Exchange of endogenous and heterogeneous yeast terminators in Pichia pastoris to tune mRNA stability and gene expression
Abstract In the yeast Saccharomyces cerevisiae, terminator sequences not only terminate transcription but also affect expression levels of the protein-encoded upstream of the terminator. The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has frequently been used as a platform for...
Saved in:
Published in | Nucleic acids research Vol. 48; no. 22; pp. 13000 - 13012 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
16.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
In the yeast Saccharomyces cerevisiae, terminator sequences not only terminate transcription but also affect expression levels of the protein-encoded upstream of the terminator. The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has frequently been used as a platform for metabolic engineering but knowledge regarding P. pastoris terminators is limited. To explore terminator sequences available to tune protein expression levels in P. pastoris, we created a ‘terminator catalog’ by testing 72 sequences, including terminators from S. cerevisiae or P. pastoris and synthetic terminators. Altogether, we found that the terminators have a tunable range of 17-fold. We also found that S. cerevisiae terminator sequences maintain function when transferred to P. pastoris. Successful tuning of protein expression levels was shown not only for the reporter gene used to define the catalog but also using betaxanthin production as an example application in pathway flux regulation. Moreover, we found experimental evidence that protein expression levels result from mRNA abundance and in silico evidence that levels reflect the stability of mRNA 3′-UTR secondary structure. In combination with promoter selection, the novel terminator catalog constitutes a basic toolbox for tuning protein expression levels in metabolic engineering and synthetic biology in P. pastoris. |
---|---|
AbstractList | In the yeast Saccharomyces cerevisiae, terminator sequences not only terminate transcription but also affect expression levels of the protein-encoded upstream of the terminator. The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has frequently been used as a platform for metabolic engineering but knowledge regarding P. pastoris terminators is limited. To explore terminator sequences available to tune protein expression levels in P. pastoris, we created a 'terminator catalog' by testing 72 sequences, including terminators from S. cerevisiae or P. pastoris and synthetic terminators. Altogether, we found that the terminators have a tunable range of 17-fold. We also found that S. cerevisiae terminator sequences maintain function when transferred to P. pastoris. Successful tuning of protein expression levels was shown not only for the reporter gene used to define the catalog but also using betaxanthin production as an example application in pathway flux regulation. Moreover, we found experimental evidence that protein expression levels result from mRNA abundance and in silico evidence that levels reflect the stability of mRNA 3'-UTR secondary structure. In combination with promoter selection, the novel terminator catalog constitutes a basic toolbox for tuning protein expression levels in metabolic engineering and synthetic biology in P. pastoris.In the yeast Saccharomyces cerevisiae, terminator sequences not only terminate transcription but also affect expression levels of the protein-encoded upstream of the terminator. The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has frequently been used as a platform for metabolic engineering but knowledge regarding P. pastoris terminators is limited. To explore terminator sequences available to tune protein expression levels in P. pastoris, we created a 'terminator catalog' by testing 72 sequences, including terminators from S. cerevisiae or P. pastoris and synthetic terminators. Altogether, we found that the terminators have a tunable range of 17-fold. We also found that S. cerevisiae terminator sequences maintain function when transferred to P. pastoris. Successful tuning of protein expression levels was shown not only for the reporter gene used to define the catalog but also using betaxanthin production as an example application in pathway flux regulation. Moreover, we found experimental evidence that protein expression levels result from mRNA abundance and in silico evidence that levels reflect the stability of mRNA 3'-UTR secondary structure. In combination with promoter selection, the novel terminator catalog constitutes a basic toolbox for tuning protein expression levels in metabolic engineering and synthetic biology in P. pastoris. Abstract In the yeast Saccharomyces cerevisiae, terminator sequences not only terminate transcription but also affect expression levels of the protein-encoded upstream of the terminator. The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has frequently been used as a platform for metabolic engineering but knowledge regarding P. pastoris terminators is limited. To explore terminator sequences available to tune protein expression levels in P. pastoris, we created a ‘terminator catalog’ by testing 72 sequences, including terminators from S. cerevisiae or P. pastoris and synthetic terminators. Altogether, we found that the terminators have a tunable range of 17-fold. We also found that S. cerevisiae terminator sequences maintain function when transferred to P. pastoris. Successful tuning of protein expression levels was shown not only for the reporter gene used to define the catalog but also using betaxanthin production as an example application in pathway flux regulation. Moreover, we found experimental evidence that protein expression levels result from mRNA abundance and in silico evidence that levels reflect the stability of mRNA 3′-UTR secondary structure. In combination with promoter selection, the novel terminator catalog constitutes a basic toolbox for tuning protein expression levels in metabolic engineering and synthetic biology in P. pastoris. In the yeast Saccharomyces cerevisiae, terminator sequences not only terminate transcription but also affect expression levels of the protein-encoded upstream of the terminator. The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has frequently been used as a platform for metabolic engineering but knowledge regarding P. pastoris terminators is limited. To explore terminator sequences available to tune protein expression levels in P. pastoris, we created a ‘terminator catalog’ by testing 72 sequences, including terminators from S. cerevisiae or P. pastoris and synthetic terminators. Altogether, we found that the terminators have a tunable range of 17-fold. We also found that S. cerevisiae terminator sequences maintain function when transferred to P. pastoris. Successful tuning of protein expression levels was shown not only for the reporter gene used to define the catalog but also using betaxanthin production as an example application in pathway flux regulation. Moreover, we found experimental evidence that protein expression levels result from mRNA abundance and in silico evidence that levels reflect the stability of mRNA 3′-UTR secondary structure. In combination with promoter selection, the novel terminator catalog constitutes a basic toolbox for tuning protein expression levels in metabolic engineering and synthetic biology in P. pastoris. In the yeast Saccharomyces cerevisiae , terminator sequences not only terminate transcription but also affect expression levels of the protein-encoded upstream of the terminator. The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii ) has frequently been used as a platform for metabolic engineering but knowledge regarding P. pastoris terminators is limited. To explore terminator sequences available to tune protein expression levels in P. pastoris , we created a ‘terminator catalog’ by testing 72 sequences, including terminators from S. cerevisiae or P. pastoris and synthetic terminators. Altogether, we found that the terminators have a tunable range of 17-fold. We also found that S. cerevisiae terminator sequences maintain function when transferred to P. pastoris . Successful tuning of protein expression levels was shown not only for the reporter gene used to define the catalog but also using betaxanthin production as an example application in pathway flux regulation. Moreover, we found experimental evidence that protein expression levels result from mRNA abundance and in silico evidence that levels reflect the stability of mRNA 3′-UTR secondary structure. In combination with promoter selection, the novel terminator catalog constitutes a basic toolbox for tuning protein expression levels in metabolic engineering and synthetic biology in P. pastoris . |
Author | Nakamura, Yasuyuki Ishii, Jun Kondo, Akihiko Kumokita, Ryota Ishigami, Misa Ito, Yoichiro Terai, Goro Bamba, Takahiro Hasunuma, Tomohisa Asai, Kiyoshi Hashiba, Noriko |
Author_xml | – sequence: 1 givenname: Yoichiro surname: Ito fullname: Ito, Yoichiro – sequence: 2 givenname: Goro orcidid: 0000-0002-1059-2519 surname: Terai fullname: Terai, Goro – sequence: 3 givenname: Misa surname: Ishigami fullname: Ishigami, Misa – sequence: 4 givenname: Noriko surname: Hashiba fullname: Hashiba, Noriko – sequence: 5 givenname: Yasuyuki surname: Nakamura fullname: Nakamura, Yasuyuki – sequence: 6 givenname: Takahiro surname: Bamba fullname: Bamba, Takahiro – sequence: 7 givenname: Ryota surname: Kumokita fullname: Kumokita, Ryota – sequence: 8 givenname: Tomohisa surname: Hasunuma fullname: Hasunuma, Tomohisa – sequence: 9 givenname: Kiyoshi orcidid: 0000-0003-0909-4982 surname: Asai fullname: Asai, Kiyoshi – sequence: 10 givenname: Jun orcidid: 0000-0003-2568-515X surname: Ishii fullname: Ishii, Jun email: junjun@port.kobe-u.ac.jp – sequence: 11 givenname: Akihiko surname: Kondo fullname: Kondo, Akihiko email: akondo@kobe-u.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33257988$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1v1DAUtFArui3cOCPf6IFQfyROckGqqvIhVS1CcLbeOi-7hsQOtoN2_z3ebhcBEj1Zmjdv5nnmlBw575CQF5y94ayVFw7Cxeo7AGdKPSELLpUoylaJI7JgklUFZ2VzQk5j_MYYL3lVPiUnUoqqbptmQTbXG7MGt0Lqe4qu8yt0fo4UXEfXmDDsANwhW4SYaEZG6yD5EKl19JM1awt0yiMfbKTJ0zQ7pOPn20saEyztYNP2Xm2nQ3EzBYzReveMHPcwRHz-8J6Rr--uv1x9KG7u3n-8urwpTCVUKqDMN3coeCMbjl3LK2Z6gCXjTYfQCeglU0LVjcyfa7GS2KNqOUMOhvVdLc_I273uNC9H7Ay6FGDQU7AjhK32YPXfE2fXeuV_6rqWquEsC5w_CAT_Y8aY9GijwWGA-1y0KJVishSqytSXf3r9NjnEnQliTzDBxxiw18YmSDmObG0HzZnedapzp_rQaV56_c_SQfc_9Fd7up-nx5m_AM08tWM |
CitedBy_id | crossref_primary_10_1016_j_ymben_2023_11_006 crossref_primary_10_1016_j_ijbiomac_2023_125335 crossref_primary_10_1042_EBC20200138 crossref_primary_10_1111_1751_7915_14060 crossref_primary_10_1111_1751_7915_14061 crossref_primary_10_1002_bit_28321 crossref_primary_10_1007_s12010_021_03668_9 crossref_primary_10_1016_j_synbio_2021_04_005 crossref_primary_10_3390_fermentation10020093 crossref_primary_10_3390_fermentation10020099 crossref_primary_10_1016_j_pep_2023_106277 crossref_primary_10_1021_acssynbio_4c00472 crossref_primary_10_1080_07388551_2024_2344578 crossref_primary_10_3389_fbioe_2021_676900 crossref_primary_10_3389_fbioe_2024_1355957 crossref_primary_10_7717_peerj_18181 crossref_primary_10_1016_j_tibtech_2024_03_007 crossref_primary_10_1021_acssynbio_2c00047 crossref_primary_10_1038_s41467_024_54865_z crossref_primary_10_1038_s41467_023_37627_1 crossref_primary_10_1021_acssynbio_3c00494 crossref_primary_10_1002_yea_3884 crossref_primary_10_1016_j_synbio_2024_11_006 crossref_primary_10_1016_j_enzmictec_2023_110264 crossref_primary_10_3389_fbioe_2022_876316 crossref_primary_10_1021_acssynbio_1c00307 crossref_primary_10_1042_BCJ20210535 crossref_primary_10_3389_fmicb_2020_624011 crossref_primary_10_1021_acssynbio_3c00529 crossref_primary_10_1038_s42003_022_03475_w crossref_primary_10_1016_j_jbiotec_2022_05_010 crossref_primary_10_1016_j_greenca_2025_01_004 crossref_primary_10_1007_s11274_023_03682_5 crossref_primary_10_1016_j_engmic_2023_100094 crossref_primary_10_3390_microorganisms12020346 crossref_primary_10_1021_acssynbio_1c00302 crossref_primary_10_1016_j_synbio_2025_01_003 crossref_primary_10_1186_s40694_021_00119_2 crossref_primary_10_1186_s40694_023_00154_1 |
Cites_doi | 10.1002/bit.26008 10.1007/s00253-014-5732-5 10.1093/nar/gki1012 10.1128/MCB.16.1.146 10.1016/j.jbiosc.2019.06.006 10.1021/sb5003357 10.1371/journal.pone.0113380 10.1016/j.jbiotec.2010.09.957 10.1093/nar/gkt809 10.1016/j.jbiotec.2013.09.024 10.1093/nar/gkn763 10.1073/pnas.0504604102 10.1016/j.cell.2016.02.004 10.1016/j.ymben.2018.04.017 10.1021/acssynbio.5b00199 10.1038/srep38952 10.1128/AEM.02882-17 10.1007/s11705-017-1621-7 10.1038/nchembio.1816 10.1186/1748-7188-6-26 10.1016/j.fgb.2015.12.001 10.1021/bi900870u 10.2217/fmb.12.133 10.1186/1471-2105-11-346 10.1093/nar/gkn369 10.1186/s12934-015-0278-5 10.1038/s41467-017-01695-x 10.1016/j.biotechadv.2017.07.009 10.1007/s00253-016-7891-z 10.1186/s12934-016-0486-7 10.1016/j.bej.2019.03.011 10.1021/sb300116y 10.1038/nbt.4238 10.1016/j.ymben.2013.07.001 10.1093/nar/30.1.335 10.1016/j.copbio.2017.12.002 10.1021/acssynbio.7b00138 10.1101/gr.206060.116 10.1038/srep36997 10.1093/femsyr/foy074 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2020 The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2020 – notice: The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkaa1066 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 13012 |
ExternalDocumentID | PMC7736810 33257988 10_1093_nar_gkaa1066 10.1093/nar/gkaa1066 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: JPMJMI17EJ – fundername: ; grantid: JP19ae0101055; JP19ae0101060 – fundername: ; grantid: P16009 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAWDT AAYJJ ABEJV ABGNP ABIME ABNGD ABPIB ABPTD ABQLI ABQTQ ABSMQ ABXVV ABZEO ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUKT ACUTJ ACVCV ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFYAG AGKRT AGMDO AHMBA AIAGR AJDVS ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL ANFBD AOIJS APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI M49 MBTAY MVM NTWIH OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX CITATION OVT AAPPN ADIXU AFULF BTTYL CGR CUY CVF ECM EIF M~E NPM ROX 7X8 5PM |
ID | FETCH-LOGICAL-c526t-a4141de218381ed9150cfaab018dead2af306267830149e53efe6910e1ac0fd73 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:30:28 EDT 2025 Fri Jul 11 16:09:46 EDT 2025 Wed Feb 19 02:29:45 EST 2025 Thu Apr 24 23:03:37 EDT 2025 Tue Jul 01 02:07:30 EDT 2025 Wed Apr 02 07:05:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c526t-a4141de218381ed9150cfaab018dead2af306267830149e53efe6910e1ac0fd73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1059-2519 0000-0003-2568-515X 0000-0003-0909-4982 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gkaa1066 |
PMID | 33257988 |
PQID | 2466034265 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7736810 proquest_miscellaneous_2466034265 pubmed_primary_33257988 crossref_citationtrail_10_1093_nar_gkaa1066 crossref_primary_10_1093_nar_gkaa1066 oup_primary_10_1093_nar_gkaa1066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-16 |
PublicationDateYYYYMMDD | 2020-12-16 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2020 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hoshida (2020121502535797900_B5) 2017; 101 Ito (2020121502535797900_B16) 2013; 168 Coller (2020121502535797900_B36) 2008 Matsuyama (2020121502535797900_B15) 2019; 128 Imamachi (2020121502535797900_B29) 2017; 27 Curran (2020121502535797900_B14) 2013; 19 Ahmed (2020121502535797900_B19) 2019; 146 Morse (2020121502535797900_B38) 2017; 6 Jacobs (2020121502535797900_B26) 2009; 37 Yamanishi (2020121502535797900_B13) 2013; 2 Peng (2020121502535797900_B11) 2015; 14 Tanguay (2020121502535797900_B28) 1996; 16 Sambrook (2020121502535797900_B31) 2001 Ahmad (2020121502535797900_B21) 2014; 98 Schwarzhans (2020121502535797900_B23) 2017; 35 Ito (2020121502535797900_B32) 2018; 18 Xi (2020121502535797900_B39) 2010; 11 Peña (2020121502535797900_B22) 2018; 50 Wagner (2020121502535797900_B24) 2016; 89 Trotta (2020121502535797900_B43) 2014; 9 Alper (2020121502535797900_B6) 2005; 102 Curran (2020121502535797900_B18) 2015; 4 Deloache (2020121502535797900_B40) 2015; 11 Hartner (2020121502535797900_B8) 2008; 36 Stadlmayr (2020121502535797900_B9) 2010; 150 Gasser (2020121502535797900_B20) 2013; 8 Nielsen (2020121502535797900_B1) 2016; 164 Petersen (2020121502535797900_B4) 2018; 46 Loong (2020121502535797900_B42) 2007; 13 Ito (2020121502535797900_B17) 2016; 6 Barreau (2020121502535797900_B27) 2005; 33 Nakamura (2020121502535797900_B33) 2018; 84 Lee (2020121502535797900_B7) 2013; 41 Inokuma (2020121502535797900_B35) 2016; 113 Schwarzhans (2020121502535797900_B44) 2016; 6 Vogl (2020121502535797900_B10) 2016; 5 Strack (2020121502535797900_B34) 2009; 48 Lorenz (2020121502535797900_B37) 2011; 6 Cambray (2020121502535797900_B41) 2018; 36 Schwarzhans (2020121502535797900_B45) 2016; 15 Yuan (2020121502535797900_B12) 2017; 11 Lian (2020121502535797900_B2) 2017; 8 Besada-Lombana (2020121502535797900_B3) 2018; 53 Wu (2020121502535797900_B30) 2017; 169 Pesole (2020121502535797900_B25) 2002; 30 |
References_xml | – volume: 113 start-page: 2358 year: 2016 ident: 2020121502535797900_B35 article-title: Enhanced cell-surface display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal peptide publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26008 – volume: 98 start-page: 5301 year: 2014 ident: 2020121502535797900_B21 article-title: Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-5732-5 – volume: 33 start-page: 7138 year: 2005 ident: 2020121502535797900_B27 article-title: AU-rich elements and associated factors: are there unifying principles publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki1012 – volume: 16 start-page: 146 year: 1996 ident: 2020121502535797900_B28 article-title: Translational efficiency is regulated by the length of the 3′ untranslated region publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.1.146 – volume: 128 start-page: 655 year: 2019 ident: 2020121502535797900_B15 article-title: Recent developments in terminator technology in Saccharomyces cerevisiae publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2019.06.006 – volume: 4 start-page: 824 year: 2015 ident: 2020121502535797900_B18 article-title: Short synthetic terminators for improved heterologous gene expression in yeast publication-title: ACS Synth. Biol. doi: 10.1021/sb5003357 – volume: 9 start-page: e113380 year: 2014 ident: 2020121502535797900_B43 article-title: On the normalization of the minimum free energy of RNAs by sequence length publication-title: PLoS One doi: 10.1371/journal.pone.0113380 – volume: 150 start-page: 519 year: 2010 ident: 2020121502535797900_B9 article-title: Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2010.09.957 – volume: 41 start-page: 10668 year: 2013 ident: 2020121502535797900_B7 article-title: Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt809 – volume: 168 start-page: 486 year: 2013 ident: 2020121502535797900_B16 article-title: Characterization of five terminator regions that increase the protein yield of a transgene in Saccharomyces cerevisiae publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2013.09.024 – volume: 37 start-page: 72 year: 2009 ident: 2020121502535797900_B26 article-title: Transterm: a database to aid the analysis of regulatory sequences in mRNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn763 – volume: 102 start-page: 12678 year: 2005 ident: 2020121502535797900_B6 article-title: Tuning genetic control through promoter engineering publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0504604102 – volume: 164 start-page: 1185 year: 2016 ident: 2020121502535797900_B1 article-title: Engineering cellular metabolism publication-title: Cell doi: 10.1016/j.cell.2016.02.004 – volume-title: Methods to Determine mRNA Half-Life in Saccharomyces cerevisiae year: 2008 ident: 2020121502535797900_B36 – volume: 13 start-page: 170 year: 2007 ident: 2020121502535797900_B42 article-title: Unique folding of precursor microRNAs: quantitative evidence and implications for de novo identification publication-title: Bioinformatics – volume: 50 start-page: 2 year: 2018 ident: 2020121502535797900_B22 article-title: Metabolic engineering of Pichia pastoris publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.04.017 – volume: 5 start-page: 172 year: 2016 ident: 2020121502535797900_B10 article-title: A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in pichia pastoris publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.5b00199 – volume: 6 start-page: 38952 year: 2016 ident: 2020121502535797900_B44 article-title: Non-canonical integration events in Pichia pastoris encountered during standard transformation analysed with genome sequencing publication-title: Sci. Rep. doi: 10.1038/srep38952 – volume: 84 start-page: e02882-17 year: 2018 ident: 2020121502535797900_B33 article-title: A stable, autonomously replicating plasmid vector containing Pichia pastoris centromeric DNA publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02882-17 – volume: 11 start-page: 107 year: 2017 ident: 2020121502535797900_B12 article-title: Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-017-1621-7 – volume: 11 start-page: 465 year: 2015 ident: 2020121502535797900_B40 article-title: An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1816 – volume: 6 start-page: 26 year: 2011 ident: 2020121502535797900_B37 article-title: ViennaRNA Package 2.0 publication-title: Algorith. Mol. Biol. doi: 10.1186/1748-7188-6-26 – volume: 89 start-page: 126 year: 2016 ident: 2020121502535797900_B24 article-title: Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2015.12.001 – volume: 48 start-page: 8279 year: 2009 ident: 2020121502535797900_B34 article-title: A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling publication-title: Biochemistry doi: 10.1021/bi900870u – volume: 8 start-page: 191 year: 2013 ident: 2020121502535797900_B20 article-title: Pichia pastoris: protein production host and model organism for biomedical research publication-title: Futur. Microbiol. doi: 10.2217/fmb.12.133 – volume: 169 start-page: 905 year: 2017 ident: 2020121502535797900_B30 article-title: Widespread influence of 3′-End structures on mammalian mRNA processing and stability publication-title: HHS Public Access – volume: 11 start-page: 346 year: 2010 ident: 2020121502535797900_B39 article-title: Predicting nucleosome positioning using a duration Hidden Markov Model publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-346 – volume: 36 start-page: 1 year: 2008 ident: 2020121502535797900_B8 article-title: Promoter library designed for fine-tuned gene expression in Pichia pastoris publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn369 – volume: 14 start-page: 91 year: 2015 ident: 2020121502535797900_B11 article-title: Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities publication-title: Microb. Cell Fact. doi: 10.1186/s12934-015-0278-5 – volume: 46 start-page: e127 year: 2018 ident: 2020121502535797900_B4 article-title: Modular 5′-UTR hexamers for context-independent tuning of protein expression in eukaryotes publication-title: Nucleic Acids Res – volume: 8 start-page: 1688 year: 2017 ident: 2020121502535797900_B2 article-title: Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system publication-title: Nat. Commun. doi: 10.1038/s41467-017-01695-x – volume: 35 start-page: 681 year: 2017 ident: 2020121502535797900_B23 article-title: Towards systems metabolic engineering in Pichia pastoris publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2017.07.009 – volume: 101 start-page: 241 year: 2017 ident: 2020121502535797900_B5 article-title: 5′-UTR introns enhance protein expression in the yeast Saccharomyces cerevisiae publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7891-z – volume: 15 start-page: 84 year: 2016 ident: 2020121502535797900_B45 article-title: Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization publication-title: Microb. Cell Fact. doi: 10.1186/s12934-016-0486-7 – volume: 146 start-page: 105 year: 2019 ident: 2020121502535797900_B19 article-title: Design and construction of short synthetic terminators for B-amyrin production in Saccharomyces cerevisiae publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2019.03.011 – volume: 2 start-page: 337 year: 2013 ident: 2020121502535797900_B13 article-title: A genome-wide activity assessment of terminator regions in saccharomyces cerevisiae provides a ‘terminatome’ toolbox publication-title: ACS Synth. Biol. doi: 10.1021/sb300116y – volume: 36 start-page: 1005 year: 2018 ident: 2020121502535797900_B41 article-title: Evaluation of 244,000 synthetic sequences reveals design principles to optimize translation in Escherichia coli publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4238 – volume: 19 start-page: 88 year: 2013 ident: 2020121502535797900_B14 article-title: Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications publication-title: Metab. Eng. doi: 10.1016/j.ymben.2013.07.001 – volume-title: Molecular Cloning: A Laboratory Manual year: 2001 ident: 2020121502535797900_B31 – volume: 30 start-page: 335 year: 2002 ident: 2020121502535797900_B25 article-title: UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3′ untranslated regions of eukaryotic mRNAs. Update 2002 publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.1.335 – volume: 53 start-page: 39 year: 2018 ident: 2020121502535797900_B3 article-title: Molecular tools for pathway engineering in Saccharomyces cerevisiae publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.12.002 – volume: 6 start-page: 2086 year: 2017 ident: 2020121502535797900_B38 article-title: Yeast terminator function can be modulated and designed on the basis of predictions of nucleosome occupancy publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.7b00138 – volume: 27 start-page: 407 year: 2017 ident: 2020121502535797900_B29 article-title: A GC-rich sequence feature in the 3′ UTR directs UPF1-dependent mRNA decay in mammalian cells publication-title: Genome Res doi: 10.1101/gr.206060.116 – volume: 6 start-page: 36997 year: 2016 ident: 2020121502535797900_B17 article-title: Enhancement of protein production via the strong DIT1 terminator and two RNA-binding proteins in Saccharomyces cerevisiae publication-title: Sci. Rep. doi: 10.1038/srep36997 – volume: 18 year: 2018 ident: 2020121502535797900_B32 article-title: Deletion of DNA ligase IV homolog confers higher gene targeting efficiency on homologous recombination in Komagataella phaffii publication-title: FEMS Yeast Res. doi: 10.1093/femsyr/foy074 |
SSID | ssj0014154 |
Score | 2.5151248 |
Snippet | Abstract
In the yeast Saccharomyces cerevisiae, terminator sequences not only terminate transcription but also affect expression levels of the protein-encoded... In the yeast Saccharomyces cerevisiae, terminator sequences not only terminate transcription but also affect expression levels of the protein-encoded upstream... In the yeast Saccharomyces cerevisiae , terminator sequences not only terminate transcription but also affect expression levels of the protein-encoded upstream... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13000 |
SubjectTerms | Gene Expression Regulation, Fungal - genetics Metabolic Engineering Promoter Regions, Genetic RNA Stability - genetics RNA, Messenger - genetics Saccharomyces cerevisiae - genetics Saccharomycetales - genetics Synthetic Biology Synthetic Biology and Bioengineering Terminator Regions, Genetic - genetics |
Title | Exchange of endogenous and heterogeneous yeast terminators in Pichia pastoris to tune mRNA stability and gene expression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33257988 https://www.proquest.com/docview/2466034265 https://pubmed.ncbi.nlm.nih.gov/PMC7736810 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS-QwEB7UF32RU-9073QZwbuXo9i0ado-LrIigj84FPatpGmqi2dWtMLuf-9M2l1cucPXNg0lk2S-yXz5BuBIijwv87CmlVaGgaxEEmQ1LXejQ2GUqkUV8kXhi0t1divPR8moE0l6-UcKP4-PnX4-vnvQmoIXltYm_8sa-TdXo0W2gJxQKxPlVTVl1hHcP3685HqWrrO9Q5UfyZHvvM3pF9jsYCIOWrtuwYp127AzcBQiP87wF3ripj8R34b1k3nRth2YDqftVV6c1GhdNWk1WFG7Cu-Z-cIPLD-ZcdEe7LgwXHIHxw6vx0x9xifttUNesJlg8-osPv65HCDhSM-knfneuB-0045H677C7enw5uQs6IorBCaJVBNoScNWWUZImbBVTsDQ1FqXocgqml2RrimYiMiVccyV2yS2tVWELazQJqyrNP4Ga27i7B6gloZF5GlvKDNphSHEaUuTSQodo5wwXA9-z8e9MJ3yOBfA-Fu0GfC4ICsVcyv14Oei9VOruPGfdkgm_KTJ4dy-BdmBUyHaj3ERSaVY_FAlPdht7b3oKY5pG8uzrAfp0kxYNGBF7uU3bnzvlbnTNGZ9t--f_9oP2Ig4chdRINQ-rDXPr_aA4E1T9mE1DYd9fzjQ9_P8DVhs_Lo |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exchange+of+endogenous+and+heterogeneous+yeast+terminators+in+Pichia+pastoris+to+tune+mRNA+stability+and+gene+expression&rft.jtitle=Nucleic+acids+research&rft.au=Ito%2C+Yoichiro&rft.au=Terai%2C+Goro&rft.au=Ishigami%2C+Misa&rft.au=Hashiba%2C+Noriko&rft.date=2020-12-16&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=48&rft.issue=22&rft.spage=13000&rft_id=info:doi/10.1093%2Fnar%2Fgkaa1066&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |