Low Serum Acylated Ghrelin Levels are Associated with the Development of Cardiovascular Disease in Hemodialysis Patients
Background Ghrelin has a protective effect on endothelial cells. Endothelial cell dysfunction is associated with cardiovascular disease (CVD) and CVD remains the leading cause of morbidity in hemodialysis (HD) patients. Acylated ghrelin (A-Ghr) is the functional form of ghrelin, so we hypothesized t...
Saved in:
Published in | Internal Medicine Vol. 49; no. 19; pp. 2057 - 2064 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japanese Society of Internal Medicine
01.01.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background Ghrelin has a protective effect on endothelial cells. Endothelial cell dysfunction is associated with cardiovascular disease (CVD) and CVD remains the leading cause of morbidity in hemodialysis (HD) patients. Acylated ghrelin (A-Ghr) is the functional form of ghrelin, so we hypothesized that A-Ghr is associated with the occurrence of CVD in HD patients. Methods We conducted a prospective cohort study in 412 HD patients. The cohort was sub-grouped into low and high A-Ghr groups according to the median A-Ghr level of 4.88 pg/mL. The association between the low/high A-Ghr groups and the incidence of CVD were analyzed. Results The HD patients in a low A-Ghr group had a greater risk of incidental CVD than those in a high A-Ghr ghrelin. This association remained significant after the adjustment for possible confounding factors, including age, gender, HD duration, BMI, diabetes, albumin, nPCR and Charlson's comorbidity index score. Conclusion It appears that a low serum A-Ghr level is associated with the development of CVD in HD patients. |
---|---|
AbstractList | Ghrelin has a protective effect on endothelial cells. Endothelial cell dysfunction is associated with cardiovascular disease (CVD) and CVD remains the leading cause of morbidity in hemodialysis (HD) patients. Acylated ghrelin (A-Ghr) is the functional form of ghrelin, so we hypothesized that A-Ghr is associated with the occurrence of CVD in HD patients.BACKGROUNDGhrelin has a protective effect on endothelial cells. Endothelial cell dysfunction is associated with cardiovascular disease (CVD) and CVD remains the leading cause of morbidity in hemodialysis (HD) patients. Acylated ghrelin (A-Ghr) is the functional form of ghrelin, so we hypothesized that A-Ghr is associated with the occurrence of CVD in HD patients.We conducted a prospective cohort study in 412 HD patients. The cohort was sub-grouped into low and high A-Ghr groups according to the median A-Ghr level of 4.88 pg/mL. The association between the low/high A-Ghr groups and the incidence of CVD were analyzed.METHODSWe conducted a prospective cohort study in 412 HD patients. The cohort was sub-grouped into low and high A-Ghr groups according to the median A-Ghr level of 4.88 pg/mL. The association between the low/high A-Ghr groups and the incidence of CVD were analyzed.The HD patients in a low A-Ghr group had a greater risk of incidental CVD than those in a high A-Ghr ghrelin. This association remained significant after the adjustment for possible confounding factors, including age, gender, HD duration, BMI, diabetes, albumin, nPCR and Charlson's comorbidity index score.RESULTSThe HD patients in a low A-Ghr group had a greater risk of incidental CVD than those in a high A-Ghr ghrelin. This association remained significant after the adjustment for possible confounding factors, including age, gender, HD duration, BMI, diabetes, albumin, nPCR and Charlson's comorbidity index score.It appears that a low serum A-Ghr level is associated with the development of CVD in HD patients.CONCLUSIONIt appears that a low serum A-Ghr level is associated with the development of CVD in HD patients. Ghrelin has a protective effect on endothelial cells. Endothelial cell dysfunction is associated with cardiovascular disease (CVD) and CVD remains the leading cause of morbidity in hemodialysis (HD) patients. Acylated ghrelin (A-Ghr) is the functional form of ghrelin, so we hypothesized that A-Ghr is associated with the occurrence of CVD in HD patients. We conducted a prospective cohort study in 412 HD patients. The cohort was sub-grouped into low and high A-Ghr groups according to the median A-Ghr level of 4.88 pg/mL. The association between the low/high A-Ghr groups and the incidence of CVD were analyzed. The HD patients in a low A-Ghr group had a greater risk of incidental CVD than those in a high A-Ghr ghrelin. This association remained significant after the adjustment for possible confounding factors, including age, gender, HD duration, BMI, diabetes, albumin, nPCR and Charlson's comorbidity index score. It appears that a low serum A-Ghr level is associated with the development of CVD in HD patients. Background Ghrelin has a protective effect on endothelial cells. Endothelial cell dysfunction is associated with cardiovascular disease (CVD) and CVD remains the leading cause of morbidity in hemodialysis (HD) patients. Acylated ghrelin (A-Ghr) is the functional form of ghrelin, so we hypothesized that A-Ghr is associated with the occurrence of CVD in HD patients. Methods We conducted a prospective cohort study in 412 HD patients. The cohort was sub-grouped into low and high A-Ghr groups according to the median A-Ghr level of 4.88 pg/mL. The association between the low/high A-Ghr groups and the incidence of CVD were analyzed. Results The HD patients in a low A-Ghr group had a greater risk of incidental CVD than those in a high A-Ghr ghrelin. This association remained significant after the adjustment for possible confounding factors, including age, gender, HD duration, BMI, diabetes, albumin, nPCR and Charlson's comorbidity index score. Conclusion It appears that a low serum A-Ghr level is associated with the development of CVD in HD patients. |
Author | Bai, Chyi-Huey Wu, Mai-Szu Chou, Chia-Chi Tsai, Shiow-Chwen |
Author_xml | – sequence: 1 fullname: Chou, Chia-Chi organization: Division of Nephrology, Chang Gung Memorial Hospital – sequence: 2 fullname: Bai, Chyi-Huey organization: School of Public Health, Taipei Medical University – sequence: 3 fullname: Tsai, Shiow-Chwen organization: Graduate Institute of Transition and Leisure Education for Individuals with Disabilities, Taipei Physical Education College – sequence: 4 fullname: Wu, Mai-Szu organization: Division of Nephrology, Chang Gung Memorial Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20930430$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9vEzEQxS1URNPCV0C-cUrwn816fUGKUmiRIhUJOK9mvbPEldcOtrcl3x6HhBwqDlxmDvN7b6T3rsiFDx4JoZwtBK_1e-szRg9uxN4a63FR6YVklXpBZlxWeq6EXF6QGdO8mYsyLslVSg-MyUZp8YpcCqYLLtmM_NqEJ_oV4zTSldk7yNjT221EZz3d4CO6RCEiXaUUjP1zfbJ5S_MW6c3hHHYj-kzDQNcQexseIZnJQaQ3NiEkpMXnDsfQW3D7ZBP9AtkWRXpNXg7gEr457Wvy_dPHb-u7-eb-9vN6tZmbpajzHLjqal4NwDUgE1h3veqh0kZI3QzNoJmUPW-6uq5UjbWWqhOV4s2geCUbweU1eXf03cXwc8KU29Emg86BxzClVi0LzZSuC_n2RE5dCbbdRTtC3Ld_wypAcwRMDClFHM4IZ-2hl_Z5L22l20MvRfrhmdTYXJIIPkew7n8M7o8GDynDDzx_hpitcfhPIdenKdhSnUmzhdiil78BD8i59w |
CitedBy_id | crossref_primary_10_3748_wjg_v22_i47_10440 crossref_primary_10_3164_jcbn_18_61 crossref_primary_10_3390_ijms25115696 crossref_primary_10_1159_000484981 crossref_primary_10_1007_s00467_012_2380_9 crossref_primary_10_1111_hel_13106 crossref_primary_10_1016_j_jpeds_2018_07_033 crossref_primary_10_1186_s12882_017_0442_8 crossref_primary_10_3748_wjg_v24_i15_1591 crossref_primary_10_3390_nu9020089 crossref_primary_10_1007_s12263_013_0353_7 crossref_primary_10_1093_ajh_hpt232 |
Cites_doi | 10.1210/jcem.86.10.8098 10.1161/01.CIR.101.13.1539 10.1210/jcem.87.6.8739 10.1152/ajpendo.00570.2006 10.1111/j.1365-2796.2006.01661.x 10.1006/bbrc.2000.4039 10.1097/01.CCM.0000246012.68479.49 10.1038/45230 10.1016/0021-9150(95)90076-4 10.1210/jc.2007-0922 10.1210/jc.2005-1358 10.1016/j.atherosclerosis.2006.07.021 10.1053/j.jrn.2007.11.012 10.1016/j.arcmed.2006.03.004 10.1210/en.2002-220819 10.1016/j.jvs.2008.08.065 10.1038/sj.bjp.0707482 10.1210/en.141.11.4255 10.1016/j.clnu.2007.06.013 10.1097/01.ASN.0000032420.12455.74 10.1016/j.bbrc.2006.11.144 10.1210/jcem.85.12.7167 10.1111/j.1365-2265.2005.02313.x 10.1530/EJE-09-0339 10.1126/science.273.5277.974 10.18553/jmcp.2007.13.s5.6 10.2337/diabetes.52.10.2546 10.1530/EJE-09-0375 10.3132/dvdr.2007.027 10.1007/s000180050257 10.33549/physiolres.930538 10.1161/01.CIR.0000127956.43874.F2 10.1161/hc3601.095575 10.1042/CS20030184 10.1016/S1096-6374(99)80018-5 10.1016/S0026-0495(03)00274-9 10.1038/sj.bjp.0704228 10.1210/mend.11.4.9908 10.1053/j.arrt.2003.08.009 10.1161/CIRCULATIONAHA.105.553883 10.1210/en.143.1.185 10.1097/MAJ.0b013e31816740e3 10.1093/ndt/gfg559 10.1016/0021-9681(87)90171-8 10.1016/j.regpep.2005.11.001 10.2169/internalmedicine.45.1402 |
ContentType | Journal Article |
Copyright | 2010 by The Japanese Society of Internal Medicine |
Copyright_xml | – notice: 2010 by The Japanese Society of Internal Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.2169/internalmedicine.49.3047 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1349-7235 |
EndPage | 2064 |
ExternalDocumentID | 20930430 10_2169_internalmedicine_49_3047 article_internalmedicine_49_19_49_19_2057_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 29J 2WC 3O- 53G 5GY 7.U AAPBV AAUGY ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 EBS EJD EMOBN F5P HYE JSF JSH M48 M~E OK1 P2P RJT RNS RPM RZJ TKC TR2 X7M XSB AAYXX CITATION OVT PGMZT CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c526t-a17b614fa19ae02e6bd7da49c2398f8f9033d18b66476e6937b24718f71438213 |
ISSN | 0918-2918 1349-7235 |
IngestDate | Fri Jul 11 07:13:09 EDT 2025 Sat Sep 28 08:37:49 EDT 2024 Tue Jul 01 03:24:08 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Thu Aug 17 20:29:40 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c526t-a17b614fa19ae02e6bd7da49c2398f8f9033d18b66476e6937b24718f71438213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/internalmedicine/49/19/49_19_2057/_article/-char/en |
PMID | 20930430 |
PQID | 757180796 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_757180796 pubmed_primary_20930430 crossref_primary_10_2169_internalmedicine_49_3047 crossref_citationtrail_10_2169_internalmedicine_49_3047 jstage_primary_article_internalmedicine_49_19_49_19_2057_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-01 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Internal Medicine |
PublicationTitleAlternate | Intern. Med. |
PublicationYear | 2010 |
Publisher | The Japanese Society of Internal Medicine |
Publisher_xml | – name: The Japanese Society of Internal Medicine |
References | 38. Pacifico L, Poggiogalle E, Costantino F, et al. Acylated and nonacylated ghrelin levels and their associations with insulin resistance in obese and normal weight children with metabolic syndrome. Eur J Endocrinol 161: 861-870, 2009. 40. Kiewiet RM, van Aken MO, van der Weerd K, et al. Effects of acute administration of acylated and unacylated ghrelin on glucose and insulin concentrations in morbidly obese subjects without overt diabetes. Eur J Endocrinol 161: 567-573, 2009. 14. Kotani K, Sakane N, Saiga K, et al. Serum ghrelin and carotid atherosclerosis in older Japanese people with metabolic syndrome. Arch Med Res 37: 903-906, 2006. 7. Iantorno M, Chen H, Kim JA, et al. Ghrelin has novel vascular actions that mimic PI 3-kinase-dependent actions of insulin to stimulate production of NO from endothelial cells. Am J Physiol Endocrinol Metab 292: E756-E764, 2007. 36. Langenberg C, Bergstrom J, Laughlin GA, Barrett-Connor E. Ghrelin and the metabolic syndrome in older adults. J Clin Endocrinol Metab 90: 6448-6453, 2005. 42. Barazzoni R, Zanetti M, Stulle M, et al. Higher total ghrelin levels are associated with higher insulin-mediated glucose disposal in non-diabetic maintenance hemodialysis patients. Clin Nutr 27: 14-19, 2008. 6. Li A, Cheng G, Zhu GH, Tarnawski AS. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release. Biochem Biophys Res Commun 353: 238-243, 2007. 37. Poykko SM, Kellokoski E, Horkko S, Kauma H, Kesaniemi YA, Ukkola O. Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes. Diabetes 52: 2546-2553, 2003. 44. Zeng G, Nystrom FH, Ravichandran LV, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101: 1539-1545, 2000. 9. Nagaya N, Uematsu M, Kojima M, et al. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation 104: 1430-1435, 2001. 12. Li WG, Gavrila D, Liu X, et al. Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 109: 2221-2226, 2004. 22. Luscher TF, Noll G. The pathogenesis of cardiovascular disease: role of the endothelium as a target and mediator. Atherosclerosis 118 Suppl: S81-S90, 1995. 27. Dickson SL, Bailey AR, Leng G. Growth hormone (GH) secretagogues and neuroendocrine regulation of GH secretion. Growth Horm IGF Res 9 Suppl A: 89-91, 1999. 3. Gnanapavan S, Kola B, Bustin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab 87: 2988, 2002. 11. Nagaya N, Kojima M, Kangawa K. Ghrelin, a novel growth hormone-releasing peptide, in the treatment of cardiopulmonary-associated cachexia. Intern Med 45: 127-134, 2006. 10. Enomoto M, Nagaya N, Uematsu M, et al. Cardiovascular and hormonal effects of subcutaneous administration of ghrelin, a novel growth hormone-releasing peptide, in healthy humans. Clin Sci (Lond) 105: 431-435, 2003. 13. Rossi F, Bertone C, Petricca S, Santiemma V. Ghrelin inhibits angiotensin II-induced migration of human aortic endothelial cells. Atherosclerosis 192: 291-297, 2007. 17. Rodriguez Ayala E, Pecoits-Filho R, Heimburger O, Lindholm B, Nordfors L, Stenvinkel P. Associations between plasma ghrelin levels and body composition in end-stage renal disease: a longitudinal study. Nephrol Dial Transplant 19: 421-426, 2004. 28. Takaya K, Ariyasu H, Kanamoto N, et al. Ghrelin strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab 85: 4908-4911, 2000. 16. Stenvinkel P, Pecoits-Filho R, Lindholm B. Leptin, ghrelin, and proinflammatory cytokines: compounds with nutritional impact in chronic kidney disease? Adv Ren Replace Ther 10: 332-345, 2003. 29. Thum T, Fleissner F, Klink I, et al. Growth hormone treatment improves markers of systemic nitric oxide bioavailability via insulin-like growth factor-I. J Clin Endocrinol Metab 92: 4172-4179, 2007. 19. Adams JA. Endothelium and cardiopulmonary resuscitation. Crit Care Med 34: S458-S465, 2006. 45. Jarkovska Z, Rosicka M, Krsek M, et al. Plasma ghrelin levels in patients with end-stage renal disease. Physiol Res 54: 403-408, 2005. 33. Broglio F, Arvat E, Benso A, et al. Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab 86: 5083-5086, 2001. 15. Poykko SM, Kellokoski E, Ukkola O, et al. Plasma ghrelin concentrations are positively associated with carotid artery atherosclerosis in males. J Intern Med 260: 43-52, 2006. 31. Tesauro M, Schinzari F, Iantorno M, et al. Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation 112: 2986-2992. Epub 005 Oct 31, 2005. 24. Hedayati N, Annambhotla S, Jiang J, et al. Growth hormone-releasing peptide ghrelin inhibits homocysteine-induced endothelial dysfunction in porcine coronary arteries and human endothelial cells. J Vasc Surg 49: 199-207, 2009. 25. Katugampola SD, Pallikaros Z, Davenport AP. [125I-His(9)]-ghrelin, a novel radioligand for localizing GHS orphan receptors in human and rat tissue: up-regulation of receptors with athersclerosis. Br J Pharmacol 134: 143-149, 2001. 39. Celi F, Bini V, Papi F, et al. Circulating acylated and total ghrelin and galanin in children with insulin-treated type 1 diabetes: relationship to insulin therapy, metabolic control and pubertal development. Clin Endocrinol (Oxf) 63: 139-145, 2005. 35. Reimer MK, Pacini G, Ahren B. Dose-dependent inhibition by ghrelin of insulin secretion in the mouse. Endocrinology 144: 916-921, 2003. 46. Yoshimoto A, Mori K, Sugawara A, et al. Plasma ghrelin and desacyl ghrelin concentrations in renal failure. J Am Soc Nephrol 13: 2748-2752, 2002. 21. Cohen JD. Overview of physiology, vascular biology, and mechanisms of hypertension. J Manag Care Pharm 13: S6-S8, 2007. 23. Rossi F, Bertone C, Petricca S, Santiemma V. Ghrelin inhibits angiotensin II-induced migration of human aortic endothelial cells. Atherosclerosis 192: 291-297, 2007. 30. Zhong JC, Yu XY, Lin QX, et al. Enhanced angiotensin converting enzyme 2 regulates the insulin/Akt signalling pathway by blockade of macrophage migration inhibitory factor expression. Br J Pharmacol 153: 66-74, 2008. 8. Hosoda H, Kojima M, Matsuo H, Kangawa K. Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 279: 909-913, 2000. 43. Thum T, Fleissner F, Klink I, et al. Growth hormone treatment improves markers of systemic nitric oxide bioavailability via insulin-like growth factor-1. J Clin Endocrinol Metab 92: 4172-4179, 2007. 18. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40: 373-383, 1987. 26. Bowers CY. Growth hormone-releasing peptide (GHRP). Cell Mol Life Sci 54: 1316-1329, 1998. 41. Patel AD, Stanley SA, Murphy KG, et al. Ghrelin stimulates insulin-induced glucose uptake in adipocytes. Regul Pept 134: 17-22, 2006. 20. Cubbon RM, Rajwani A, Wheatcroft SB. The impact of insulin resistance on endothelial function, progenitor cells and repair. Diab Vasc Dis Res 4: 103-111, 2007. 1. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402: 656-660, 1999. 47. Wu IW, Hung MJ, Chen YC, Cherng WJ, Wu MS. High body mass index is not associated with coronary artery disease in angina patients with chronic kidney disease: a coronary angiography study. Am J Med Sci 336: 303-308, 2008. 5. McKee KK, Palyha OC, Feighner SD, et al. Molecular analysis of rat pituitary and hypothalamic growth hormone secretagogue receptors. Mol Endocrinol 11: 415-423, 1997. 34. Lee HM, Wang G, Englander EW, Kojima M, Greeley GH Jr. Ghrelin, a new gastrointestinal endocrine peptide that stimulates insulin secretion: enteric distribution, ontogeny, influence of endocrine, and dietary manipulations. Endocrinology 143: 185-190, 2002. 48. Yang SC, Chiang CK, Hsu SP, Hung KY. Relationship between interdialytic weight gain and nutritional markers in younger and older hemodialysis patients. J Ren Nutr 18: 210-222, 2008. 32. Fagerberg B, Hulten LM, Hulthe J. Plasma ghrelin, body fat, insulin resistance, and smoking in clinically healthy men: the atherosclerosis and insulin resistance study. Metabolism 52: 1460-1463, 2003. 2. Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141: 4255-4261, 2000. 4. Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273: 974-977, 1996. 22 44 23 45 24 46 25 47 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – reference: 33. Broglio F, Arvat E, Benso A, et al. Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab 86: 5083-5086, 2001. – reference: 5. McKee KK, Palyha OC, Feighner SD, et al. Molecular analysis of rat pituitary and hypothalamic growth hormone secretagogue receptors. Mol Endocrinol 11: 415-423, 1997. – reference: 6. Li A, Cheng G, Zhu GH, Tarnawski AS. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release. Biochem Biophys Res Commun 353: 238-243, 2007. – reference: 16. Stenvinkel P, Pecoits-Filho R, Lindholm B. Leptin, ghrelin, and proinflammatory cytokines: compounds with nutritional impact in chronic kidney disease? Adv Ren Replace Ther 10: 332-345, 2003. – reference: 48. Yang SC, Chiang CK, Hsu SP, Hung KY. Relationship between interdialytic weight gain and nutritional markers in younger and older hemodialysis patients. J Ren Nutr 18: 210-222, 2008. – reference: 20. Cubbon RM, Rajwani A, Wheatcroft SB. The impact of insulin resistance on endothelial function, progenitor cells and repair. Diab Vasc Dis Res 4: 103-111, 2007. – reference: 35. Reimer MK, Pacini G, Ahren B. Dose-dependent inhibition by ghrelin of insulin secretion in the mouse. Endocrinology 144: 916-921, 2003. – reference: 42. Barazzoni R, Zanetti M, Stulle M, et al. Higher total ghrelin levels are associated with higher insulin-mediated glucose disposal in non-diabetic maintenance hemodialysis patients. Clin Nutr 27: 14-19, 2008. – reference: 11. Nagaya N, Kojima M, Kangawa K. Ghrelin, a novel growth hormone-releasing peptide, in the treatment of cardiopulmonary-associated cachexia. Intern Med 45: 127-134, 2006. – reference: 24. Hedayati N, Annambhotla S, Jiang J, et al. Growth hormone-releasing peptide ghrelin inhibits homocysteine-induced endothelial dysfunction in porcine coronary arteries and human endothelial cells. J Vasc Surg 49: 199-207, 2009. – reference: 3. Gnanapavan S, Kola B, Bustin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab 87: 2988, 2002. – reference: 26. Bowers CY. Growth hormone-releasing peptide (GHRP). Cell Mol Life Sci 54: 1316-1329, 1998. – reference: 14. Kotani K, Sakane N, Saiga K, et al. Serum ghrelin and carotid atherosclerosis in older Japanese people with metabolic syndrome. Arch Med Res 37: 903-906, 2006. – reference: 23. Rossi F, Bertone C, Petricca S, Santiemma V. Ghrelin inhibits angiotensin II-induced migration of human aortic endothelial cells. Atherosclerosis 192: 291-297, 2007. – reference: 44. Zeng G, Nystrom FH, Ravichandran LV, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101: 1539-1545, 2000. – reference: 30. Zhong JC, Yu XY, Lin QX, et al. Enhanced angiotensin converting enzyme 2 regulates the insulin/Akt signalling pathway by blockade of macrophage migration inhibitory factor expression. Br J Pharmacol 153: 66-74, 2008. – reference: 18. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40: 373-383, 1987. – reference: 39. Celi F, Bini V, Papi F, et al. Circulating acylated and total ghrelin and galanin in children with insulin-treated type 1 diabetes: relationship to insulin therapy, metabolic control and pubertal development. Clin Endocrinol (Oxf) 63: 139-145, 2005. – reference: 37. Poykko SM, Kellokoski E, Horkko S, Kauma H, Kesaniemi YA, Ukkola O. Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes. Diabetes 52: 2546-2553, 2003. – reference: 40. Kiewiet RM, van Aken MO, van der Weerd K, et al. Effects of acute administration of acylated and unacylated ghrelin on glucose and insulin concentrations in morbidly obese subjects without overt diabetes. Eur J Endocrinol 161: 567-573, 2009. – reference: 27. Dickson SL, Bailey AR, Leng G. Growth hormone (GH) secretagogues and neuroendocrine regulation of GH secretion. Growth Horm IGF Res 9 Suppl A: 89-91, 1999. – reference: 9. Nagaya N, Uematsu M, Kojima M, et al. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation 104: 1430-1435, 2001. – reference: 32. Fagerberg B, Hulten LM, Hulthe J. Plasma ghrelin, body fat, insulin resistance, and smoking in clinically healthy men: the atherosclerosis and insulin resistance study. Metabolism 52: 1460-1463, 2003. – reference: 47. Wu IW, Hung MJ, Chen YC, Cherng WJ, Wu MS. High body mass index is not associated with coronary artery disease in angina patients with chronic kidney disease: a coronary angiography study. Am J Med Sci 336: 303-308, 2008. – reference: 12. Li WG, Gavrila D, Liu X, et al. Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 109: 2221-2226, 2004. – reference: 25. Katugampola SD, Pallikaros Z, Davenport AP. [125I-His(9)]-ghrelin, a novel radioligand for localizing GHS orphan receptors in human and rat tissue: up-regulation of receptors with athersclerosis. Br J Pharmacol 134: 143-149, 2001. – reference: 10. Enomoto M, Nagaya N, Uematsu M, et al. Cardiovascular and hormonal effects of subcutaneous administration of ghrelin, a novel growth hormone-releasing peptide, in healthy humans. Clin Sci (Lond) 105: 431-435, 2003. – reference: 45. Jarkovska Z, Rosicka M, Krsek M, et al. Plasma ghrelin levels in patients with end-stage renal disease. Physiol Res 54: 403-408, 2005. – reference: 19. Adams JA. Endothelium and cardiopulmonary resuscitation. Crit Care Med 34: S458-S465, 2006. – reference: 29. Thum T, Fleissner F, Klink I, et al. Growth hormone treatment improves markers of systemic nitric oxide bioavailability via insulin-like growth factor-I. J Clin Endocrinol Metab 92: 4172-4179, 2007. – reference: 7. Iantorno M, Chen H, Kim JA, et al. Ghrelin has novel vascular actions that mimic PI 3-kinase-dependent actions of insulin to stimulate production of NO from endothelial cells. Am J Physiol Endocrinol Metab 292: E756-E764, 2007. – reference: 15. Poykko SM, Kellokoski E, Ukkola O, et al. Plasma ghrelin concentrations are positively associated with carotid artery atherosclerosis in males. J Intern Med 260: 43-52, 2006. – reference: 1. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402: 656-660, 1999. – reference: 4. Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273: 974-977, 1996. – reference: 17. Rodriguez Ayala E, Pecoits-Filho R, Heimburger O, Lindholm B, Nordfors L, Stenvinkel P. Associations between plasma ghrelin levels and body composition in end-stage renal disease: a longitudinal study. Nephrol Dial Transplant 19: 421-426, 2004. – reference: 8. Hosoda H, Kojima M, Matsuo H, Kangawa K. Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 279: 909-913, 2000. – reference: 21. Cohen JD. Overview of physiology, vascular biology, and mechanisms of hypertension. J Manag Care Pharm 13: S6-S8, 2007. – reference: 31. Tesauro M, Schinzari F, Iantorno M, et al. Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation 112: 2986-2992. Epub 005 Oct 31, 2005. – reference: 34. Lee HM, Wang G, Englander EW, Kojima M, Greeley GH Jr. Ghrelin, a new gastrointestinal endocrine peptide that stimulates insulin secretion: enteric distribution, ontogeny, influence of endocrine, and dietary manipulations. Endocrinology 143: 185-190, 2002. – reference: 41. Patel AD, Stanley SA, Murphy KG, et al. Ghrelin stimulates insulin-induced glucose uptake in adipocytes. Regul Pept 134: 17-22, 2006. – reference: 46. Yoshimoto A, Mori K, Sugawara A, et al. Plasma ghrelin and desacyl ghrelin concentrations in renal failure. J Am Soc Nephrol 13: 2748-2752, 2002. – reference: 13. Rossi F, Bertone C, Petricca S, Santiemma V. Ghrelin inhibits angiotensin II-induced migration of human aortic endothelial cells. Atherosclerosis 192: 291-297, 2007. – reference: 2. Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141: 4255-4261, 2000. – reference: 38. Pacifico L, Poggiogalle E, Costantino F, et al. Acylated and nonacylated ghrelin levels and their associations with insulin resistance in obese and normal weight children with metabolic syndrome. Eur J Endocrinol 161: 861-870, 2009. – reference: 43. Thum T, Fleissner F, Klink I, et al. Growth hormone treatment improves markers of systemic nitric oxide bioavailability via insulin-like growth factor-1. J Clin Endocrinol Metab 92: 4172-4179, 2007. – reference: 36. Langenberg C, Bergstrom J, Laughlin GA, Barrett-Connor E. Ghrelin and the metabolic syndrome in older adults. J Clin Endocrinol Metab 90: 6448-6453, 2005. – reference: 28. Takaya K, Ariyasu H, Kanamoto N, et al. Ghrelin strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab 85: 4908-4911, 2000. – reference: 22. Luscher TF, Noll G. The pathogenesis of cardiovascular disease: role of the endothelium as a target and mediator. Atherosclerosis 118 Suppl: S81-S90, 1995. – ident: 32 doi: 10.1210/jcem.86.10.8098 – ident: 43 doi: 10.1161/01.CIR.101.13.1539 – ident: 3 doi: 10.1210/jcem.87.6.8739 – ident: 7 doi: 10.1152/ajpendo.00570.2006 – ident: 14 doi: 10.1111/j.1365-2796.2006.01661.x – ident: 8 doi: 10.1006/bbrc.2000.4039 – ident: 18 doi: 10.1097/01.CCM.0000246012.68479.49 – ident: 1 doi: 10.1038/45230 – ident: 21 doi: 10.1016/0021-9150(95)90076-4 – ident: 42 doi: 10.1210/jc.2007-0922 – ident: 35 doi: 10.1210/jc.2005-1358 – ident: 22 doi: 10.1016/j.atherosclerosis.2006.07.021 – ident: 47 doi: 10.1053/j.jrn.2007.11.012 – ident: 13 doi: 10.1016/j.arcmed.2006.03.004 – ident: 34 doi: 10.1210/en.2002-220819 – ident: 23 doi: 10.1016/j.jvs.2008.08.065 – ident: 29 doi: 10.1038/sj.bjp.0707482 – ident: 2 doi: 10.1210/en.141.11.4255 – ident: 41 doi: 10.1016/j.clnu.2007.06.013 – ident: 45 doi: 10.1097/01.ASN.0000032420.12455.74 – ident: 6 doi: 10.1016/j.bbrc.2006.11.144 – ident: 27 doi: 10.1210/jcem.85.12.7167 – ident: 38 doi: 10.1111/j.1365-2265.2005.02313.x – ident: 39 doi: 10.1530/EJE-09-0339 – ident: 4 doi: 10.1126/science.273.5277.974 – ident: 20 doi: 10.18553/jmcp.2007.13.s5.6 – ident: 36 doi: 10.2337/diabetes.52.10.2546 – ident: 37 doi: 10.1530/EJE-09-0375 – ident: 19 doi: 10.3132/dvdr.2007.027 – ident: 25 doi: 10.1007/s000180050257 – ident: 44 doi: 10.33549/physiolres.930538 – ident: 12 doi: 10.1161/01.CIR.0000127956.43874.F2 – ident: 9 doi: 10.1161/hc3601.095575 – ident: 28 doi: 10.1210/jc.2007-0922 – ident: 10 doi: 10.1042/CS20030184 – ident: 26 doi: 10.1016/S1096-6374(99)80018-5 – ident: 31 doi: 10.1016/S0026-0495(03)00274-9 – ident: 24 doi: 10.1038/sj.bjp.0704228 – ident: 5 doi: 10.1210/mend.11.4.9908 – ident: 15 doi: 10.1053/j.arrt.2003.08.009 – ident: 30 doi: 10.1161/CIRCULATIONAHA.105.553883 – ident: 33 doi: 10.1210/en.143.1.185 – ident: 46 doi: 10.1097/MAJ.0b013e31816740e3 – ident: 16 doi: 10.1093/ndt/gfg559 – ident: 17 doi: 10.1016/0021-9681(87)90171-8 – ident: 40 doi: 10.1016/j.regpep.2005.11.001 – ident: 11 doi: 10.2169/internalmedicine.45.1402 |
SSID | ssj0038792 |
Score | 1.9417316 |
Snippet | Background Ghrelin has a protective effect on endothelial cells. Endothelial cell dysfunction is associated with cardiovascular disease (CVD) and CVD remains... Ghrelin has a protective effect on endothelial cells. Endothelial cell dysfunction is associated with cardiovascular disease (CVD) and CVD remains the leading... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2057 |
SubjectTerms | Acylation Aged cardiovascular disease Cardiovascular Diseases - blood Cardiovascular Diseases - etiology Cohort Studies Endothelial Cells - physiology Female ghrelin Ghrelin - blood Ghrelin - chemistry Ghrelin - deficiency hemodialysis Humans Kidney Failure, Chronic - blood Kidney Failure, Chronic - complications Kidney Failure, Chronic - therapy Male Middle Aged Proportional Hazards Models Prospective Studies Renal Dialysis - adverse effects Risk Factors |
Title | Low Serum Acylated Ghrelin Levels are Associated with the Development of Cardiovascular Disease in Hemodialysis Patients |
URI | https://www.jstage.jst.go.jp/article/internalmedicine/49/19/49_19_2057/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/20930430 https://www.proquest.com/docview/757180796 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Internal Medicine, 2010, Vol.49(19), pp.2057-2064 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQIgXxDflS37gbUqJ8-Ekj2gDCmwIaZ3YW2S7DguUBtFGpfsP-a-4i-0krTYx9mJVaXxNfb-cfz7fnQl5KaNMCVVEnoi48iLM7ZHBlHuiYQhFmqQKs5EPP_HxcfThJD4ZDP70opbqpRyps3PzSq6iVbgGesUs2f_QbCsULsBn0C-0oGFoL6Xjg2qFLzv62NV6JpA8vgPdYGz5AQYDLXYxrstpwAWaI9XsxQqZDK2NqNR9s2uz29TB-lFhbklTuOSzKcK66DNa61Kctbv0yFkn1fd144PFsNOes2HvtKrNJn8pPGg6P2ppLq9Lb1zr1s0_WZgvjk7LagUdVl3i2pfapBqV3tFZ3fddNCFwzndhnZAMc0CsBdbGBIdR5iWBKWLibLQpa-qwmPUtrm8KXNvZO_BNUfTtmSFgHAurlnZM3JCMomyEG4_dbOgiALYmyTZ0ERZNKCvflpRHWY6SrpHrAaxY8DCN_fcfHSkI06Q5n7v9wyaoDCW9uuiZNpjSjW-wWPiqL14HNXxocofctgsZ-tqg8i4Z6Pk9cvPQSr9PfgM4aQNO6sBJLTipAScFcNIOnBTBSQGctAdOWhV0E5zUgpOCnD44qQPnA3L89s1kb-zZYz48FQd86QmWSCCJhWCZ0H6guZwmUwE2BEtTFmmR-WE4ZankPEq45sCnZYCUqkgY7mKz8CHZmVdz_ZhQLjVTcK8vBDBjpeVUCRZrAddTGctwSBI3pLmyNfDxKJZZ_i-1Dglre_40dWAu0WdstNb2sJbi3B4ssy0iur0Tcy_B1A0JdXrPwf7jpp6Y66pe5EkMQ-EnGR-SRwYP7a8FfhZiSb8nV3j2p-RW98I-IzvLX7V-DvR7KV80wP4LKkvklw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+Serum+Acylated+Ghrelin+Levels+are+Associated+with+the+Development+of+Cardiovascular+Disease+in+Hemodialysis+Patients&rft.jtitle=Internal+medicine+%28Tokyo%2C+1992%29&rft.au=Chou%2C+Chia-Chi&rft.au=Bai%2C+Chyi-Huey&rft.au=Tsai%2C+Shiow-Chwen&rft.au=Wu%2C+Mai-Szu&rft.date=2010-01-01&rft.issn=0918-2918&rft.eissn=1349-7235&rft.volume=49&rft.issue=19&rft.spage=2057&rft.epage=2064&rft_id=info:doi/10.2169%2Finternalmedicine.49.3047&rft.externalDBID=n%2Fa&rft.externalDocID=10_2169_internalmedicine_49_3047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-2918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-2918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-2918&client=summon |