Gene expression in response to optical defocus of opposite signs reveals bidirectional mechanism of visually guided eye growth
Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world because of a recent sharp increase in prevalence. Nearwork, which produces hyperopic optical defocus on the retina, has been implicated as one of...
Saved in:
Published in | PLoS biology Vol. 16; no. 10; p. e2006021 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.10.2018
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-7885 1544-9173 1545-7885 |
DOI | 10.1371/journal.pbio.2006021 |
Cover
Loading…
Abstract | Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world because of a recent sharp increase in prevalence. Nearwork, which produces hyperopic optical defocus on the retina, has been implicated as one of the environmental risk factors causing myopia in humans. Experimental studies have shown that hyperopic defocus imposed by negative power lenses placed in front of the eye accelerates eye growth and causes myopia, whereas myopic defocus imposed by positive lenses slows eye growth and produces a compensatory hyperopic shift in refractive state. The balance between these two optical signals is thought to regulate refractive eye development; however, the ability of the retina to recognize the sign of optical defocus and the composition of molecular signaling pathways guiding emmetropization are the subjects of intense investigation and debate. We found that the retina can readily distinguish between imposed myopic and hyperopic defocus, and identified key signaling pathways underlying retinal response to the defocus of different signs. Comparison of retinal transcriptomes in common marmosets exposed to either myopic or hyperopic defocus for 10 days or 5 weeks revealed that the primate retina responds to defocus of different signs by activation or suppression of largely distinct pathways. We also found that 29 genes differentially expressed in the marmoset retina in response to imposed defocus are localized within human myopia quantitative trait loci (QTLs), suggesting functional overlap between genes differentially expressed in the marmoset retina upon exposure to optical defocus and genes causing myopia in humans. These findings identify retinal pathways involved in the development of myopia, as well as potential new strategies for its treatment. |
---|---|
AbstractList | Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world because of a recent sharp increase in prevalence. Nearwork, which produces hyperopic optical defocus on the retina, has been implicated as one of the environmental risk factors causing myopia in humans. Experimental studies have shown that hyperopic defocus imposed by negative power lenses placed in front of the eye accelerates eye growth and causes myopia, whereas myopic defocus imposed by positive lenses slows eye growth and produces a compensatory hyperopic shift in refractive state. The balance between these two optical signals is thought to regulate refractive eye development; however, the ability of the retina to recognize the sign of optical defocus and the composition of molecular signaling pathways guiding emmetropization are the subjects of intense investigation and debate. We found that the retina can readily distinguish between imposed myopic and hyperopic defocus, and identified key signaling pathways underlying retinal response to the defocus of different signs. Comparison of retinal transcriptomes in common marmosets exposed to either myopic or hyperopic defocus for 10 days or 5 weeks revealed that the primate retina responds to defocus of different signs by activation or suppression of largely distinct pathways. We also found that 29 genes differentially expressed in the marmoset retina in response to imposed defocus are localized within human myopia quantitative trait loci (QTLs), suggesting functional overlap between genes differentially expressed in the marmoset retina upon exposure to optical defocus and genes causing myopia in humans. These findings identify retinal pathways involved in the development of myopia, as well as potential new strategies for its treatment. Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world because of a recent sharp increase in prevalence. Nearwork, which produces hyperopic optical defocus on the retina, has been implicated as one of the environmental risk factors causing myopia in humans. Experimental studies have shown that hyperopic defocus imposed by negative power lenses placed in front of the eye accelerates eye growth and causes myopia, whereas myopic defocus imposed by positive lenses slows eye growth and produces a compensatory hyperopic shift in refractive state. The balance between these two optical signals is thought to regulate refractive eye development; however, the ability of the retina to recognize the sign of optical defocus and the composition of molecular signaling pathways guiding emmetropization are the subjects of intense investigation and debate. We found that the retina can readily distinguish between imposed myopic and hyperopic defocus, and identified key signaling pathways underlying retinal response to the defocus of different signs. Comparison of retinal transcriptomes in common marmosets exposed to either myopic or hyperopic defocus for 10 days or 5 weeks revealed that the primate retina responds to defocus of different signs by activation or suppression of largely distinct pathways. We also found that 29 genes differentially expressed in the marmoset retina in response to imposed defocus are localized within human myopia quantitative trait loci (QTLs), suggesting functional overlap between genes differentially expressed in the marmoset retina upon exposure to optical defocus and genes causing myopia in humans. These findings identify retinal pathways involved in the development of myopia, as well as potential new strategies for its treatment.Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world because of a recent sharp increase in prevalence. Nearwork, which produces hyperopic optical defocus on the retina, has been implicated as one of the environmental risk factors causing myopia in humans. Experimental studies have shown that hyperopic defocus imposed by negative power lenses placed in front of the eye accelerates eye growth and causes myopia, whereas myopic defocus imposed by positive lenses slows eye growth and produces a compensatory hyperopic shift in refractive state. The balance between these two optical signals is thought to regulate refractive eye development; however, the ability of the retina to recognize the sign of optical defocus and the composition of molecular signaling pathways guiding emmetropization are the subjects of intense investigation and debate. We found that the retina can readily distinguish between imposed myopic and hyperopic defocus, and identified key signaling pathways underlying retinal response to the defocus of different signs. Comparison of retinal transcriptomes in common marmosets exposed to either myopic or hyperopic defocus for 10 days or 5 weeks revealed that the primate retina responds to defocus of different signs by activation or suppression of largely distinct pathways. We also found that 29 genes differentially expressed in the marmoset retina in response to imposed defocus are localized within human myopia quantitative trait loci (QTLs), suggesting functional overlap between genes differentially expressed in the marmoset retina upon exposure to optical defocus and genes causing myopia in humans. These findings identify retinal pathways involved in the development of myopia, as well as potential new strategies for its treatment. Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world because of a recent sharp increase in prevalence. Nearwork, which produces hyperopic optical defocus on the retina, has been implicated as one of the environmental risk factors causing myopia in humans. Experimental studies have shown that hyperopic defocus imposed by negative power lenses placed in front of the eye accelerates eye growth and causes myopia, whereas myopic defocus imposed by positive lenses slows eye growth and produces a compensatory hyperopic shift in refractive state. The balance between these two optical signals is thought to regulate refractive eye development; however, the ability of the retina to recognize the sign of optical defocus and the composition of molecular signaling pathways guiding emmetropization are the subjects of intense investigation and debate. We found that the retina can readily distinguish between imposed myopic and hyperopic defocus, and identified key signaling pathways underlying retinal response to the defocus of different signs. Comparison of retinal transcriptomes in common marmosets exposed to either myopic or hyperopic defocus for 10 days or 5 weeks revealed that the primate retina responds to defocus of different signs by activation or suppression of largely distinct pathways. We also found that 29 genes differentially expressed in the marmoset retina in response to imposed defocus are localized within human myopia quantitative trait loci (QTLs), suggesting functional overlap between genes differentially expressed in the marmoset retina upon exposure to optical defocus and genes causing myopia in humans. These findings identify retinal pathways involved in the development of myopia, as well as potential new strategies for its treatment. The worldwide prevalence of myopia is predicted to increase from the current 23% to about 50% in the next three decades. Although much effort has been directed towards elucidating the mechanisms underlying refractive eye development and myopia, treatment options for myopia are mostly limited to optical correction, which does not prevent progression of myopia nor the pathological blinding complications often associated with the disease. Several experimental optics-based treatments have had only limited effect on myopia progression, and currently available drug treatments are limited and the mechanisms of action are not well understood. The development of safe and effective pharmacological treatments for myopia is urgently needed to prevent the impending myopia epidemic. The main obstacles that prevent the development of anti-myopia drugs are the uncertainties regarding the mechanisms controlling eye growth and optical development, including the molecular signaling pathways underlying it. In this study, we show that, contrary to the conventional thinking that myopic and hyperopic defocus trigger opposite changes in the same genes and pathways to guide postnatal eye growth, defocus of opposite signs affect eye growth via largely distinct retinal pathways. Knowing that myopic and hyperopic defocus signals drive eye growth in opposite directions and propagate via different pathways provides a framework for the development of new anti-myopia drugs. Myopia can be controlled pharmacologically by stimulating pathways underlying the retinal response to positive lenses and/or by suppressing pathways underlying the retinal response to negative lenses. |
Author | Troilo, David Tkatchenko, Tatiana V. Benavente-Perez, Alexandra Tkatchenko, Andrei V. |
AuthorAffiliation | 2 College of Optometry, State University of New York, New York, New York, United States of America 3 Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America Yale University, United States of America 1 Department of Ophthalmology, Columbia University, New York, New York, United States of America |
AuthorAffiliation_xml | – name: 2 College of Optometry, State University of New York, New York, New York, United States of America – name: Yale University, United States of America – name: 3 Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America – name: 1 Department of Ophthalmology, Columbia University, New York, New York, United States of America |
Author_xml | – sequence: 1 givenname: Tatiana V. surname: Tkatchenko fullname: Tkatchenko, Tatiana V. – sequence: 2 givenname: David surname: Troilo fullname: Troilo, David – sequence: 3 givenname: Alexandra surname: Benavente-Perez fullname: Benavente-Perez, Alexandra – sequence: 4 givenname: Andrei V. orcidid: 0000-0002-4510-0836 surname: Tkatchenko fullname: Tkatchenko, Andrei V. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30300342$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_wDxBYYsNmBr9iOyyQUAWlUiU2sLYc52bGI48d7GRgNvx2PExatRVidS37O-deX53z6iTEAFX1kuAlYZK828QpBeOXQ-vikmIsMCVPqjNS83ohlapP7p1Pq_OcNxhT2lD1rDplmGHMOD2rfl9BAAS_hgQ5uxiQC6gchxgyoDGiOIzOGo866KOdMop9uRpidiOg7FYhF3oHxmfUus4lsGMxKfwW7NoEl7cHxc7lyXi_R6vJddAh2ANapfhzXD-vnvZFDC_melF9__zp2-WXxc3Xq-vLjzcLW1MxLowSDJq6a7BqW9FbwSxXvWylLZU3VnJOMOt4LblgplFECtFAI6RoRWMxsIvq9dF38DHreXVZU8qbpqaK1YW4PhJdNBs9JLc1aa-jcfrvRUwrbVLZhQddeFA1dAr3jFsJrWxBYIwta0s_evD6MHeb2i10FsKYjH9g-vAluLVexZ0WREpCVDF4Oxuk-GOCPOqtyxa8NwHiVOYmRCoiasUL-uYR-u_fvbo_0d0ot0EoAD8CNsWcE_R3CMH6kLdbW33Im57zVmTvH8msG80hA-Vfzv9f_Afbf-DE |
CitedBy_id | crossref_primary_10_1016_j_exer_2022_109208 crossref_primary_10_1017_S0952523821000043 crossref_primary_10_3389_fmed_2024_1479891 crossref_primary_10_1016_j_exer_2021_108438 crossref_primary_10_1002_cne_24957 crossref_primary_10_1038_s41598_022_07621_6 crossref_primary_10_1016_j_exer_2022_109003 crossref_primary_10_3390_biomedicines8040078 crossref_primary_10_3389_fgene_2023_1113058 crossref_primary_10_1186_s12920_019_0560_1 crossref_primary_10_1016_j_apjo_2024_100125 crossref_primary_10_1167_tvst_11_4_17 crossref_primary_10_1167_iovs_66_2_22 crossref_primary_10_3390_ijms22094721 crossref_primary_10_1016_j_heliyon_2022_e09408 crossref_primary_10_1371_journal_pgen_1009458 crossref_primary_10_1038_s41598_021_84338_y crossref_primary_10_1167_iovs_64_13_15 crossref_primary_10_1186_s12920_021_01005_x crossref_primary_10_3390_biom13030494 crossref_primary_10_1016_j_exer_2024_110009 crossref_primary_10_1016_j_jtbi_2021_110985 crossref_primary_10_1096_fj_202100350RR crossref_primary_10_1167_iovs_63_11_10 crossref_primary_10_1016_j_exer_2022_109071 crossref_primary_10_1371_journal_pone_0307091 crossref_primary_10_4103_tjo_TJO_D_24_00031 crossref_primary_10_1016_j_yaoo_2019_04_015 crossref_primary_10_1167_iovs_61_5_13 crossref_primary_10_1167_iovs_18_25967 crossref_primary_10_3389_fneur_2024_1486139 crossref_primary_10_1016_j_exer_2020_108331 crossref_primary_10_1016_j_exer_2021_108693 crossref_primary_10_1016_j_ygeno_2021_06_021 crossref_primary_10_1242_bio_059784 crossref_primary_10_1038_s41598_019_53082_9 crossref_primary_10_1167_tvst_13_10_33 crossref_primary_10_1038_s41572_020_00231_4 crossref_primary_10_1016_j_exer_2024_109786 crossref_primary_10_3390_jcm9082371 crossref_primary_10_1016_j_biopha_2020_111092 crossref_primary_10_1167_jov_23_4_3 crossref_primary_10_1167_tvst_13_8_42 crossref_primary_10_1016_j_jprot_2021_104248 crossref_primary_10_1080_02713683_2022_2048395 crossref_primary_10_1007_s40123_023_00671_7 crossref_primary_10_1016_j_tips_2019_09_009 crossref_primary_10_1016_j_exer_2022_109018 crossref_primary_10_1038_s41598_023_50684_2 crossref_primary_10_1167_iovs_65_2_3 crossref_primary_10_1093_hmg_ddz029 crossref_primary_10_1167_tvst_13_4_16 crossref_primary_10_1016_j_visres_2024_108402 crossref_primary_10_1159_000526448 crossref_primary_10_1016_j_preteyeres_2022_101155 crossref_primary_10_3389_fmed_2023_1112996 |
Cites_doi | 10.1016/S0042-6989(96)00224-6 10.1016/S0014-4835(05)80147-2 10.1016/j.jaapos.2010.09.020 10.1038/11167 10.1016/S0042-6989(00)00250-9 10.1097/OPX.0000000000000038 10.1038/s41598-017-10277-2 10.1167/iovs.10-6727 10.1186/s12886-017-0483-6 10.3109/02713688709034870 10.1167/iovs.14-14233 10.1016/S0042-6989(98)00304-6 10.1038/ng.2554 10.1016/j.neuron.2004.08.008 10.1016/j.exer.2009.01.012 10.1136/jmedgenet-2012-101405 10.1586/eop.10.67 10.1001/archophthalmol.2009.303 10.1097/OPX.0b013e318194072e 10.1073/pnas.1530509100 10.1016/S0042-6989(98)00229-6 10.1073/pnas.86.2.704 10.1097/00006324-199105000-00007 10.1046/j.1442-9071.2001.00389.x 10.1016/j.visres.2008.10.008 10.1038/s41598-016-0002-7 10.1016/S0042-6989(99)00005-X 10.1111/j.1475-1313.1992.tb00315.x 10.1017/S0952523898156080 10.1167/iovs.01-0670 10.1076/ceyr.17.3.322.5220 10.1167/iovs.14-14524 10.1016/j.ophtha.2014.07.030 10.1089/jop.2012.0098 10.1038/nm0895-761 10.1016/S0042-6989(03)00180-9 10.1016/j.jcrs.2012.08.066 10.1167/iovs.06-1273 10.1167/8.3.1 10.1167/iovs.17-22173 10.1016/j.exer.2015.06.009 10.1097/OPX.0b013e31828b47cf 10.1097/ICU.0b013e3283622cb1 10.1016/S0042-6989(98)00189-8 10.1167/iovs.17-22562 10.1167/iovs.16-20941 10.1016/0042-6989(94)00221-7 10.3389/fnins.2016.00390 10.1097/IAE.0b013e31826d3a93 10.1016/j.ophtha.2016.01.006 10.1167/iovs.09-4153 10.1080/02713689808951231 10.1167/iovs.16-20618 10.1006/exer.1996.0134 10.1111/opo.12058 10.1016/S0042-6989(97)00114-4 10.1016/S2214-109X(17)30393-5 10.1111/opo.12034 10.1167/iovs.09-4969 10.1111/j.1475-1313.2005.00298.x 10.1038/ng.663 10.1016/0042-6989(88)90113-7 10.1016/j.ophtha.2015.03.018 10.1016/j.preteyeres.2012.06.004 10.1001/archopht.122.4.615 |
ContentType | Journal Article |
Copyright | 2018 Tkatchenko et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 Tkatchenko et al 2018 Tkatchenko et al |
Copyright_xml | – notice: 2018 Tkatchenko et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 Tkatchenko et al 2018 Tkatchenko et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY RC3 7X8 5PM DOA CZG |
DOI | 10.1371/journal.pbio.2006021 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals PLoS Biology |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Identification of retinal pathways guiding eye emmetropization |
EISSN | 1545-7885 |
ExternalDocumentID | 2249952835 oai_doaj_org_article_283e85ed80f34c7eb7be6000c3b6b625 PMC6177118 30300342 10_1371_journal_pbio_2006021 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | New York United States--US |
GeographicLocations_xml | – name: New York – name: United States--US |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY023839 – fundername: NEI NIH HHS grantid: R01 EY011228 – fundername: NEI NIH HHS grantid: P30 EY019007 |
GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 PYCSY QF4 QN7 RNS RPM RZL SJN SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M .GJ C1A CGR CUY CVF ECM EIF IPNFZ NPM RIG WOQ 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO AAPBV ABPTK AGJBV CZG M~E ZA5 |
ID | FETCH-LOGICAL-c526t-a863e95d908bb6fc63c48f7b7cc4849c744103d457463a9817669e9676b69c0e3 |
IEDL.DBID | 7X7 |
ISSN | 1545-7885 1544-9173 |
IngestDate | Sun Oct 01 00:20:30 EDT 2023 Wed Aug 27 01:17:57 EDT 2025 Thu Aug 21 14:21:47 EDT 2025 Fri Jul 11 16:49:37 EDT 2025 Fri Jul 25 10:15:55 EDT 2025 Thu Apr 03 07:08:49 EDT 2025 Tue Jul 01 03:42:18 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c526t-a863e95d908bb6fc63c48f7b7cc4849c744103d457463a9817669e9676b69c0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors jointly supervised this work. The authors have declared that no competing interests exist. |
ORCID | 0000-0002-4510-0836 |
OpenAccessLink | https://www.proquest.com/docview/2249952835?pq-origsite=%requestingapplication% |
PMID | 30300342 |
PQID | 2249952835 |
PQPubID | 1436341 |
ParticipantIDs | plos_journals_2249952835 doaj_primary_oai_doaj_org_article_283e85ed80f34c7eb7be6000c3b6b625 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6177118 proquest_miscellaneous_2117816584 proquest_journals_2249952835 pubmed_primary_30300342 crossref_primary_10_1371_journal_pbio_2006021 crossref_citationtrail_10_1371_journal_pbio_2006021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2018 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | F Schaeffel (ref63) 1995; 35 DI Flitcroft (ref1) 2012; 31 RA Stone (ref44) 2011; 52 SM Saw (ref6) 2005; 25 B. Ward (ref72) 2013; 33 K Rose (ref5) 2001; 29 AM Solouki (ref57) 2010; 42 S Fujii (ref37) 1998; 17 N Riddell (ref42) 2017; 7 S Diether (ref64) 1999; 39 S Vitale (ref2) 2009; 127 VJ Verhoeven (ref58) 2013; 45 N Riddell (ref43) 2016; 10 DI Flitcroft (ref47) 2018; 59 VJ Verhoeven (ref7) 2015; 122 M Rickers (ref62) 1995; 61 TW Park (ref48) 2003; 43 KM Williams (ref3) 2015; 122 AR Whatham (ref15) 2001; 41 SR Flaxman (ref8) 2017; 5 RK Chun (ref39) 2015; 56 CF Wildsoet (ref31) 1988; 3 AJ Fischer (ref60) 1998; 15 F Schaeffel (ref21) 1988; 28 BJ Carr (ref54) 2018; 59 R. Pararajasegaram (ref10) 1999; 128 D Troilo (ref25) 2009; 86 MH Howlett (ref20) 2009; 49 S Park (ref70) 2013; 24 EL Smith 3rd (ref14) 1985; 26 RA Stone (ref40) 1989; 86 LF Hung (ref13) 1995; 1 A Benavente-Perez (ref26) 2014; 55 TT Norton (ref19) 1995; 66 D Wen (ref61) 2015; 8 P Ganesan (ref52) 2010; 5 BJ Carr (ref53) 2016; 6 X Xu (ref59) 2009; 15 F Schaeffel (ref50) 1999; 39 S Metlapally (ref18) 2008; 8 R Chakraborty (ref36) 2015; 137 Y Li (ref4) 2017; 17 K Kamiya (ref71) 2013; 29 EL Irving (ref22) 1992; 12 U Celik (ref69) 2013; 39 B Graham (ref16) 1999; 39 ST Nevin (ref24) 1998; 17 TV Tkatchenko (ref27) 2010; 51 N Riddell (ref41) 2017; 58 EL Smith 3rd (ref12) 1999; 39 E Flex (ref56) 2013; 50 RC McLean (ref49) 2003; 44 B Wang (ref55) 2017; 58 EL Irving (ref23) 1991; 68 HN Schwahn (ref65) 1997; 37 D Troilo (ref29) 1987; 6 SW Leo (ref66) 2011; 15 AJ Fischer (ref51) 1999; 2 BA Holden (ref9) 2016; 123 DB Elliott (ref67) 2013; 33 EL Smith 3rd (ref33) 2013; 90 DL Nickla (ref38) 2009; 88 T Aller (ref68) 2013; 90 JD Storey (ref73) 2003; 100 S Diether (ref32) 1997; 37 L Pizzarello (ref11) 2004; 122 J Wallman (ref45) 2004; 43 F Schaeffel (ref46) 2013; 33 CL Cottriall (ref17) 1996; 37 W Shen (ref28) 2007; 48 EL Smith 3rd (ref34) 2010; 51 Y Seko (ref35) 1996; 63 E Raviola (ref30) 1990; 155 |
References_xml | – volume: 37 start-page: 659 issue: 6 year: 1997 ident: ref32 article-title: Local changes in eye growth induced by imposed local refractive error despite active accommodation publication-title: Vision Res doi: 10.1016/S0042-6989(96)00224-6 – volume: 61 start-page: 509 issue: 4 year: 1995 ident: ref62 article-title: Dose-dependent effects of intravitreal pirenzepine on deprivation myopia and lens-induced refractive errors in chickens publication-title: Exp Eye Res doi: 10.1016/S0014-4835(05)80147-2 – volume: 15 start-page: 181 issue: 2 year: 2011 ident: ref66 article-title: An evidence-based update on myopia and interventions to retard its progression publication-title: J AAPOS doi: 10.1016/j.jaapos.2010.09.020 – volume: 2 start-page: 706 issue: 8 year: 1999 ident: ref51 article-title: Light- and focus-dependent expression of the transcription factor ZENK in the chick retina publication-title: Nat Neurosci doi: 10.1038/11167 – volume: 41 start-page: 267 issue: 3 year: 2001 ident: ref15 article-title: Compensatory changes in eye growth and refraction induced by daily wear of soft contact lenses in young marmosets publication-title: Vision Res doi: 10.1016/S0042-6989(00)00250-9 – volume: 90 start-page: 1176 issue: 11 year: 2013 ident: ref33 article-title: Effects of local myopic defocus on refractive development in monkeys publication-title: Optom Vis Sci doi: 10.1097/OPX.0000000000000038 – volume: 7 start-page: 9719 issue: 1 year: 2017 ident: ref42 article-title: Novel evidence for complement system activation in chick myopia and hyperopia models: a meta-analysis of transcriptome datasets publication-title: Scientific reports doi: 10.1038/s41598-017-10277-2 – volume: 52 start-page: 5765 issue: 8 year: 2011 ident: ref44 article-title: Image defocus and altered retinal gene expression in chick: clues to the pathogenesis of ametropia publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.10-6727 – volume: 17 start-page: 88 issue: 1 year: 2017 ident: ref4 article-title: The increasing prevalence of myopia in junior high school students in the Haidian District of Beijing, China: a 10-year population-based survey publication-title: BMC ophthalmology doi: 10.1186/s12886-017-0483-6 – volume: 6 start-page: 993 issue: 8 year: 1987 ident: ref29 article-title: Visual deprivation causes myopia in chicks with optic nerve section publication-title: Curr Eye Res doi: 10.3109/02713688709034870 – volume: 56 start-page: 8151 issue: 13 year: 2015 ident: ref39 article-title: Cyclic Adenosine Monophosphate Activates Retinal Apolipoprotein A1 Expression and Inhibits Myopic Eye Growth publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.14-14233 – volume: 39 start-page: 1585 issue: 9 year: 1999 ident: ref50 article-title: The growing eye: an autofocus system that works on very poor images publication-title: Vision Res doi: 10.1016/S0042-6989(98)00304-6 – volume: 45 start-page: 314 issue: 3 year: 2013 ident: ref58 article-title: Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia publication-title: Nat Genet doi: 10.1038/ng.2554 – volume: 43 start-page: 447 issue: 4 year: 2004 ident: ref45 article-title: Homeostasis of eye growth and the question of myopia publication-title: Neuron doi: 10.1016/j.neuron.2004.08.008 – volume: 66 start-page: 405 issue: 7 year: 1995 ident: ref19 article-title: Animal models of emmetropization: matching axial length to the focal plane publication-title: J Am Optom Assoc – volume: 88 start-page: 1092 issue: 6 year: 2009 ident: ref38 article-title: Inhibiting the neuronal isoform of nitric oxide synthase has similar effects on the compensatory choroidal and axial responses to myopic defocus in chicks as does the non-specific inhibitor L-NAME publication-title: Exp Eye Res doi: 10.1016/j.exer.2009.01.012 – volume: 50 start-page: 493 issue: 8 year: 2013 ident: ref56 article-title: Loss of function of the E3 ubiquitin-protein ligase UBE3B causes Kaufman oculocerebrofacial syndrome publication-title: J Med Genet doi: 10.1136/jmedgenet-2012-101405 – volume: 5 start-page: 759 issue: 6 year: 2010 ident: ref52 article-title: Pharmaceutical intervention for myopia control publication-title: Expert review of ophthalmology doi: 10.1586/eop.10.67 – volume: 15 start-page: 2094 year: 2009 ident: ref59 article-title: Sequence variations of GRM6 in patients with high myopia publication-title: Mol Vis – volume: 127 start-page: 1632 issue: 12 year: 2009 ident: ref2 article-title: Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004 publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2009.303 – volume: 86 start-page: E31 issue: 1 year: 2009 ident: ref25 article-title: Imposed anisometropia, accommodation, and regulation of refractive state publication-title: Optom Vis Sci doi: 10.1097/OPX.0b013e318194072e – volume: 100 start-page: 9440 issue: 16 year: 2003 ident: ref73 article-title: Statistical significance for genomewide studies publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1530509100 – volume: 39 start-page: 1415 issue: 8 year: 1999 ident: ref12 article-title: The role of optical defocus in regulating refractive development in infant monkeys publication-title: Vision Res doi: 10.1016/S0042-6989(98)00229-6 – volume: 8 start-page: 3819 issue: 4 year: 2015 ident: ref61 article-title: Upregulated expression of N-methyl-D-aspartate receptor 1 and nitric oxide synthase during form-deprivation myopia in guinea pigs publication-title: International journal of clinical and experimental pathology – volume: 37 start-page: 1368 issue: 7 year: 1996 ident: ref17 article-title: The M1 muscarinic antagonist pirenzepine reduces myopia and eye enlargement in the tree shrew publication-title: Invest Ophthalmol Vis Sci – volume: 86 start-page: 704 issue: 2 year: 1989 ident: ref40 article-title: Retinal dopamine and form-deprivation myopia publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.86.2.704 – volume: 68 start-page: 364 issue: 5 year: 1991 ident: ref23 article-title: Inducing myopia, hyperopia, and astigmatism in chicks publication-title: Optom Vis Sci doi: 10.1097/00006324-199105000-00007 – volume: 29 start-page: 116 issue: 3 year: 2001 ident: ref5 article-title: The increasing prevalence of myopia: implications for Australia publication-title: Clin Experiment Ophthalmol doi: 10.1046/j.1442-9071.2001.00389.x – volume: 26 start-page: 330 issue: 3 year: 1985 ident: ref14 article-title: Spatial contrast sensitivity deficits in monkeys produced by optically induced anisometropia publication-title: Invest Ophthalmol Vis Sci – volume: 49 start-page: 219 issue: 2 year: 2009 ident: ref20 article-title: Spectacle lens compensation in the pigmented guinea pig publication-title: Vision Res doi: 10.1016/j.visres.2008.10.008 – volume: 6 start-page: 9 issue: 1 year: 2016 ident: ref53 article-title: Nitric Oxide (NO) Mediates the Inhibition of Form-Deprivation Myopia by Atropine in Chicks publication-title: Scientific reports doi: 10.1038/s41598-016-0002-7 – volume: 39 start-page: 2499 issue: 15 year: 1999 ident: ref64 article-title: Long-term changes in retinal contrast sensitivity in chicks from frosted occluders and drugs: relations to myopia? publication-title: Vision Res doi: 10.1016/S0042-6989(99)00005-X – volume: 12 start-page: 448 issue: 4 year: 1992 ident: ref22 article-title: Refractive plasticity of the developing chick eye publication-title: Ophthalmic Physiol Opt doi: 10.1111/j.1475-1313.1992.tb00315.x – volume: 3 start-page: 99 year: 1988 ident: ref31 article-title: Experimental myopia and anomalous eye growth patterns unaffected by optic nerve section in chickens: evidence for local control of eye growth publication-title: Clin Vision Sci – volume: 15 start-page: 1089 issue: 6 year: 1998 ident: ref60 article-title: Opiate and N-methyl-D-aspartate receptors in form-deprivation myopia publication-title: Vis Neurosci doi: 10.1017/S0952523898156080 – volume: 44 start-page: 449 issue: 2 year: 2003 ident: ref49 article-title: Severe astigmatic blur does not interfere with spectacle lens compensation publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.01-0670 – volume: 17 start-page: 322 issue: 3 year: 1998 ident: ref24 article-title: Sharp vision: a prerequisite for compensation to myopic defocus in the chick? publication-title: Curr Eye Res doi: 10.1076/ceyr.17.3.322.5220 – volume: 55 start-page: 6765 issue: 10 year: 2014 ident: ref26 article-title: Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.14-14524 – volume: 122 start-page: 101 issue: 1 year: 2015 ident: ref7 article-title: Visual consequences of refractive errors in the general population publication-title: Ophthalmology doi: 10.1016/j.ophtha.2014.07.030 – volume: 29 start-page: 356 issue: 3 year: 2013 ident: ref71 article-title: Effect of fermented bilberry extracts on visual outcomes in eyes with myopia: a prospective, randomized, placebo-controlled study publication-title: Journal of ocular pharmacology and therapeutics: the official journal of the Association for Ocular Pharmacology and Therapeutics doi: 10.1089/jop.2012.0098 – volume: 1 start-page: 761 issue: 8 year: 1995 ident: ref13 article-title: Spectacle lenses alter eye growth and the refractive status of young monkeys publication-title: Nat Med doi: 10.1038/nm0895-761 – volume: 43 start-page: 1519 issue: 14 year: 2003 ident: ref48 article-title: Further evidence that chick eyes use the sign of blur in spectacle lens compensation publication-title: Vision Res doi: 10.1016/S0042-6989(03)00180-9 – volume: 39 start-page: 225 issue: 2 year: 2013 ident: ref69 article-title: New method of microwave thermokeratoplasty to correct myopia in 33 eyes: one-year results publication-title: J Cataract Refract Surg doi: 10.1016/j.jcrs.2012.08.066 – volume: 48 start-page: 4829 issue: 10 year: 2007 ident: ref28 article-title: Eyes of a lower vertebrate are susceptible to the visual environment publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.06-1273 – volume: 155 start-page: 22 year: 1990 ident: ref30 article-title: Neural control of eye growth and experimental myopia in primates publication-title: Ciba Found Symp – volume: 8 start-page: 1 issue: 3 year: 2008 ident: ref18 article-title: The effect of positive lens defocus on ocular growth and emmetropization in the tree shrew publication-title: J Vis doi: 10.1167/8.3.1 – volume: 59 start-page: 338 issue: 1 year: 2018 ident: ref47 article-title: Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.17-22173 – volume: 137 start-page: 79 year: 2015 ident: ref36 article-title: ON pathway mutations increase susceptibility to form-deprivation myopia publication-title: Exp Eye Res doi: 10.1016/j.exer.2015.06.009 – volume: 90 start-page: e135 issue: 5 year: 2013 ident: ref68 article-title: Optical control of myopia has come of age: or has it? publication-title: Optom Vis Sci doi: 10.1097/OPX.0b013e31828b47cf – volume: 24 start-page: 273 issue: 4 year: 2013 ident: ref70 article-title: Corneal collagen cross-linking for correction of low myopia? publication-title: Curr Opin Ophthalmol doi: 10.1097/ICU.0b013e3283622cb1 – volume: 39 start-page: 189 issue: 2 year: 1999 ident: ref16 article-title: The effects of spectacle wear in infancy on eye growth and refractive error in the marmoset (Callithrix jacchus) publication-title: Vision Res doi: 10.1016/S0042-6989(98)00189-8 – volume: 59 start-page: 2778 issue: 7 year: 2018 ident: ref54 article-title: Myopia-Inhibiting Concentrations of Muscarinic Receptor Antagonists Block Activation of Alpha2A-Adrenoceptors In Vitro publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.17-22562 – volume: 58 start-page: 4182 issue: 10 year: 2017 ident: ref55 article-title: A Novel Potentially Causative Variant of NDUFAF7 Revealed by Mutation Screening in a Chinese Family With Pathologic Myopia publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.16-20941 – volume: 35 start-page: 1247 issue: 9 year: 1995 ident: ref63 article-title: Studies on the role of the retinal dopamine/melatonin system in experimental refractive errors in chickens publication-title: Vision Res doi: 10.1016/0042-6989(94)00221-7 – volume: 10 start-page: 390 year: 2016 ident: ref43 article-title: Bidirectional Expression of Metabolic, Structural, and Immune Pathways in Early Myopia and Hyperopia publication-title: Frontiers in neuroscience doi: 10.3389/fnins.2016.00390 – volume: 33 start-page: 224 issue: 1 year: 2013 ident: ref72 article-title: Degenerative myopia: myopic macular schisis and the posterior pole buckle publication-title: Retina doi: 10.1097/IAE.0b013e31826d3a93 – volume: 123 start-page: 1036 issue: 5 year: 2016 ident: ref9 article-title: Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2016.01.006 – volume: 51 start-page: 1297 issue: 3 year: 2010 ident: ref27 article-title: Mouse experimental myopia has features of primate myopia publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.09-4153 – volume: 128 start-page: 359 issue: 3 year: 1999 ident: ref10 article-title: VISION 2020-the right to sight: from strategies to action publication-title: Am J Ophthalmol – volume: 17 start-page: 586 issue: 6 year: 1998 ident: ref37 article-title: Differential expression of nitric oxide synthase isoforms in form-deprived chick eyes publication-title: Curr Eye Res doi: 10.1080/02713689808951231 – volume: 58 start-page: 660 issue: 1 year: 2017 ident: ref41 article-title: Integrated Comparison of GWAS, Transcriptome, and Proteomics Studies Highlights Similarities in the Biological Basis of Animal and Human Myopia publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.16-20618 – volume: 63 start-page: 443 issue: 4 year: 1996 ident: ref35 article-title: In vivo and in vitro association of retinoic acid with form-deprivation myopia in the chick publication-title: Exp Eye Res doi: 10.1006/exer.1996.0134 – volume: 33 start-page: 362 issue: 3 year: 2013 ident: ref46 article-title: Can the retina alone detect the sign of defocus? publication-title: Ophthalmic Physiol Opt doi: 10.1111/opo.12058 – volume: 37 start-page: 2661 issue: 19 year: 1997 ident: ref65 article-title: Flicker parameters are different for suppression of myopia and hyperopia publication-title: Vision Res doi: 10.1016/S0042-6989(97)00114-4 – volume: 5 start-page: e1221 issue: 12 year: 2017 ident: ref8 article-title: Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis publication-title: The Lancet Global health doi: 10.1016/S2214-109X(17)30393-5 – volume: 33 start-page: 75 issue: 2 year: 2013 ident: ref67 article-title: The Bates method, elixirs, potions and other cures for myopia: how do they work? publication-title: Ophthalmic Physiol Opt doi: 10.1111/opo.12034 – volume: 51 start-page: 3864 issue: 8 year: 2010 ident: ref34 article-title: Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.09-4969 – volume: 25 start-page: 381 issue: 5 year: 2005 ident: ref6 article-title: Myopia and associated pathological complications publication-title: Ophthalmic Physiol Opt doi: 10.1111/j.1475-1313.2005.00298.x – volume: 42 start-page: 897 issue: 10 year: 2010 ident: ref57 article-title: A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14 publication-title: Nat Genet doi: 10.1038/ng.663 – volume: 28 start-page: 639 issue: 5 year: 1988 ident: ref21 article-title: Accommodation, refractive error and eye growth in chickens publication-title: Vision Res doi: 10.1016/0042-6989(88)90113-7 – volume: 122 start-page: 1489 issue: 7 year: 2015 ident: ref3 article-title: Increasing Prevalence of Myopia in Europe and the Impact of Education publication-title: Ophthalmology doi: 10.1016/j.ophtha.2015.03.018 – volume: 31 start-page: 622 issue: 6 year: 2012 ident: ref1 article-title: The complex interactions of retinal, optical and environmental factors in myopia aetiology publication-title: Prog Retin Eye Res doi: 10.1016/j.preteyeres.2012.06.004 – volume: 122 start-page: 615 issue: 4 year: 2004 ident: ref11 article-title: VISION 2020: The Right to Sight: a global initiative to eliminate avoidable blindness publication-title: Arch Ophthalmol doi: 10.1001/archopht.122.4.615 |
SSID | ssj0022928 |
Score | 2.4918978 |
Snippet | Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world... |
SourceID | plos doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2006021 |
SubjectTerms | Animals Biology and Life Sciences Callithrix - genetics Environmental risk Eye Eye - growth & development Gene expression Gene Expression - genetics Gene Expression Regulation, Developmental - genetics Gene mapping Genes Genomes Growth rate Humans Hyperopia - genetics Medicine and Health Sciences Methods and Resources Monkeys & apes Myopia Myopia - genetics Optical communication Quantitative trait loci Quantitative Trait Loci - genetics Refraction, Ocular - genetics Research and Analysis Methods Retina Retina - growth & development Retina - physiology Risk analysis Risk factors Signal transduction Signaling Studies Vision, Ocular - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH3FTVpU6NWNbcmWdGxLQyi0pwZyM5Y8Sgwbe4nt0r30t3dG8i7ZEsilJ4Me2NKMPN_YM98w9iEXHu2AhzQDl6VS2CI1DTorEozV6IxpGzK8v_-ozi_kt8vy8k6pL4oJi_TAceNO0fyBLqHVmRfSKbDKAhrpzAlbWQTv9PZFm7d1phZXqzChqipRzeBxVmJJmhMqP11k9HFtu5D8V2VFvmeUAnc_cZ2uhvE-3Plv-OQde3T2jD1dgCT_FBdwyB5B_5w9jqUlNy_YH-KT5vB7iXPtedfz2xgPC3wa-LAOH7F5C35w88gHj00hggs4xXSMnLidUDe57aLZC98M-Q1QqnA33tCMX904N6vVhl_NXQsthw3wK_Trp-uX7OLs688v5-lSayF1ZVFNaaMrAaZsTaYt5f9UwkntlVUOr9I4hbApE60slaxEYzTxShowlUIhGJeBeMUO-qGHI8aVKxoEDRpQ-lK2oBsoPcIk5X0OlcoSJrabXbuFiJzqYazq8HdNoUMSt7AmEdWLiBKW7matIxHHA-M_kxx3Y4lGOzSgctWLctUPKVfCjkgLtjcYawQ8xhAfDnadbDXj_u73u248sPQXpulhmHFMniudE_BL2OuoSLuHRDwROBkTpvZUbG8V-z19dx1IwRGJKnQW3_yPZR-zJ4gLI-1vfsIOptsZ3iL2muy7cMz-Av6GLqI priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bi9UwEA7LiuCLeN_qKhF87dI2aS4PIioui7A-eWDfSpNOzxa67dnTVva8-NudpBc8ctSnQpP0ksww3yQz3xDyLmYl2oESwghsFHJmklDn6Kxw0EahM6aMz_C-_CYuVvzrVXp1ROaardMEdgddO1dParWtz-5udx9Q4d_7qg0yngedbUzl0_lE5DLL76Ftkk5VL_lyrpAk2ldbdRQ0qOaSTcl0f3vKnrHynP6OA7Vuu0N49M-wyt_s1Pkj8nACmPTjKBGPyRE0T8j9seTk7in56XimKdxN8a8NrRq6HeNkgfYtbTd-c5sWULZ26Ghb4i0f2QXUxXp01HE-4dxRU43m0O8l0htwKcRVd-NG_Ki6Ia_rHV0PVQEFhR3QNfr7_fUzsjr_8v3zRTjVYAhtmog-zJVgoNNCR8q4vCDBLFelNNLilWsrEU5FrOCp5ILlWjm-SQ1aSGGEthGw5-S4aRs4IVTaJEcwoQClgvMCVA5pifBJlmUMQkYBYfNkZ3YiKHd1MurMn7pJdFTGKczcEmXTEgUkXEZtRoKO__T_5NZx6evotf2NdrvOJm3NEHOBSqFQUcm4lWCkAUSGkWUG_ytJA3LipGB-QZchENLa8eRg0-ksGYeb3y7NqMjudCZvoB2wTxxLFTtAGJAXoyAtH4k4w3M1BkTuidjeX-y3NNW1JwtHhCrRiXz57896RR4gEhyJfuNTctxvB3iNaKs3b7wC_QIPPivU priority: 102 providerName: Scholars Portal |
Title | Gene expression in response to optical defocus of opposite signs reveals bidirectional mechanism of visually guided eye growth |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30300342 https://www.proquest.com/docview/2249952835 https://www.proquest.com/docview/2117816584 https://pubmed.ncbi.nlm.nih.gov/PMC6177118 https://doaj.org/article/283e85ed80f34c7eb7be6000c3b6b625 http://dx.doi.org/10.1371/journal.pbio.2006021 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZgExIviN8LjMpIvIYlsRPbT4ihTRNoEyAm9S2KnUsXqUtK0yD6wt_OnZN2FE3wkkqxoya5c-678913jL2JRYV2oIIwAheFUtgkNAU6KxKM1eiMaesrvM8vsrNL-XGaTseAWzemVW6-if5DXbaOYuRHaGqMISaS9N3ie0hdo2h3dWyhcZftE3UZpXSp6Y3DlRjfW5UIZ3BRKzGWzgkVH42SeruwtS8BzKIk3jFNnsGfGE_nbXcb-vw7ifIPq3T6kD0Y4SR_P8j_EbsDzWN2b2gwuX7CfhGrNIefY7Zrw-uGL4esWOCrlrcLH8rmJVSt6zveVnjK53EBp8yOjhPDE2oot_Vg_HzkkF8DFQzX3TVd8aPu-mI-X_NZX5dQclgDn6F3v7p6yi5PT759OAvHjguhS5NsFRY6E2DS0kTaUhVQJpzUlbLK4a80TiF4ikQpUyUzURhN7JIGTKYymxkXgXjG9pq2gQPGlUsKhA4aUAekLEEXkFYIllRVxZCpKGBi87JzN9KRU1eMee732BS6JcMrzElE-SiigIXbqxYDHcd_5h-THLdziUzbn2iXs3xcmzkqFegUSh1VQjoFVllAHBg5YfG5kjRgB6QFmz_o8htdDNjhRjNuH369HcZlS3sxRQNtj3PiWOmY4F_Ang-KtL1JRBWemTFgakfFdp5id6Sprzw1OOJRhS7ji3_f1kt2H3HfQOsbH7K91bKHV4itVnbiF9CE7R-fXHz-OvERCjx--qLxeC71b0DEKn8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiGcbKGAkOIYmsRPbB4QotNrShxBqpd5C7Ey2kbbJstml7IWfxG9k7CQLiyo49RQpdp4zHn9jz3xDyMuQFTgPFOAHYAKfMx35KkNnhYPSEp0xqV2G99FxMjzlH8_iszXys8-FsWGVvU10hjqvjV0j38apRinLRBK_nXz1bdUou7val9Bo1eIAFpfosjVv9j-gfF9F0d7uyfuh31UV8E0cJTM_kwkDFecqkNpmuiTMcFkILQweuTICAULAch4LnrBMScugqEAlItGJMgEwvO8Nss4ZujIDsr6ze_zp89LFi5Sr5mopbtCMCNYl6zERbne68XqiS5d0mARRuDIZupoBlmN1XDdX4d2_wzb_mAf37pI7HYCl71qNu0fWoLpPbrYlLRcPyA_LY03hexdfW9GyotM2DhforKb1xC2e0xyK2swbWhd4ykWOAbWxJA21nFI4Jqgu2-nWrVXSC7ApymVzYa_4VjbzbDxe0NG8zCGnsAA6mtaXs_OH5PRapPGIDKq6gk1ChYkyBCsSUOs4z0FmEBcIz0RRhJCIwCOs_9mp6QjQbR2Ocep29QQ6Qu0vTK2I0k5EHvGXV01aApD_9N-xclz2tfTd7kQ9HaWdNUhRjUHGkMugYNwI0EIDIs_AMI3fFcUe2bRa0D-gSX9rv0e2es24uvnFshkNhd39ySqo59gnDIUMLeD0yEarSMuXRBzjuCA9IlZUbOUrVluq8tyRkSMCFuikPv73az0nt4YnR4fp4f7xwRNyG1FnSyocbpHBbDqHp4jsZvpZN5wo-XLdI_gXLIVisg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4t1AASPBMWwSJ3F8QAgoq5ZCxYFKewuxM9lG2ibLZkPZCz-MX8eMk2xZVMGpp0ix85wZ-xt75hvGnvuiwHmgANcD47mh0IGrMnRWQlA6QWcs0TbD-9NRvH8cfphEky32a8iFobDKYUy0A3VeG1ojH-FUoxQxkUSjog-L-Lw3fj3_5lIFKdppHcppdCpyCKszdN-aVwd7KOsXQTB-_-XdvttXGHBNFMRLN0tiASrKlZdoynqJhQmTQmpp8BgqIxEseCIPIxnGIlMJsSkqULGMdayMBwLve4VdlSLyycbk5NzZC5St60pkNzigSNGn7Qnpj3oteTnXpU0_jL3A35gWbfUAYlud1c1FyPfvAM4_ZsTxLXazh7L8Tad7t9kWVHfYta645eou-0mM1hx-9JG2FS8rvugicoEva17P7TI6z6GoTdvwusBTNoYMOEWVNJzYpdA6uC67ideuWvJToGTlsjmlK76XTZvNZis-bcsccg4r4NNFfbY8uceOL0UW99l2VVeww7g0QYawJQHUvzDMIckgKhCoyaLwIZaew8Tws1PTU6FTRY5Zavf3JLpE3S9MSURpLyKHueur5h0VyH_6vyU5rvsSkbc9US-maT8upKjQkESQJ14hQiNBSw2IQT0jNH5XEDlsh7RgeECTntuBw3YHzbi4-dm6GYcM2gfKKqhb7OP7MvEJejrsQadI65dERGNZIR0mN1Rs4ys2W6ryxNKSIxaW6K4-_PdrPWXX0W7TjwdHh4_YDYSfHbuwv8u2l4sWHiPEW-on1pY4-3rZxvsbm4plgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+expression+in+response+to+optical+defocus+of+opposite+signs+reveals+bidirectional+mechanism+of+visually+guided+eye+growth&rft.jtitle=PLoS+biology&rft.au=Tkatchenko%2C+Tatiana+V&rft.au=Troilo%2C+David&rft.au=Benavente-Perez%2C+Alexandra&rft.au=Tkatchenko%2C+Andrei+V&rft.date=2018-10-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=16&rft.issue=10&rft.spage=e2006021&rft_id=info:doi/10.1371%2Fjournal.pbio.2006021&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |