Gene expression in response to optical defocus of opposite signs reveals bidirectional mechanism of visually guided eye growth

Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world because of a recent sharp increase in prevalence. Nearwork, which produces hyperopic optical defocus on the retina, has been implicated as one of...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 16; no. 10; p. e2006021
Main Authors Tkatchenko, Tatiana V., Troilo, David, Benavente-Perez, Alexandra, Tkatchenko, Andrei V.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1545-7885
1544-9173
1545-7885
DOI10.1371/journal.pbio.2006021

Cover

Loading…
Abstract Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world because of a recent sharp increase in prevalence. Nearwork, which produces hyperopic optical defocus on the retina, has been implicated as one of the environmental risk factors causing myopia in humans. Experimental studies have shown that hyperopic defocus imposed by negative power lenses placed in front of the eye accelerates eye growth and causes myopia, whereas myopic defocus imposed by positive lenses slows eye growth and produces a compensatory hyperopic shift in refractive state. The balance between these two optical signals is thought to regulate refractive eye development; however, the ability of the retina to recognize the sign of optical defocus and the composition of molecular signaling pathways guiding emmetropization are the subjects of intense investigation and debate. We found that the retina can readily distinguish between imposed myopic and hyperopic defocus, and identified key signaling pathways underlying retinal response to the defocus of different signs. Comparison of retinal transcriptomes in common marmosets exposed to either myopic or hyperopic defocus for 10 days or 5 weeks revealed that the primate retina responds to defocus of different signs by activation or suppression of largely distinct pathways. We also found that 29 genes differentially expressed in the marmoset retina in response to imposed defocus are localized within human myopia quantitative trait loci (QTLs), suggesting functional overlap between genes differentially expressed in the marmoset retina upon exposure to optical defocus and genes causing myopia in humans. These findings identify retinal pathways involved in the development of myopia, as well as potential new strategies for its treatment.
AbstractList Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world because of a recent sharp increase in prevalence. Nearwork, which produces hyperopic optical defocus on the retina, has been implicated as one of the environmental risk factors causing myopia in humans. Experimental studies have shown that hyperopic defocus imposed by negative power lenses placed in front of the eye accelerates eye growth and causes myopia, whereas myopic defocus imposed by positive lenses slows eye growth and produces a compensatory hyperopic shift in refractive state. The balance between these two optical signals is thought to regulate refractive eye development; however, the ability of the retina to recognize the sign of optical defocus and the composition of molecular signaling pathways guiding emmetropization are the subjects of intense investigation and debate. We found that the retina can readily distinguish between imposed myopic and hyperopic defocus, and identified key signaling pathways underlying retinal response to the defocus of different signs. Comparison of retinal transcriptomes in common marmosets exposed to either myopic or hyperopic defocus for 10 days or 5 weeks revealed that the primate retina responds to defocus of different signs by activation or suppression of largely distinct pathways. We also found that 29 genes differentially expressed in the marmoset retina in response to imposed defocus are localized within human myopia quantitative trait loci (QTLs), suggesting functional overlap between genes differentially expressed in the marmoset retina upon exposure to optical defocus and genes causing myopia in humans. These findings identify retinal pathways involved in the development of myopia, as well as potential new strategies for its treatment.
Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world because of a recent sharp increase in prevalence. Nearwork, which produces hyperopic optical defocus on the retina, has been implicated as one of the environmental risk factors causing myopia in humans. Experimental studies have shown that hyperopic defocus imposed by negative power lenses placed in front of the eye accelerates eye growth and causes myopia, whereas myopic defocus imposed by positive lenses slows eye growth and produces a compensatory hyperopic shift in refractive state. The balance between these two optical signals is thought to regulate refractive eye development; however, the ability of the retina to recognize the sign of optical defocus and the composition of molecular signaling pathways guiding emmetropization are the subjects of intense investigation and debate. We found that the retina can readily distinguish between imposed myopic and hyperopic defocus, and identified key signaling pathways underlying retinal response to the defocus of different signs. Comparison of retinal transcriptomes in common marmosets exposed to either myopic or hyperopic defocus for 10 days or 5 weeks revealed that the primate retina responds to defocus of different signs by activation or suppression of largely distinct pathways. We also found that 29 genes differentially expressed in the marmoset retina in response to imposed defocus are localized within human myopia quantitative trait loci (QTLs), suggesting functional overlap between genes differentially expressed in the marmoset retina upon exposure to optical defocus and genes causing myopia in humans. These findings identify retinal pathways involved in the development of myopia, as well as potential new strategies for its treatment.Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world because of a recent sharp increase in prevalence. Nearwork, which produces hyperopic optical defocus on the retina, has been implicated as one of the environmental risk factors causing myopia in humans. Experimental studies have shown that hyperopic defocus imposed by negative power lenses placed in front of the eye accelerates eye growth and causes myopia, whereas myopic defocus imposed by positive lenses slows eye growth and produces a compensatory hyperopic shift in refractive state. The balance between these two optical signals is thought to regulate refractive eye development; however, the ability of the retina to recognize the sign of optical defocus and the composition of molecular signaling pathways guiding emmetropization are the subjects of intense investigation and debate. We found that the retina can readily distinguish between imposed myopic and hyperopic defocus, and identified key signaling pathways underlying retinal response to the defocus of different signs. Comparison of retinal transcriptomes in common marmosets exposed to either myopic or hyperopic defocus for 10 days or 5 weeks revealed that the primate retina responds to defocus of different signs by activation or suppression of largely distinct pathways. We also found that 29 genes differentially expressed in the marmoset retina in response to imposed defocus are localized within human myopia quantitative trait loci (QTLs), suggesting functional overlap between genes differentially expressed in the marmoset retina upon exposure to optical defocus and genes causing myopia in humans. These findings identify retinal pathways involved in the development of myopia, as well as potential new strategies for its treatment.
Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world because of a recent sharp increase in prevalence. Nearwork, which produces hyperopic optical defocus on the retina, has been implicated as one of the environmental risk factors causing myopia in humans. Experimental studies have shown that hyperopic defocus imposed by negative power lenses placed in front of the eye accelerates eye growth and causes myopia, whereas myopic defocus imposed by positive lenses slows eye growth and produces a compensatory hyperopic shift in refractive state. The balance between these two optical signals is thought to regulate refractive eye development; however, the ability of the retina to recognize the sign of optical defocus and the composition of molecular signaling pathways guiding emmetropization are the subjects of intense investigation and debate. We found that the retina can readily distinguish between imposed myopic and hyperopic defocus, and identified key signaling pathways underlying retinal response to the defocus of different signs. Comparison of retinal transcriptomes in common marmosets exposed to either myopic or hyperopic defocus for 10 days or 5 weeks revealed that the primate retina responds to defocus of different signs by activation or suppression of largely distinct pathways. We also found that 29 genes differentially expressed in the marmoset retina in response to imposed defocus are localized within human myopia quantitative trait loci (QTLs), suggesting functional overlap between genes differentially expressed in the marmoset retina upon exposure to optical defocus and genes causing myopia in humans. These findings identify retinal pathways involved in the development of myopia, as well as potential new strategies for its treatment. The worldwide prevalence of myopia is predicted to increase from the current 23% to about 50% in the next three decades. Although much effort has been directed towards elucidating the mechanisms underlying refractive eye development and myopia, treatment options for myopia are mostly limited to optical correction, which does not prevent progression of myopia nor the pathological blinding complications often associated with the disease. Several experimental optics-based treatments have had only limited effect on myopia progression, and currently available drug treatments are limited and the mechanisms of action are not well understood. The development of safe and effective pharmacological treatments for myopia is urgently needed to prevent the impending myopia epidemic. The main obstacles that prevent the development of anti-myopia drugs are the uncertainties regarding the mechanisms controlling eye growth and optical development, including the molecular signaling pathways underlying it. In this study, we show that, contrary to the conventional thinking that myopic and hyperopic defocus trigger opposite changes in the same genes and pathways to guide postnatal eye growth, defocus of opposite signs affect eye growth via largely distinct retinal pathways. Knowing that myopic and hyperopic defocus signals drive eye growth in opposite directions and propagate via different pathways provides a framework for the development of new anti-myopia drugs. Myopia can be controlled pharmacologically by stimulating pathways underlying the retinal response to positive lenses and/or by suppressing pathways underlying the retinal response to negative lenses.
Author Troilo, David
Tkatchenko, Tatiana V.
Benavente-Perez, Alexandra
Tkatchenko, Andrei V.
AuthorAffiliation 2 College of Optometry, State University of New York, New York, New York, United States of America
3 Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
Yale University, United States of America
1 Department of Ophthalmology, Columbia University, New York, New York, United States of America
AuthorAffiliation_xml – name: 2 College of Optometry, State University of New York, New York, New York, United States of America
– name: Yale University, United States of America
– name: 3 Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
– name: 1 Department of Ophthalmology, Columbia University, New York, New York, United States of America
Author_xml – sequence: 1
  givenname: Tatiana V.
  surname: Tkatchenko
  fullname: Tkatchenko, Tatiana V.
– sequence: 2
  givenname: David
  surname: Troilo
  fullname: Troilo, David
– sequence: 3
  givenname: Alexandra
  surname: Benavente-Perez
  fullname: Benavente-Perez, Alexandra
– sequence: 4
  givenname: Andrei V.
  orcidid: 0000-0002-4510-0836
  surname: Tkatchenko
  fullname: Tkatchenko, Andrei V.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30300342$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wDxBYYsNmBr9iOyyQUAWlUiU2sLYc52bGI48d7GRgNvx2PExatRVidS37O-deX53z6iTEAFX1kuAlYZK828QpBeOXQ-vikmIsMCVPqjNS83ohlapP7p1Pq_OcNxhT2lD1rDplmGHMOD2rfl9BAAS_hgQ5uxiQC6gchxgyoDGiOIzOGo866KOdMop9uRpidiOg7FYhF3oHxmfUus4lsGMxKfwW7NoEl7cHxc7lyXi_R6vJddAh2ANapfhzXD-vnvZFDC_melF9__zp2-WXxc3Xq-vLjzcLW1MxLowSDJq6a7BqW9FbwSxXvWylLZU3VnJOMOt4LblgplFECtFAI6RoRWMxsIvq9dF38DHreXVZU8qbpqaK1YW4PhJdNBs9JLc1aa-jcfrvRUwrbVLZhQddeFA1dAr3jFsJrWxBYIwta0s_evD6MHeb2i10FsKYjH9g-vAluLVexZ0WREpCVDF4Oxuk-GOCPOqtyxa8NwHiVOYmRCoiasUL-uYR-u_fvbo_0d0ot0EoAD8CNsWcE_R3CMH6kLdbW33Im57zVmTvH8msG80hA-Vfzv9f_Afbf-DE
CitedBy_id crossref_primary_10_1016_j_exer_2022_109208
crossref_primary_10_1017_S0952523821000043
crossref_primary_10_3389_fmed_2024_1479891
crossref_primary_10_1016_j_exer_2021_108438
crossref_primary_10_1002_cne_24957
crossref_primary_10_1038_s41598_022_07621_6
crossref_primary_10_1016_j_exer_2022_109003
crossref_primary_10_3390_biomedicines8040078
crossref_primary_10_3389_fgene_2023_1113058
crossref_primary_10_1186_s12920_019_0560_1
crossref_primary_10_1016_j_apjo_2024_100125
crossref_primary_10_1167_tvst_11_4_17
crossref_primary_10_1167_iovs_66_2_22
crossref_primary_10_3390_ijms22094721
crossref_primary_10_1016_j_heliyon_2022_e09408
crossref_primary_10_1371_journal_pgen_1009458
crossref_primary_10_1038_s41598_021_84338_y
crossref_primary_10_1167_iovs_64_13_15
crossref_primary_10_1186_s12920_021_01005_x
crossref_primary_10_3390_biom13030494
crossref_primary_10_1016_j_exer_2024_110009
crossref_primary_10_1016_j_jtbi_2021_110985
crossref_primary_10_1096_fj_202100350RR
crossref_primary_10_1167_iovs_63_11_10
crossref_primary_10_1016_j_exer_2022_109071
crossref_primary_10_1371_journal_pone_0307091
crossref_primary_10_4103_tjo_TJO_D_24_00031
crossref_primary_10_1016_j_yaoo_2019_04_015
crossref_primary_10_1167_iovs_61_5_13
crossref_primary_10_1167_iovs_18_25967
crossref_primary_10_3389_fneur_2024_1486139
crossref_primary_10_1016_j_exer_2020_108331
crossref_primary_10_1016_j_exer_2021_108693
crossref_primary_10_1016_j_ygeno_2021_06_021
crossref_primary_10_1242_bio_059784
crossref_primary_10_1038_s41598_019_53082_9
crossref_primary_10_1167_tvst_13_10_33
crossref_primary_10_1038_s41572_020_00231_4
crossref_primary_10_1016_j_exer_2024_109786
crossref_primary_10_3390_jcm9082371
crossref_primary_10_1016_j_biopha_2020_111092
crossref_primary_10_1167_jov_23_4_3
crossref_primary_10_1167_tvst_13_8_42
crossref_primary_10_1016_j_jprot_2021_104248
crossref_primary_10_1080_02713683_2022_2048395
crossref_primary_10_1007_s40123_023_00671_7
crossref_primary_10_1016_j_tips_2019_09_009
crossref_primary_10_1016_j_exer_2022_109018
crossref_primary_10_1038_s41598_023_50684_2
crossref_primary_10_1167_iovs_65_2_3
crossref_primary_10_1093_hmg_ddz029
crossref_primary_10_1167_tvst_13_4_16
crossref_primary_10_1016_j_visres_2024_108402
crossref_primary_10_1159_000526448
crossref_primary_10_1016_j_preteyeres_2022_101155
crossref_primary_10_3389_fmed_2023_1112996
Cites_doi 10.1016/S0042-6989(96)00224-6
10.1016/S0014-4835(05)80147-2
10.1016/j.jaapos.2010.09.020
10.1038/11167
10.1016/S0042-6989(00)00250-9
10.1097/OPX.0000000000000038
10.1038/s41598-017-10277-2
10.1167/iovs.10-6727
10.1186/s12886-017-0483-6
10.3109/02713688709034870
10.1167/iovs.14-14233
10.1016/S0042-6989(98)00304-6
10.1038/ng.2554
10.1016/j.neuron.2004.08.008
10.1016/j.exer.2009.01.012
10.1136/jmedgenet-2012-101405
10.1586/eop.10.67
10.1001/archophthalmol.2009.303
10.1097/OPX.0b013e318194072e
10.1073/pnas.1530509100
10.1016/S0042-6989(98)00229-6
10.1073/pnas.86.2.704
10.1097/00006324-199105000-00007
10.1046/j.1442-9071.2001.00389.x
10.1016/j.visres.2008.10.008
10.1038/s41598-016-0002-7
10.1016/S0042-6989(99)00005-X
10.1111/j.1475-1313.1992.tb00315.x
10.1017/S0952523898156080
10.1167/iovs.01-0670
10.1076/ceyr.17.3.322.5220
10.1167/iovs.14-14524
10.1016/j.ophtha.2014.07.030
10.1089/jop.2012.0098
10.1038/nm0895-761
10.1016/S0042-6989(03)00180-9
10.1016/j.jcrs.2012.08.066
10.1167/iovs.06-1273
10.1167/8.3.1
10.1167/iovs.17-22173
10.1016/j.exer.2015.06.009
10.1097/OPX.0b013e31828b47cf
10.1097/ICU.0b013e3283622cb1
10.1016/S0042-6989(98)00189-8
10.1167/iovs.17-22562
10.1167/iovs.16-20941
10.1016/0042-6989(94)00221-7
10.3389/fnins.2016.00390
10.1097/IAE.0b013e31826d3a93
10.1016/j.ophtha.2016.01.006
10.1167/iovs.09-4153
10.1080/02713689808951231
10.1167/iovs.16-20618
10.1006/exer.1996.0134
10.1111/opo.12058
10.1016/S0042-6989(97)00114-4
10.1016/S2214-109X(17)30393-5
10.1111/opo.12034
10.1167/iovs.09-4969
10.1111/j.1475-1313.2005.00298.x
10.1038/ng.663
10.1016/0042-6989(88)90113-7
10.1016/j.ophtha.2015.03.018
10.1016/j.preteyeres.2012.06.004
10.1001/archopht.122.4.615
ContentType Journal Article
Copyright 2018 Tkatchenko et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Tkatchenko et al 2018 Tkatchenko et al
Copyright_xml – notice: 2018 Tkatchenko et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Tkatchenko et al 2018 Tkatchenko et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7SN
7SS
7T5
7TK
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
5PM
DOA
CZG
DOI 10.1371/journal.pbio.2006021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
PLoS Biology
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Identification of retinal pathways guiding eye emmetropization
EISSN 1545-7885
ExternalDocumentID 2249952835
oai_doaj_org_article_283e85ed80f34c7eb7be6000c3b6b625
PMC6177118
30300342
10_1371_journal_pbio_2006021
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations New York
United States--US
GeographicLocations_xml – name: New York
– name: United States--US
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY023839
– fundername: NEI NIH HHS
  grantid: R01 EY011228
– fundername: NEI NIH HHS
  grantid: P30 EY019007
GroupedDBID ---
123
29O
2WC
36B
53G
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
IOV
ISE
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
PYCSY
QF4
QN7
RNS
RPM
RZL
SJN
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
.GJ
C1A
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
WOQ
3V.
7QG
7QL
7SN
7SS
7T5
7TK
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
AGJBV
CZG
M~E
ZA5
ID FETCH-LOGICAL-c526t-a863e95d908bb6fc63c48f7b7cc4849c744103d457463a9817669e9676b69c0e3
IEDL.DBID 7X7
ISSN 1545-7885
1544-9173
IngestDate Sun Oct 01 00:20:30 EDT 2023
Wed Aug 27 01:17:57 EDT 2025
Thu Aug 21 14:21:47 EDT 2025
Fri Jul 11 16:49:37 EDT 2025
Fri Jul 25 10:15:55 EDT 2025
Thu Apr 03 07:08:49 EDT 2025
Tue Jul 01 03:42:18 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-a863e95d908bb6fc63c48f7b7cc4849c744103d457463a9817669e9676b69c0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors jointly supervised this work.
The authors have declared that no competing interests exist.
ORCID 0000-0002-4510-0836
OpenAccessLink https://www.proquest.com/docview/2249952835?pq-origsite=%requestingapplication%
PMID 30300342
PQID 2249952835
PQPubID 1436341
ParticipantIDs plos_journals_2249952835
doaj_primary_oai_doaj_org_article_283e85ed80f34c7eb7be6000c3b6b625
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6177118
proquest_miscellaneous_2117816584
proquest_journals_2249952835
pubmed_primary_30300342
crossref_primary_10_1371_journal_pbio_2006021
crossref_citationtrail_10_1371_journal_pbio_2006021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References F Schaeffel (ref63) 1995; 35
DI Flitcroft (ref1) 2012; 31
RA Stone (ref44) 2011; 52
SM Saw (ref6) 2005; 25
B. Ward (ref72) 2013; 33
K Rose (ref5) 2001; 29
AM Solouki (ref57) 2010; 42
S Fujii (ref37) 1998; 17
N Riddell (ref42) 2017; 7
S Diether (ref64) 1999; 39
S Vitale (ref2) 2009; 127
VJ Verhoeven (ref58) 2013; 45
N Riddell (ref43) 2016; 10
DI Flitcroft (ref47) 2018; 59
VJ Verhoeven (ref7) 2015; 122
M Rickers (ref62) 1995; 61
TW Park (ref48) 2003; 43
KM Williams (ref3) 2015; 122
AR Whatham (ref15) 2001; 41
SR Flaxman (ref8) 2017; 5
RK Chun (ref39) 2015; 56
CF Wildsoet (ref31) 1988; 3
AJ Fischer (ref60) 1998; 15
F Schaeffel (ref21) 1988; 28
BJ Carr (ref54) 2018; 59
R. Pararajasegaram (ref10) 1999; 128
D Troilo (ref25) 2009; 86
MH Howlett (ref20) 2009; 49
S Park (ref70) 2013; 24
EL Smith 3rd (ref14) 1985; 26
RA Stone (ref40) 1989; 86
LF Hung (ref13) 1995; 1
A Benavente-Perez (ref26) 2014; 55
TT Norton (ref19) 1995; 66
D Wen (ref61) 2015; 8
P Ganesan (ref52) 2010; 5
BJ Carr (ref53) 2016; 6
X Xu (ref59) 2009; 15
F Schaeffel (ref50) 1999; 39
S Metlapally (ref18) 2008; 8
R Chakraborty (ref36) 2015; 137
Y Li (ref4) 2017; 17
K Kamiya (ref71) 2013; 29
EL Irving (ref22) 1992; 12
U Celik (ref69) 2013; 39
B Graham (ref16) 1999; 39
ST Nevin (ref24) 1998; 17
TV Tkatchenko (ref27) 2010; 51
N Riddell (ref41) 2017; 58
EL Smith 3rd (ref12) 1999; 39
E Flex (ref56) 2013; 50
RC McLean (ref49) 2003; 44
B Wang (ref55) 2017; 58
EL Irving (ref23) 1991; 68
HN Schwahn (ref65) 1997; 37
D Troilo (ref29) 1987; 6
SW Leo (ref66) 2011; 15
AJ Fischer (ref51) 1999; 2
BA Holden (ref9) 2016; 123
DB Elliott (ref67) 2013; 33
EL Smith 3rd (ref33) 2013; 90
DL Nickla (ref38) 2009; 88
T Aller (ref68) 2013; 90
JD Storey (ref73) 2003; 100
S Diether (ref32) 1997; 37
L Pizzarello (ref11) 2004; 122
J Wallman (ref45) 2004; 43
F Schaeffel (ref46) 2013; 33
CL Cottriall (ref17) 1996; 37
W Shen (ref28) 2007; 48
EL Smith 3rd (ref34) 2010; 51
Y Seko (ref35) 1996; 63
E Raviola (ref30) 1990; 155
References_xml – volume: 37
  start-page: 659
  issue: 6
  year: 1997
  ident: ref32
  article-title: Local changes in eye growth induced by imposed local refractive error despite active accommodation
  publication-title: Vision Res
  doi: 10.1016/S0042-6989(96)00224-6
– volume: 61
  start-page: 509
  issue: 4
  year: 1995
  ident: ref62
  article-title: Dose-dependent effects of intravitreal pirenzepine on deprivation myopia and lens-induced refractive errors in chickens
  publication-title: Exp Eye Res
  doi: 10.1016/S0014-4835(05)80147-2
– volume: 15
  start-page: 181
  issue: 2
  year: 2011
  ident: ref66
  article-title: An evidence-based update on myopia and interventions to retard its progression
  publication-title: J AAPOS
  doi: 10.1016/j.jaapos.2010.09.020
– volume: 2
  start-page: 706
  issue: 8
  year: 1999
  ident: ref51
  article-title: Light- and focus-dependent expression of the transcription factor ZENK in the chick retina
  publication-title: Nat Neurosci
  doi: 10.1038/11167
– volume: 41
  start-page: 267
  issue: 3
  year: 2001
  ident: ref15
  article-title: Compensatory changes in eye growth and refraction induced by daily wear of soft contact lenses in young marmosets
  publication-title: Vision Res
  doi: 10.1016/S0042-6989(00)00250-9
– volume: 90
  start-page: 1176
  issue: 11
  year: 2013
  ident: ref33
  article-title: Effects of local myopic defocus on refractive development in monkeys
  publication-title: Optom Vis Sci
  doi: 10.1097/OPX.0000000000000038
– volume: 7
  start-page: 9719
  issue: 1
  year: 2017
  ident: ref42
  article-title: Novel evidence for complement system activation in chick myopia and hyperopia models: a meta-analysis of transcriptome datasets
  publication-title: Scientific reports
  doi: 10.1038/s41598-017-10277-2
– volume: 52
  start-page: 5765
  issue: 8
  year: 2011
  ident: ref44
  article-title: Image defocus and altered retinal gene expression in chick: clues to the pathogenesis of ametropia
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.10-6727
– volume: 17
  start-page: 88
  issue: 1
  year: 2017
  ident: ref4
  article-title: The increasing prevalence of myopia in junior high school students in the Haidian District of Beijing, China: a 10-year population-based survey
  publication-title: BMC ophthalmology
  doi: 10.1186/s12886-017-0483-6
– volume: 6
  start-page: 993
  issue: 8
  year: 1987
  ident: ref29
  article-title: Visual deprivation causes myopia in chicks with optic nerve section
  publication-title: Curr Eye Res
  doi: 10.3109/02713688709034870
– volume: 56
  start-page: 8151
  issue: 13
  year: 2015
  ident: ref39
  article-title: Cyclic Adenosine Monophosphate Activates Retinal Apolipoprotein A1 Expression and Inhibits Myopic Eye Growth
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.14-14233
– volume: 39
  start-page: 1585
  issue: 9
  year: 1999
  ident: ref50
  article-title: The growing eye: an autofocus system that works on very poor images
  publication-title: Vision Res
  doi: 10.1016/S0042-6989(98)00304-6
– volume: 45
  start-page: 314
  issue: 3
  year: 2013
  ident: ref58
  article-title: Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia
  publication-title: Nat Genet
  doi: 10.1038/ng.2554
– volume: 43
  start-page: 447
  issue: 4
  year: 2004
  ident: ref45
  article-title: Homeostasis of eye growth and the question of myopia
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.08.008
– volume: 66
  start-page: 405
  issue: 7
  year: 1995
  ident: ref19
  article-title: Animal models of emmetropization: matching axial length to the focal plane
  publication-title: J Am Optom Assoc
– volume: 88
  start-page: 1092
  issue: 6
  year: 2009
  ident: ref38
  article-title: Inhibiting the neuronal isoform of nitric oxide synthase has similar effects on the compensatory choroidal and axial responses to myopic defocus in chicks as does the non-specific inhibitor L-NAME
  publication-title: Exp Eye Res
  doi: 10.1016/j.exer.2009.01.012
– volume: 50
  start-page: 493
  issue: 8
  year: 2013
  ident: ref56
  article-title: Loss of function of the E3 ubiquitin-protein ligase UBE3B causes Kaufman oculocerebrofacial syndrome
  publication-title: J Med Genet
  doi: 10.1136/jmedgenet-2012-101405
– volume: 5
  start-page: 759
  issue: 6
  year: 2010
  ident: ref52
  article-title: Pharmaceutical intervention for myopia control
  publication-title: Expert review of ophthalmology
  doi: 10.1586/eop.10.67
– volume: 15
  start-page: 2094
  year: 2009
  ident: ref59
  article-title: Sequence variations of GRM6 in patients with high myopia
  publication-title: Mol Vis
– volume: 127
  start-page: 1632
  issue: 12
  year: 2009
  ident: ref2
  article-title: Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004
  publication-title: Arch Ophthalmol
  doi: 10.1001/archophthalmol.2009.303
– volume: 86
  start-page: E31
  issue: 1
  year: 2009
  ident: ref25
  article-title: Imposed anisometropia, accommodation, and regulation of refractive state
  publication-title: Optom Vis Sci
  doi: 10.1097/OPX.0b013e318194072e
– volume: 100
  start-page: 9440
  issue: 16
  year: 2003
  ident: ref73
  article-title: Statistical significance for genomewide studies
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1530509100
– volume: 39
  start-page: 1415
  issue: 8
  year: 1999
  ident: ref12
  article-title: The role of optical defocus in regulating refractive development in infant monkeys
  publication-title: Vision Res
  doi: 10.1016/S0042-6989(98)00229-6
– volume: 8
  start-page: 3819
  issue: 4
  year: 2015
  ident: ref61
  article-title: Upregulated expression of N-methyl-D-aspartate receptor 1 and nitric oxide synthase during form-deprivation myopia in guinea pigs
  publication-title: International journal of clinical and experimental pathology
– volume: 37
  start-page: 1368
  issue: 7
  year: 1996
  ident: ref17
  article-title: The M1 muscarinic antagonist pirenzepine reduces myopia and eye enlargement in the tree shrew
  publication-title: Invest Ophthalmol Vis Sci
– volume: 86
  start-page: 704
  issue: 2
  year: 1989
  ident: ref40
  article-title: Retinal dopamine and form-deprivation myopia
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.86.2.704
– volume: 68
  start-page: 364
  issue: 5
  year: 1991
  ident: ref23
  article-title: Inducing myopia, hyperopia, and astigmatism in chicks
  publication-title: Optom Vis Sci
  doi: 10.1097/00006324-199105000-00007
– volume: 29
  start-page: 116
  issue: 3
  year: 2001
  ident: ref5
  article-title: The increasing prevalence of myopia: implications for Australia
  publication-title: Clin Experiment Ophthalmol
  doi: 10.1046/j.1442-9071.2001.00389.x
– volume: 26
  start-page: 330
  issue: 3
  year: 1985
  ident: ref14
  article-title: Spatial contrast sensitivity deficits in monkeys produced by optically induced anisometropia
  publication-title: Invest Ophthalmol Vis Sci
– volume: 49
  start-page: 219
  issue: 2
  year: 2009
  ident: ref20
  article-title: Spectacle lens compensation in the pigmented guinea pig
  publication-title: Vision Res
  doi: 10.1016/j.visres.2008.10.008
– volume: 6
  start-page: 9
  issue: 1
  year: 2016
  ident: ref53
  article-title: Nitric Oxide (NO) Mediates the Inhibition of Form-Deprivation Myopia by Atropine in Chicks
  publication-title: Scientific reports
  doi: 10.1038/s41598-016-0002-7
– volume: 39
  start-page: 2499
  issue: 15
  year: 1999
  ident: ref64
  article-title: Long-term changes in retinal contrast sensitivity in chicks from frosted occluders and drugs: relations to myopia?
  publication-title: Vision Res
  doi: 10.1016/S0042-6989(99)00005-X
– volume: 12
  start-page: 448
  issue: 4
  year: 1992
  ident: ref22
  article-title: Refractive plasticity of the developing chick eye
  publication-title: Ophthalmic Physiol Opt
  doi: 10.1111/j.1475-1313.1992.tb00315.x
– volume: 3
  start-page: 99
  year: 1988
  ident: ref31
  article-title: Experimental myopia and anomalous eye growth patterns unaffected by optic nerve section in chickens: evidence for local control of eye growth
  publication-title: Clin Vision Sci
– volume: 15
  start-page: 1089
  issue: 6
  year: 1998
  ident: ref60
  article-title: Opiate and N-methyl-D-aspartate receptors in form-deprivation myopia
  publication-title: Vis Neurosci
  doi: 10.1017/S0952523898156080
– volume: 44
  start-page: 449
  issue: 2
  year: 2003
  ident: ref49
  article-title: Severe astigmatic blur does not interfere with spectacle lens compensation
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.01-0670
– volume: 17
  start-page: 322
  issue: 3
  year: 1998
  ident: ref24
  article-title: Sharp vision: a prerequisite for compensation to myopic defocus in the chick?
  publication-title: Curr Eye Res
  doi: 10.1076/ceyr.17.3.322.5220
– volume: 55
  start-page: 6765
  issue: 10
  year: 2014
  ident: ref26
  article-title: Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.14-14524
– volume: 122
  start-page: 101
  issue: 1
  year: 2015
  ident: ref7
  article-title: Visual consequences of refractive errors in the general population
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2014.07.030
– volume: 29
  start-page: 356
  issue: 3
  year: 2013
  ident: ref71
  article-title: Effect of fermented bilberry extracts on visual outcomes in eyes with myopia: a prospective, randomized, placebo-controlled study
  publication-title: Journal of ocular pharmacology and therapeutics: the official journal of the Association for Ocular Pharmacology and Therapeutics
  doi: 10.1089/jop.2012.0098
– volume: 1
  start-page: 761
  issue: 8
  year: 1995
  ident: ref13
  article-title: Spectacle lenses alter eye growth and the refractive status of young monkeys
  publication-title: Nat Med
  doi: 10.1038/nm0895-761
– volume: 43
  start-page: 1519
  issue: 14
  year: 2003
  ident: ref48
  article-title: Further evidence that chick eyes use the sign of blur in spectacle lens compensation
  publication-title: Vision Res
  doi: 10.1016/S0042-6989(03)00180-9
– volume: 39
  start-page: 225
  issue: 2
  year: 2013
  ident: ref69
  article-title: New method of microwave thermokeratoplasty to correct myopia in 33 eyes: one-year results
  publication-title: J Cataract Refract Surg
  doi: 10.1016/j.jcrs.2012.08.066
– volume: 48
  start-page: 4829
  issue: 10
  year: 2007
  ident: ref28
  article-title: Eyes of a lower vertebrate are susceptible to the visual environment
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.06-1273
– volume: 155
  start-page: 22
  year: 1990
  ident: ref30
  article-title: Neural control of eye growth and experimental myopia in primates
  publication-title: Ciba Found Symp
– volume: 8
  start-page: 1
  issue: 3
  year: 2008
  ident: ref18
  article-title: The effect of positive lens defocus on ocular growth and emmetropization in the tree shrew
  publication-title: J Vis
  doi: 10.1167/8.3.1
– volume: 59
  start-page: 338
  issue: 1
  year: 2018
  ident: ref47
  article-title: Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.17-22173
– volume: 137
  start-page: 79
  year: 2015
  ident: ref36
  article-title: ON pathway mutations increase susceptibility to form-deprivation myopia
  publication-title: Exp Eye Res
  doi: 10.1016/j.exer.2015.06.009
– volume: 90
  start-page: e135
  issue: 5
  year: 2013
  ident: ref68
  article-title: Optical control of myopia has come of age: or has it?
  publication-title: Optom Vis Sci
  doi: 10.1097/OPX.0b013e31828b47cf
– volume: 24
  start-page: 273
  issue: 4
  year: 2013
  ident: ref70
  article-title: Corneal collagen cross-linking for correction of low myopia?
  publication-title: Curr Opin Ophthalmol
  doi: 10.1097/ICU.0b013e3283622cb1
– volume: 39
  start-page: 189
  issue: 2
  year: 1999
  ident: ref16
  article-title: The effects of spectacle wear in infancy on eye growth and refractive error in the marmoset (Callithrix jacchus)
  publication-title: Vision Res
  doi: 10.1016/S0042-6989(98)00189-8
– volume: 59
  start-page: 2778
  issue: 7
  year: 2018
  ident: ref54
  article-title: Myopia-Inhibiting Concentrations of Muscarinic Receptor Antagonists Block Activation of Alpha2A-Adrenoceptors In Vitro
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.17-22562
– volume: 58
  start-page: 4182
  issue: 10
  year: 2017
  ident: ref55
  article-title: A Novel Potentially Causative Variant of NDUFAF7 Revealed by Mutation Screening in a Chinese Family With Pathologic Myopia
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.16-20941
– volume: 35
  start-page: 1247
  issue: 9
  year: 1995
  ident: ref63
  article-title: Studies on the role of the retinal dopamine/melatonin system in experimental refractive errors in chickens
  publication-title: Vision Res
  doi: 10.1016/0042-6989(94)00221-7
– volume: 10
  start-page: 390
  year: 2016
  ident: ref43
  article-title: Bidirectional Expression of Metabolic, Structural, and Immune Pathways in Early Myopia and Hyperopia
  publication-title: Frontiers in neuroscience
  doi: 10.3389/fnins.2016.00390
– volume: 33
  start-page: 224
  issue: 1
  year: 2013
  ident: ref72
  article-title: Degenerative myopia: myopic macular schisis and the posterior pole buckle
  publication-title: Retina
  doi: 10.1097/IAE.0b013e31826d3a93
– volume: 123
  start-page: 1036
  issue: 5
  year: 2016
  ident: ref9
  article-title: Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.01.006
– volume: 51
  start-page: 1297
  issue: 3
  year: 2010
  ident: ref27
  article-title: Mouse experimental myopia has features of primate myopia
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.09-4153
– volume: 128
  start-page: 359
  issue: 3
  year: 1999
  ident: ref10
  article-title: VISION 2020-the right to sight: from strategies to action
  publication-title: Am J Ophthalmol
– volume: 17
  start-page: 586
  issue: 6
  year: 1998
  ident: ref37
  article-title: Differential expression of nitric oxide synthase isoforms in form-deprived chick eyes
  publication-title: Curr Eye Res
  doi: 10.1080/02713689808951231
– volume: 58
  start-page: 660
  issue: 1
  year: 2017
  ident: ref41
  article-title: Integrated Comparison of GWAS, Transcriptome, and Proteomics Studies Highlights Similarities in the Biological Basis of Animal and Human Myopia
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.16-20618
– volume: 63
  start-page: 443
  issue: 4
  year: 1996
  ident: ref35
  article-title: In vivo and in vitro association of retinoic acid with form-deprivation myopia in the chick
  publication-title: Exp Eye Res
  doi: 10.1006/exer.1996.0134
– volume: 33
  start-page: 362
  issue: 3
  year: 2013
  ident: ref46
  article-title: Can the retina alone detect the sign of defocus?
  publication-title: Ophthalmic Physiol Opt
  doi: 10.1111/opo.12058
– volume: 37
  start-page: 2661
  issue: 19
  year: 1997
  ident: ref65
  article-title: Flicker parameters are different for suppression of myopia and hyperopia
  publication-title: Vision Res
  doi: 10.1016/S0042-6989(97)00114-4
– volume: 5
  start-page: e1221
  issue: 12
  year: 2017
  ident: ref8
  article-title: Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis
  publication-title: The Lancet Global health
  doi: 10.1016/S2214-109X(17)30393-5
– volume: 33
  start-page: 75
  issue: 2
  year: 2013
  ident: ref67
  article-title: The Bates method, elixirs, potions and other cures for myopia: how do they work?
  publication-title: Ophthalmic Physiol Opt
  doi: 10.1111/opo.12034
– volume: 51
  start-page: 3864
  issue: 8
  year: 2010
  ident: ref34
  article-title: Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.09-4969
– volume: 25
  start-page: 381
  issue: 5
  year: 2005
  ident: ref6
  article-title: Myopia and associated pathological complications
  publication-title: Ophthalmic Physiol Opt
  doi: 10.1111/j.1475-1313.2005.00298.x
– volume: 42
  start-page: 897
  issue: 10
  year: 2010
  ident: ref57
  article-title: A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14
  publication-title: Nat Genet
  doi: 10.1038/ng.663
– volume: 28
  start-page: 639
  issue: 5
  year: 1988
  ident: ref21
  article-title: Accommodation, refractive error and eye growth in chickens
  publication-title: Vision Res
  doi: 10.1016/0042-6989(88)90113-7
– volume: 122
  start-page: 1489
  issue: 7
  year: 2015
  ident: ref3
  article-title: Increasing Prevalence of Myopia in Europe and the Impact of Education
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2015.03.018
– volume: 31
  start-page: 622
  issue: 6
  year: 2012
  ident: ref1
  article-title: The complex interactions of retinal, optical and environmental factors in myopia aetiology
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2012.06.004
– volume: 122
  start-page: 615
  issue: 4
  year: 2004
  ident: ref11
  article-title: VISION 2020: The Right to Sight: a global initiative to eliminate avoidable blindness
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.122.4.615
SSID ssj0022928
Score 2.4918978
Snippet Myopia (nearsightedness) is the most common eye disorder, which is rapidly becoming one of the leading causes of vision loss in several parts of the world...
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2006021
SubjectTerms Animals
Biology and Life Sciences
Callithrix - genetics
Environmental risk
Eye
Eye - growth & development
Gene expression
Gene Expression - genetics
Gene Expression Regulation, Developmental - genetics
Gene mapping
Genes
Genomes
Growth rate
Humans
Hyperopia - genetics
Medicine and Health Sciences
Methods and Resources
Monkeys & apes
Myopia
Myopia - genetics
Optical communication
Quantitative trait loci
Quantitative Trait Loci - genetics
Refraction, Ocular - genetics
Research and Analysis Methods
Retina
Retina - growth & development
Retina - physiology
Risk analysis
Risk factors
Signal transduction
Signaling
Studies
Vision, Ocular - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH3FTVpU6NWNbcmWdGxLQyi0pwZyM5Y8Sgwbe4nt0r30t3dG8i7ZEsilJ4Me2NKMPN_YM98w9iEXHu2AhzQDl6VS2CI1DTorEozV6IxpGzK8v_-ozi_kt8vy8k6pL4oJi_TAceNO0fyBLqHVmRfSKbDKAhrpzAlbWQTv9PZFm7d1phZXqzChqipRzeBxVmJJmhMqP11k9HFtu5D8V2VFvmeUAnc_cZ2uhvE-3Plv-OQde3T2jD1dgCT_FBdwyB5B_5w9jqUlNy_YH-KT5vB7iXPtedfz2xgPC3wa-LAOH7F5C35w88gHj00hggs4xXSMnLidUDe57aLZC98M-Q1QqnA33tCMX904N6vVhl_NXQsthw3wK_Trp-uX7OLs688v5-lSayF1ZVFNaaMrAaZsTaYt5f9UwkntlVUOr9I4hbApE60slaxEYzTxShowlUIhGJeBeMUO-qGHI8aVKxoEDRpQ-lK2oBsoPcIk5X0OlcoSJrabXbuFiJzqYazq8HdNoUMSt7AmEdWLiBKW7matIxHHA-M_kxx3Y4lGOzSgctWLctUPKVfCjkgLtjcYawQ8xhAfDnadbDXj_u73u248sPQXpulhmHFMniudE_BL2OuoSLuHRDwROBkTpvZUbG8V-z19dx1IwRGJKnQW3_yPZR-zJ4gLI-1vfsIOptsZ3iL2muy7cMz-Av6GLqI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bi9UwEA7LiuCLeN_qKhF87dI2aS4PIioui7A-eWDfSpNOzxa67dnTVva8-NudpBc8ctSnQpP0ksww3yQz3xDyLmYl2oESwghsFHJmklDn6Kxw0EahM6aMz_C-_CYuVvzrVXp1ROaardMEdgddO1dParWtz-5udx9Q4d_7qg0yngedbUzl0_lE5DLL76Ftkk5VL_lyrpAk2ldbdRQ0qOaSTcl0f3vKnrHynP6OA7Vuu0N49M-wyt_s1Pkj8nACmPTjKBGPyRE0T8j9seTk7in56XimKdxN8a8NrRq6HeNkgfYtbTd-c5sWULZ26Ghb4i0f2QXUxXp01HE-4dxRU43m0O8l0htwKcRVd-NG_Ki6Ia_rHV0PVQEFhR3QNfr7_fUzsjr_8v3zRTjVYAhtmog-zJVgoNNCR8q4vCDBLFelNNLilWsrEU5FrOCp5ILlWjm-SQ1aSGGEthGw5-S4aRs4IVTaJEcwoQClgvMCVA5pifBJlmUMQkYBYfNkZ3YiKHd1MurMn7pJdFTGKczcEmXTEgUkXEZtRoKO__T_5NZx6evotf2NdrvOJm3NEHOBSqFQUcm4lWCkAUSGkWUG_ytJA3LipGB-QZchENLa8eRg0-ksGYeb3y7NqMjudCZvoB2wTxxLFTtAGJAXoyAtH4k4w3M1BkTuidjeX-y3NNW1JwtHhCrRiXz57896RR4gEhyJfuNTctxvB3iNaKs3b7wC_QIPPivU
  priority: 102
  providerName: Scholars Portal
Title Gene expression in response to optical defocus of opposite signs reveals bidirectional mechanism of visually guided eye growth
URI https://www.ncbi.nlm.nih.gov/pubmed/30300342
https://www.proquest.com/docview/2249952835
https://www.proquest.com/docview/2117816584
https://pubmed.ncbi.nlm.nih.gov/PMC6177118
https://doaj.org/article/283e85ed80f34c7eb7be6000c3b6b625
http://dx.doi.org/10.1371/journal.pbio.2006021
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZgExIviN8LjMpIvIYlsRPbT4ihTRNoEyAm9S2KnUsXqUtK0yD6wt_OnZN2FE3wkkqxoya5c-678913jL2JRYV2oIIwAheFUtgkNAU6KxKM1eiMaesrvM8vsrNL-XGaTseAWzemVW6-if5DXbaOYuRHaGqMISaS9N3ie0hdo2h3dWyhcZftE3UZpXSp6Y3DlRjfW5UIZ3BRKzGWzgkVH42SeruwtS8BzKIk3jFNnsGfGE_nbXcb-vw7ifIPq3T6kD0Y4SR_P8j_EbsDzWN2b2gwuX7CfhGrNIefY7Zrw-uGL4esWOCrlrcLH8rmJVSt6zveVnjK53EBp8yOjhPDE2oot_Vg_HzkkF8DFQzX3TVd8aPu-mI-X_NZX5dQclgDn6F3v7p6yi5PT759OAvHjguhS5NsFRY6E2DS0kTaUhVQJpzUlbLK4a80TiF4ikQpUyUzURhN7JIGTKYymxkXgXjG9pq2gQPGlUsKhA4aUAekLEEXkFYIllRVxZCpKGBi87JzN9KRU1eMee732BS6JcMrzElE-SiigIXbqxYDHcd_5h-THLdziUzbn2iXs3xcmzkqFegUSh1VQjoFVllAHBg5YfG5kjRgB6QFmz_o8htdDNjhRjNuH369HcZlS3sxRQNtj3PiWOmY4F_Ang-KtL1JRBWemTFgakfFdp5id6Sprzw1OOJRhS7ji3_f1kt2H3HfQOsbH7K91bKHV4itVnbiF9CE7R-fXHz-OvERCjx--qLxeC71b0DEKn8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiGcbKGAkOIYmsRPbB4QotNrShxBqpd5C7Ey2kbbJstml7IWfxG9k7CQLiyo49RQpdp4zHn9jz3xDyMuQFTgPFOAHYAKfMx35KkNnhYPSEp0xqV2G99FxMjzlH8_iszXys8-FsWGVvU10hjqvjV0j38apRinLRBK_nXz1bdUou7val9Bo1eIAFpfosjVv9j-gfF9F0d7uyfuh31UV8E0cJTM_kwkDFecqkNpmuiTMcFkILQweuTICAULAch4LnrBMScugqEAlItGJMgEwvO8Nss4ZujIDsr6ze_zp89LFi5Sr5mopbtCMCNYl6zERbne68XqiS5d0mARRuDIZupoBlmN1XDdX4d2_wzb_mAf37pI7HYCl71qNu0fWoLpPbrYlLRcPyA_LY03hexdfW9GyotM2DhforKb1xC2e0xyK2swbWhd4ykWOAbWxJA21nFI4Jqgu2-nWrVXSC7ApymVzYa_4VjbzbDxe0NG8zCGnsAA6mtaXs_OH5PRapPGIDKq6gk1ChYkyBCsSUOs4z0FmEBcIz0RRhJCIwCOs_9mp6QjQbR2Ocep29QQ6Qu0vTK2I0k5EHvGXV01aApD_9N-xclz2tfTd7kQ9HaWdNUhRjUHGkMugYNwI0EIDIs_AMI3fFcUe2bRa0D-gSX9rv0e2es24uvnFshkNhd39ySqo59gnDIUMLeD0yEarSMuXRBzjuCA9IlZUbOUrVluq8tyRkSMCFuikPv73az0nt4YnR4fp4f7xwRNyG1FnSyocbpHBbDqHp4jsZvpZN5wo-XLdI_gXLIVisg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4t1AASPBMWwSJ3F8QAgoq5ZCxYFKewuxM9lG2ibLZkPZCz-MX8eMk2xZVMGpp0ix85wZ-xt75hvGnvuiwHmgANcD47mh0IGrMnRWQlA6QWcs0TbD-9NRvH8cfphEky32a8iFobDKYUy0A3VeG1ojH-FUoxQxkUSjog-L-Lw3fj3_5lIFKdppHcppdCpyCKszdN-aVwd7KOsXQTB-_-XdvttXGHBNFMRLN0tiASrKlZdoynqJhQmTQmpp8BgqIxEseCIPIxnGIlMJsSkqULGMdayMBwLve4VdlSLyycbk5NzZC5St60pkNzigSNGn7Qnpj3oteTnXpU0_jL3A35gWbfUAYlud1c1FyPfvAM4_ZsTxLXazh7L8Tad7t9kWVHfYta645eou-0mM1hx-9JG2FS8rvugicoEva17P7TI6z6GoTdvwusBTNoYMOEWVNJzYpdA6uC67ideuWvJToGTlsjmlK76XTZvNZis-bcsccg4r4NNFfbY8uceOL0UW99l2VVeww7g0QYawJQHUvzDMIckgKhCoyaLwIZaew8Tws1PTU6FTRY5Zavf3JLpE3S9MSURpLyKHueur5h0VyH_6vyU5rvsSkbc9US-maT8upKjQkESQJ14hQiNBSw2IQT0jNH5XEDlsh7RgeECTntuBw3YHzbi4-dm6GYcM2gfKKqhb7OP7MvEJejrsQadI65dERGNZIR0mN1Rs4ys2W6ryxNKSIxaW6K4-_PdrPWXX0W7TjwdHh4_YDYSfHbuwv8u2l4sWHiPEW-on1pY4-3rZxvsbm4plgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+expression+in+response+to+optical+defocus+of+opposite+signs+reveals+bidirectional+mechanism+of+visually+guided+eye+growth&rft.jtitle=PLoS+biology&rft.au=Tkatchenko%2C+Tatiana+V&rft.au=Troilo%2C+David&rft.au=Benavente-Perez%2C+Alexandra&rft.au=Tkatchenko%2C+Andrei+V&rft.date=2018-10-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=16&rft.issue=10&rft.spage=e2006021&rft_id=info:doi/10.1371%2Fjournal.pbio.2006021&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon