Lipopolysaccharide structure impacts the entry kinetics of bacterial outer membrane vesicles into host cells

Outer membrane vesicles are nano-sized microvesicles shed from the outer membrane of Gram-negative bacteria and play important roles in immune priming and disease pathogenesis. However, our current mechanistic understanding of vesicle-host cell interactions is limited by a lack of methods to study t...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 13; no. 11; p. e1006760
Main Authors O'Donoghue, Eloise J, Sirisaengtaksin, Natalie, Browning, Douglas F, Bielska, Ewa, Hadis, Mohammed, Fernandez-Trillo, Francisco, Alderwick, Luke, Jabbari, Sara, Krachler, Anne Marie
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.11.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Outer membrane vesicles are nano-sized microvesicles shed from the outer membrane of Gram-negative bacteria and play important roles in immune priming and disease pathogenesis. However, our current mechanistic understanding of vesicle-host cell interactions is limited by a lack of methods to study the rapid kinetics of vesicle entry and cargo delivery to host cells. Here, we describe a highly sensitive method to study the kinetics of vesicle entry into host cells in real-time using a genetically encoded, vesicle-targeted probe. We found that the route of vesicular uptake, and thus entry kinetics and efficiency, are shaped by bacterial cell wall composition. The presence of lipopolysaccharide O antigen enables vesicles to bypass clathrin-mediated endocytosis, which enhances both their entry rate and efficiency into host cells. Collectively, our findings highlight the composition of the bacterial cell wall as a major determinant of secretion-independent delivery of virulence factors during Gram-negative infections.
Bibliography:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1006760