Identifying Influential Nodes in Large-Scale Directed Networks: The Role of Clustering

Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological net...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 8; no. 10; p. e77455
Main Authors Chen, Duan-Bing, Gao, Hui, Lü, Linyuan, Zhou, Tao
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.10.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node's neighbors but do not directly make use of the interactions among it's neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors' influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about [Formula: see text] nodes, more than 15 times faster than PageRank.
AbstractList Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node’s neighbors but do not directly make use of the interactions among it’s neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors’ influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k -core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about nodes, more than 15 times faster than PageRank.
Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node's neighbors but do not directly make use of the interactions among it's neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors' influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about [Formula: see text] nodes, more than 15 times faster than PageRank.Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node's neighbors but do not directly make use of the interactions among it's neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors' influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about [Formula: see text] nodes, more than 15 times faster than PageRank.
Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node's neighbors but do not directly make use of the interactions among it's neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors' influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about [Formula: see text] nodes, more than 15 times faster than PageRank.
Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node’s neighbors but do not directly make use of the interactions among it’s neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors’ influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k -core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about nodes, more than 15 times faster than PageRank.
Author Lü, Linyuan
Chen, Duan-Bing
Zhou, Tao
Gao, Hui
AuthorAffiliation 1 Web Sciences Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
2 Institute of Information Economy, Alibaba Business College, Hangzhou Normal University, Hangzhou, People’s Republic of China
3 Department of Physics, University of Fribourg, Fribourg, Switzerland
University of Maribor, Slovenia
AuthorAffiliation_xml – name: University of Maribor, Slovenia
– name: 2 Institute of Information Economy, Alibaba Business College, Hangzhou Normal University, Hangzhou, People’s Republic of China
– name: 1 Web Sciences Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
– name: 3 Department of Physics, University of Fribourg, Fribourg, Switzerland
Author_xml – sequence: 1
  givenname: Duan-Bing
  surname: Chen
  fullname: Chen, Duan-Bing
– sequence: 2
  givenname: Hui
  surname: Gao
  fullname: Gao, Hui
– sequence: 3
  givenname: Linyuan
  surname:
  fullname: Lü, Linyuan
– sequence: 4
  givenname: Tao
  surname: Zhou
  fullname: Zhou, Tao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24204833$$D View this record in MEDLINE/PubMed
BookMark eNp9kttu1DAQhi1URA_wBggiccNNFic-Jb2ohJbTSqsiQeHWcuzx1os3XuwE1LfH282itkJc2Z7555vf9pyioz70gNDzCs8qIqo36zDGXvnZNodnGAtBGXuETqqW1CWvMTm6sz9GpymtMWak4fwJOq5pjWlDyAn6vjDQD87euH5VLHrrx91R-eIyGEiF64uliisov2rloXjnIugBTHEJw-8Qf6Tz4uoaii8h54It5n5MA8SMeooeW-UTPJvWM_Ttw_ur-ady-fnjYv52WWpW86EE0mhDDSF1qyivMHAFCrPONIqBMEoxw7RqGsPbtmMtsQTqGlqhuRGdsIycoZd77taHJKcnSbKiVIi6YkRkxWKvMEGt5Ta6jYo3MignbwMhrqSKg9MepKBGA22zAasp0VXDgHLFBeOdtcSazLqYuo3dBrK4H6Ly96D3M727lqvwS5ImO8JtBryeADH8HCENcuOSBu9VD2G89d0KzhqBs_TVA-m_b_firqO_Vg4fnAXne4GOIaUIVmo3qMGFnUHnZYXlbpoOcLmbJjlNUy6mD4oP_P-W_QGAF9JF
CitedBy_id crossref_primary_10_1016_j_artmed_2022_102350
crossref_primary_10_1155_2021_6325578
crossref_primary_10_1016_j_knosys_2022_109788
crossref_primary_10_1080_0144929X_2021_1915384
crossref_primary_10_1089_big_2022_0165
crossref_primary_10_1016_j_physa_2014_02_041
crossref_primary_10_1016_j_eswa_2018_07_069
crossref_primary_10_1140_epjb_s10051_022_00458_y
crossref_primary_10_1016_j_cosrev_2020_100247
crossref_primary_10_1016_j_physa_2021_125791
crossref_primary_10_1038_s41598_021_88692_9
crossref_primary_10_1142_S0218194023410097
crossref_primary_10_1016_j_physa_2017_05_098
crossref_primary_10_1186_s10194_021_01315_6
crossref_primary_10_1038_ncomms10168
crossref_primary_10_3389_fphy_2023_1046077
crossref_primary_10_1142_S0219525924500024
crossref_primary_10_3390_math12020330
crossref_primary_10_1063_5_0005452
crossref_primary_10_1103_PhysRevE_98_012316
crossref_primary_10_1016_j_eswa_2018_02_021
crossref_primary_10_1088_1674_1056_acd9c3
crossref_primary_10_1145_3705014
crossref_primary_10_1109_TNSE_2018_2841942
crossref_primary_10_1093_comjnl_bxac180
crossref_primary_10_1186_s12918_018_0598_2
crossref_primary_10_1109_TNET_2023_3235307
crossref_primary_10_1140_epjb_e2015_60604_5
crossref_primary_10_1145_3039868
crossref_primary_10_3390_e22020242
crossref_primary_10_1016_j_physa_2014_09_010
crossref_primary_10_1142_S021798492150620X
crossref_primary_10_1371_journal_pone_0136831
crossref_primary_10_3390_rs15040880
crossref_primary_10_1016_j_asoc_2020_106436
crossref_primary_10_1142_S0129183118400053
crossref_primary_10_1109_TNSE_2020_2973328
crossref_primary_10_1038_s41598_020_59020_4
crossref_primary_10_1016_j_physa_2019_123659
crossref_primary_10_1038_s41598_024_78626_6
crossref_primary_10_1209_0295_5075_106_48005
crossref_primary_10_1007_s41109_024_00647_x
crossref_primary_10_1016_j_chaos_2024_114487
crossref_primary_10_1177_03611981221097704
crossref_primary_10_3390_info10100311
crossref_primary_10_1155_2019_9057194
crossref_primary_10_1007_s10845_018_1396_9
crossref_primary_10_1109_ACCESS_2023_3324715
crossref_primary_10_1142_S1793351X24430037
crossref_primary_10_1371_journal_pone_0164393
crossref_primary_10_1109_ACCESS_2017_2679038
crossref_primary_10_1145_3653296
crossref_primary_10_1016_j_ins_2024_120908
crossref_primary_10_3390_electronics11111771
crossref_primary_10_1109_ACCESS_2018_2794324
crossref_primary_10_1088_1674_1056_abea86
crossref_primary_10_1016_j_jocs_2022_101591
crossref_primary_10_1142_S0129183117500140
crossref_primary_10_1007_s11277_024_11544_y
crossref_primary_10_1109_TNSE_2023_3247485
crossref_primary_10_1155_2020_4529429
crossref_primary_10_1016_j_amc_2024_128700
crossref_primary_10_1007_s42524_022_0190_8
crossref_primary_10_1038_srep27823
crossref_primary_10_1109_ACCESS_2019_2916172
crossref_primary_10_1142_S0217979218503071
crossref_primary_10_1038_s41598_019_51153_5
crossref_primary_10_1016_j_physa_2014_10_006
crossref_primary_10_1007_s12065_022_00712_3
crossref_primary_10_1098_rsos_221380
crossref_primary_10_1038_srep41321
crossref_primary_10_3389_fmicb_2023_1234817
crossref_primary_10_3233_KES_180378
crossref_primary_10_1155_2024_5910244
crossref_primary_10_3390_e20040261
crossref_primary_10_1177_0020294019877489
crossref_primary_10_1016_j_neucom_2019_06_030
crossref_primary_10_1109_ACCESS_2020_3007726
crossref_primary_10_1038_s41598_018_30310_2
crossref_primary_10_3934_math_2024178
crossref_primary_10_1109_ACCESS_2021_3094196
crossref_primary_10_1038_s41598_020_59616_w
crossref_primary_10_18632_oncotarget_11878
crossref_primary_10_1088_1742_6596_1334_1_012003
crossref_primary_10_1155_2021_1956356
crossref_primary_10_1142_S0217979219501005
crossref_primary_10_7498_aps_64_020101
crossref_primary_10_1088_1674_1056_ac4484
crossref_primary_10_1007_s11277_021_08577_y
crossref_primary_10_3390_info11040189
crossref_primary_10_3389_fphy_2024_1501807
crossref_primary_10_52547_jsdp_18_2_57
crossref_primary_10_1063_5_0195423
crossref_primary_10_1088_1367_2630_17_11_113045
crossref_primary_10_3390_e23111456
crossref_primary_10_1016_j_physa_2017_05_037
crossref_primary_10_1109_ACCESS_2020_2972997
crossref_primary_10_1007_s13278_017_0440_7
crossref_primary_10_1016_j_physa_2018_03_062
crossref_primary_10_1016_j_physa_2018_12_001
crossref_primary_10_7498_aps_64_050502
crossref_primary_10_1016_j_physa_2022_128353
crossref_primary_10_1016_j_engappai_2021_104573
crossref_primary_10_1038_s41598_019_51209_6
crossref_primary_10_1209_0295_5075_107_10010
crossref_primary_10_1016_j_ins_2017_07_034
crossref_primary_10_1093_comjnl_bxab034
crossref_primary_10_1142_S0129183121500121
crossref_primary_10_3390_e22040450
crossref_primary_10_1088_0256_307X_33_2_028901
crossref_primary_10_1016_j_eswa_2019_112859
crossref_primary_10_1063_5_0147721
crossref_primary_10_1142_S012918312150090X
crossref_primary_10_1155_2019_6528431
crossref_primary_10_1371_journal_pone_0145283
crossref_primary_10_1016_j_physrep_2016_06_007
crossref_primary_10_1016_j_esr_2025_101660
crossref_primary_10_1016_j_knosys_2020_105580
crossref_primary_10_1016_j_neucom_2015_11_124
crossref_primary_10_1016_j_eswa_2024_123699
crossref_primary_10_1371_journal_pone_0172073
crossref_primary_10_1155_2022_4471361
crossref_primary_10_1016_j_tele_2018_11_008
crossref_primary_10_1016_j_eswa_2019_02_007
crossref_primary_10_1016_j_physa_2019_02_047
crossref_primary_10_1155_2018_4562609
crossref_primary_10_1177_08944393211028182
crossref_primary_10_1109_ACCESS_2024_3450296
crossref_primary_10_1016_j_physa_2014_07_023
crossref_primary_10_1109_ACCESS_2024_3507384
crossref_primary_10_2139_ssrn_4052672
crossref_primary_10_1016_j_cnsns_2019_03_015
crossref_primary_10_1017_psa_2021_18
crossref_primary_10_62051_ijsspa_v6n2_19
crossref_primary_10_1002_cpe_5677
crossref_primary_10_1016_j_cjph_2018_11_003
crossref_primary_10_1155_2022_2036370
crossref_primary_10_1142_S0129183115500679
crossref_primary_10_1063_1_5141153
crossref_primary_10_1002_cam4_3245
crossref_primary_10_1038_srep19307
crossref_primary_10_1515_jisys_2016_0140
crossref_primary_10_1016_j_patter_2020_100052
crossref_primary_10_3390_e25040637
crossref_primary_10_1155_2022_2749091
crossref_primary_10_1155_2022_7896380
crossref_primary_10_1038_srep06108
crossref_primary_10_3390_su10124480
crossref_primary_10_1016_j_eswa_2022_117791
crossref_primary_10_1007_s10660_023_09796_0
crossref_primary_10_1007_s12652_019_01273_7
crossref_primary_10_1063_1_5055069
crossref_primary_10_1142_S0217979221502313
crossref_primary_10_1016_j_physa_2019_121071
crossref_primary_10_1109_TCSS_2022_3148778
crossref_primary_10_1016_j_future_2020_08_010
crossref_primary_10_1016_j_knosys_2022_110163
crossref_primary_10_1016_j_samod_2024_100031
crossref_primary_10_1007_s10586_022_03540_3
crossref_primary_10_1007_s41109_024_00676_6
crossref_primary_10_1002_qre_2594
crossref_primary_10_1089_cyber_2015_0539
crossref_primary_10_1186_s40649_016_0030_2
crossref_primary_10_1016_j_jocs_2024_102473
crossref_primary_10_1109_ACCESS_2018_2875247
crossref_primary_10_1063_5_0063068
crossref_primary_10_1016_j_physa_2014_11_012
crossref_primary_10_1016_j_eswa_2024_126292
crossref_primary_10_1155_2022_9199998
crossref_primary_10_1016_j_physa_2015_09_028
crossref_primary_10_1007_s10489_020_02132_1
crossref_primary_10_1016_j_knosys_2023_111163
crossref_primary_10_1016_j_physa_2019_123262
crossref_primary_10_1016_j_ins_2023_119723
crossref_primary_10_1007_s10115_024_02262_9
crossref_primary_10_1007_s41060_024_00608_8
crossref_primary_10_1016_j_physa_2019_121538
crossref_primary_10_1016_j_physa_2017_12_017
crossref_primary_10_3390_e26121075
crossref_primary_10_7498_aps_65_168901
crossref_primary_10_3390_su13073813
crossref_primary_10_1098_rsta_2024_0141
crossref_primary_10_1109_TCSI_2019_2907751
crossref_primary_10_1109_TCSS_2022_3180177
crossref_primary_10_1371_journal_pone_0203388
crossref_primary_10_1109_TITS_2022_3200140
crossref_primary_10_1142_S0217979218501187
crossref_primary_10_1016_j_physa_2015_08_045
crossref_primary_10_1088_1742_5468_aa672d
crossref_primary_10_1016_j_cnsns_2019_01_032
crossref_primary_10_1016_j_inffus_2024_102439
crossref_primary_10_1016_j_physa_2018_09_064
crossref_primary_10_1109_ACCESS_2023_3268797
crossref_primary_10_1186_s13638_020_01820_3
crossref_primary_10_1038_s41598_020_77536_7
crossref_primary_10_1038_srep21380
crossref_primary_10_1016_j_eswa_2019_113092
crossref_primary_10_12965_jer_2040010_005
crossref_primary_10_3389_fenvs_2021_814599
crossref_primary_10_1155_2021_8897784
crossref_primary_10_1371_journal_pone_0200091
crossref_primary_10_1088_1674_1056_ac8e56
crossref_primary_10_3390_fractalfract7020109
crossref_primary_10_1103_PhysRevE_96_022323
crossref_primary_10_1140_epjb_e2016_70334_9
crossref_primary_10_1155_2022_7904892
crossref_primary_10_1016_j_softx_2024_101950
crossref_primary_10_1016_j_physa_2019_04_205
crossref_primary_10_3390_e17042228
crossref_primary_10_1371_journal_pone_0294574
crossref_primary_10_1016_j_physa_2019_01_136
crossref_primary_10_1016_j_eswa_2022_119086
crossref_primary_10_1038_s41598_020_60239_4
crossref_primary_10_1063_1_5091608
crossref_primary_10_1186_s40246_023_00565_6
crossref_primary_10_1155_2022_2400751
crossref_primary_10_1109_TCSS_2022_3161305
crossref_primary_10_1109_TCYB_2018_2861568
crossref_primary_10_1016_j_eswa_2024_124590
crossref_primary_10_3390_e19110614
Cites_doi 10.1103/PhysRevE.84.045101
10.1126/science.1215842
10.1007/s10115-011-0396-2
10.1016/j.physleta.2011.02.052
10.1016/j.physa.2013.01.054
10.1103/PhysRevE.71.057101
10.1080/10020070612330019
10.1088/1367-2630/11/3/033027
10.1126/science.1185231
10.1016/j.biosystems.2009.10.003
10.1073/pnas.98.2.404
10.1103/PhysRevE.74.056109
10.1088/1367-2630/14/3/033033
10.1016/j.knosys.2013.01.017
10.1103/PhysRevE.69.066116
10.1017/CBO9780511791383
10.1038/30918
10.1103/PhysRevE.76.026107
10.1088/0256-307X/23/4/079
10.1371/journal.pone.0020474
10.1145/324133.324140
10.1088/1367-2630/13/12/123005
10.1073/pnas.1116502109
10.1109/TASE.2010.2052042
10.1371/journal.pone.0021202
10.1038/nphys2160
10.1103/PhysRevE.85.026107
10.1103/PhysRevE.71.046141
10.1145/1298306.1298311
10.1103/PhysRevE.81.056102
10.1016/j.socnet.2007.04.002
10.1016/S0169-7552(98)00110-X
10.1103/PhysRevLett.89.108701
10.1209/0295-5075/104/68006
10.1007/BF02289527
10.1140/epjb/e2011-20207-x
10.1109/TrustCom.2011.209
10.1209/0295-5075/93/40001
10.1016/0378-8733(78)90021-7
10.1038/nphys1746
10.1145/1718487.1718520
10.1016/j.physleta.2006.12.021
10.1016/j.physa.2011.09.017
10.1209/0295-5075/96/48007
10.1093/oso/9780198545996.001.0001
10.1103/PhysRevLett.86.3200
10.1371/journal.pone.0025190
10.1108/03684921111142359
10.1016/j.physa.2010.11.027
ContentType Journal Article
Copyright 2013 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2013 Chen et al 2013 Chen et al
Copyright_xml – notice: 2013 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2013 Chen et al 2013 Chen et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0077455
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
DocumentTitleAlternate Identifying Influential Nodes in Directed Networks
EISSN 1932-6203
ExternalDocumentID 1447721537
oai_doaj_org_article_74dce49a05fc43c185e46a6756bff3fd
PMC3814409
3115144631
24204833
10_1371_journal_pone_0077455
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
Switzerland
China
GeographicLocations_xml – name: Switzerland
– name: China
– name: United States--US
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RIG
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PV9
RZL
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
-
02
AAPBV
ABPTK
ADACO
BBAFP
BBORY
KM
ID FETCH-LOGICAL-c526t-e38cd4d3329a4610e6aea05bd8a5e7daa5d5ca88d699b593f3e22e97c6d7b7f53
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:14:03 EST 2021
Wed Aug 27 01:26:03 EDT 2025
Thu Aug 21 14:06:24 EDT 2025
Sun Aug 24 03:56:50 EDT 2025
Fri Jul 25 10:18:41 EDT 2025
Mon Jul 21 06:06:48 EDT 2025
Thu Apr 24 22:53:46 EDT 2025
Tue Jul 01 03:18:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-e38cd4d3329a4610e6aea05bd8a5e7daa5d5ca88d699b593f3e22e97c6d7b7f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: DBC LL TZ. Performed the experiments: DBC HG. Analyzed the data: DBC HG LL. Contributed reagents/materials/analysis tools: DBC LL TZ. Wrote the paper: DBC LL TZ.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0077455
PMID 24204833
PQID 1447721537
PQPubID 1436336
ParticipantIDs plos_journals_1447721537
doaj_primary_oai_doaj_org_article_74dce49a05fc43c185e46a6756bff3fd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3814409
proquest_miscellaneous_1449765870
proquest_journals_1447721537
pubmed_primary_24204833
crossref_citationtrail_10_1371_journal_pone_0077455
crossref_primary_10_1371_journal_pone_0077455
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-31
PublicationDateYYYYMMDD 2013-10-31
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2013
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References ref15
L Lü (ref35) 2011; 390
X Feng (ref37) 2012; 85
X Wu (ref27) 2011; 375
ref19
JM Galán (ref23) 2011; 6
HX Yang (ref5) 2011; 84
SN Soffer (ref38) 2005; 71
T Zhou (ref40) 2005; 71
LC Freeman (ref10) 1979; 1
DB Chen (ref14) 2012; 391
ref46
LL Jiang (ref13) 2011; 93
ref41
N Masuda (ref22) 2011; 6
DJ Watts (ref21) 1998; 393
L Lü (ref30) 2011; 13
T Zhou (ref2) 2006; 16
VM Eguíluz (ref28) 2002; 89
MEJ Newman (ref34) 2001; 98
J Kleinberg (ref17) 1999; 46
D Trpevski (ref31) 2010; 81
H Kim (ref48) 2012; 85
ref4
R Yang (ref43) 2007; 364
P Bonacich (ref11) 2007; 29
ref32
X Zhang (ref49) 2013; 42
S Brin (ref18) 1998; 30
M Kitsak (ref6) 2010; 6
R Narayanam (ref44) 2011; 8
D Centola (ref45) 2010; 329
G Fagiolo (ref39) 2007; 76
M Perc (ref12) 2009; 11
G Sabidussi (ref9) 1966; 31
X Wu (ref26) 2006; 23
YB Zhou (ref50) 2012; 14
R Pastor-Satorras (ref1) 2001; 86
Z Liu (ref36) 2011; 96
ref20
L Lü (ref7) 2011; 6
K Saito (ref16) 2012; 30
L Ding (ref25) 2011; 40
A Vespiggnani (ref3) 2012; 8
J Ugander (ref33) 2012; 109
T Zhou (ref42) 2006; 74
M Perc (ref24) 2010; 99
S Aral (ref8) 2012; 337
D Wei (ref47) 2013; 392
T Petermann (ref29) 2004; 69
17279970 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 2):056109
21998641 - PLoS One. 2011;6(10):e25190
20813952 - Science. 2010 Sep 3;329(5996):1194-7
15903760 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 2):046141
22181212 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):045101
19837129 - Biosystems. 2010 Feb;99(2):109-25
12225235 - Phys Rev Lett. 2002 Sep 2;89(10):108701
11290142 - Phys Rev Lett. 2001 Apr 2;86(14):3200-3
5232444 - Psychometrika. 1966 Dec;31(4):581-603
21655211 - PLoS One. 2011;6(5):e20474
15244676 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066116
22463279 - Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 2):026107
22722253 - Science. 2012 Jul 20;337(6092):337-41
22474360 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5962-6
16089694 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):057101
11149952 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):404-9
17930104 - Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 2):026107
20866292 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 2):056102
21738620 - PLoS One. 2011;6(6):e21202
9623998 - Nature. 1998 Jun 4;393(6684):440-2
References_xml – volume: 84
  start-page: 045101
  year: 2011
  ident: ref5
  article-title: Control of epidemic spreading on complex networks by local traffic dynamics
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.84.045101
– volume: 337
  start-page: 337
  year: 2012
  ident: ref8
  article-title: Identifying influential and susceptible members of social networks
  publication-title: Science
  doi: 10.1126/science.1215842
– volume: 30
  start-page: 613
  year: 2012
  ident: ref16
  article-title: Efficient discovery of influential nodes for sis models in social networks
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0396-2
– volume: 375
  start-page: 1559
  year: 2011
  ident: ref27
  article-title: Cluster synchronization in the adaptive complex dynamical networks via a novel approach
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2011.02.052
– volume: 392
  start-page: 2564
  year: 2013
  ident: ref47
  article-title: Identifying influential nodes in weighted networks based on evidence theory
  publication-title: Physica A
  doi: 10.1016/j.physa.2013.01.054
– volume: 71
  start-page: 057101
  year: 2005
  ident: ref38
  article-title: Network clustering coefficient without degree-correlation biases
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.71.057101
– volume: 16
  start-page: 452
  year: 2006
  ident: ref2
  article-title: Epidemic dynamics on complex networks
  publication-title: Prog Nat Sci
  doi: 10.1080/10020070612330019
– volume: 11
  start-page: 033027
  year: 2009
  ident: ref12
  article-title: Evolution of cooperation on scale-free networks subject to error and attack
  publication-title: New J Phys
  doi: 10.1088/1367-2630/11/3/033027
– volume: 329
  start-page: 1194
  year: 2010
  ident: ref45
  article-title: The spread of behavior in an online social network experiment
  publication-title: Science
  doi: 10.1126/science.1185231
– volume: 99
  start-page: 109
  year: 2010
  ident: ref24
  article-title: Coevolutionary games–a mini review
  publication-title: BioSystems
  doi: 10.1016/j.biosystems.2009.10.003
– volume: 98
  start-page: 404
  year: 2001
  ident: ref34
  article-title: The structure of scientific collaboration networks
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.98.2.404
– volume: 74
  start-page: 056109
  year: 2006
  ident: ref42
  article-title: Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.74.056109
– volume: 14
  start-page: 033033
  year: 2012
  ident: ref50
  article-title: Quantifying the influence of scientists and their publications: distinguishing between prestige and popularity
  publication-title: New J Phys
  doi: 10.1088/1367-2630/14/3/033033
– volume: 42
  start-page: 74
  year: 2013
  ident: ref49
  article-title: Identifying influential nodes in complex networks with community structure
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2013.01.017
– volume: 69
  start-page: 066116
  year: 2004
  ident: ref29
  article-title: Role of clustering and gridlike ordering in epidemic spreading
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.066116
– ident: ref4
  doi: 10.1017/CBO9780511791383
– volume: 393
  start-page: 440
  year: 1998
  ident: ref21
  article-title: Collective dynamics of ‘small-world’ networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 76
  start-page: 026107
  year: 2007
  ident: ref39
  article-title: Clustering in complex directed networks
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.76.026107
– volume: 23
  start-page: 1046
  year: 2006
  ident: ref26
  article-title: Synchronizability of highly clustered scale-free networks
  publication-title: Chin Phys Lett
  doi: 10.1088/0256-307X/23/4/079
– volume: 6
  start-page: e20474
  year: 2011
  ident: ref23
  article-title: Axelrod’s metanorm games on networks
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020474
– volume: 46
  start-page: 604
  year: 1999
  ident: ref17
  article-title: Authoritative sources in a hyperlinked environment
  publication-title: J ACM
  doi: 10.1145/324133.324140
– volume: 13
  start-page: 123005
  year: 2011
  ident: ref30
  article-title: The small world yields the most effective information spreading
  publication-title: New J Phys
  doi: 10.1088/1367-2630/13/12/123005
– volume: 109
  start-page: 5962
  year: 2012
  ident: ref33
  article-title: Structural diversity in social contagion
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1116502109
– volume: 8
  start-page: 130
  year: 2011
  ident: ref44
  article-title: A shapley value based approach to discover influential nodes in social networks
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2010.2052042
– volume: 6
  start-page: e21202
  year: 2011
  ident: ref7
  article-title: Leaders in social networks, the delicious case
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0021202
– volume: 8
  start-page: 32
  year: 2012
  ident: ref3
  article-title: Modelling dynamical processes in complex socio-technical systems
  publication-title: Nat Phys
  doi: 10.1038/nphys2160
– volume: 85
  start-page: 026107
  year: 2012
  ident: ref48
  article-title: Temporal node centrality in complex networks
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.85.026107
– volume: 71
  start-page: 046141
  year: 2005
  ident: ref40
  article-title: Maximal planar networks with large clustering coefficient and power-law degree distribution
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.71.046141
– ident: ref19
– ident: ref32
  doi: 10.1145/1298306.1298311
– volume: 81
  start-page: 056102
  year: 2010
  ident: ref31
  article-title: Model for rumor spreading over networks
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.81.056102
– volume: 29
  start-page: 555
  year: 2007
  ident: ref11
  article-title: Some unique properties of eigenvector centrality
  publication-title: Social Networks
  doi: 10.1016/j.socnet.2007.04.002
– volume: 30
  start-page: 107
  year: 1998
  ident: ref18
  article-title: The anatomy of a large-scale hypertextual web search engine
  publication-title: Comput Netw ISDN Syst
  doi: 10.1016/S0169-7552(98)00110-X
– volume: 89
  start-page: 108701
  year: 2002
  ident: ref28
  article-title: Epidemic threshold in structured scale-free networks
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.89.108701
– ident: ref15
  doi: 10.1209/0295-5075/104/68006
– volume: 31
  start-page: 581
  year: 1966
  ident: ref9
  article-title: The centrality index of a graph
  publication-title: Psychometrika
  doi: 10.1007/BF02289527
– volume: 85
  start-page: 3
  year: 2012
  ident: ref37
  article-title: Link prediction in complex networks: a clustering perspective
  publication-title: Eur Phys J B
  doi: 10.1140/epjb/e2011-20207-x
– ident: ref46
  doi: 10.1109/TrustCom.2011.209
– volume: 93
  start-page: 40001
  year: 2011
  ident: ref13
  article-title: Impact of link deletions on public cooperation in scale-free networks
  publication-title: EPL
  doi: 10.1209/0295-5075/93/40001
– volume: 1
  start-page: 215
  year: 1979
  ident: ref10
  article-title: Centrality in social networks conceptual clarification
  publication-title: Social Networks
  doi: 10.1016/0378-8733(78)90021-7
– volume: 6
  start-page: 888
  year: 2010
  ident: ref6
  article-title: Identification of influential spreaders in complex networks
  publication-title: Nat Phys
  doi: 10.1038/nphys1746
– ident: ref20
  doi: 10.1145/1718487.1718520
– volume: 364
  start-page: 189
  year: 2007
  ident: ref43
  article-title: Epidemic spreading on heterogeneous networks with identical infectivity
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2006.12.021
– volume: 391
  start-page: 1777
  year: 2012
  ident: ref14
  article-title: Identifying influential nodes in complex networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2011.09.017
– volume: 96
  start-page: 48007
  year: 2011
  ident: ref36
  article-title: Link prediction in complex networks: A local naïve bayes model
  publication-title: EPL
  doi: 10.1209/0295-5075/96/48007
– ident: ref41
  doi: 10.1093/oso/9780198545996.001.0001
– volume: 86
  start-page: 3200
  year: 2001
  ident: ref1
  article-title: Epidemic spreading in scale-free networks
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.86.3200
– volume: 6
  start-page: e25190
  year: 2011
  ident: ref22
  article-title: Clustering in large networks does not promote upstream reciprocity
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0025190
– volume: 40
  start-page: 814
  year: 2011
  ident: ref25
  article-title: Dynamical model and analysis of cascading failures on the complex power grids
  publication-title: Kybernetes
  doi: 10.1108/03684921111142359
– volume: 390
  start-page: 1150
  year: 2011
  ident: ref35
  article-title: Link prediction in complex networks: a survey
  publication-title: Physica A
  doi: 10.1016/j.physa.2010.11.027
– reference: 11290142 - Phys Rev Lett. 2001 Apr 2;86(14):3200-3
– reference: 22181212 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):045101
– reference: 12225235 - Phys Rev Lett. 2002 Sep 2;89(10):108701
– reference: 22722253 - Science. 2012 Jul 20;337(6092):337-41
– reference: 21738620 - PLoS One. 2011;6(6):e21202
– reference: 20813952 - Science. 2010 Sep 3;329(5996):1194-7
– reference: 17279970 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 2):056109
– reference: 22474360 - Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5962-6
– reference: 21998641 - PLoS One. 2011;6(10):e25190
– reference: 9623998 - Nature. 1998 Jun 4;393(6684):440-2
– reference: 15903760 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 2):046141
– reference: 20866292 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 2):056102
– reference: 16089694 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):057101
– reference: 15244676 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):066116
– reference: 17930104 - Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 2):026107
– reference: 11149952 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):404-9
– reference: 21655211 - PLoS One. 2011;6(5):e20474
– reference: 19837129 - Biosystems. 2010 Feb;99(2):109-25
– reference: 22463279 - Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 2):026107
– reference: 5232444 - Psychometrika. 1966 Dec;31(4):581-603
SSID ssj0053866
Score 2.5794525
Snippet Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information...
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e77455
SubjectTerms Algorithms
Cluster Analysis
Clustering
Collaboration
Computer Communication Networks
Computer science
Computer Simulation
Epidemics
Humans
Infectivity
Information dissemination
Information Services
Methods
Networks
Nodes
Search algorithms
Search engines
Social networks
Social organization
Social Support
Spreading
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1xQC5QGWmQkDuVg2o0fs-4NqlYVUnuiqLfI8UOsFCUV2f3_zMTe1S6q1AvX2HnNw_ONPP6Gsc8GMfvc-FbMjAahZJiJVkMSYB1AAocpGe3o3t6Zm3v140E_bLX6opqwTA-cBXcGKviorDvXySvpMbxEZRzCXNOmJFOg1Rdj3jqZymswerEx5aCchNlZ0cvXx6GPRJYNio72bQWiia-f-E27YXwKa_5bMrkVg6732asCHvm3_NEH7EXsX7OD4p4jPy0c0l_esF_5AO50iIkvciMS9OWO90PAmYued1QCLkZUUeQ5rsXA-1wUPl5wxIWcKg_5kLjvVkSngI96y-6vr35e3ojSQkF4XZuliJKaEwUpa-uIWT0aF1GUbZg7HSE4p4P2bj4PxtpWW5lkrOtowZsALSQtD9lej0I7YhyBg5Uzp1EJoFztrZLOex3aUCd8V10xuZZn4wu_OLW56Jpp0wwwz8hSakgLTdFCxcTmrsfMr_HM_O-kqs1cYseeLqDNNMVmmudspmJHpOj1C0bMfxRmGbj4Q8WO18p_evjTZhj9kDZXXB-H1TQHkZ3G5a9i77KtbD4SYRAx98uKwY4V7fzF7ki_-D1xfSOgUpiCv_8fv_2BvaypmccUeY_Z3vLPKp4gpFq2Hyfv-QszniMW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BuXABWh4NFGQkDnAwJfEr4YKgYikI9gAU9RY5fpRKq2Rpdv8_M4mzdFEFtyh2Esfz8Gd7_A3AM42YvdSu4blWhkvhc94oE7mprDHRWJyS0Y7ul7k-PpGfTtVpWnDrU1jl5BMHR-07R2vkhwj8EQiifZo3y1-cskbR7mpKoXEdbuQ40lBIVzn7MHlitGWt03E5YfLDJJ2Xy64NRJltJB3wuzQcDaz9xHK66PqrEOffgZOXRqLZHbiVICR7O8p8F66Fdg9uT-kZWLLWPdhNVz17nsilX9yFH-PJ3OF0E_s4ZihBI1-weeex5nnLPlNsOP-GsgtsdIjBs_kYLd6_ZqhX7GuHZV1kR4s18Szgq-7Byez996NjnnIrcKcKveJBUNYiL0RRWaJcD9oG-0o1vrQqGG-t8srZsvS6qhpViShCUYTKOO1NY6IS92GnxX7cB4aIohK5VVI4I23hKimsc8o3voj4rSIDMXVx7RLxOOW_WNTDbprBCcjYcTUJpk6CyYBvnlqOxBv_qf-OpLepS7TZw43u4qxOVlgbiaKTFf5odNhcxCpBaotzJt3EKKLPYJ9kP32gr_9oXQYHkz5cXfx0U4wGSrsutg3deqiDkE-hX8zgwag-m0YiPiJKf5GB2VKsrb_YLmnPfw4k4Ii0JM7NH_67WY_gZkH5O4bB9gB2Vhfr8BhR1Kp5MpjKb_QwHtA
  priority: 102
  providerName: ProQuest
Title Identifying Influential Nodes in Large-Scale Directed Networks: The Role of Clustering
URI https://www.ncbi.nlm.nih.gov/pubmed/24204833
https://www.proquest.com/docview/1447721537
https://www.proquest.com/docview/1449765870
https://pubmed.ncbi.nlm.nih.gov/PMC3814409
https://doaj.org/article/74dce49a05fc43c185e46a6756bff3fd
http://dx.doi.org/10.1371/journal.pone.0077455
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED_t44UXYONjYaMyEg_wkInEXwkSQqxqGYhVaFDUt8iJbZgUJVvTSvDC3845cSKKOvFiVbGdOL673F1t_34AzwXG7Iko8jASXIaM6ijMubShTJWUVipMydyK7sVMnM_ZxwVf7EDP2eonsNma2jk-qfmyPP158-stGvyblrVBRn2n0-u6Mg4KWzLOd2EffZN0nAYXbFhXQOsWwh-gu63nhoNqcfwd7mlZN9ti0H-3Uv7lm6b34a4PKsm7TgsOYMdUh3CvJ2wg3n4P4cD_asgLDzf98gF8687qtuedyIeOswTNviSzWmPLq4p8crvFwy8oTUO6T6TRZNbtH29eE9Q0clljXW3JuFw75AW81UOYTydfx-ehZ1sICx6LVWio4zHSlMapciDsRiijXvFcJ4obqZXimhcqSbRI05yn1FITxyaVhdAyl5bTR7BX4TweAcEYI6WR4owWkqm4SBlVRcF1rmOLz4oDoP0UZ4WHIneMGGXWrq9JTEm6icucYDIvmADCodd1B8Xxn_ZnTnpDWwek3V6ol98zb5eZZCg6luKL2gKHi9GLYUJhFiVya6nVARw52fcPaDBVYpiQoJ-QAZz0-rC9-tlQjSbr1mFUZep12waDQI5fygAed-ozDBIjJgfyTwOQG4q18RabNdXVjxYWHGMvhtn6k9tHfAx3Ysfm0breE9hbLdfmKcZUq3wEu3IhsUzGkSun70ewfzaZfb4ctf9SjFozcuXvyR-wuik5
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6axgO8ABuXBQYYCSR4CFt9bZAQgkFpWdcH2Ka9Bcd2YFKVlKUV4k_xGzknl7KiCZ72VsVO4_gcf_4c-5wP4IlGzt7XLot7WplYCt-LM2Xy2CTWmNxYXJLRju7BRA-P5McTdbIGv7pYGDpW2WFiDdS-dPSNfAeJPxJBHJ_m9ex7TKpRtLvaSWg0brEffv7AJVv1avQO7fuU88H7w71h3KoKxE5xPY-DIL0eLwRPLCUbD9oGu6sy37cqGG-t8srZft_rJMlUInIROA-JcdqbzOSkEoGQf0UKnMkpMn3woUN-xA6t2_A8YXo7rTe8mJVFoBTdRlJA4bnpr1YJoKyq07K6iOH-fVDz3Mw3uAnXW8rK3jQ-tgFrodiEG50cBGvRYRM22l8Ve9Yms35-C46bSOA6moqNGkUUBJUpm5Qea54WbExn0ePP6CuBNQAcPJs0p9Orlwz9mH0qsazM2d50QXkd8K9uw9Gl9PodWC-wH7eAIYNJRM8qKZyRlrtECuuc8pnnOT6LRyC6Lk5dm-ic9Damab17Z3DB03RcSoZJW8NEEC_vmjWJPv5T_y1Zb1mX0nTXF8qzr2k76lMj0XQywRfNHTYXuVGQ2uIaTWd5LnIfwRbZvntAlf7x8gi2O3-4uPjxshgBgXZ5bBHKRV0HKaZCHI7gbuM-y0YiHyMJARGBWXGslbdYLSlOv9VJx5HZSbmb3Pt3sx7B1eHhwTgdjyb79-EaJ-2QeqLfhvX52SI8QAY3zx7Ww4bBl8sep78BOENdJg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamISFegI3LMgYYCSR4CF3jW4KEEHRUKxsVAob2Fhxf2KQqKUsrxF_j13FO4oQVTfC0typ2Gsfn4s_xOecj5LEEzJ5KU8RDKVTMmR3GhVA-VplWyisNWzI80X0_lftH_N2xOF4jv7pcGAyr7Hxi46htZfAb-QCAPwBBsE818CEs4sPe-NX8e4wMUnjS2tFptCpy4H7-gO1b_XKyB7J-kiTjt59H-3FgGIiNSOQidgy5eyxjSaax8LiT2uldUdhUC6es1sIKo9PUyiwrRMY8c0niMmWkVYXyyBgB7v-KYipFG0tHfXgJ-BEpQ6oeU8NB0Izn86p0WK5bcUwuPLcUNowBWGF1VtUXod2_gzbPrYLjm-R6gK_0datvG2TNlZvkRkcNQYOn2CQb4VdNn4bC1s9ukS9tVnCTWUUnLTsKOJgZnVYWep6W9BDj0uNPoDeOts7YWTptI9XrFxR0mn6soK3ydDRbYo0H-Kvb5OhSZv0OWS9hHrcIBTSTsaEWnBnFdWIyzrQxwhY28fCsJCKsm-LchKLnyL0xy5uTPAWbn3bichRMHgQTkbi_a94W_fhP_zcovb4vluxuLlRn3_LgAXLFQXQ8gxf1BoYLOMlxqWG_JgvvmbcR2ULZdw-o8z8aH5GdTh8ubn7UN4NzwBMfXbpq2fQBuCnAJ0fkbqs-_SABmyGdAIuIWlGslbdYbSlPT5oC5IDyON_Ntv89rIfkKlhofjiZHtwj1xKkEWnW_B2yvjhbuvsA5hbFg8ZqKPl62Wb6G8n8YSc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Influential+Nodes+in+Large-Scale+Directed+Networks%3A+The+Role+of+Clustering&rft.jtitle=PloS+one&rft.au=Duan-Bing%2C+Chen&rft.au=Gao%2C+Hui&rft.au=L%C3%BC%2C+Linyuan&rft.au=Zhou%2C+Tao&rft.date=2013-10-31&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=8&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pone.0077455&rft.externalDocID=1447721537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon