an anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore
  publication-title: Biochemistry
  doi: 10.1021/bi2004476
– volume: 277
  start-page: 20598
  year: 2002
  ident: 10.1016/j.molp.2016.04.006_bib22
  article-title: Role of C-terminal domain and transmembrane helices 5 and 6 in function and quaternary structure of major intrinsic proteins: analysis of aquaporin/glycerol facilitator chimeric proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M201179200
– volume: 266
  start-page: 6407
  year: 1991
  ident: 10.1016/j.molp.2016.04.006_bib65
  article-title: Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)38133-X
– volume: 62
  start-page: 305
  year: 2006
  ident: 10.1016/j.molp.2016.04.006_bib26
  article-title: Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-006-9022-1
– volume: 407
  start-page: 599
  year: 2000
  ident: 10.1016/j.molp.2016.04.006_bib50
  article-title: Structural determinants of water permeation through aquaporin-1
  publication-title: Nature
  doi: 10.1038/35036519
– volume: 305
  start-page: C663
  year: 2013
  ident: 10.1016/j.molp.2016.04.006_bib59
  article-title: Mutation of a single amino acid converts the human water channel aquaporin 5 into an anion channel
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00129.2013
– volume: 166
  start-page: 125
  year: 2014
  ident: 10.1016/j.molp.2016.04.006_bib19
  article-title: A new LxxxA motif in the transmembrane Helix3 of maize aquaporins belonging to the plasma membrane intrinsic protein PIP2 group is required for their trafficking to the plasma membrane
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.240945
– volume: 8
  start-page: e57993
  year: 2013
  ident: 10.1016/j.molp.2016.04.006_bib37
  article-title: Loop A is critical for the functional interaction of two Beta vulgaris PIP aquaporins
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0057993
– volume: 16
  start-page: 215
  year: 2004
  ident: 10.1016/j.molp.2016.04.006_bib24
  article-title: Interactions between plasma membrane aquaporins modulate their water channel activity
  publication-title: Plant Cell
  doi: 10.1105/tpc.017194
– volume: 400
  start-page: 189
  year: 2006
  ident: 10.1016/j.molp.2016.04.006_bib62
  article-title: Methylation of aquaporins in plant plasma membrane
  publication-title: Biochem. J.
  doi: 10.1042/BJ20060569
– volume: 269
  start-page: 10417
  year: 1994
  ident: 10.1016/j.molp.2016.04.006_bib64
  article-title: Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)34076-0
– volume: 11
  start-page: 2714
  year: 2002
  ident: 10.1016/j.molp.2016.04.006_bib83
  article-title: Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction
  publication-title: Protein Sci.
  doi: 10.1110/ps.0217002
– volume: 265
  start-page: 16027
  year: 1990
  ident: 10.1016/j.molp.2016.04.006_bib35
  article-title: The structure of protein-protein recognition sites
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)46181-3
– volume: 46
  start-page: 1568
  year: 2005
  ident: 10.1016/j.molp.2016.04.006_bib60
  article-title: Identification of 33 rice aquaporin genes and analysis of their expression and function
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pci172
– volume: 15
  start-page: 2507
  year: 2006
  ident: 10.1016/j.molp.2016.04.006_bib63
  article-title: Statistical potential for assessment and prediction of protein structures
  publication-title: Protein Sci.
  doi: 10.1110/ps.062416606
– volume: 149
  start-page: 445
  year: 2009
  ident: 10.1016/j.molp.2016.04.006_bib74
  article-title: The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.128645
– volume: 105
  start-page: 13327
  year: 2008
  ident: 10.1016/j.molp.2016.04.006_bib33
  article-title: High-resolution x-ray structure of human aquaporin 5
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0801466105
– volume: 118
  start-page: 315
  year: 1998
  ident: 10.1016/j.molp.2016.04.006_bib5
  article-title: Distinct biochemical and topological properties of the 31- and 27-kilodalton plasma membrane intrinsic protein subgroups from red beet
  publication-title: Plant Physiol.
  doi: 10.1104/pp.118.1.315
– volume: 429
  start-page: 193
  year: 2004
  ident: 10.1016/j.molp.2016.04.006_bib25
  article-title: Aquaporin-0 membrane junctions reveal the structure of a closed water pore
  publication-title: Nature
  doi: 10.1038/nature02503
– volume: 24
  start-page: 3463
  year: 2012
  ident: 10.1016/j.molp.2016.04.006_bib9
  article-title: Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.101758
– volume: 8
  year: 2013
  ident: 10.1016/j.molp.2016.04.006_bib43
  article-title: Herbivory of maize by southern corn rootworm induces expression of the major intrinsic protein ZmNIP1;1 and leads to the discovery of a novel aquaporin ZmPIP2;8
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.24937
– volume: 234
  start-page: 779
  year: 1993
  ident: 10.1016/j.molp.2016.04.006_bib61
  article-title: Comparative protein modelling by satisfaction of spatial restraints
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1993.1626
– volume: 28
  start-page: 815
  year: 2011
  ident: 10.1016/j.molp.2016.04.006_bib6
  article-title: Yeast Fps1 glycerol facilitator functions as a homotetramer
  publication-title: Yeast
  doi: 10.1002/yea.1908
– volume: 66
  start-page: 306
  year: 2011
  ident: 10.1016/j.molp.2016.04.006_bib10
  article-title: Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04496.x
– volume: 132
  start-page: 538
  year: 2008
  ident: 10.1016/j.molp.2016.04.006_bib51
  article-title: A fruit-specific plasma membrane aquaporin subtype PIP1;1 is regulated during strawberry (Fragaria x ananassa) fruit ripening
  publication-title: Physiol. Plant
  doi: 10.1111/j.1399-3054.2007.01046.x
– volume: 86
  start-page: 335
  year: 2014
  ident: 10.1016/j.molp.2016.04.006_bib30
  article-title: Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-014-0232-7
– volume: 49
  start-page: 801
  year: 2008
  ident: 10.1016/j.molp.2016.04.006_bib47
  article-title: Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcn054
– volume: 63
  start-page: 151
  year: 2013
  ident: 10.1016/j.molp.2016.04.006_bib45
  article-title: Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2012.11.018
– volume: 67
  start-page: 1078
  year: 2007
  ident: 10.1016/j.molp.2016.04.006_bib57
  article-title: ZRANK: reranking protein docking predictions with an optimized energy function
  publication-title: Proteins
  doi: 10.1002/prot.21373
– volume: 285
  start-page: 41982
  year: 2010
  ident: 10.1016/j.molp.2016.04.006_bib82
  article-title: Identification of a residue in helix 2 of rice plasma membrane intrinsic proteins that influences water permeability
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.101790
– volume: 352
  start-page: 183
  issue: Pt 1
  year: 2000
  ident: 10.1016/j.molp.2016.04.006_bib29
  article-title: Lentil seed aquaporins form a hetero-oligomer which is phosphorylated by a Mg2+-dependent and Ca2+-regulated kinase
  publication-title: Biochem. J.
  doi: 10.1042/bj3520183
– volume: 579
  start-page: 4417
  year: 2005
  ident: 10.1016/j.molp.2016.04.006_bib67
  article-title: Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.06.082
– volume: 302
  start-page: 205
  year: 2000
  ident: 10.1016/j.molp.2016.04.006_bib53
  article-title: T-Coffee: a novel method for fast and accurate multiple sequence alignment
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.4042
– volume: 38
  start-page: 11156
  year: 1999
  ident: 10.1016/j.molp.2016.04.006_bib52
  article-title: Heterotetrameric composition of aquaporin-4 water channels
  publication-title: Biochemistry
  doi: 10.1021/bi990941s
– volume: 49
  start-page: 1364
  year: 2008
  ident: 10.1016/j.molp.2016.04.006_bib73
  article-title: Maize plasma membrane aquaporins belonging to the PIP1 and PIP2 subgroups are in vivo phosphorylated
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcn112
– volume: 287
  start-page: C1292
  year: 2004
  ident: 10.1016/j.molp.2016.04.006_bib13
  article-title: Evidence for stabilization of aquaporin-2 folding mutants by N-linked glycosylation in endoplasmic reticulum
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00561.2003
– volume: 53
  start-page: 2127
  year: 2012
  ident: 10.1016/j.molp.2016.04.006_bib34
  article-title: Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcs154
– volume: 83
  start-page: 219
  year: 2013
  ident: 10.1016/j.molp.2016.04.006_bib17
  article-title: Involvement of rose aquaporin RhPIP1;1 in ethylene-regulated petal expansion through interaction with RhPIP2;1
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-013-0084-6
– volume: 171
  start-page: 24
  year: 2013
  ident: 10.1016/j.molp.2016.04.006_bib81
  article-title: In silico study of aquaporin V: effects and affinity of the central pore-occluding lipid
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2012.09.004
– volume: 7
  start-page: 27
  year: 2007
  ident: 10.1016/j.molp.2016.04.006_bib4
  article-title: Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters
  publication-title: BMC Struct. Biol.
  doi: 10.1186/1472-6807-7-27
– volume: 256
  start-page: 385
  year: 1992
  ident: 10.1016/j.molp.2016.04.006_bib58
  article-title: Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein
  publication-title: Science
  doi: 10.1126/science.256.5055.385
– volume: 564
  start-page: 297
  year: 2014
  ident: 10.1016/j.molp.2016.04.006_bib31
  article-title: Toward understanding driving forces in membrane protein folding
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2014.07.031
– volume: 34
  start-page: e122
  year: 2006
  ident: 10.1016/j.molp.2016.04.006_bib54
  article-title: Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl635
– volume: 56
  start-page: 819
  year: 2015
  ident: 10.1016/j.molp.2016.04.006_bib18
  article-title: Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu203
– volume: 61
  start-page: 3935
  year: 2010
  ident: 10.1016/j.molp.2016.04.006_bib1
  article-title: Cloning, functional characterization, and co-expression studies of a novel aquaporin (FaPIP2;1) of strawberry fruit
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq210
– volume: 60
  start-page: 2256
  year: 2004
  ident: 10.1016/j.molp.2016.04.006_bib41
  article-title: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904026460
– volume: 285
  start-page: 31253
  year: 2010
  ident: 10.1016/j.molp.2016.04.006_bib55
  article-title: Aquaporin tetramer composition modifies the function of tobacco aquaporins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.115881
– volume: 50
  start-page: 10223
  year: 2011
  ident: 10.1016/j.molp.2016.04.006_bib75
  article-title: The tetrameric alpha-helical membrane protein GlpF unfolds via a dimeric folding intermediate
  publication-title: Biochemistry
  doi: 10.1021/bi201266m
– volume: 68
  start-page: 337
  year: 2008
  ident: 10.1016/j.molp.2016.04.006_bib27
  article-title: The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-008-9373-x
– volume: 425
  start-page: 393
  year: 2003
  ident: 10.1016/j.molp.2016.04.006_bib71
  article-title: Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins
  publication-title: Nature
  doi: 10.1038/nature01853
– volume: 18
  start-page: 2394
  year: 1999
  ident: 10.1016/j.molp.2016.04.006_bib39
  article-title: An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.9.2394
– volume: 238
  start-page: 777
  year: 1994
  ident: 10.1016/j.molp.2016.04.006_bib49
  article-title: Satisfying hydrogen bonding potential in proteins
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.1334
– volume: 111
  start-page: 231
  year: 2014
  ident: 10.1016/j.molp.2016.04.006_bib77
  article-title: Heteromerization of PIP aquaporins affects their intrinsic permeability
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1316537111
– volume: 67
  start-page: 570
  year: 2011
  ident: 10.1016/j.molp.2016.04.006_bib36
  article-title: AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04617.x
SSID ssj0060863
Score 2.349999
Snippet Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes ecross biological membranes. They assemble as homotetramers but some...
Aquaporins are channels facilitating the diffusion of water and/or small uncharged solutes across biological membranes. They assemble as homotetramers but some...
SourceID proquest
pubmed
crossref
elsevier
chongqing
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 986
SubjectTerms affinity chromatography
amino acids
Animals
aquaporin
aquaporins
Aquaporins - genetics
Aquaporins - metabolism
Biological Transport
Cell Membrane - metabolism
corn
heterotetramer
mutagenesis
mutation
Mutation - genetics
oligomerization
oocytes
Plant Proteins - genetics
Plant Proteins - metabolism
plasma membrane
Protein Multimerization
solutes
spinach
water-channel activity
X-radiation
Xenopus
Xenopus laevis
Zea mays
Zea mays - genetics
Zea mays - metabolism
单体
单突变
异源二聚体
水通道蛋白
活性
结构域
跨膜
非洲爪蟾卵母细胞
Title Single Mutations in the Transmembrane Domains of Maize Plasma Membrane Aquaporins Affect the Activity of Monomers within a Heterotetramer
URI http://lib.cqvip.com/qk/90143B/201607/669927575.html
https://dx.doi.org/10.1016/j.molp.2016.04.006
https://www.ncbi.nlm.nih.gov/pubmed/27109604
https://www.proquest.com/docview/1802738807
https://www.proquest.com/docview/2000341351
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQ22GXCdivAkOetNsU1UlcJzmGbqiwFSF-SL1ZtuNAUJMUmh7gP9h_vfecpBKHctipbfrsWHnOe5-T730m5DvnoQ59pZDnpz1uotBTWmSeUDpAYWvD3POO6bmY3PCz2Wi2RcZ9LQzSKrvY38Z0F627I8Puag4XRTG8Qv58gLWnqBoFURbiMCq1YBHf7LiPxgIguyPZg7GH1l3hTMvxKus5alb6wsmdMiewcFdXtw-QNjYlqk1A1CWkkx3yvkOSNG0Hu0u2bLVH3h7XgPaePpC_V9D53NLpqn3XvqRFRQHsUZecSlvCKrmy9GddqgL-rHM6VcWzpReApktFp71B-rBSCyTpLWnqqB-uk9S0m064dlgWASCS4iNdOImiE6TY1I1tkPj1-JHcnPy6Hk-8btsFz4wC0XjgVJbliVWCR_nICFxE5soyFG4P8jCKhTY8sXGY6RhSLADeONQmyxIjrAkyEX4i21Vd2S-ERooz6EcwbXP4ZmPu51nIrPFhDmhfDMjB-nrLRSuvIYVIkiACGDkgfu8BaTrFctw4Yy57atq9RA9K9KBkXIIHB-THuk3f4WvWo96x8sWsk5BQXm33rZ8FEm5HfMcCLqlXS4mCehEK7ESbbQKnCoRbIw7I53YKrccaIDdWML7_nyM7IO_wlyMUi0Oy3Tyu7FeATY0-Im_S8eWfC_w8_T05P3L3yT9FchoI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VggSXqry3DzASNxRtHl4nOW4L1RaaCqmttDfLdhwI2iTbbvYA_4B_zYyTrMRhe-gtSsaO5bFnPiefPwN85DzSUaAU8fy0x00ceUqL3BNKhyRsbXz3vSO7FLMb_nU-me_A6bAXhmiVfezvYrqL1v2dcd-b42VZjq-IPx_S3lNSjcIo-wgeIxoQxOs6n58M4VggZncse7T2yLzfOdORvKpmQaKVgXB6p75TWPjZ1D9uMW9sy1TbkKjLSGf7sNdDSTbtWvscdmz9Ap6cNAj3fr-Ev1dY-cKybN39bF-xsmaI9pjLTpWtcJlcW_a5qVSJD5uCZar8Y9l3hNOVYtlgML1dqyWx9FZs6rgfrpKp6U6dcOVoXwSiSEbfdPElis2IY9O0tiXm190ruDn7cn068_pzFzwzCUXroVf9vEitEjwuJkbQKrJQ1ifl9rCI4kRow1ObRLlOMMci4k0ibfI8NcKaMBfRa9itm9q-BRYr7mM9wte2wCub8KDII9-aAAeBDsQIDjf9LZedvoYUIk3DGHHkCILBA9L0kuV0csZCDty0X5I8KMmD0ucSPTiCT5syQ4X3WU8Gx8r_hp3EjHJvuQ_DKJA4H-knC7qkWa8kKerFpLATb7cJnSwQnY04gjfdENq0NSRyrPD5wQNb9h6ezq6zC3lxfvntEJ7RE8cuFkew296t7TFiqFa_c3PkH9WBGgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Mutations+in+the+Transmembrane+Domains+of+Maize+Plasma+Membrane+Aquaporins+Affect+the+Activity+of+Monomers+within+a+Heterotetramer&rft.jtitle=Molecular+plant&rft.au=Berny%2C+Marie%C2%A0C.&rft.au=Gilis%2C+Dimitri&rft.au=Rooman%2C+Marianne&rft.au=Chaumont%2C+Fran%C3%A7ois&rft.date=2016-07-06&rft.pub=Elsevier+Inc&rft.issn=1674-2052&rft.eissn=1752-9867&rft.volume=9&rft.issue=7&rft.spage=986&rft.epage=1003&rft_id=info:doi/10.1016%2Fj.molp.2016.04.006&rft.externalDocID=S1674205216300284
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90143B%2F90143B.jpg