Quantification of Lung PET Images: Challenges and Opportunities

Millions of people are affected by respiratory diseases, leading to a significant health burden globally. Because of the current insufficient knowledge of the underlying mechanisms that lead to the development and progression of respiratory diseases, treatment options remain limited. To overcome thi...

Full description

Saved in:
Bibliographic Details
Published inJournal of Nuclear Medicine Vol. 58; no. 2; pp. 201 - 207
Main Authors Chen, Delphine L., Cheriyan, Joseph, Chilvers, Edwin R., Choudhury, Gourab, Coello, Christopher, Connell, Martin, Fisk, Marie, Groves, Ashley M., Gunn, Roger N., Holman, Beverley F., Hutton, Brian F., Lee, Sarah, MacNee, William, Mohan, Divya, Parr, David, Subramanian, Deepak, Tal-Singer, Ruth, Thielemans, Kris, van Beek, Edwin J.R., Vass, Laurence, Wellen, Jeremy W., Wilkinson, Ian, Wilson, Frederick J.
Format Journal Article
LanguageEnglish
Published United States Society of Nuclear Medicine 01.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Millions of people are affected by respiratory diseases, leading to a significant health burden globally. Because of the current insufficient knowledge of the underlying mechanisms that lead to the development and progression of respiratory diseases, treatment options remain limited. To overcome this limitation and understand the associated molecular changes, noninvasive imaging techniques such as PET and SPECT have been explored for biomarker development, with F-FDG PET imaging being the most studied. The quantification of pulmonary molecular imaging data remains challenging because of variations in tissue, air, blood, and water fractions within the lungs. The proportions of these components further differ depending on the lung disease. Therefore, different quantification approaches have been proposed to address these variabilities. However, no standardized approach has been developed to date. This article reviews the data evaluating F-FDG PET quantification approaches in lung diseases, focusing on methods to account for variations in lung components and the interpretation of the derived parameters. The diseases reviewed include acute respiratory distress syndrome, chronic obstructive pulmonary disease, and interstitial lung diseases such as idiopathic pulmonary fibrosis. Based on review of prior literature, ongoing research, and discussions among the authors, suggested considerations are presented to assist with the interpretation of the derived parameters from these approaches and the design of future studies.
AbstractList Millions of people are affected by respiratory diseases, leading to a significant health burden globally. Because of the current insufficient knowledge of the underlying mechanisms that lead to the development and progression of respiratory diseases, treatment options remain limited. To overcome this limitation and understand the associated molecular changes, noninvasive imaging techniques such as PET and SPECT have been explored for biomarker development, with 18F-FDG PET imaging being the most studied. The quantification of pulmonary molecular imaging data remains challenging because of variations in tissue, air, blood, and water fractions within the lungs. The proportions of these components further differ depending on the lung disease. Therefore, different quantification approaches have been proposed to address these variabilities. However, no standardized approach has been developed to date. This article reviews the data evaluating 18F-FDG PET quantification approaches in lung diseases, focusing on methods to account for variations in lung components and the interpretation of the derived parameters. The diseases reviewed include acute respiratory distress syndrome, chronic obstructive pulmonary disease, and interstitial lung diseases such as idiopathic pulmonary fibrosis. Based on review of prior literature, ongoing research, and discussions among the authors, suggested considerations are presented to assist with the interpretation of the derived parameters from these approaches and the design of future studies.
Millions of people are affected by respiratory diseases, leading to a significant health burden globally. Because of the current insufficient knowledge of the underlying mechanisms that lead to the development and progression of respiratory diseases, treatment options remain limited. To overcome this limitation and understand the associated molecular changes, noninvasive imaging techniques such as PET and SPECT have been explored for biomarker development, with 18 F-FDG PET imaging being the most studied. The quantification of pulmonary molecular imaging data remains challenging because of variations in tissue, air, blood, and water fractions within the lungs. The proportions of these components further differ depending on the lung disease. Therefore, different quantification approaches have been proposed to address these variabilities. However, no standardized approach has been developed to date. This article reviews the data evaluating 18 F-FDG PET quantification approaches in lung diseases, focusing on methods to account for variations in lung components and the interpretation of the derived parameters. The diseases reviewed include acute respiratory distress syndrome, chronic obstructive pulmonary disease, and interstitial lung diseases such as idiopathic pulmonary fibrosis. Based on review of prior literature, ongoing research, and discussions among the authors, suggested considerations are presented to assist with the interpretation of the derived parameters from these approaches and the design of future studies.
Millions of people are affected by respiratory diseases, leading to a significant health burden globally. Because of the current insufficient knowledge of the underlying mechanisms that lead to the development and progression of respiratory diseases, treatment options remain limited. To overcome this limitation and understand the associated molecular changes, noninvasive imaging techniques such as PET and SPECT have been explored for biomarker development, with 18F-FDG PET imaging being the most studied. The quantification of pulmonary molecular imaging data remains challenging because of variations in tissue, air, blood, and water fractions within the lungs. The proportions of these components further differ depending on the lung disease. Therefore, different quantification approaches have been proposed to address these variabilities. However, no standardized approach has been developed to date. This article reviews the data evaluating 18F-FDG PET quantification approaches in lung diseases, focusing on methods to account for variations in lung components and the interpretation of the derived parameters. The diseases reviewed include acute respiratory distress syndrome, chronic obstructive pulmonary disease, and interstitial lung diseases such as idiopathic pulmonary fibrosis. Based on review of prior literature, ongoing research, and discussions among the authors, suggested considerations are presented to assist with the interpretation of the derived parameters from these approaches and the design of future studies.Millions of people are affected by respiratory diseases, leading to a significant health burden globally. Because of the current insufficient knowledge of the underlying mechanisms that lead to the development and progression of respiratory diseases, treatment options remain limited. To overcome this limitation and understand the associated molecular changes, noninvasive imaging techniques such as PET and SPECT have been explored for biomarker development, with 18F-FDG PET imaging being the most studied. The quantification of pulmonary molecular imaging data remains challenging because of variations in tissue, air, blood, and water fractions within the lungs. The proportions of these components further differ depending on the lung disease. Therefore, different quantification approaches have been proposed to address these variabilities. However, no standardized approach has been developed to date. This article reviews the data evaluating 18F-FDG PET quantification approaches in lung diseases, focusing on methods to account for variations in lung components and the interpretation of the derived parameters. The diseases reviewed include acute respiratory distress syndrome, chronic obstructive pulmonary disease, and interstitial lung diseases such as idiopathic pulmonary fibrosis. Based on review of prior literature, ongoing research, and discussions among the authors, suggested considerations are presented to assist with the interpretation of the derived parameters from these approaches and the design of future studies.
Millions of people are affected by respiratory diseases, leading to a significant health burden globally. Because of the current insufficient knowledge of the underlying mechanisms that lead to the development and progression of respiratory diseases, treatment options remain limited. To overcome this limitation and understand the associated molecular changes, noninvasive imaging techniques such as PET and SPECT have been explored for biomarker development, with F-FDG PET imaging being the most studied. The quantification of pulmonary molecular imaging data remains challenging because of variations in tissue, air, blood, and water fractions within the lungs. The proportions of these components further differ depending on the lung disease. Therefore, different quantification approaches have been proposed to address these variabilities. However, no standardized approach has been developed to date. This article reviews the data evaluating F-FDG PET quantification approaches in lung diseases, focusing on methods to account for variations in lung components and the interpretation of the derived parameters. The diseases reviewed include acute respiratory distress syndrome, chronic obstructive pulmonary disease, and interstitial lung diseases such as idiopathic pulmonary fibrosis. Based on review of prior literature, ongoing research, and discussions among the authors, suggested considerations are presented to assist with the interpretation of the derived parameters from these approaches and the design of future studies.
Author van Beek, Edwin J.R.
Tal-Singer, Ruth
Wilson, Frederick J.
Mohan, Divya
Parr, David
Subramanian, Deepak
Vass, Laurence
Gunn, Roger N.
Hutton, Brian F.
Groves, Ashley M.
MacNee, William
Wellen, Jeremy W.
Connell, Martin
Thielemans, Kris
Fisk, Marie
Chen, Delphine L.
Chilvers, Edwin R.
Holman, Beverley F.
Lee, Sarah
Cheriyan, Joseph
Choudhury, Gourab
Coello, Christopher
Wilkinson, Ian
Author_xml – sequence: 1
  givenname: Delphine L.
  surname: Chen
  fullname: Chen, Delphine L.
– sequence: 2
  givenname: Joseph
  surname: Cheriyan
  fullname: Cheriyan, Joseph
– sequence: 3
  givenname: Edwin R.
  surname: Chilvers
  fullname: Chilvers, Edwin R.
– sequence: 4
  givenname: Gourab
  surname: Choudhury
  fullname: Choudhury, Gourab
– sequence: 5
  givenname: Christopher
  surname: Coello
  fullname: Coello, Christopher
– sequence: 6
  givenname: Martin
  surname: Connell
  fullname: Connell, Martin
– sequence: 7
  givenname: Marie
  surname: Fisk
  fullname: Fisk, Marie
– sequence: 8
  givenname: Ashley M.
  surname: Groves
  fullname: Groves, Ashley M.
– sequence: 9
  givenname: Roger N.
  surname: Gunn
  fullname: Gunn, Roger N.
– sequence: 10
  givenname: Beverley F.
  surname: Holman
  fullname: Holman, Beverley F.
– sequence: 11
  givenname: Brian F.
  surname: Hutton
  fullname: Hutton, Brian F.
– sequence: 12
  givenname: Sarah
  surname: Lee
  fullname: Lee, Sarah
– sequence: 13
  givenname: William
  surname: MacNee
  fullname: MacNee, William
– sequence: 14
  givenname: Divya
  surname: Mohan
  fullname: Mohan, Divya
– sequence: 15
  givenname: David
  surname: Parr
  fullname: Parr, David
– sequence: 16
  givenname: Deepak
  surname: Subramanian
  fullname: Subramanian, Deepak
– sequence: 17
  givenname: Ruth
  surname: Tal-Singer
  fullname: Tal-Singer, Ruth
– sequence: 18
  givenname: Kris
  surname: Thielemans
  fullname: Thielemans, Kris
– sequence: 19
  givenname: Edwin J.R.
  surname: van Beek
  fullname: van Beek, Edwin J.R.
– sequence: 20
  givenname: Laurence
  surname: Vass
  fullname: Vass, Laurence
– sequence: 21
  givenname: Jeremy W.
  surname: Wellen
  fullname: Wellen, Jeremy W.
– sequence: 22
  givenname: Ian
  surname: Wilkinson
  fullname: Wilkinson, Ian
– sequence: 23
  givenname: Frederick J.
  surname: Wilson
  fullname: Wilson, Frederick J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28082432$$D View this record in MEDLINE/PubMed
BookMark eNqNkd1rFDEUxUOptNvVP6AvZcCXvsya748-WMpStbBQhQq-hczMzTbLbLKdzAj-96ZuK1oQfLqBe87hnvxO0GFMERA6JXhBjVTvNnHaQrcgRC6I5srIAzSjRJhaSvrtEM0wkaQWAotjdJLzBmMstdZH6JhqrClndIYuv0wujsGH1o0hxSr5ajXFdfX5-q662bo15Itqee_6HmJ5Vy521e1ul4ZximEMkF-jV971Gd48zTn6-uH6bvmpXt1-vFlerepWUDnWovPQUCCMOck6BtJx74QG0JwYML4VRPDGiMY0UjBlFDQdJ54zYxqqqGdz9H6fu5ua0rmFOA6ut7shbN3wwyYX7N-bGO7tOn23gmqtmC4B508BQ3qYII92G3ILfe8ipClbopXSlFLzP1JJOFe4tJmjty-kmzQNsfzEo0pirFTpM0dnfx7_--pnDEWg9oJ2SDkP4G0bxl9ASpfQW4LtI3C7B24LcLsHXpzkhfM5_N-en4hJr0Q
CODEN JNMEAQ
CitedBy_id crossref_primary_10_1007_s00330_023_09831_6
crossref_primary_10_1007_s00259_017_3917_8
crossref_primary_10_1088_1361_6560_aa950b
crossref_primary_10_23736_S1824_4785_21_03300_8
crossref_primary_10_1371_journal_pone_0191783
crossref_primary_10_1007_s11307_023_01813_w
crossref_primary_10_1038_s41598_018_21901_0
crossref_primary_10_2967_jnumed_122_264810
crossref_primary_10_1152_japplphysiol_00825_2018
crossref_primary_10_2967_jnumed_119_226597
crossref_primary_10_1186_s13550_020_00634_0
crossref_primary_10_1007_s00259_019_04386_5
crossref_primary_10_1016_j_ejrad_2020_109182
crossref_primary_10_1016_j_cpet_2021_06_009
crossref_primary_10_1109_TRPMS_2020_3025086
crossref_primary_10_1186_s40658_023_00595_y
crossref_primary_10_1021_acs_molpharmaceut_2c00632
crossref_primary_10_1183_13993003_01992_2018
crossref_primary_10_1177_2045893217701917
crossref_primary_10_36416_1806_3756_e20210329
crossref_primary_10_33590_emjradiol_11000033
crossref_primary_10_1002_mp_13943
crossref_primary_10_1088_1361_6560_ab469d
crossref_primary_10_3389_fimmu_2019_02724
crossref_primary_10_1186_s13550_017_0291_2
crossref_primary_10_1080_17425247_2022_2137143
crossref_primary_10_1002_smll_202305300
crossref_primary_10_1007_s00259_019_04586_z
crossref_primary_10_1183_16000617_0213_2020
crossref_primary_10_1073_pnas_2216458120
crossref_primary_10_1016_j_chest_2023_02_049
crossref_primary_10_1126_scisignal_aay1027
crossref_primary_10_1093_rheumatology_kez483
crossref_primary_10_1007_s13139_024_00845_6
crossref_primary_10_1007_s00259_022_05713_z
crossref_primary_10_1186_s12931_020_01339_7
crossref_primary_10_1128_aac_01493_22
crossref_primary_10_1186_s13075_021_02460_8
crossref_primary_10_1186_s40658_019_0265_8
crossref_primary_10_2967_jnumed_120_244780
crossref_primary_10_3389_fphys_2020_00937
crossref_primary_10_1016_j_cpet_2020_06_010
crossref_primary_10_1007_s12149_020_01461_y
crossref_primary_10_1016_S2665_9913_21_00143_0
crossref_primary_10_1038_s41598_024_83787_5
crossref_primary_10_1158_1078_0432_CCR_17_3693
crossref_primary_10_1186_s13550_018_0439_8
crossref_primary_10_1016_S2665_9913_21_00147_8
crossref_primary_10_1183_23120541_00699_2020
crossref_primary_10_1016_j_eclinm_2024_102598
crossref_primary_10_1259_bjr_20210824
crossref_primary_10_2967_jnumed_121_262342
crossref_primary_10_2967_jnumed_121_262944
crossref_primary_10_2967_jnumed_123_267036
Cites_doi 10.1007/s00259-011-1906-x
10.2967/jnumed.116.173112
10.1002/jmri.22385
10.1097/01.TP.0000121767.05724.33
10.1152/ajplung.00339.2003
10.2967/jnumed.115.163386
10.2967/jnumed.115.163360
10.1081/COPD-120028701
10.1377/hlthaff.25.2.420
10.1186/1750-1172-3-8
10.1183/09031936.97.10040795
10.1016/j.ejrad.2016.09.014
10.1378/chest.12-1359
10.1016/j.ejrad.2016.09.010
10.1164/rccm.200904-0501OC
10.1007/s00259-001-0710-4
10.1152/japplphysiol.01429.2005
10.1164/rccm.201008-1318OC
10.1038/nri2254
10.1097/CCM.0b013e3181aab31f
10.2967/jnumed.108.057901
10.1007/s00259-011-1986-7
10.2967/jnumed.115.157438
10.1183/09031936.03.00048502
10.1164/ajrccm.149.6.7516252
10.1097/00004647-200106000-00002
10.1016/j.acra.2007.12.016
10.1152/japplphysiol.00311.2011
10.1097/ALN.0b013e3181cbd1d4
10.1016/S0140-6736(11)61047-7
10.1016/j.cpet.2013.10.003
10.1097/01.anes.0000264748.86145.ac
10.1148/radiol.12111873
10.1111/j.1471-4159.1977.tb10649.x
10.1038/jcbfm.1986.30
10.1088/0031-9155/61/8/3148
10.1152/ajplung.00146.2005
10.1007/s11307-015-0871-3
10.2967/jnumed.110.086355
10.1378/chest.06-2245
10.1007/s00259-013-2514-8
10.1378/chest.09-0610
10.1007/s11307-012-0575-x
10.2967/jnumed.107.041079
10.1016/S0140-6736(96)91416-6
10.1183/09031936.00118909
10.1164/rccm.200506-934OC
10.1038/nrd3375
10.5858/arpa.2015-0519-RA
10.1088/0031-9155/60/18/7387
10.1183/09031936.95.08061001
10.1586/1744666X.2013.828875
10.1164/rccm.201201-0051OC
10.2967/jnumed.114.140962
10.1183/09031936.03.00065102
10.2214/AJR.05.1427
10.1513/pats.200601-011TK
ContentType Journal Article
Copyright 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Copyright Society of Nuclear Medicine Feb 1, 2017
2017 by the Society of Nuclear Medicine and Molecular Imaging. 2017
Copyright_xml – notice: 2017 by the Society of Nuclear Medicine and Molecular Imaging.
– notice: Copyright Society of Nuclear Medicine Feb 1, 2017
– notice: 2017 by the Society of Nuclear Medicine and Molecular Imaging. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
8FD
FR3
K9.
M7Z
NAPCQ
P64
7X8
7QO
5PM
DOI 10.2967/jnumed.116.184796
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
Docstoc
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database

Nursing & Allied Health Premium
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2159-662X
1535-5667
EndPage 207
ExternalDocumentID PMC5288738
4312818161
28082432
10_2967_jnumed_116_184796
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: British Heart Foundation
  grantid: FS/12/8/29377
– fundername: NHLBI NIH HHS
  grantid: R01 HL121218
– fundername: Medical Research Council
  grantid: MR/J00345X/1
GroupedDBID 123
18M
41~
5VS
96U
AAYXX
ACGFO
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CITATION
GX1
N9A
RHI
TSM
U5U
W8F
---
-~X
.55
.GJ
29L
2WC
3O-
53G
5RE
7RV
7X7
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8WZ
A6W
ABEFU
ABSQV
ABUWG
ACGOD
ACIWK
ACPRK
ADDZX
ADMOG
AENEX
AFFNX
AFKRA
AFOSN
AFRAH
AHMBA
AI.
ALIPV
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
DWQXO
E3Z
EBD
EBS
ECM
EIF
EJD
EMOBN
EX3
F5P
F9R
FYUFA
GNUQQ
H13
HCIFZ
HMCUK
I-F
IL9
INIJC
J5H
KQ8
L7B
LK8
M1P
M2P
M2Q
M7P
N4W
NAPCQ
NPM
OK1
P2P
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
R0Z
RNS
RWL
S0X
SJN
SV3
TAE
TR2
TUS
UKHRP
VH1
WH7
WOQ
WOW
X7M
YHG
YQJ
ZGI
ZXP
4T-
8FD
FR3
K9.
M7Z
P64
7X8
7QO
5PM
ID FETCH-LOGICAL-c526t-5dfeb2e133a63d3e6a4fa58ee8419e9fc5154b95b9b653797ebd41f4399b272f3
ISSN 0161-5505
1535-5667
IngestDate Thu Aug 21 18:26:39 EDT 2025
Fri Jul 11 01:22:34 EDT 2025
Thu Jul 10 23:32:16 EDT 2025
Mon Jun 30 10:40:30 EDT 2025
Mon Jul 21 06:02:31 EDT 2025
Tue Jul 01 01:45:17 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords pulmonary
molecular imaging
positron emission tomography
lung inflammation
Language English
License 2017 by the Society of Nuclear Medicine and Molecular Imaging.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c526t-5dfeb2e133a63d3e6a4fa58ee8419e9fc5154b95b9b653797ebd41f4399b272f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Financial Disclosure: Dr. Cheriyan’s salary is funded in part by GlaxoSmithKline for clinical research. Dr. Lee is a consultant to GlaxoSmithKline. Drs. Mohan and Tal-Singer and Mr. Wilson are employees and shareholders of GlaxoSmithKline. Mr. Wilson was previously a consultant to ECNP R&S, GlaxoSmithKline, IPPEC, King’s College London, Lundbeck A/S, Mentis Cura Ehf, and Pfizer, Inc., and has received travel expenses as a guest speaker from Orion Pharma Ltd. Dr. Wellen is an employee and shareholder of Pfizer. Dr. Gunn is a consultant for Abbvie, Biogen, GlaxoSmithKline, UCB, Roche, and Genentech, S.A. Drs. Groves, Holman, Thielemans, and Hutton have research grants from GlaxoSmithKline and receive funding from the National Institute for Health Research University College London Hospitals Biomedical Research Centre. Dr. Chen receives funding from the National Institutes of Health (R01 HL121218). Drs. Cheriyan and Wilkinson receive funding from the National Institute of Health Research (NIHR) Cambridge Comprehensive Biomedical Research Centre. Dr. Gunn is an employee of Imanova and Imperial College London. Dr. Coello is an employee of Imanova. The authors of this article have indicated no other relevant relationships that could be perceived as a real or apparent conflict of interest.
CME Credit: SNMMI is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing education for physicians. SNMMI designates each JNM continuing education article for a maximum of 2.0 AMA PRA Category 1 Credits. Physicians should claim only credit commensurate with the extent of their participation in the activity. For CE credit, SAM, and other credit types, participants can access this activity through the SNMMI website (http://www.snmmilearningcenter.org) through February 2020.
Published online Jan. 12, 2017.
Learning Objectives: On successful completion of this activity, participants should be able to (1) describe the methods that have been used to quantify 18F-FDG uptake in the lungs using dynamic PET; (2) discuss the interpretation of the outcomes from these methods; and (3) provide suggested considerations on quantification of 18F-FDG uptake in the lungs for future studies.
OpenAccessLink http://jnm.snmjournals.org/content/58/2/201.full.pdf
PMID 28082432
PQID 1866007765
PQPubID 40808
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5288738
proquest_miscellaneous_1877822298
proquest_miscellaneous_1861447013
proquest_journals_1866007765
pubmed_primary_28082432
crossref_citationtrail_10_2967_jnumed_116_184796
crossref_primary_10_2967_jnumed_116_184796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of Nuclear Medicine
PublicationTitleAlternate J Nucl Med
PublicationYear 2017
Publisher Society of Nuclear Medicine
Publisher_xml – name: Society of Nuclear Medicine
References 2021051712101738000_58.2.201.53
2021051712101738000_58.2.201.10
2021051712101738000_58.2.201.54
2021051712101738000_58.2.201.51
Faner (2021051712101738000_58.2.201.29) 2013; 9
2021051712101738000_58.2.201.52
2021051712101738000_58.2.201.50
Chen (2021051712101738000_58.2.201.46) 2004; 45
Chen (2021051712101738000_58.2.201.61) 2011; 183
2021051712101738000_58.2.201.48
2021051712101738000_58.2.201.47
2021051712101738000_58.2.201.45
2021051712101738000_58.2.201.42
2021051712101738000_58.2.201.43
2021051712101738000_58.2.201.40
2021051712101738000_58.2.201.41
Holman (2021051712101738000_58.2.201.49) 2016; 61
2021051712101738000_58.2.201.3
2021051712101738000_58.2.201.2
2021051712101738000_58.2.201.1
2021051712101738000_58.2.201.7
2021051712101738000_58.2.201.6
2021051712101738000_58.2.201.5
2021051712101738000_58.2.201.4
Carlier (2021051712101738000_58.2.201.44) 2015; 2
2021051712101738000_58.2.201.8
Jones (2021051712101738000_58.2.201.9) 1997; 10
2021051712101738000_58.2.201.35
Butt (2021051712101738000_58.2.201.26) 2016; 140
2021051712101738000_58.2.201.33
2021051712101738000_58.2.201.34
2021051712101738000_58.2.201.31
2021051712101738000_58.2.201.32
2021051712101738000_58.2.201.30
Nambu (2021051712101738000_58.2.201.60) 2016; 85
Rhodes (2021051712101738000_58.2.201.37) 1995; 8
Lambrou (2021051712101738000_58.2.201.38) 2011; 38
2021051712101738000_58.2.201.28
2021051712101738000_58.2.201.27
2021051712101738000_58.2.201.24
2021051712101738000_58.2.201.25
2021051712101738000_58.2.201.22
2021051712101738000_58.2.201.23
2021051712101738000_58.2.201.64
2021051712101738000_58.2.201.21
2021051712101738000_58.2.201.62
2021051712101738000_58.2.201.63
Coello (2021051712101738000_58.2.201.36) 2016; 57
Torigian (2021051712101738000_58.2.201.39) 2013; 16
Grecchi (2021051712101738000_58.2.201.20) 2016; 18
Chen (2021051712101738000_58.2.201.13) 2017; 86
2021051712101738000_58.2.201.19
2021051712101738000_58.2.201.17
2021051712101738000_58.2.201.18
2021051712101738000_58.2.201.15
2021051712101738000_58.2.201.59
2021051712101738000_58.2.201.16
2021051712101738000_58.2.201.57
2021051712101738000_58.2.201.14
2021051712101738000_58.2.201.58
2021051712101738000_58.2.201.11
2021051712101738000_58.2.201.55
2021051712101738000_58.2.201.12
2021051712101738000_58.2.201.56
References_xml – volume: 38
  start-page: 2238
  year: 2011
  ident: 2021051712101738000_58.2.201.38
  article-title: The importance of correction for tissue fraction effects in lung PET: preliminary findings
  publication-title: Eur J Nucl Med Mol Imaging.
  doi: 10.1007/s00259-011-1906-x
– ident: 2021051712101738000_58.2.201.51
  doi: 10.2967/jnumed.116.173112
– ident: 2021051712101738000_58.2.201.6
  doi: 10.1002/jmri.22385
– volume: 57
  start-page: 482
  year: 2016
  ident: 2021051712101738000_58.2.201.36
  article-title: Quantitative analysis of dynamic 18F-FDG in lungs of HV and COPD subjects [abstract]
  publication-title: J Nucl Med.
– ident: 2021051712101738000_58.2.201.62
  doi: 10.1097/01.TP.0000121767.05724.33
– ident: 2021051712101738000_58.2.201.52
  doi: 10.1152/ajplung.00339.2003
– ident: 2021051712101738000_58.2.201.50
  doi: 10.2967/jnumed.115.163386
– ident: 2021051712101738000_58.2.201.40
  doi: 10.2967/jnumed.115.163360
– ident: 2021051712101738000_58.2.201.27
  doi: 10.1081/COPD-120028701
– ident: 2021051712101738000_58.2.201.4
  doi: 10.1377/hlthaff.25.2.420
– ident: 2021051712101738000_58.2.201.32
  doi: 10.1186/1750-1172-3-8
– volume: 10
  start-page: 795
  year: 1997
  ident: 2021051712101738000_58.2.201.9
  article-title: Dissociation of neutrophil emigration and metabolic activity in lobar pneumonia and bronchiectasis
  publication-title: Eur Respir J.
  doi: 10.1183/09031936.97.10040795
– ident: 2021051712101738000_58.2.201.5
– volume: 86
  start-page: 371
  year: 2017
  ident: 2021051712101738000_58.2.201.13
  article-title: PET imaging approaches for inflammatory lung diseases: current concepts and future directions
  publication-title: Eur J Radiol.
  doi: 10.1016/j.ejrad.2016.09.014
– ident: 2021051712101738000_58.2.201.63
  doi: 10.1378/chest.12-1359
– volume: 85
  start-page: 2144
  year: 2016
  ident: 2021051712101738000_58.2.201.60
  article-title: Quantitative computed tomography measurements to evaluate airway disease in chronic obstructive pulmonary disease: relationship to physiological measurements, clinical index and visual assessment of airway disease
  publication-title: Eur J Radiol.
  doi: 10.1016/j.ejrad.2016.09.010
– ident: 2021051712101738000_58.2.201.56
  doi: 10.1164/rccm.200904-0501OC
– ident: 2021051712101738000_58.2.201.48
  doi: 10.1007/s00259-001-0710-4
– ident: 2021051712101738000_58.2.201.57
  doi: 10.1152/japplphysiol.01429.2005
– ident: 2021051712101738000_58.2.201.18
  doi: 10.1164/rccm.201008-1318OC
– ident: 2021051712101738000_58.2.201.28
  doi: 10.1038/nri2254
– ident: 2021051712101738000_58.2.201.19
  doi: 10.1097/CCM.0b013e3181aab31f
– ident: 2021051712101738000_58.2.201.11
  doi: 10.2967/jnumed.108.057901
– ident: 2021051712101738000_58.2.201.22
  doi: 10.1007/s00259-011-1986-7
– ident: 2021051712101738000_58.2.201.12
  doi: 10.2967/jnumed.115.157438
– ident: 2021051712101738000_58.2.201.10
  doi: 10.1183/09031936.03.00048502
– ident: 2021051712101738000_58.2.201.14
  doi: 10.1164/ajrccm.149.6.7516252
– ident: 2021051712101738000_58.2.201.34
  doi: 10.1097/00004647-200106000-00002
– ident: 2021051712101738000_58.2.201.41
  doi: 10.1016/j.acra.2007.12.016
– ident: 2021051712101738000_58.2.201.42
  doi: 10.1152/japplphysiol.00311.2011
– ident: 2021051712101738000_58.2.201.54
  doi: 10.1097/ALN.0b013e3181cbd1d4
– volume: 183
  start-page: A6449
  year: 2011
  ident: 2021051712101738000_58.2.201.61
  article-title: Reproducibility of positron emission tomography (PET)-measured [18F]fluorodeoxyglucose ([18F]FDG) uptake as a marker of lung inflammation in chronic obstructive pulmonary disease (COPD) [abstract]
  publication-title: Am J Respir Crit Care Med.
– ident: 2021051712101738000_58.2.201.1
  doi: 10.1016/S0140-6736(11)61047-7
– ident: 2021051712101738000_58.2.201.45
  doi: 10.1016/j.cpet.2013.10.003
– ident: 2021051712101738000_58.2.201.2
– ident: 2021051712101738000_58.2.201.53
  doi: 10.1097/01.anes.0000264748.86145.ac
– ident: 2021051712101738000_58.2.201.15
  doi: 10.1148/radiol.12111873
– ident: 2021051712101738000_58.2.201.33
  doi: 10.1111/j.1471-4159.1977.tb10649.x
– ident: 2021051712101738000_58.2.201.35
  doi: 10.1038/jcbfm.1986.30
– volume: 61
  start-page: 3148
  year: 2016
  ident: 2021051712101738000_58.2.201.49
  article-title: The effect of respiratory induced density variations on non-TOF PET quantitation in the lung
  publication-title: Phys Med Biol.
  doi: 10.1088/0031-9155/61/8/3148
– ident: 2021051712101738000_58.2.201.58
  doi: 10.1152/ajplung.00146.2005
– volume: 18
  start-page: 143
  year: 2016
  ident: 2021051712101738000_58.2.201.20
  article-title: Quantification of dynamic [18F]FDG PET studies in acute lung injury
  publication-title: Mol Imaging Biol.
  doi: 10.1007/s11307-015-0871-3
– ident: 2021051712101738000_58.2.201.8
  doi: 10.2967/jnumed.110.086355
– ident: 2021051712101738000_58.2.201.31
  doi: 10.1378/chest.06-2245
– ident: 2021051712101738000_58.2.201.23
  doi: 10.1007/s00259-013-2514-8
– ident: 2021051712101738000_58.2.201.25
  doi: 10.1378/chest.09-0610
– ident: 2021051712101738000_58.2.201.59
  doi: 10.1007/s11307-012-0575-x
– volume: 16
  start-page: 12
  year: 2013
  ident: 2021051712101738000_58.2.201.39
  article-title: In vivo quantification of pulmonary inflammation in relation to emphysema severity via partial volume corrected 18F-FDG-PET using computer-assisted analysis of diagnostic chest CT
  publication-title: Hell J Nucl Med.
– ident: 2021051712101738000_58.2.201.55
  doi: 10.2967/jnumed.107.041079
– ident: 2021051712101738000_58.2.201.24
  doi: 10.1016/S0140-6736(96)91416-6
– volume: 45
  start-page: 1583
  year: 2004
  ident: 2021051712101738000_58.2.201.46
  article-title: Comparison of methods to quantitate 18F-FDG uptake with PET during experimental acute lung injury
  publication-title: J Nucl Med.
– ident: 2021051712101738000_58.2.201.30
  doi: 10.1183/09031936.00118909
– ident: 2021051712101738000_58.2.201.7
  doi: 10.1164/rccm.200506-934OC
– ident: 2021051712101738000_58.2.201.3
  doi: 10.1038/nrd3375
– volume: 140
  start-page: 345
  year: 2016
  ident: 2021051712101738000_58.2.201.26
  article-title: Acute lung injury: a clinical and molecular review
  publication-title: Arch Pathol Lab Med.
  doi: 10.5858/arpa.2015-0519-RA
– ident: 2021051712101738000_58.2.201.21
  doi: 10.1088/0031-9155/60/18/7387
– volume: 8
  start-page: 1001
  year: 1995
  ident: 2021051712101738000_58.2.201.37
  article-title: Pulmonary studies using positron emission tomography
  publication-title: Eur Respir J.
  doi: 10.1183/09031936.95.08061001
– volume: 9
  start-page: 821
  year: 2013
  ident: 2021051712101738000_58.2.201.29
  article-title: Immune response in chronic obstructive pulmonary disease
  publication-title: Expert Rev Clin Immunol.
  doi: 10.1586/1744666X.2013.828875
– ident: 2021051712101738000_58.2.201.17
  doi: 10.1164/rccm.201201-0051OC
– ident: 2021051712101738000_58.2.201.43
  doi: 10.2967/jnumed.114.140962
– ident: 2021051712101738000_58.2.201.16
  doi: 10.1183/09031936.03.00065102
– ident: 2021051712101738000_58.2.201.47
  doi: 10.2214/AJR.05.1427
– volume: 2
  start-page: 18
  year: 2015
  ident: 2021051712101738000_58.2.201.44
  article-title: State-of-the-art and recent advances in quantification for therapeutic follow-up in oncology using PET
  publication-title: Front Med (Lausanne).
– ident: 2021051712101738000_58.2.201.64
  doi: 10.1513/pats.200601-011TK
SSID ssj0006888
ssj0062072
Score 2.450897
SecondaryResourceType review_article
Snippet Millions of people are affected by respiratory diseases, leading to a significant health burden globally. Because of the current insufficient knowledge of the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 201
SubjectTerms Continuing Education
Fluorodeoxyglucose F18
Global health
Humans
Image Interpretation, Computer-Assisted - methods
Knowledge
Lung - diagnostic imaging
Lung Diseases - diagnostic imaging
Medical treatment
Nuclear medicine
Positron-Emission Tomography - methods
Radiopharmaceuticals
Reproducibility of Results
Respiratory diseases
Respiratory Function Tests - methods
Sensitivity and Specificity
Title Quantification of Lung PET Images: Challenges and Opportunities
URI https://www.ncbi.nlm.nih.gov/pubmed/28082432
https://www.proquest.com/docview/1866007765
https://www.proquest.com/docview/1861447013
https://www.proquest.com/docview/1877822298
https://pubmed.ncbi.nlm.nih.gov/PMC5288738
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqISFeEN8EBgoST0wZteM4CS9oKhsd68YmOmlvUfylFJW0Go0Q_DH8rZztJE22qQJeoip2aufucv6d73yH0GuRS42ZiZ6SuQoo1TJISC6CocKKxkMimT23dnzCxuf000V0MRj87kQtVSu-K37deK7kf7gK94Cv5pTsP3C2_VO4Ab-Bv3AFDsP1r3h8VuUu1qfFfRP4dndO96c7h99AUdhwt1FTLsVlY_68NIi7Km0m1S40XR8Sm7voDmEqSrTOd5vRCYzBztbBqGh01nxZmC6TTsvl7KfbW619DG3LzMRiu0MQ8sesXEcsjopFJYvar_8RZpLz7p4ErHPDXnxHE3Bq9zzcZI-7kQL1VibDgbGP3ErUqN8oAIAZd_VzlHTkkHSVrRvy6iJAUmbc0F9LeFjCksB2wYqN0xsSbo_3vmSnHw6yyeHJUb_VLvCArUyuLGys61sEzBBTIePobJ2NniW2rmn7Js5rbsZ_e230Pu65ZsxcjcntgJzpPXS3Zr-_50TtPhqo8gG63VD1IXrflzh_oX0jcT5InO8k7p2_ljcf5M3vydsjdH6wPx2Ng7oERyAiwlZBJLXiROEwzFkoQ8VyqvMoUSqhOFWpFgCHKU8jnnIWhXEaKy4p1sbI5SQmOnyMtspFqZ4iXxBF8kSETGtGsZKJ0JiKVFEeAwbn1EPDhkCZqPPTmzIp8wzsVEPTzNEUbFaWOZp66E37yNIlZ9nUebuhelZ_w98zk-7RZrSKPPSqbQYNa9xmeakWle2DKegtHG7qE1uonSYeeuIY2c6IJACzaUg8FPdY3HYwGd77LeWssJneIwIYIEyebZ76c3Rn_RFuo63VZaVeAFRe8ZdWXv8AbpHAUw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+Lung+PET+Images%3A+Challenges+and+Opportunities&rft.jtitle=The+Journal+of+nuclear+medicine+%281978%29&rft.au=Chen%2C+Delphine+L&rft.au=Cheriyan%2C+Joseph&rft.au=Chilvers%2C+Edwin+R&rft.au=Choudhury%2C+Gourab&rft.date=2017-02-01&rft.pub=Society+of+Nuclear+Medicine&rft.issn=0161-5505&rft.eissn=1535-5667&rft.volume=58&rft.issue=2&rft.spage=201&rft_id=info:doi/10.2967%2Fjnumed.116.184796&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4312818161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-5505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-5505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-5505&client=summon