Electrophysiological markers of vestibular-mediated self-motion perception – A pilot study
[Display omitted] •A new cognitive vection paradigm was introduced without any visual, somatosensory, and auditory stimuli.•Alpha band EEG is linked to bottom-up vestibular sensory activation.•Theta band EEG is linked to self-motion perception per se.•Beta band EEG changes represent the process of u...
Saved in:
Published in | Brain research Vol. 1840; p. 149048 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A new cognitive vection paradigm was introduced without any visual, somatosensory, and auditory stimuli.•Alpha band EEG is linked to bottom-up vestibular sensory activation.•Theta band EEG is linked to self-motion perception per se.•Beta band EEG changes represent the process of updating of the prior brain state.
Peripheral vestibular activation results in multi-level responses, from brainstem-mediated reflexes (e.g. vestibular ocular reflex – VOR) to perception of self-motion. While VOR responses indicate preserved vestibular peripheral and brainstem functioning, there are no automated measures of vestibular perception of self-motion – important since some patients with brain disconnection syndromes manifest a vestibular agnosia (intact VOR but impaired self-motion perception). Electroencephalography (‘EEG’) – may provide a surrogate marker of vestibular perception of self-motion. A related objective is obtaining an EEG marker of vestibular sensory signal processing, distinct from vestibular-motion perception. We performed a pilot study comparing EEG responses in the dark when healthy participants sat in a vibrationless computer-controlled motorised rotating chair moving at near threshold of self-motion perception, versus a second situation in which subjects sat in the chair at rest in the dark who could be induced (or not) into falsely perceiving self-motion. In both conditions subjects could perceive self-motion perception, but in the second there was no bottom-up reflex-brainstem activation. Time-frequency analyses showed: (i) alpha frequency band activity is linked to vestibular sensory-signal activation; and (ii) theta band activity is a marker of vestibular-mediated self-motion perception. Consistent with emerging animal data, our findings support the role of theta activity in the processing of self-motion perception. |
---|---|
AbstractList | Graphical abstract Peripheral vestibular activation results in multi-level responses, from brainstem-mediated reflexes (e.g. vestibular ocular reflex - VOR) to perception of self-motion. While VOR responses indicate preserved vestibular peripheral and brainstem functioning, there are no automated measures of vestibular perception of self-motion - important since some patients with brain disconnection syndromes manifest a vestibular agnosia (intact VOR but impaired self-motion perception). Electroencephalography ('EEG') - may provide a surrogate marker of vestibular perception of self-motion. A related objective is obtaining an EEG marker of vestibular sensory signal processing, distinct from vestibular-motion perception. We performed a pilot study comparing EEG responses in the dark when healthy participants sat in a vibrationless computer-controlled motorised rotating chair moving at near threshold of self-motion perception, versus a second situation in which subjects sat in the chair at rest in the dark who could be induced (or not) into falsely perceiving self-motion. In both conditions subjects could perceive self-motion perception, but in the second there was no bottom-up reflex-brainstem activation. Time-frequency analyses showed: (i) alpha frequency band activity is linked to vestibular sensory-signal activation; and (ii) theta band activity is a marker of vestibular-mediated self-motion perception. Consistent with emerging animal data, our findings support the role of theta activity in the processing of self-motion perception.Peripheral vestibular activation results in multi-level responses, from brainstem-mediated reflexes (e.g. vestibular ocular reflex - VOR) to perception of self-motion. While VOR responses indicate preserved vestibular peripheral and brainstem functioning, there are no automated measures of vestibular perception of self-motion - important since some patients with brain disconnection syndromes manifest a vestibular agnosia (intact VOR but impaired self-motion perception). Electroencephalography ('EEG') - may provide a surrogate marker of vestibular perception of self-motion. A related objective is obtaining an EEG marker of vestibular sensory signal processing, distinct from vestibular-motion perception. We performed a pilot study comparing EEG responses in the dark when healthy participants sat in a vibrationless computer-controlled motorised rotating chair moving at near threshold of self-motion perception, versus a second situation in which subjects sat in the chair at rest in the dark who could be induced (or not) into falsely perceiving self-motion. In both conditions subjects could perceive self-motion perception, but in the second there was no bottom-up reflex-brainstem activation. Time-frequency analyses showed: (i) alpha frequency band activity is linked to vestibular sensory-signal activation; and (ii) theta band activity is a marker of vestibular-mediated self-motion perception. Consistent with emerging animal data, our findings support the role of theta activity in the processing of self-motion perception. [Display omitted] •A new cognitive vection paradigm was introduced without any visual, somatosensory, and auditory stimuli.•Alpha band EEG is linked to bottom-up vestibular sensory activation.•Theta band EEG is linked to self-motion perception per se.•Beta band EEG changes represent the process of updating of the prior brain state. Peripheral vestibular activation results in multi-level responses, from brainstem-mediated reflexes (e.g. vestibular ocular reflex – VOR) to perception of self-motion. While VOR responses indicate preserved vestibular peripheral and brainstem functioning, there are no automated measures of vestibular perception of self-motion – important since some patients with brain disconnection syndromes manifest a vestibular agnosia (intact VOR but impaired self-motion perception). Electroencephalography (‘EEG’) – may provide a surrogate marker of vestibular perception of self-motion. A related objective is obtaining an EEG marker of vestibular sensory signal processing, distinct from vestibular-motion perception. We performed a pilot study comparing EEG responses in the dark when healthy participants sat in a vibrationless computer-controlled motorised rotating chair moving at near threshold of self-motion perception, versus a second situation in which subjects sat in the chair at rest in the dark who could be induced (or not) into falsely perceiving self-motion. In both conditions subjects could perceive self-motion perception, but in the second there was no bottom-up reflex-brainstem activation. Time-frequency analyses showed: (i) alpha frequency band activity is linked to vestibular sensory-signal activation; and (ii) theta band activity is a marker of vestibular-mediated self-motion perception. Consistent with emerging animal data, our findings support the role of theta activity in the processing of self-motion perception. Peripheral vestibular activation results in multi-level responses, from brainstem-mediated reflexes (e.g. vestibular ocular reflex - VOR) to perception of self-motion. While VOR responses indicate preserved vestibular peripheral and brainstem functioning, there are no automated measures of vestibular perception of self-motion - important since some patients with brain disconnection syndromes manifest a vestibular agnosia (intact VOR but impaired self-motion perception). Electroencephalography ('EEG') - may provide a surrogate marker of vestibular perception of self-motion. A related objective is obtaining an EEG marker of vestibular sensory signal processing, distinct from vestibular-motion perception. We performed a pilot study comparing EEG responses in the dark when healthy participants sat in a vibrationless computer-controlled motorised rotating chair moving at near threshold of self-motion perception, versus a second situation in which subjects sat in the chair at rest in the dark who could be induced (or not) into falsely perceiving self-motion. In both conditions subjects could perceive self-motion perception, but in the second there was no bottom-up reflex-brainstem activation. Time-frequency analyses showed: (i) alpha frequency band activity is linked to vestibular sensory-signal activation; and (ii) theta band activity is a marker of vestibular-mediated self-motion perception. Consistent with emerging animal data, our findings support the role of theta activity in the processing of self-motion perception. |
ArticleNumber | 149048 |
Author | Hadi, Zaeem Pondeca, Yuscah Seemungal, Barry M. Rust, Heiko M. |
Author_xml | – sequence: 1 givenname: Zaeem orcidid: 0000-0002-5975-3627 surname: Hadi fullname: Hadi, Zaeem email: zhadi@ic.ac.uk organization: Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK – sequence: 2 givenname: Yuscah surname: Pondeca fullname: Pondeca, Yuscah organization: Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK – sequence: 3 givenname: Heiko M. surname: Rust fullname: Rust, Heiko M. organization: Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK – sequence: 4 givenname: Barry M. surname: Seemungal fullname: Seemungal, Barry M. email: bmseem@ic.ac.uk organization: Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38844198$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUs1uEzEYtFARTX9eodojl039F8eWEKKqSqlUiQNwQ7Ic-1tw6qwX21spt74Db8iT4CXNpYeWk21pZjzfzHeEDvrYA0JnBM8JJuJ8PV8l4_sEeU4x5XPCFebyFZoRuaStoBwfoBnGWLRSKXaIjnJe1ydjCr9Bh0xKzomSM_T9KoAtKQ4_t9nHEH94a0KzMekOUm5i19xDLn41BpPaDThvCrgmQ-jaTSw-9s0AycLw7_rn4Xdz0Qw-xNLkMrrtCXrdmZDh9PE8Rt8-Xn29_NTefr6-uby4be2CitI6vnDcUGwEgKJCUsIwuK6atNQZSzoiCGaEUMLtkkirrJGUwcIo6ahYUnaM3u50hxR_jdWw3vhsIQTTQxyzZlgslGRLJSr07BE6ruo8eki-DrvV-0Qq4N0OYFPMOUGnrS9mmq_UwIMmWE8F6LXeF6CnAvSugEoXT-j7H14kftgRoQZ17yHpbD30tmaeakPaRf-yxPsnEjb4fir0DraQ13FMfa1BE52pxvrLtB7TdtRlwQxT_LzA_zj4C_9LzyM |
CitedBy_id | crossref_primary_10_7554_eLife_99516 crossref_primary_10_1007_s00405_025_09282_3 |
Cites_doi | 10.1068/p240435 10.1038/s41467-022-30348-x 10.1111/psyp.13922 10.1016/j.neuron.2021.01.017 10.1007/s12311-017-0844-y 10.1101/2024.02.12.24302715 10.1523/JNEUROSCI.0987-21.2022 10.1002/ana.26945 10.1016/j.brainresrev.2010.12.002 10.1038/s41467-019-09664-2 10.1037/0096-1523.11.2.122 10.1007/s00221-020-06030-3 10.1093/brain/awaa386 10.1002/syn.20742 10.1111/ene.12947 10.3233/VES-2004-14604 10.1007/s00221-022-06442-3 10.3233/VES-2006-161-202 10.1093/cercor/bht266 10.1523/JNEUROSCI.23-16-06490.2003 10.1016/j.neuroimage.2014.09.010 10.1016/j.jneumeth.2003.10.009 10.1016/j.neuroscience.2012.07.054 10.1038/s41467-021-27753-z 10.1145/1166087.1166091 10.1152/jn.00548.2017 10.3758/s13414-020-02228-3 10.1093/brain/122.7.1293 10.1152/jn.00153.2015 10.1152/jn.00953.2005 10.1152/jn.00237.2019 10.1016/j.neuroimage.2020.117015 10.1163/22134808-bja10035 10.1007/s00415-020-09915-z 10.1152/jn.00905.2004 |
ContentType | Journal Article |
Copyright | 2024 The Authors The Authors Copyright © 2024. Published by Elsevier B.V. Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: The Authors – notice: Copyright © 2024. Published by Elsevier B.V. – notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.brainres.2024.149048 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1872-6240 |
EndPage | 149048 |
ExternalDocumentID | 38844198 10_1016_j_brainres_2024_149048 S0006899324003020 1_s2_0_S0006899324003020 |
Genre | Journal Article |
GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5RE 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABTEW ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SEW SPCBC SSN SSZ T5K Z5R ZGI ~G- .55 .GJ 41~ 53G 5VS AACTN AAQXK AAYJJ ABWVN ABXDB ACRPL ADIYS ADMUD ADNMO AFCTW AFKWA AGHFR AHHHB AI. AJOXV AMFUW ASPBG AVWKF AZFZN EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ MVM PKN R2- RIG SNS VH1 WUQ X7M XPP 6I. AAFTH AAYXX AGQPQ AGRNS BNPGV CITATION SSH NPM 7X8 |
ID | FETCH-LOGICAL-c526t-d45d4a20a6ee92682130edf388c2dac1f1610311214c718c9ca823e5a98d26723 |
IEDL.DBID | .~1 |
ISSN | 0006-8993 1872-6240 |
IngestDate | Fri Jul 11 12:19:27 EDT 2025 Mon Jul 21 06:01:51 EDT 2025 Tue Jul 01 04:35:05 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Sat Aug 17 15:42:37 EDT 2024 Tue Feb 25 20:01:14 EST 2025 Tue Aug 26 16:34:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Self-motion perception Vestibular perception Vection Cognition Illusory-self motion EEG |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c526t-d45d4a20a6ee92682130edf388c2dac1f1610311214c718c9ca823e5a98d26723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5975-3627 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0006899324003020 |
PMID | 38844198 |
PQID | 3065983796 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3065983796 pubmed_primary_38844198 crossref_citationtrail_10_1016_j_brainres_2024_149048 crossref_primary_10_1016_j_brainres_2024_149048 elsevier_sciencedirect_doi_10_1016_j_brainres_2024_149048 elsevier_clinicalkeyesjournals_1_s2_0_S0006899324003020 elsevier_clinicalkey_doi_10_1016_j_brainres_2024_149048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Brain research |
PublicationTitleAlternate | Brain Res |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jacob, Poucet, Liberge, Save, Sargolini (b0090) 2014; 8 Okada T, Grunfeld E, Shallo-Hoffmann J, Bronstein AM. Vestibular perception of angular velocity in normal subjects and in patients with congenital nystagmus. D’Amour, Harris, Berti, Keshavarz (b0045) 2021; 83 Shin (b0195) 2010; 64 Gale, Prsa, Schurger (b0065) 2016; 115 Rohe T, Ehlis AC, Noppeney U. The neural dynamics of hierarchical Bayesian causal inference in multisensory perception. Delorme, Makeig (b0050) 2004; 134 Russell, Horii, Smith, Darlington, Bilkey (b0175) 2006; 96 Published online February 13, 2024:2024.02.12.24302715. doi:10.1101/2024.02.12.24302715. Aitken, Zheng, Smith (b0005) 2018; 119 Palmisano, Barry, De Blasio, Fogarty (b0145) 2016; 7(AUG):1205 1999;122 (Pt 7)(7):1293-1303. doi:10.1093/BRAIN/122.7.1293. Russell, Horii, Smith, Darlington, Bilkey (b0170) 2003; 23 Zheng, Wynn (b0210) 2022; 2 Riecke BE, Schulte-Pelkum J, Bülthoff HH, der Heyde M von. Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Trans Appl. Percept. 2006;3(3):194-216. doi:10.1145/1166087.1166091. Vol 28. The Japanese Psychonomic Society; 2009:135-139. doi:10.14947/PSYCHONO.KJ00005878681. Ciocca, Jameel, Yousif (b0040) 2024 Palmisano, Allison, Schira, Barry (b0140) 2015; 6 2022;13(1):1-14. doi:10.1038/s41467-021-27753-z. Hadi Z, Mahmud M, Calzolari E, et al. Vestibular agnosia is linked to worse balance recovery in traumatic brain injury: a longitudinal behavioural and neuro-imaging study. Lopez, Blanke (b0110) 2011; 67 Lepecq, Giannopulu, Baudonniere (b0105) 1995; 24 Aravamuthan, Angelaki (b0015) 2012; 223 Artoni, Menicucci, Delorme, Makeig, Micera (b0020) 2014; 103 Shaikh, Straumann, Palla (b0190) 2017; 16 Hadi, Mahmud, Pondeca (b0080) 2022 Guan, Wessel (b0070) 2021; 58 Carriot, McAllister, Hooshangnejad, Mackrous, Cullen, Chacron (b0035) 2022; 13 McAssey, Dowsett, Kirsch, Brandt, Dieterich (b0120) 2020; 267 Reuten, Smeets, Martens, Bos (b0150) 2022; 240 Ertl, Klaus, Mast, Brandt, Dieterich (b0055) 2020; 219 Ertl, Zu Eulenburg, Woller, Dieterich (b0060) 2021; 239 Seemungal, Masaoutis, Green, Plant, Bronstein (b0185) 2011; 2 Calzolari, Chepisheva, Smith (b0030) 2021; 144 Nigmatullina, Hellyer, Nachev, Sharp, Seemungal (b0130) 2015; 25 Merfeld, Park, Gianna-Poulin, Black, Wood (b0125) 2005; 94 Harquel, Guerraz, Barraud, Cian (b0085) 2020; 123 Yousif, Bhatt, Bain, Nandi, Seemungal (b0205) 2016; 23 Andersen, Braunstein (b0010) 1985; 11 Berti, Keshavarz (b0025) 2020; 34 Wright, DiZio, Lackner (b0200) 2006; 16 Riecke BE. Cognitive and higher-level contributions to illusory self-motion perception (“vection”) : Does the possibility of actual motion affect vection? In 2019;10(1):1-17. doi:10.1038/s41467-019-09664-2. Seemungal, Gunaratne, Fleming, Gresty, Bronstein (b0180) 2004; 14 Kennedy, Zhou, Qin (b0095) 2022; 42 Kropff, Carmichael, Moser, Moser (b0100) 2021; 109 Mackrous I, Carriot J, Cullen KE. Context-independent encoding of passive and active self-motion in vestibular afferent fibers during locomotion in primates. Russell (10.1016/j.brainres.2024.149048_b0175) 2006; 96 Zheng (10.1016/j.brainres.2024.149048_b0210) 2022; 2 Andersen (10.1016/j.brainres.2024.149048_b0010) 1985; 11 10.1016/j.brainres.2024.149048_b0165 Calzolari (10.1016/j.brainres.2024.149048_b0030) 2021; 144 Merfeld (10.1016/j.brainres.2024.149048_b0125) 2005; 94 10.1016/j.brainres.2024.149048_b0160 Seemungal (10.1016/j.brainres.2024.149048_b0185) 2011; 2 Wright (10.1016/j.brainres.2024.149048_b0200) 2006; 16 Guan (10.1016/j.brainres.2024.149048_b0070) 2021; 58 Kropff (10.1016/j.brainres.2024.149048_b0100) 2021; 109 McAssey (10.1016/j.brainres.2024.149048_b0120) 2020; 267 Kennedy (10.1016/j.brainres.2024.149048_b0095) 2022; 42 Russell (10.1016/j.brainres.2024.149048_b0170) 2003; 23 Aravamuthan (10.1016/j.brainres.2024.149048_b0015) 2012; 223 Lepecq (10.1016/j.brainres.2024.149048_b0105) 1995; 24 Berti (10.1016/j.brainres.2024.149048_b0025) 2020; 34 Shaikh (10.1016/j.brainres.2024.149048_b0190) 2017; 16 Palmisano (10.1016/j.brainres.2024.149048_b0140) 2015; 6 Ciocca (10.1016/j.brainres.2024.149048_b0040) 2024 Delorme (10.1016/j.brainres.2024.149048_b0050) 2004; 134 D’Amour (10.1016/j.brainres.2024.149048_b0045) 2021; 83 10.1016/j.brainres.2024.149048_b0135 10.1016/j.brainres.2024.149048_b0155 Seemungal (10.1016/j.brainres.2024.149048_b0180) 2004; 14 Aitken (10.1016/j.brainres.2024.149048_b0005) 2018; 119 10.1016/j.brainres.2024.149048_b0075 Hadi (10.1016/j.brainres.2024.149048_b0080) 2022 Carriot (10.1016/j.brainres.2024.149048_b0035) 2022; 13 Lopez (10.1016/j.brainres.2024.149048_b0110) 2011; 67 Harquel (10.1016/j.brainres.2024.149048_b0085) 2020; 123 Shin (10.1016/j.brainres.2024.149048_b0195) 2010; 64 Palmisano (10.1016/j.brainres.2024.149048_b0145) 2016; 7(AUG):1205 Gale (10.1016/j.brainres.2024.149048_b0065) 2016; 115 Yousif (10.1016/j.brainres.2024.149048_b0205) 2016; 23 Nigmatullina (10.1016/j.brainres.2024.149048_b0130) 2015; 25 Reuten (10.1016/j.brainres.2024.149048_b0150) 2022; 240 Ertl (10.1016/j.brainres.2024.149048_b0055) 2020; 219 Artoni (10.1016/j.brainres.2024.149048_b0020) 2014; 103 Jacob (10.1016/j.brainres.2024.149048_b0090) 2014; 8 10.1016/j.brainres.2024.149048_b0115 Ertl (10.1016/j.brainres.2024.149048_b0060) 2021; 239 |
References_xml | – volume: 144 start-page: 128 year: 2021 end-page: 143 ident: b0030 article-title: Vestibular agnosia in traumatic brain injury and its link to imbalance publication-title: Brain – volume: 119 start-page: 548 year: 2018 end-page: 562 ident: b0005 article-title: The modulation of hippocampal theta rhythm by the vestibular system publication-title: J. Neurophysiol. – volume: 96 start-page: 4 year: 2006 end-page: 14 ident: b0175 article-title: Lesions of the vestibular system disrupt hippocampal theta rhythm in the rat publication-title: J. Neurophysiol. – volume: 25 start-page: 554 year: 2015 end-page: 562 ident: b0130 article-title: The neuroanatomical correlates of training-related perceptuo-reflex uncoupling in dancers publication-title: Cereb. Cortex – volume: 64 start-page: 409 year: 2010 end-page: 415 ident: b0195 article-title: Passive rotation-induced theta rhythm and orientation homeostasis response publication-title: Synapse – volume: 67 start-page: 119 year: 2011 end-page: 146 ident: b0110 article-title: The thalamocortical vestibular system in animals and humans publication-title: Brain Res. Rev. – volume: 240 start-page: 2677 year: 2022 end-page: 2685 ident: b0150 article-title: Self-motion perception without sensory motion publication-title: Exp. Brain Res. – volume: 123 start-page: 346 year: 2020 end-page: 355 ident: b0085 article-title: Modulation of alpha waves in sensorimotor cortical networks during self-motion perception evoked by different visual-vestibular conflicts publication-title: J. Neurophysiol. – volume: 58 start-page: e13922 year: 2021 ident: b0070 article-title: Timing-dependent differential effects of unexpected events on error processing reveal the interactive dynamics of surprise and error processing publication-title: Psychophysiology – volume: 219 year: 2020 ident: b0055 article-title: Spectral fingerprints of correct vestibular discrimination of the intensity of body accelerations publication-title: Neuroimage – volume: 42 start-page: 4326 year: 2022 ident: b0095 article-title: A Direct Comparison of Theta Power and Frequency to Speed and Acceleration publication-title: J. Neurosci. – reference: Riecke BE, Schulte-Pelkum J, Bülthoff HH, der Heyde M von. Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Trans Appl. Percept. 2006;3(3):194-216. doi:10.1145/1166087.1166091. – volume: 23 start-page: 6490 year: 2003 end-page: 6498 ident: b0170 article-title: Long-Term Effects of Permanent Vestibular Lesions on Hippocampal Spatial Firing publication-title: J. Neurosci. – volume: 8 start-page: 73461 year: 2014 ident: b0090 article-title: Vestibular control of entorhinal cortex activity in spatial navigation publication-title: Front. Integr. Neurosci. – reference: Hadi Z, Mahmud M, Calzolari E, et al. Vestibular agnosia is linked to worse balance recovery in traumatic brain injury: a longitudinal behavioural and neuro-imaging study. – reference: . Published online February 13, 2024:2024.02.12.24302715. doi:10.1101/2024.02.12.24302715. – volume: 6 year: 2015 ident: b0140 article-title: Future challenges for vection research: Definitions, functional significance, measures, and neural bases publication-title: Front. Psychol. – volume: 115 start-page: 1228 year: 2016 end-page: 1242 ident: b0065 article-title: Oscillatory neural responses evoked by natural vestibular stimuli in humans publication-title: J. Neurophysiol. – volume: 16 start-page: 23 year: 2006 end-page: 28 ident: b0200 article-title: Perceived self-motion in two visual contexts: dissociable mechanisms underlie perception publication-title: J. Vestib. Res. – reference: Rohe T, Ehlis AC, Noppeney U. The neural dynamics of hierarchical Bayesian causal inference in multisensory perception. – volume: 239 start-page: 1073 year: 2021 end-page: 1083 ident: b0060 article-title: The role of delta and theta oscillations during ego-motion in healthy adult volunteers publication-title: Exp. Brain Res. – reference: . 2019;10(1):1-17. doi:10.1038/s41467-019-09664-2. – volume: 13 start-page: 1 year: 2022 end-page: 15 ident: b0035 article-title: Sensory adaptation mediates efficient and unambiguous encoding of natural stimuli by vestibular thalamocortical pathways publication-title: Nat. Commun. – reference: . Vol 28. The Japanese Psychonomic Society; 2009:135-139. doi:10.14947/PSYCHONO.KJ00005878681. – volume: 2 year: 2022 ident: b0210 article-title: Midfrontal theta is associated with errors, but no evidence for a link with error-related memory publication-title: Neuroimage: Reports. – volume: 94 start-page: 199 year: 2005 end-page: 205 ident: b0125 article-title: Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined Tilt&Translation publication-title: J. Neurophysiol. – volume: 23 start-page: 668 year: 2016 end-page: 670 ident: b0205 article-title: The effect of pedunculopontine nucleus deep brain stimulation on postural sway and vestibular perception publication-title: Eur J Neurol. – volume: 83 start-page: 1804 year: 2021 end-page: 1817 ident: b0045 article-title: The role of cognitive factors and personality traits in the perception of illusory self-motion (vection) publication-title: Attention, Perception, Psychophys. – volume: 2 year: 2011 ident: b0185 article-title: Symptomatic Recovery in Miller Fisher Syndrome Parallels Vestibular-Perceptual and not Vestibular-Ocular Reflex Function publication-title: Front. Neurol. – volume: 7(AUG):1205 year: 2016 ident: b0145 article-title: Identifying Objective EEG Based Markers of Linear Vection in Depth publication-title: Front. Psychol. – volume: 109 start-page: 1029 year: 2021 end-page: 1039.e8 ident: b0100 article-title: Frequency of theta rhythm is controlled by acceleration, but not speed, in running rats publication-title: Neuron – year: 2024 ident: b0040 article-title: Illusions of Self-Motion during Magnetic Resonance-Guided Focused Ultrasound Thalamotomy for Tremor publication-title: Ann. Neurol. – reference: Riecke BE. Cognitive and higher-level contributions to illusory self-motion perception (“vection”) : Does the possibility of actual motion affect vection? In: – volume: 14 start-page: 461 year: 2004 end-page: 466 ident: b0180 article-title: Perceptual and nystagmic thresholds of vestibular function in yaw publication-title: J. Vestib. Res. – volume: 34 start-page: 153 year: 2020 end-page: 186 ident: b0025 article-title: Neuropsychological Approaches to Visually-Induced Vection: an Overview and Evaluation of Neuroimaging and Neurophysiological Studies publication-title: Multisens. Res. – start-page: 443 year: 2022 ident: b0080 article-title: The human brain networks mediating the vestibular sensation of self-motion publication-title: J. Neurol. Sci. – reference: . 1999;122 (Pt 7)(7):1293-1303. doi:10.1093/BRAIN/122.7.1293. – reference: . 2022;13(1):1-14. doi:10.1038/s41467-021-27753-z. – volume: 103 start-page: 391 year: 2014 end-page: 400 ident: b0020 article-title: RELICA: A method for estimating the reliability of independent components publication-title: Neuroimage – volume: 24 start-page: 435 year: 1995 end-page: 449 ident: b0105 article-title: Cognitive effects on visually induced body motion in children publication-title: Perception – reference: Okada T, Grunfeld E, Shallo-Hoffmann J, Bronstein AM. Vestibular perception of angular velocity in normal subjects and in patients with congenital nystagmus. – reference: Mackrous I, Carriot J, Cullen KE. Context-independent encoding of passive and active self-motion in vestibular afferent fibers during locomotion in primates. – volume: 267 start-page: 79 year: 2020 end-page: 90 ident: b0120 article-title: Different EEG brain activity in right and left handers during visually induced self-motion perception publication-title: J. Neurol. – volume: 223 start-page: 183 year: 2012 ident: b0015 article-title: Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation publication-title: Neuroscience – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: b0050 article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J Neurosci Methods. – volume: 16 start-page: 656 year: 2017 ident: b0190 article-title: Motion illusion – evidence towards human vestibulo-thalamic projections publication-title: Cerebellum – volume: 11 start-page: 122 year: 1985 end-page: 132 ident: b0010 article-title: Induced self-motion in central vision publication-title: J. Exp. Psychol. Hum. Percept. Perform. – volume: 24 start-page: 435 issue: 4 year: 1995 ident: 10.1016/j.brainres.2024.149048_b0105 article-title: Cognitive effects on visually induced body motion in children publication-title: Perception doi: 10.1068/p240435 – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.brainres.2024.149048_b0035 article-title: Sensory adaptation mediates efficient and unambiguous encoding of natural stimuli by vestibular thalamocortical pathways publication-title: Nat. Commun. doi: 10.1038/s41467-022-30348-x – volume: 58 start-page: e13922 issue: 12 year: 2021 ident: 10.1016/j.brainres.2024.149048_b0070 article-title: Timing-dependent differential effects of unexpected events on error processing reveal the interactive dynamics of surprise and error processing publication-title: Psychophysiology doi: 10.1111/psyp.13922 – volume: 109 start-page: 1029 issue: 6 year: 2021 ident: 10.1016/j.brainres.2024.149048_b0100 article-title: Frequency of theta rhythm is controlled by acceleration, but not speed, in running rats publication-title: Neuron doi: 10.1016/j.neuron.2021.01.017 – volume: 16 start-page: 656 issue: 3 year: 2017 ident: 10.1016/j.brainres.2024.149048_b0190 article-title: Motion illusion – evidence towards human vestibulo-thalamic projections publication-title: Cerebellum doi: 10.1007/s12311-017-0844-y – ident: 10.1016/j.brainres.2024.149048_b0075 doi: 10.1101/2024.02.12.24302715 – volume: 42 start-page: 4326 issue: 21 year: 2022 ident: 10.1016/j.brainres.2024.149048_b0095 article-title: A Direct Comparison of Theta Power and Frequency to Speed and Acceleration publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0987-21.2022 – volume: 2 issue: 1 year: 2011 ident: 10.1016/j.brainres.2024.149048_b0185 article-title: Symptomatic Recovery in Miller Fisher Syndrome Parallels Vestibular-Perceptual and not Vestibular-Ocular Reflex Function publication-title: Front. Neurol. – year: 2024 ident: 10.1016/j.brainres.2024.149048_b0040 article-title: Illusions of Self-Motion during Magnetic Resonance-Guided Focused Ultrasound Thalamotomy for Tremor publication-title: Ann. Neurol. doi: 10.1002/ana.26945 – volume: 67 start-page: 119 issue: 1–2 year: 2011 ident: 10.1016/j.brainres.2024.149048_b0110 article-title: The thalamocortical vestibular system in animals and humans publication-title: Brain Res. Rev. doi: 10.1016/j.brainresrev.2010.12.002 – ident: 10.1016/j.brainres.2024.149048_b0165 doi: 10.1038/s41467-019-09664-2 – volume: 11 start-page: 122 issue: 2 year: 1985 ident: 10.1016/j.brainres.2024.149048_b0010 article-title: Induced self-motion in central vision publication-title: J. Exp. Psychol. Hum. Percept. Perform. doi: 10.1037/0096-1523.11.2.122 – volume: 239 start-page: 1073 issue: 4 year: 2021 ident: 10.1016/j.brainres.2024.149048_b0060 article-title: The role of delta and theta oscillations during ego-motion in healthy adult volunteers publication-title: Exp. Brain Res. doi: 10.1007/s00221-020-06030-3 – volume: 7(AUG):1205 year: 2016 ident: 10.1016/j.brainres.2024.149048_b0145 article-title: Identifying Objective EEG Based Markers of Linear Vection in Depth publication-title: Front. Psychol. – volume: 144 start-page: 128 issue: 1 year: 2021 ident: 10.1016/j.brainres.2024.149048_b0030 article-title: Vestibular agnosia in traumatic brain injury and its link to imbalance publication-title: Brain doi: 10.1093/brain/awaa386 – volume: 2 issue: 4 year: 2022 ident: 10.1016/j.brainres.2024.149048_b0210 article-title: Midfrontal theta is associated with errors, but no evidence for a link with error-related memory publication-title: Neuroimage: Reports. – volume: 64 start-page: 409 issue: 5 year: 2010 ident: 10.1016/j.brainres.2024.149048_b0195 article-title: Passive rotation-induced theta rhythm and orientation homeostasis response publication-title: Synapse doi: 10.1002/syn.20742 – volume: 8 start-page: 73461 issue: JUNE year: 2014 ident: 10.1016/j.brainres.2024.149048_b0090 article-title: Vestibular control of entorhinal cortex activity in spatial navigation publication-title: Front. Integr. Neurosci. – volume: 23 start-page: 668 issue: 3 year: 2016 ident: 10.1016/j.brainres.2024.149048_b0205 article-title: The effect of pedunculopontine nucleus deep brain stimulation on postural sway and vestibular perception publication-title: Eur J Neurol. doi: 10.1111/ene.12947 – volume: 14 start-page: 461 issue: 6 year: 2004 ident: 10.1016/j.brainres.2024.149048_b0180 article-title: Perceptual and nystagmic thresholds of vestibular function in yaw publication-title: J. Vestib. Res. doi: 10.3233/VES-2004-14604 – volume: 240 start-page: 2677 issue: 10 year: 2022 ident: 10.1016/j.brainres.2024.149048_b0150 article-title: Self-motion perception without sensory motion publication-title: Exp. Brain Res. doi: 10.1007/s00221-022-06442-3 – start-page: 443 year: 2022 ident: 10.1016/j.brainres.2024.149048_b0080 article-title: The human brain networks mediating the vestibular sensation of self-motion publication-title: J. Neurol. Sci. – volume: 16 start-page: 23 issue: 1–2 year: 2006 ident: 10.1016/j.brainres.2024.149048_b0200 article-title: Perceived self-motion in two visual contexts: dissociable mechanisms underlie perception publication-title: J. Vestib. Res. doi: 10.3233/VES-2006-161-202 – volume: 25 start-page: 554 issue: 2 year: 2015 ident: 10.1016/j.brainres.2024.149048_b0130 article-title: The neuroanatomical correlates of training-related perceptuo-reflex uncoupling in dancers publication-title: Cereb. Cortex doi: 10.1093/cercor/bht266 – volume: 23 start-page: 6490 issue: 16 year: 2003 ident: 10.1016/j.brainres.2024.149048_b0170 article-title: Long-Term Effects of Permanent Vestibular Lesions on Hippocampal Spatial Firing publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-16-06490.2003 – volume: 103 start-page: 391 year: 2014 ident: 10.1016/j.brainres.2024.149048_b0020 article-title: RELICA: A method for estimating the reliability of independent components publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.09.010 – volume: 134 start-page: 9 issue: 1 year: 2004 ident: 10.1016/j.brainres.2024.149048_b0050 article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J Neurosci Methods. doi: 10.1016/j.jneumeth.2003.10.009 – volume: 223 start-page: 183 year: 2012 ident: 10.1016/j.brainres.2024.149048_b0015 article-title: Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation publication-title: Neuroscience doi: 10.1016/j.neuroscience.2012.07.054 – ident: 10.1016/j.brainres.2024.149048_b0115 doi: 10.1038/s41467-021-27753-z – ident: 10.1016/j.brainres.2024.149048_b0155 doi: 10.1145/1166087.1166091 – ident: 10.1016/j.brainres.2024.149048_b0160 – volume: 119 start-page: 548 issue: 2 year: 2018 ident: 10.1016/j.brainres.2024.149048_b0005 article-title: The modulation of hippocampal theta rhythm by the vestibular system publication-title: J. Neurophysiol. doi: 10.1152/jn.00548.2017 – volume: 83 start-page: 1804 issue: 4 year: 2021 ident: 10.1016/j.brainres.2024.149048_b0045 article-title: The role of cognitive factors and personality traits in the perception of illusory self-motion (vection) publication-title: Attention, Perception, Psychophys. doi: 10.3758/s13414-020-02228-3 – ident: 10.1016/j.brainres.2024.149048_b0135 doi: 10.1093/brain/122.7.1293 – volume: 6 issue: FEB year: 2015 ident: 10.1016/j.brainres.2024.149048_b0140 article-title: Future challenges for vection research: Definitions, functional significance, measures, and neural bases publication-title: Front. Psychol. – volume: 115 start-page: 1228 issue: 3 year: 2016 ident: 10.1016/j.brainres.2024.149048_b0065 article-title: Oscillatory neural responses evoked by natural vestibular stimuli in humans publication-title: J. Neurophysiol. doi: 10.1152/jn.00153.2015 – volume: 96 start-page: 4 issue: 1 year: 2006 ident: 10.1016/j.brainres.2024.149048_b0175 article-title: Lesions of the vestibular system disrupt hippocampal theta rhythm in the rat publication-title: J. Neurophysiol. doi: 10.1152/jn.00953.2005 – volume: 123 start-page: 346 issue: 1 year: 2020 ident: 10.1016/j.brainres.2024.149048_b0085 article-title: Modulation of alpha waves in sensorimotor cortical networks during self-motion perception evoked by different visual-vestibular conflicts publication-title: J. Neurophysiol. doi: 10.1152/jn.00237.2019 – volume: 219 year: 2020 ident: 10.1016/j.brainres.2024.149048_b0055 article-title: Spectral fingerprints of correct vestibular discrimination of the intensity of body accelerations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117015 – volume: 34 start-page: 153 issue: 2 year: 2020 ident: 10.1016/j.brainres.2024.149048_b0025 article-title: Neuropsychological Approaches to Visually-Induced Vection: an Overview and Evaluation of Neuroimaging and Neurophysiological Studies publication-title: Multisens. Res. doi: 10.1163/22134808-bja10035 – volume: 267 start-page: 79 issue: Suppl 1 year: 2020 ident: 10.1016/j.brainres.2024.149048_b0120 article-title: Different EEG brain activity in right and left handers during visually induced self-motion perception publication-title: J. Neurol. doi: 10.1007/s00415-020-09915-z – volume: 94 start-page: 199 issue: 1 year: 2005 ident: 10.1016/j.brainres.2024.149048_b0125 article-title: Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined Tilt&Translation publication-title: J. Neurophysiol. doi: 10.1152/jn.00905.2004 |
SSID | ssj0003390 |
Score | 2.470434 |
Snippet | [Display omitted]
•A new cognitive vection paradigm was introduced without any visual, somatosensory, and auditory stimuli.•Alpha band EEG is linked to... Graphical abstract Peripheral vestibular activation results in multi-level responses, from brainstem-mediated reflexes (e.g. vestibular ocular reflex - VOR) to perception of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 149048 |
SubjectTerms | Cognition EEG Illusory-self motion Neurology Self-motion perception Vection Vestibular perception |
Title | Electrophysiological markers of vestibular-mediated self-motion perception – A pilot study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006899324003020 https://www.clinicalkey.es/playcontent/1-s2.0-S0006899324003020 https://dx.doi.org/10.1016/j.brainres.2024.149048 https://www.ncbi.nlm.nih.gov/pubmed/38844198 https://www.proquest.com/docview/3065983796 |
Volume | 1840 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhveRSmqZpt4-gQulNWVuWZem4LAmbPkIoDeRQELYesGHjNfHmkEvIf-g_7C_pjGVvU9rQ0p6MhYXMzGjmG2kehLypqqJItC2Z1YEzkTvOyhAkcyH3jjsNoBwP9D8ey9mpeHeWn22Q6ZALg2GVve6POr3T1v3IuKfmuJnPMcc3keAtYEU5kFSOfrsQBUr5_s2PMI8si-cs6Dnj13eyhM_3K2zDAG4t-IlcgNLQCfYB-r2Bug-Adobo8BF52CNIOok_uU02fP2Y7Exq8J4vrulb2sV0doflO-TLQexy0wxjyBJ6gSE5ly1dBtoV2agwFJV1OSSAP2nrF4HF7j60Wce90G-3X-mENvPFckW7orRPyOnhwefpjPX9FJjNuVwxB6wQJU9K6b3mUnGwX96FTCnLXWnTAOgP9njKU2HBZFlgoeKZz0utHJcFz3bJZr2s_TNCE1kWgES8EzyI1GvlC20zC-jDAb5Q1YjkAxGN7YuNY8-LhRmiys7NQHyDxDeR-CMyXs9rYrmNP84oBh6ZIZkU1J8Bi_BvM33b7-LWpKblJjG_SNqI6PXMn4T1r1Z9PQiSgZ2M1zNl7ZdXrcnwiltlhZYj8jRK2JoGwCPArVo9_4-VX5AtfIuRiC_J5uryyr8CRLWq9rots0ceTKafPpzg8-j97Pg7ckwjLg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5QAXBJTHUh5GQtzcTZzEsY-rqtUCbU-t1AOSlfghbbXNRs32wAX1P_AP-SXMxMkCAgSCaxLL0Ty_secB8LquyzLRtuJWB8HzwglehSC5C4V3wmkE5XSgf3wi52f5u_PifAv2x1oYSqscbH-06b21Hp5MB2pO28WCanwTidECdZRDSRUYt9_KUX1pjMHep295HlkWD1oodKbPvysTvtiraQ4DxrUYKIocrYZOaBDQrz3U7xBo74kO78HdAUKyWfzL-7DlmwewM2swfL78yN6wPqmzPy3fgQ8HccxNOz4jnrBLysm56tgqsL7LRk25qLwvIkEAyjq_DDyO92HtJvGFfbn5zGasXSxXa9Z3pX0IZ4cHp_tzPgxU4LYQcs0d8iKvRFJJ77WQSqAD8y5kSlnhKpsGhH-o5KlIc4s-yyIPlch8UWnlhCxF9gi2m1XjnwBLZFUiFPEuFyFPvVa-1DazCD8cAgxVT6AYiWjs0G2chl4szZhWdmFG4hsivonEn8B0s66N_Tb-uKIceWTGalK0fwZdwr-t9N2gxp1JTSdMYn4StQnozcofpPWvdn01CpJBVab7marxq-vOZHTHrbJSywk8jhK2oQHyCIGrVk__Y-eXcHt-enxkjt6evN-FO_QmpiU-g-311bV_jvBqXb_o1ecrxFAjJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrophysiological+markers+of+vestibular-mediated+self-motion+perception+%E2%80%93+A+pilot+study&rft.jtitle=Brain+research&rft.au=Hadi%2C+Zaeem&rft.au=Pondeca%2C+Yuscah&rft.au=Rust%2C+Heiko+M&rft.au=Seemungal%2C+Barry+M&rft.date=2024-10-01&rft.issn=0006-8993&rft.volume=1840&rft.spage=149048&rft.epage=149048&rft_id=info:doi/10.1016%2Fj.brainres.2024.149048&rft.externalDBID=ECK1-s2.0-S0006899324003020&rft.externalDocID=1_s2_0_S0006899324003020 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00068993%2Fcov200h.gif |