Identifying Influential Nodes in Large-Scale Directed Networks: The Role of Clustering
Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological net...
Saved in:
Published in | PloS one Vol. 8; no. 10; p. e77455 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
31.10.2013
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node's neighbors but do not directly make use of the interactions among it's neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors' influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about [Formula: see text] nodes, more than 15 times faster than PageRank. |
---|---|
AbstractList | Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node’s neighbors but do not directly make use of the interactions among it’s neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors’ influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k -core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about nodes, more than 15 times faster than PageRank. Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node's neighbors but do not directly make use of the interactions among it's neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors' influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about [Formula: see text] nodes, more than 15 times faster than PageRank.Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node's neighbors but do not directly make use of the interactions among it's neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors' influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about [Formula: see text] nodes, more than 15 times faster than PageRank. Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node's neighbors but do not directly make use of the interactions among it's neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors' influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about [Formula: see text] nodes, more than 15 times faster than PageRank. Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node’s neighbors but do not directly make use of the interactions among it’s neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors’ influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k -core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about nodes, more than 15 times faster than PageRank. |
Author | Lü, Linyuan Chen, Duan-Bing Zhou, Tao Gao, Hui |
AuthorAffiliation | 1 Web Sciences Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China 2 Institute of Information Economy, Alibaba Business College, Hangzhou Normal University, Hangzhou, People’s Republic of China 3 Department of Physics, University of Fribourg, Fribourg, Switzerland University of Maribor, Slovenia |
AuthorAffiliation_xml | – name: University of Maribor, Slovenia – name: 2 Institute of Information Economy, Alibaba Business College, Hangzhou Normal University, Hangzhou, People’s Republic of China – name: 1 Web Sciences Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China – name: 3 Department of Physics, University of Fribourg, Fribourg, Switzerland |
Author_xml | – sequence: 1 givenname: Duan-Bing surname: Chen fullname: Chen, Duan-Bing – sequence: 2 givenname: Hui surname: Gao fullname: Gao, Hui – sequence: 3 givenname: Linyuan surname: Lü fullname: Lü, Linyuan – sequence: 4 givenname: Tao surname: Zhou fullname: Zhou, Tao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24204833$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kttu1DAQhi1URA_wBggiccNNFic-Jb2ohJbTSqsiQeHWcuzx1os3XuwE1LfH282itkJc2Z7555vf9pyioz70gNDzCs8qIqo36zDGXvnZNodnGAtBGXuETqqW1CWvMTm6sz9GpymtMWak4fwJOq5pjWlDyAn6vjDQD87euH5VLHrrx91R-eIyGEiF64uliisov2rloXjnIugBTHEJw-8Qf6Tz4uoaii8h54It5n5MA8SMeooeW-UTPJvWM_Ttw_ur-ady-fnjYv52WWpW86EE0mhDDSF1qyivMHAFCrPONIqBMEoxw7RqGsPbtmMtsQTqGlqhuRGdsIycoZd77taHJKcnSbKiVIi6YkRkxWKvMEGt5Ta6jYo3MignbwMhrqSKg9MepKBGA22zAasp0VXDgHLFBeOdtcSazLqYuo3dBrK4H6Ly96D3M727lqvwS5ImO8JtBryeADH8HCENcuOSBu9VD2G89d0KzhqBs_TVA-m_b_firqO_Vg4fnAXne4GOIaUIVmo3qMGFnUHnZYXlbpoOcLmbJjlNUy6mD4oP_P-W_QGAF9JF |
CitedBy_id | crossref_primary_10_1016_j_artmed_2022_102350 crossref_primary_10_1155_2021_6325578 crossref_primary_10_1016_j_knosys_2022_109788 crossref_primary_10_1080_0144929X_2021_1915384 crossref_primary_10_1089_big_2022_0165 crossref_primary_10_1016_j_physa_2014_02_041 crossref_primary_10_1016_j_eswa_2018_07_069 crossref_primary_10_1140_epjb_s10051_022_00458_y crossref_primary_10_1016_j_cosrev_2020_100247 crossref_primary_10_1016_j_physa_2021_125791 crossref_primary_10_1038_s41598_021_88692_9 crossref_primary_10_1142_S0218194023410097 crossref_primary_10_1016_j_physa_2017_05_098 crossref_primary_10_1186_s10194_021_01315_6 crossref_primary_10_1038_ncomms10168 crossref_primary_10_3389_fphy_2023_1046077 crossref_primary_10_1142_S0219525924500024 crossref_primary_10_3390_math12020330 crossref_primary_10_1063_5_0005452 crossref_primary_10_1103_PhysRevE_98_012316 crossref_primary_10_1016_j_eswa_2018_02_021 crossref_primary_10_1088_1674_1056_acd9c3 crossref_primary_10_1145_3705014 crossref_primary_10_1109_TNSE_2018_2841942 crossref_primary_10_1093_comjnl_bxac180 crossref_primary_10_1186_s12918_018_0598_2 crossref_primary_10_1109_TNET_2023_3235307 crossref_primary_10_1140_epjb_e2015_60604_5 crossref_primary_10_1145_3039868 crossref_primary_10_3390_e22020242 crossref_primary_10_1016_j_physa_2014_09_010 crossref_primary_10_1142_S021798492150620X crossref_primary_10_1371_journal_pone_0136831 crossref_primary_10_3390_rs15040880 crossref_primary_10_1016_j_asoc_2020_106436 crossref_primary_10_1142_S0129183118400053 crossref_primary_10_1109_TNSE_2020_2973328 crossref_primary_10_1038_s41598_020_59020_4 crossref_primary_10_1016_j_physa_2019_123659 crossref_primary_10_1038_s41598_024_78626_6 crossref_primary_10_1209_0295_5075_106_48005 crossref_primary_10_1007_s41109_024_00647_x crossref_primary_10_1016_j_chaos_2024_114487 crossref_primary_10_1177_03611981221097704 crossref_primary_10_3390_info10100311 crossref_primary_10_1155_2019_9057194 crossref_primary_10_1007_s10845_018_1396_9 crossref_primary_10_1109_ACCESS_2023_3324715 crossref_primary_10_1142_S1793351X24430037 crossref_primary_10_1371_journal_pone_0164393 crossref_primary_10_1109_ACCESS_2017_2679038 crossref_primary_10_1145_3653296 crossref_primary_10_1016_j_ins_2024_120908 crossref_primary_10_3390_electronics11111771 crossref_primary_10_1109_ACCESS_2018_2794324 crossref_primary_10_1088_1674_1056_abea86 crossref_primary_10_1016_j_jocs_2022_101591 crossref_primary_10_1142_S0129183117500140 crossref_primary_10_1007_s11277_024_11544_y crossref_primary_10_1109_TNSE_2023_3247485 crossref_primary_10_1155_2020_4529429 crossref_primary_10_1016_j_amc_2024_128700 crossref_primary_10_1007_s42524_022_0190_8 crossref_primary_10_1038_srep27823 crossref_primary_10_1109_ACCESS_2019_2916172 crossref_primary_10_1142_S0217979218503071 crossref_primary_10_1038_s41598_019_51153_5 crossref_primary_10_1016_j_physa_2014_10_006 crossref_primary_10_1007_s12065_022_00712_3 crossref_primary_10_1098_rsos_221380 crossref_primary_10_1038_srep41321 crossref_primary_10_3389_fmicb_2023_1234817 crossref_primary_10_3233_KES_180378 crossref_primary_10_1155_2024_5910244 crossref_primary_10_3390_e20040261 crossref_primary_10_1177_0020294019877489 crossref_primary_10_1016_j_neucom_2019_06_030 crossref_primary_10_1109_ACCESS_2020_3007726 crossref_primary_10_1038_s41598_018_30310_2 crossref_primary_10_3934_math_2024178 crossref_primary_10_1109_ACCESS_2021_3094196 crossref_primary_10_1038_s41598_020_59616_w crossref_primary_10_18632_oncotarget_11878 crossref_primary_10_1088_1742_6596_1334_1_012003 crossref_primary_10_1155_2021_1956356 crossref_primary_10_1142_S0217979219501005 crossref_primary_10_7498_aps_64_020101 crossref_primary_10_1088_1674_1056_ac4484 crossref_primary_10_1007_s11277_021_08577_y crossref_primary_10_3390_info11040189 crossref_primary_10_3389_fphy_2024_1501807 crossref_primary_10_52547_jsdp_18_2_57 crossref_primary_10_1063_5_0195423 crossref_primary_10_1088_1367_2630_17_11_113045 crossref_primary_10_3390_e23111456 crossref_primary_10_1016_j_physa_2017_05_037 crossref_primary_10_1109_ACCESS_2020_2972997 crossref_primary_10_1007_s13278_017_0440_7 crossref_primary_10_1016_j_physa_2018_03_062 crossref_primary_10_1016_j_physa_2018_12_001 crossref_primary_10_7498_aps_64_050502 crossref_primary_10_1016_j_physa_2022_128353 crossref_primary_10_1016_j_engappai_2021_104573 crossref_primary_10_1038_s41598_019_51209_6 crossref_primary_10_1209_0295_5075_107_10010 crossref_primary_10_1016_j_ins_2017_07_034 crossref_primary_10_1093_comjnl_bxab034 crossref_primary_10_1142_S0129183121500121 crossref_primary_10_3390_e22040450 crossref_primary_10_1088_0256_307X_33_2_028901 crossref_primary_10_1016_j_eswa_2019_112859 crossref_primary_10_1063_5_0147721 crossref_primary_10_1142_S012918312150090X crossref_primary_10_1155_2019_6528431 crossref_primary_10_1371_journal_pone_0145283 crossref_primary_10_1016_j_physrep_2016_06_007 crossref_primary_10_1016_j_esr_2025_101660 crossref_primary_10_1016_j_knosys_2020_105580 crossref_primary_10_1016_j_neucom_2015_11_124 crossref_primary_10_1016_j_eswa_2024_123699 crossref_primary_10_1371_journal_pone_0172073 crossref_primary_10_1155_2022_4471361 crossref_primary_10_1016_j_tele_2018_11_008 crossref_primary_10_1016_j_eswa_2019_02_007 crossref_primary_10_1016_j_physa_2019_02_047 crossref_primary_10_1155_2018_4562609 crossref_primary_10_1177_08944393211028182 crossref_primary_10_1109_ACCESS_2024_3450296 crossref_primary_10_1016_j_physa_2014_07_023 crossref_primary_10_1109_ACCESS_2024_3507384 crossref_primary_10_2139_ssrn_4052672 crossref_primary_10_1016_j_cnsns_2019_03_015 crossref_primary_10_1017_psa_2021_18 crossref_primary_10_62051_ijsspa_v6n2_19 crossref_primary_10_1002_cpe_5677 crossref_primary_10_1016_j_cjph_2018_11_003 crossref_primary_10_1155_2022_2036370 crossref_primary_10_1142_S0129183115500679 crossref_primary_10_1063_1_5141153 crossref_primary_10_1002_cam4_3245 crossref_primary_10_1038_srep19307 crossref_primary_10_1515_jisys_2016_0140 crossref_primary_10_1016_j_patter_2020_100052 crossref_primary_10_3390_e25040637 crossref_primary_10_1155_2022_2749091 crossref_primary_10_1155_2022_7896380 crossref_primary_10_1038_srep06108 crossref_primary_10_3390_su10124480 crossref_primary_10_1016_j_eswa_2022_117791 crossref_primary_10_1007_s10660_023_09796_0 crossref_primary_10_1007_s12652_019_01273_7 crossref_primary_10_1063_1_5055069 crossref_primary_10_1142_S0217979221502313 crossref_primary_10_1016_j_physa_2019_121071 crossref_primary_10_1109_TCSS_2022_3148778 crossref_primary_10_1016_j_future_2020_08_010 crossref_primary_10_1016_j_knosys_2022_110163 crossref_primary_10_1016_j_samod_2024_100031 crossref_primary_10_1007_s10586_022_03540_3 crossref_primary_10_1007_s41109_024_00676_6 crossref_primary_10_1002_qre_2594 crossref_primary_10_1089_cyber_2015_0539 crossref_primary_10_1186_s40649_016_0030_2 crossref_primary_10_1016_j_jocs_2024_102473 crossref_primary_10_1109_ACCESS_2018_2875247 crossref_primary_10_1063_5_0063068 crossref_primary_10_1016_j_physa_2014_11_012 crossref_primary_10_1016_j_eswa_2024_126292 crossref_primary_10_1155_2022_9199998 crossref_primary_10_1016_j_physa_2015_09_028 crossref_primary_10_1007_s10489_020_02132_1 crossref_primary_10_1016_j_knosys_2023_111163 crossref_primary_10_1016_j_physa_2019_123262 crossref_primary_10_1016_j_ins_2023_119723 crossref_primary_10_1007_s10115_024_02262_9 crossref_primary_10_1007_s41060_024_00608_8 crossref_primary_10_1016_j_physa_2019_121538 crossref_primary_10_1016_j_physa_2017_12_017 crossref_primary_10_3390_e26121075 crossref_primary_10_7498_aps_65_168901 crossref_primary_10_3390_su13073813 crossref_primary_10_1098_rsta_2024_0141 crossref_primary_10_1109_TCSI_2019_2907751 crossref_primary_10_1109_TCSS_2022_3180177 crossref_primary_10_1371_journal_pone_0203388 crossref_primary_10_1109_TITS_2022_3200140 crossref_primary_10_1142_S0217979218501187 crossref_primary_10_1016_j_physa_2015_08_045 crossref_primary_10_1088_1742_5468_aa672d crossref_primary_10_1016_j_cnsns_2019_01_032 crossref_primary_10_1016_j_inffus_2024_102439 crossref_primary_10_1016_j_physa_2018_09_064 crossref_primary_10_1109_ACCESS_2023_3268797 crossref_primary_10_1186_s13638_020_01820_3 crossref_primary_10_1038_s41598_020_77536_7 crossref_primary_10_1038_srep21380 crossref_primary_10_1016_j_eswa_2019_113092 crossref_primary_10_12965_jer_2040010_005 crossref_primary_10_3389_fenvs_2021_814599 crossref_primary_10_1155_2021_8897784 crossref_primary_10_1371_journal_pone_0200091 crossref_primary_10_1088_1674_1056_ac8e56 crossref_primary_10_3390_fractalfract7020109 crossref_primary_10_1103_PhysRevE_96_022323 crossref_primary_10_1140_epjb_e2016_70334_9 crossref_primary_10_1155_2022_7904892 crossref_primary_10_1016_j_softx_2024_101950 crossref_primary_10_1016_j_physa_2019_04_205 crossref_primary_10_3390_e17042228 crossref_primary_10_1371_journal_pone_0294574 crossref_primary_10_1016_j_physa_2019_01_136 crossref_primary_10_1016_j_eswa_2022_119086 crossref_primary_10_1038_s41598_020_60239_4 crossref_primary_10_1063_1_5091608 crossref_primary_10_1186_s40246_023_00565_6 crossref_primary_10_1155_2022_2400751 crossref_primary_10_1109_TCSS_2022_3161305 crossref_primary_10_1109_TCYB_2018_2861568 crossref_primary_10_1016_j_eswa_2024_124590 crossref_primary_10_3390_e19110614 |
Cites_doi | 10.1103/PhysRevE.84.045101 10.1126/science.1215842 10.1007/s10115-011-0396-2 10.1016/j.physleta.2011.02.052 10.1016/j.physa.2013.01.054 10.1103/PhysRevE.71.057101 10.1080/10020070612330019 10.1088/1367-2630/11/3/033027 10.1126/science.1185231 10.1016/j.biosystems.2009.10.003 10.1073/pnas.98.2.404 10.1103/PhysRevE.74.056109 10.1088/1367-2630/14/3/033033 10.1016/j.knosys.2013.01.017 10.1103/PhysRevE.69.066116 10.1017/CBO9780511791383 10.1038/30918 10.1103/PhysRevE.76.026107 10.1088/0256-307X/23/4/079 10.1371/journal.pone.0020474 10.1145/324133.324140 10.1088/1367-2630/13/12/123005 10.1073/pnas.1116502109 10.1109/TASE.2010.2052042 10.1371/journal.pone.0021202 10.1038/nphys2160 10.1103/PhysRevE.85.026107 10.1103/PhysRevE.71.046141 10.1145/1298306.1298311 10.1103/PhysRevE.81.056102 10.1016/j.socnet.2007.04.002 10.1016/S0169-7552(98)00110-X 10.1103/PhysRevLett.89.108701 10.1209/0295-5075/104/68006 10.1007/BF02289527 10.1140/epjb/e2011-20207-x 10.1109/TrustCom.2011.209 10.1209/0295-5075/93/40001 10.1016/0378-8733(78)90021-7 10.1038/nphys1746 10.1145/1718487.1718520 10.1016/j.physleta.2006.12.021 10.1016/j.physa.2011.09.017 10.1209/0295-5075/96/48007 10.1093/oso/9780198545996.001.0001 10.1103/PhysRevLett.86.3200 10.1371/journal.pone.0025190 10.1108/03684921111142359 10.1016/j.physa.2010.11.027 |
ContentType | Journal Article |
Copyright | 2013 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2013 Chen et al 2013 Chen et al |
Copyright_xml | – notice: 2013 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2013 Chen et al 2013 Chen et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0077455 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Computer Science |
DocumentTitleAlternate | Identifying Influential Nodes in Directed Networks |
EISSN | 1932-6203 |
ExternalDocumentID | 1447721537 oai_doaj_org_article_74dce49a05fc43c185e46a6756bff3fd PMC3814409 3115144631 24204833 10_1371_journal_pone_0077455 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US Switzerland China |
GeographicLocations_xml | – name: Switzerland – name: China – name: United States--US |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PV9 RZL 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM - 02 AAPBV ABPTK ADACO BBAFP BBORY KM |
ID | FETCH-LOGICAL-c526t-e38cd4d3329a4610e6aea05bd8a5e7daa5d5ca88d699b593f3e22e97c6d7b7f53 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:14:03 EST 2021 Wed Aug 27 01:26:03 EDT 2025 Thu Aug 21 14:06:24 EDT 2025 Sun Aug 24 03:56:50 EDT 2025 Fri Jul 25 10:18:41 EDT 2025 Mon Jul 21 06:06:48 EDT 2025 Thu Apr 24 22:53:46 EDT 2025 Tue Jul 01 03:18:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c526t-e38cd4d3329a4610e6aea05bd8a5e7daa5d5ca88d699b593f3e22e97c6d7b7f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceived and designed the experiments: DBC LL TZ. Performed the experiments: DBC HG. Analyzed the data: DBC HG LL. Contributed reagents/materials/analysis tools: DBC LL TZ. Wrote the paper: DBC LL TZ. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0077455 |
PMID | 24204833 |
PQID | 1447721537 |
PQPubID | 1436336 |
ParticipantIDs | plos_journals_1447721537 doaj_primary_oai_doaj_org_article_74dce49a05fc43c185e46a6756bff3fd pubmedcentral_primary_oai_pubmedcentral_nih_gov_3814409 proquest_miscellaneous_1449765870 proquest_journals_1447721537 pubmed_primary_24204833 crossref_citationtrail_10_1371_journal_pone_0077455 crossref_primary_10_1371_journal_pone_0077455 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-31 |
PublicationDateYYYYMMDD | 2013-10-31 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2013 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | ref15 L Lü (ref35) 2011; 390 X Feng (ref37) 2012; 85 X Wu (ref27) 2011; 375 ref19 JM Galán (ref23) 2011; 6 HX Yang (ref5) 2011; 84 SN Soffer (ref38) 2005; 71 T Zhou (ref40) 2005; 71 LC Freeman (ref10) 1979; 1 DB Chen (ref14) 2012; 391 ref46 LL Jiang (ref13) 2011; 93 ref41 N Masuda (ref22) 2011; 6 DJ Watts (ref21) 1998; 393 L Lü (ref30) 2011; 13 T Zhou (ref2) 2006; 16 VM Eguíluz (ref28) 2002; 89 MEJ Newman (ref34) 2001; 98 J Kleinberg (ref17) 1999; 46 D Trpevski (ref31) 2010; 81 H Kim (ref48) 2012; 85 ref4 R Yang (ref43) 2007; 364 P Bonacich (ref11) 2007; 29 ref32 X Zhang (ref49) 2013; 42 S Brin (ref18) 1998; 30 M Kitsak (ref6) 2010; 6 R Narayanam (ref44) 2011; 8 D Centola (ref45) 2010; 329 G Fagiolo (ref39) 2007; 76 M Perc (ref12) 2009; 11 G Sabidussi (ref9) 1966; 31 X Wu (ref26) 2006; 23 YB Zhou (ref50) 2012; 14 R Pastor-Satorras (ref1) 2001; 86 Z Liu (ref36) 2011; 96 ref20 L Lü (ref7) 2011; 6 K Saito (ref16) 2012; 30 L Ding (ref25) 2011; 40 A Vespiggnani (ref3) 2012; 8 J Ugander (ref33) 2012; 109 T Zhou (ref42) 2006; 74 M Perc (ref24) 2010; 99 S Aral (ref8) 2012; 337 D Wei (ref47) 2013; 392 T Petermann (ref29) 2004; 69 17279970 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 2):056109 21998641 - PLoS One. 2011;6(10):e25190 20813952 - Science. 2010 Sep 3;329(5996):1194-7 15903760 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 2):046141 22181212 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):045101 19837129 - Biosystems. 2010 Feb;99(2):109-25 12225235 - Phys Rev Lett. 2002 Sep 2;89(10):108701 11290142 - Phys Rev Lett. 2001 Apr 2;86(14):3200-3 5232444 - Psychometrika. 1966 Dec;31(4):581-603 21655211 - PLoS One. 2011;6(5):e20474 15244676 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066116 22463279 - Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 2):026107 22722253 - Science. 2012 Jul 20;337(6092):337-41 22474360 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5962-6 16089694 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):057101 11149952 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):404-9 17930104 - Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 2):026107 20866292 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 2):056102 21738620 - PLoS One. 2011;6(6):e21202 9623998 - Nature. 1998 Jun 4;393(6684):440-2 |
References_xml | – volume: 84 start-page: 045101 year: 2011 ident: ref5 article-title: Control of epidemic spreading on complex networks by local traffic dynamics publication-title: Phys Rev E doi: 10.1103/PhysRevE.84.045101 – volume: 337 start-page: 337 year: 2012 ident: ref8 article-title: Identifying influential and susceptible members of social networks publication-title: Science doi: 10.1126/science.1215842 – volume: 30 start-page: 613 year: 2012 ident: ref16 article-title: Efficient discovery of influential nodes for sis models in social networks publication-title: Knowl Inf Syst doi: 10.1007/s10115-011-0396-2 – volume: 375 start-page: 1559 year: 2011 ident: ref27 article-title: Cluster synchronization in the adaptive complex dynamical networks via a novel approach publication-title: Phys Lett A doi: 10.1016/j.physleta.2011.02.052 – volume: 392 start-page: 2564 year: 2013 ident: ref47 article-title: Identifying influential nodes in weighted networks based on evidence theory publication-title: Physica A doi: 10.1016/j.physa.2013.01.054 – volume: 71 start-page: 057101 year: 2005 ident: ref38 article-title: Network clustering coefficient without degree-correlation biases publication-title: Phys Rev E doi: 10.1103/PhysRevE.71.057101 – volume: 16 start-page: 452 year: 2006 ident: ref2 article-title: Epidemic dynamics on complex networks publication-title: Prog Nat Sci doi: 10.1080/10020070612330019 – volume: 11 start-page: 033027 year: 2009 ident: ref12 article-title: Evolution of cooperation on scale-free networks subject to error and attack publication-title: New J Phys doi: 10.1088/1367-2630/11/3/033027 – volume: 329 start-page: 1194 year: 2010 ident: ref45 article-title: The spread of behavior in an online social network experiment publication-title: Science doi: 10.1126/science.1185231 – volume: 99 start-page: 109 year: 2010 ident: ref24 article-title: Coevolutionary games–a mini review publication-title: BioSystems doi: 10.1016/j.biosystems.2009.10.003 – volume: 98 start-page: 404 year: 2001 ident: ref34 article-title: The structure of scientific collaboration networks publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.98.2.404 – volume: 74 start-page: 056109 year: 2006 ident: ref42 article-title: Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity publication-title: Phys Rev E doi: 10.1103/PhysRevE.74.056109 – volume: 14 start-page: 033033 year: 2012 ident: ref50 article-title: Quantifying the influence of scientists and their publications: distinguishing between prestige and popularity publication-title: New J Phys doi: 10.1088/1367-2630/14/3/033033 – volume: 42 start-page: 74 year: 2013 ident: ref49 article-title: Identifying influential nodes in complex networks with community structure publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2013.01.017 – volume: 69 start-page: 066116 year: 2004 ident: ref29 article-title: Role of clustering and gridlike ordering in epidemic spreading publication-title: Phys Rev E doi: 10.1103/PhysRevE.69.066116 – ident: ref4 doi: 10.1017/CBO9780511791383 – volume: 393 start-page: 440 year: 1998 ident: ref21 article-title: Collective dynamics of ‘small-world’ networks publication-title: Nature doi: 10.1038/30918 – volume: 76 start-page: 026107 year: 2007 ident: ref39 article-title: Clustering in complex directed networks publication-title: Phys Rev E doi: 10.1103/PhysRevE.76.026107 – volume: 23 start-page: 1046 year: 2006 ident: ref26 article-title: Synchronizability of highly clustered scale-free networks publication-title: Chin Phys Lett doi: 10.1088/0256-307X/23/4/079 – volume: 6 start-page: e20474 year: 2011 ident: ref23 article-title: Axelrod’s metanorm games on networks publication-title: PLoS ONE doi: 10.1371/journal.pone.0020474 – volume: 46 start-page: 604 year: 1999 ident: ref17 article-title: Authoritative sources in a hyperlinked environment publication-title: J ACM doi: 10.1145/324133.324140 – volume: 13 start-page: 123005 year: 2011 ident: ref30 article-title: The small world yields the most effective information spreading publication-title: New J Phys doi: 10.1088/1367-2630/13/12/123005 – volume: 109 start-page: 5962 year: 2012 ident: ref33 article-title: Structural diversity in social contagion publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1116502109 – volume: 8 start-page: 130 year: 2011 ident: ref44 article-title: A shapley value based approach to discover influential nodes in social networks publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2010.2052042 – volume: 6 start-page: e21202 year: 2011 ident: ref7 article-title: Leaders in social networks, the delicious case publication-title: PLoS ONE doi: 10.1371/journal.pone.0021202 – volume: 8 start-page: 32 year: 2012 ident: ref3 article-title: Modelling dynamical processes in complex socio-technical systems publication-title: Nat Phys doi: 10.1038/nphys2160 – volume: 85 start-page: 026107 year: 2012 ident: ref48 article-title: Temporal node centrality in complex networks publication-title: Phys Rev E doi: 10.1103/PhysRevE.85.026107 – volume: 71 start-page: 046141 year: 2005 ident: ref40 article-title: Maximal planar networks with large clustering coefficient and power-law degree distribution publication-title: Phys Rev E doi: 10.1103/PhysRevE.71.046141 – ident: ref19 – ident: ref32 doi: 10.1145/1298306.1298311 – volume: 81 start-page: 056102 year: 2010 ident: ref31 article-title: Model for rumor spreading over networks publication-title: Phys Rev E doi: 10.1103/PhysRevE.81.056102 – volume: 29 start-page: 555 year: 2007 ident: ref11 article-title: Some unique properties of eigenvector centrality publication-title: Social Networks doi: 10.1016/j.socnet.2007.04.002 – volume: 30 start-page: 107 year: 1998 ident: ref18 article-title: The anatomy of a large-scale hypertextual web search engine publication-title: Comput Netw ISDN Syst doi: 10.1016/S0169-7552(98)00110-X – volume: 89 start-page: 108701 year: 2002 ident: ref28 article-title: Epidemic threshold in structured scale-free networks publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.89.108701 – ident: ref15 doi: 10.1209/0295-5075/104/68006 – volume: 31 start-page: 581 year: 1966 ident: ref9 article-title: The centrality index of a graph publication-title: Psychometrika doi: 10.1007/BF02289527 – volume: 85 start-page: 3 year: 2012 ident: ref37 article-title: Link prediction in complex networks: a clustering perspective publication-title: Eur Phys J B doi: 10.1140/epjb/e2011-20207-x – ident: ref46 doi: 10.1109/TrustCom.2011.209 – volume: 93 start-page: 40001 year: 2011 ident: ref13 article-title: Impact of link deletions on public cooperation in scale-free networks publication-title: EPL doi: 10.1209/0295-5075/93/40001 – volume: 1 start-page: 215 year: 1979 ident: ref10 article-title: Centrality in social networks conceptual clarification publication-title: Social Networks doi: 10.1016/0378-8733(78)90021-7 – volume: 6 start-page: 888 year: 2010 ident: ref6 article-title: Identification of influential spreaders in complex networks publication-title: Nat Phys doi: 10.1038/nphys1746 – ident: ref20 doi: 10.1145/1718487.1718520 – volume: 364 start-page: 189 year: 2007 ident: ref43 article-title: Epidemic spreading on heterogeneous networks with identical infectivity publication-title: Phys Lett A doi: 10.1016/j.physleta.2006.12.021 – volume: 391 start-page: 1777 year: 2012 ident: ref14 article-title: Identifying influential nodes in complex networks publication-title: Physica A doi: 10.1016/j.physa.2011.09.017 – volume: 96 start-page: 48007 year: 2011 ident: ref36 article-title: Link prediction in complex networks: A local naïve bayes model publication-title: EPL doi: 10.1209/0295-5075/96/48007 – ident: ref41 doi: 10.1093/oso/9780198545996.001.0001 – volume: 86 start-page: 3200 year: 2001 ident: ref1 article-title: Epidemic spreading in scale-free networks publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.86.3200 – volume: 6 start-page: e25190 year: 2011 ident: ref22 article-title: Clustering in large networks does not promote upstream reciprocity publication-title: PLoS ONE doi: 10.1371/journal.pone.0025190 – volume: 40 start-page: 814 year: 2011 ident: ref25 article-title: Dynamical model and analysis of cascading failures on the complex power grids publication-title: Kybernetes doi: 10.1108/03684921111142359 – volume: 390 start-page: 1150 year: 2011 ident: ref35 article-title: Link prediction in complex networks: a survey publication-title: Physica A doi: 10.1016/j.physa.2010.11.027 – reference: 11290142 - Phys Rev Lett. 2001 Apr 2;86(14):3200-3 – reference: 22181212 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):045101 – reference: 12225235 - Phys Rev Lett. 2002 Sep 2;89(10):108701 – reference: 22722253 - Science. 2012 Jul 20;337(6092):337-41 – reference: 21738620 - PLoS One. 2011;6(6):e21202 – reference: 20813952 - Science. 2010 Sep 3;329(5996):1194-7 – reference: 17279970 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 2):056109 – reference: 22474360 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5962-6 – reference: 21998641 - PLoS One. 2011;6(10):e25190 – reference: 9623998 - Nature. 1998 Jun 4;393(6684):440-2 – reference: 15903760 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 2):046141 – reference: 20866292 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 2):056102 – reference: 16089694 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):057101 – reference: 15244676 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066116 – reference: 17930104 - Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 2):026107 – reference: 11149952 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):404-9 – reference: 21655211 - PLoS One. 2011;6(5):e20474 – reference: 19837129 - Biosystems. 2010 Feb;99(2):109-25 – reference: 22463279 - Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 2):026107 – reference: 5232444 - Psychometrika. 1966 Dec;31(4):581-603 |
SSID | ssj0053866 |
Score | 2.5794525 |
Snippet | Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information... |
SourceID | plos doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e77455 |
SubjectTerms | Algorithms Cluster Analysis Clustering Collaboration Computer Communication Networks Computer science Computer Simulation Epidemics Humans Infectivity Information dissemination Information Services Methods Networks Nodes Search algorithms Search engines Social networks Social organization Social Support Spreading |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1xQC5QGWmQkDuVg2o0fs-4NqlYVUnuiqLfI8UOsFCUV2f3_zMTe1S6q1AvX2HnNw_ONPP6Gsc8GMfvc-FbMjAahZJiJVkMSYB1AAocpGe3o3t6Zm3v140E_bLX6opqwTA-cBXcGKviorDvXySvpMbxEZRzCXNOmJFOg1Rdj3jqZymswerEx5aCchNlZ0cvXx6GPRJYNio72bQWiia-f-E27YXwKa_5bMrkVg6732asCHvm3_NEH7EXsX7OD4p4jPy0c0l_esF_5AO50iIkvciMS9OWO90PAmYued1QCLkZUUeQ5rsXA-1wUPl5wxIWcKg_5kLjvVkSngI96y-6vr35e3ojSQkF4XZuliJKaEwUpa-uIWT0aF1GUbZg7HSE4p4P2bj4PxtpWW5lkrOtowZsALSQtD9lej0I7YhyBg5Uzp1EJoFztrZLOex3aUCd8V10xuZZn4wu_OLW56Jpp0wwwz8hSakgLTdFCxcTmrsfMr_HM_O-kqs1cYseeLqDNNMVmmudspmJHpOj1C0bMfxRmGbj4Q8WO18p_evjTZhj9kDZXXB-H1TQHkZ3G5a9i77KtbD4SYRAx98uKwY4V7fzF7ki_-D1xfSOgUpiCv_8fv_2BvaypmccUeY_Z3vLPKp4gpFq2Hyfv-QszniMW priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BuXABWh4NFGQkDnAwJfEr4YKgYikI9gAU9RY5fpRKq2Rpdv8_M4mzdFEFtyh2Esfz8Gd7_A3AM42YvdSu4blWhkvhc94oE7mprDHRWJyS0Y7ul7k-PpGfTtVpWnDrU1jl5BMHR-07R2vkhwj8EQiifZo3y1-cskbR7mpKoXEdbuQ40lBIVzn7MHlitGWt03E5YfLDJJ2Xy64NRJltJB3wuzQcDaz9xHK66PqrEOffgZOXRqLZHbiVICR7O8p8F66Fdg9uT-kZWLLWPdhNVz17nsilX9yFH-PJ3OF0E_s4ZihBI1-weeex5nnLPlNsOP-GsgtsdIjBs_kYLd6_ZqhX7GuHZV1kR4s18Szgq-7Byez996NjnnIrcKcKveJBUNYiL0RRWaJcD9oG-0o1vrQqGG-t8srZsvS6qhpViShCUYTKOO1NY6IS92GnxX7cB4aIohK5VVI4I23hKimsc8o3voj4rSIDMXVx7RLxOOW_WNTDbprBCcjYcTUJpk6CyYBvnlqOxBv_qf-OpLepS7TZw43u4qxOVlgbiaKTFf5odNhcxCpBaotzJt3EKKLPYJ9kP32gr_9oXQYHkz5cXfx0U4wGSrsutg3deqiDkE-hX8zgwag-m0YiPiJKf5GB2VKsrb_YLmnPfw4k4Ii0JM7NH_67WY_gZkH5O4bB9gB2Vhfr8BhR1Kp5MpjKb_QwHtA priority: 102 providerName: ProQuest |
Title | Identifying Influential Nodes in Large-Scale Directed Networks: The Role of Clustering |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24204833 https://www.proquest.com/docview/1447721537 https://www.proquest.com/docview/1449765870 https://pubmed.ncbi.nlm.nih.gov/PMC3814409 https://doaj.org/article/74dce49a05fc43c185e46a6756bff3fd http://dx.doi.org/10.1371/journal.pone.0077455 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED_t44UXYONjYaMyEg_wkInEXwkSQqxqGYhVaFDUt8iJbZgUJVvTSvDC3845cSKKOvFiVbGdOL673F1t_34AzwXG7Iko8jASXIaM6ijMubShTJWUVipMydyK7sVMnM_ZxwVf7EDP2eonsNma2jk-qfmyPP158-stGvyblrVBRn2n0-u6Mg4KWzLOd2EffZN0nAYXbFhXQOsWwh-gu63nhoNqcfwd7mlZN9ti0H-3Uv7lm6b34a4PKsm7TgsOYMdUh3CvJ2wg3n4P4cD_asgLDzf98gF8687qtuedyIeOswTNviSzWmPLq4p8crvFwy8oTUO6T6TRZNbtH29eE9Q0clljXW3JuFw75AW81UOYTydfx-ehZ1sICx6LVWio4zHSlMapciDsRiijXvFcJ4obqZXimhcqSbRI05yn1FITxyaVhdAyl5bTR7BX4TweAcEYI6WR4owWkqm4SBlVRcF1rmOLz4oDoP0UZ4WHIneMGGXWrq9JTEm6icucYDIvmADCodd1B8Xxn_ZnTnpDWwek3V6ol98zb5eZZCg6luKL2gKHi9GLYUJhFiVya6nVARw52fcPaDBVYpiQoJ-QAZz0-rC9-tlQjSbr1mFUZep12waDQI5fygAed-ozDBIjJgfyTwOQG4q18RabNdXVjxYWHGMvhtn6k9tHfAx3Ysfm0breE9hbLdfmKcZUq3wEu3IhsUzGkSun70ewfzaZfb4ctf9SjFozcuXvyR-wuik5 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6axgO8ABuXBQYYCSR4CFt9bZAQgkFpWdcH2Ka9Bcd2YFKVlKUV4k_xGzknl7KiCZ72VsVO4_gcf_4c-5wP4IlGzt7XLot7WplYCt-LM2Xy2CTWmNxYXJLRju7BRA-P5McTdbIGv7pYGDpW2WFiDdS-dPSNfAeJPxJBHJ_m9ex7TKpRtLvaSWg0brEffv7AJVv1avQO7fuU88H7w71h3KoKxE5xPY-DIL0eLwRPLCUbD9oGu6sy37cqGG-t8srZft_rJMlUInIROA-JcdqbzOSkEoGQf0UKnMkpMn3woUN-xA6t2_A8YXo7rTe8mJVFoBTdRlJA4bnpr1YJoKyq07K6iOH-fVDz3Mw3uAnXW8rK3jQ-tgFrodiEG50cBGvRYRM22l8Ve9Yms35-C46bSOA6moqNGkUUBJUpm5Qea54WbExn0ePP6CuBNQAcPJs0p9Orlwz9mH0qsazM2d50QXkd8K9uw9Gl9PodWC-wH7eAIYNJRM8qKZyRlrtECuuc8pnnOT6LRyC6Lk5dm-ic9Damab17Z3DB03RcSoZJW8NEEC_vmjWJPv5T_y1Zb1mX0nTXF8qzr2k76lMj0XQywRfNHTYXuVGQ2uIaTWd5LnIfwRbZvntAlf7x8gi2O3-4uPjxshgBgXZ5bBHKRV0HKaZCHI7gbuM-y0YiHyMJARGBWXGslbdYLSlOv9VJx5HZSbmb3Pt3sx7B1eHhwTgdjyb79-EaJ-2QeqLfhvX52SI8QAY3zx7Ww4bBl8sep78BOENdJg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamISFegI3LMgYYCSR4CF3jW4KEEHRUKxsVAob2Fhxf2KQqKUsrxF_j13FO4oQVTfC0typ2Gsfn4s_xOecj5LEEzJ5KU8RDKVTMmR3GhVA-VplWyisNWzI80X0_lftH_N2xOF4jv7pcGAyr7Hxi46htZfAb-QCAPwBBsE818CEs4sPe-NX8e4wMUnjS2tFptCpy4H7-gO1b_XKyB7J-kiTjt59H-3FgGIiNSOQidgy5eyxjSaax8LiT2uldUdhUC6es1sIKo9PUyiwrRMY8c0niMmWkVYXyyBgB7v-KYipFG0tHfXgJ-BEpQ6oeU8NB0Izn86p0WK5bcUwuPLcUNowBWGF1VtUXod2_gzbPrYLjm-R6gK_0datvG2TNlZvkRkcNQYOn2CQb4VdNn4bC1s9ukS9tVnCTWUUnLTsKOJgZnVYWep6W9BDj0uNPoDeOts7YWTptI9XrFxR0mn6soK3ydDRbYo0H-Kvb5OhSZv0OWS9hHrcIBTSTsaEWnBnFdWIyzrQxwhY28fCsJCKsm-LchKLnyL0xy5uTPAWbn3bichRMHgQTkbi_a94W_fhP_zcovb4vluxuLlRn3_LgAXLFQXQ8gxf1BoYLOMlxqWG_JgvvmbcR2ULZdw-o8z8aH5GdTh8ubn7UN4NzwBMfXbpq2fQBuCnAJ0fkbqs-_SABmyGdAIuIWlGslbdYbSlPT5oC5IDyON_Ntv89rIfkKlhofjiZHtwj1xKkEWnW_B2yvjhbuvsA5hbFg8ZqKPl62Wb6G8n8YSc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Influential+Nodes+in+Large-Scale+Directed+Networks%3A+The+Role+of+Clustering&rft.jtitle=PloS+one&rft.au=Duan-Bing%2C+Chen&rft.au=Gao%2C+Hui&rft.au=L%C3%BC%2C+Linyuan&rft.au=Zhou%2C+Tao&rft.date=2013-10-31&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=8&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pone.0077455&rft.externalDocID=1447721537 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |