A causal convolutional neural network for multi-subject motion modeling and generation

Inspired by the success of WaveNet in multi-subject speech synthesis, we propose a novel neural network based on causal convolutions for multi-subject motion modeling and generation. The network can capture the intrinsic characteristics of the motion of different subjects, such as the influence of s...

Full description

Saved in:
Bibliographic Details
Published inComputational visual media (Beijing) Vol. 10; no. 1; pp. 45 - 59
Main Authors Hou, Shuaiying, Wang, Congyi, Zhuang, Wenlin, Chen, Yu, Wang, Yangang, Bao, Hujun, Chai, Jinxiang, Xu, Weiwei
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.02.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2096-0433
2096-0662
DOI10.1007/s41095-022-0307-3

Cover

Loading…
Abstract Inspired by the success of WaveNet in multi-subject speech synthesis, we propose a novel neural network based on causal convolutions for multi-subject motion modeling and generation. The network can capture the intrinsic characteristics of the motion of different subjects, such as the influence of skeleton scale variation on motion style. Moreover, after fine-tuning the network using a small motion dataset for a novel skeleton that is not included in the training dataset, it is able to synthesize high-quality motions with a personalized style for the novel skeleton. The experimental results demonstrate that our network can model the intrinsic characteristics of motions well and can be applied to various motion modeling and synthesis tasks.
AbstractList Abstract Inspired by the success of WaveNet in multi-subject speech synthesis, we propose a novel neural network based on causal convolutions for multi-subject motion modeling and generation. The network can capture the intrinsic characteristics of the motion of different subjects, such as the influence of skeleton scale variation on motion style. Moreover, after fine-tuning the network using a small motion dataset for a novel skeleton that is not included in the training dataset, it is able to synthesize high-quality motions with a personalized style for the novel skeleton. The experimental results demonstrate that our network can model the intrinsic characteristics of motions well and can be applied to various motion modeling and synthesis tasks.
Inspired by the success of WaveNet in multi-subject speech synthesis, we propose a novel neural network based on causal convolutions for multi-subject motion modeling and generation. The network can capture the intrinsic characteristics of the motion of different subjects, such as the influence of skeleton scale variation on motion style. Moreover, after fine-tuning the network using a small motion dataset for a novel skeleton that is not included in the training dataset, it is able to synthesize high-quality motions with a personalized style for the novel skeleton. The experimental results demonstrate that our network can model the intrinsic characteristics of motions well and can be applied to various motion modeling and synthesis tasks.
Author Wang, Congyi
Xu, Weiwei
Hou, Shuaiying
Bao, Hujun
Chen, Yu
Chai, Jinxiang
Wang, Yangang
Zhuang, Wenlin
Author_xml – sequence: 1
  givenname: Shuaiying
  surname: Hou
  fullname: Hou, Shuaiying
  organization: State Key Lab of CAD&CG, Zhejiang University
– sequence: 2
  givenname: Congyi
  surname: Wang
  fullname: Wang, Congyi
  organization: Xmov
– sequence: 3
  givenname: Wenlin
  surname: Zhuang
  fullname: Zhuang, Wenlin
  organization: School of Automation, Southeast University
– sequence: 4
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: State Key Lab of CAD&CG, Zhejiang University
– sequence: 5
  givenname: Yangang
  surname: Wang
  fullname: Wang, Yangang
  organization: School of Automation, Southeast University
– sequence: 6
  givenname: Hujun
  surname: Bao
  fullname: Bao, Hujun
  organization: State Key Lab of CAD&CG, Zhejiang University
– sequence: 7
  givenname: Jinxiang
  surname: Chai
  fullname: Chai, Jinxiang
  organization: Xmov
– sequence: 8
  givenname: Weiwei
  surname: Xu
  fullname: Xu, Weiwei
  email: xww@cad.zju.edu.cn
  organization: State Key Lab of CAD&CG, Zhejiang University
BookMark eNp9UU1r3TAQFCGBpkl-QG-Gnt2uJOvrGELbBAK5pL0KWR8PvfhJqSS39N_Xfm4oFJrT7C4zw-7OW3SacvIIvcPwAQOIj3XAoFgPhPRAQfT0BJ0TULwHzsnpSz1Q-gZd1RpHIJxKwEKdo2_XnTVzNVNnc_qRp7nFnJYu-bkcof3M5akLuXSHeWqxr_O497Z1h7wyF3B-imnXmeS6nU--mHV-ic6Cmaq_-oMX6OvnT483t_39w5e7m-v73jLCW8_s4MQ4EI8HFoQTVmGDgVsqKRg3SuDCutGNasCe-eCp5w4H6wJVwllD6QW623xdNnv9XOLBlF86m6iPg1x22pQW7eQ1HZ1UNCjFFRk8MBOYYlQZIjmMMpDF6_3m9Vzy99nXpvd5LsszqiYKJCES6OssqRiTjDK8sMTGsiXXWnzQNrbjZ1oxcdIY9Jqc3pLTS3J6TU6vF-F_lC9XvaYhm6Yu3LTz5e9O_xf9BmxqrI8
CitedBy_id crossref_primary_10_3390_app14104150
Cites_doi 10.1145/2766999
10.1145/3072959.3073663
10.1109/CVPR42600.2020.00655
10.1109/ICCV48922.2021.00143
10.1155/2014/104535
10.1109/CVPR.2017.497
10.1111/cgf.14116
10.1145/3478513.3480570
10.1109/ICCV.2015.494
10.1145/3414685.3417836
10.1080/10867651.1998.10487493
10.1145/3272127.3275071
10.1145/3386569.3392422
10.1007/s11390-017-1742-y
10.1007/s11263-019-01245-6
10.1109/TPAMI.2013.248
10.1145/2897824.2925975
10.1109/CVPR46437.2021.01340
10.1109/CVPR42600.2020.00119
10.1145/1553374.1553505
10.1109/3DV.2017.00059
10.1109/TVCG.2019.2938520
10.1145/3386569.3392450
10.1609/aaai.v35i3.16321
10.1145/1730804.1730811
10.1609/aaai.v35i2.16197
10.1145/344779.344865
10.1109/ICCV48922.2021.01080
10.1109/CVPR42600.2020.00029
10.1109/CVPR42600.2020.00702
10.1145/3386569.3392462
10.1609/aaai.v34i07.6911
10.1609/aaai.v33i01.33018553
10.1145/3476576.3476651
10.1109/CVPRW.2018.00191
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1007/s41095-022-0307-3
DatabaseName Springer Open Access Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Computer and Information Systems Abstracts Professional
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 2096-0662
EndPage 59
ExternalDocumentID oai_doaj_org_article_3bd893f996924e05af59539a2860b8f2
10_1007_s41095_022_0307_3
GroupedDBID -0I
-0Y
-SI
-S~
0R~
5VR
5VS
92M
9D9
9DI
AAFWJ
AAKKN
AAXDM
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARCSS
BAPOH
BENPR
C24
C6C
CAJEI
CCEZO
CCPQU
CUBFJ
EBS
EJD
FA0
GROUPED_DOAJ
IAO
ISR
ITC
JAVBF
JUIAU
M~E
OK1
PIMPY
PROAC
Q--
Q-8
R-I
RSV
RT9
S..
SOJ
T8Y
U1F
U1G
U5I
U5S
~NL
AAYXX
ABVLG
CITATION
PHGZM
PHGZT
7SC
8FD
ABUWG
AZQEC
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c526t-5c4d7b42e145f7d7c91a106c3830adb8067cdbdb941e5efe3e6d1fcdf397dca33
IEDL.DBID DOA
ISSN 2096-0433
IngestDate Wed Aug 27 01:29:16 EDT 2025
Sat Jul 26 00:05:46 EDT 2025
Sat Jul 26 00:22:02 EDT 2025
Thu Apr 24 22:57:01 EDT 2025
Tue Jul 01 05:28:22 EDT 2025
Fri Feb 21 02:40:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords motion denoising
motion generation
deep learning
motion control
optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-5c4d7b42e145f7d7c91a106c3830adb8067cdbdb941e5efe3e6d1fcdf397dca33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/3bd893f996924e05af59539a2860b8f2
PQID 2895585351
PQPubID 4402894
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_3bd893f996924e05af59539a2860b8f2
proquest_journals_2908228032
proquest_journals_2895585351
crossref_citationtrail_10_1007_s41095_022_0307_3
crossref_primary_10_1007_s41095_022_0307_3
springer_journals_10_1007_s41095_022_0307_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Computational visual media (Beijing)
PublicationTitleAbbrev Comp. Visual Media
PublicationYear 2024
Publisher Tsinghua University Press
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Tsinghua University Press
– name: Springer Nature B.V
– name: SpringerOpen
References Cui, Q. J.; Sun, H. J.; Yang, F. Learning dynamic relationships for 3D human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6518–6526, 2020.
GuiL YWangY XLiangX DMouraJ M FFerrariVHebertMSminchisescuCWeissYAdversarial geometry-aware human motion predictionComputer Vision–ECCV 2018. Lecture Notes in Computer Science, Vol. 11208.2018ChamSpringer823842
WangXChenQ DWangW L3D human motion editing and synthesis: A surveyComputational and Mathematical Methods in Medicine2014201410453510.1155/2014/104535
Corona, E.; Pumarola, A.; Alenyà, G.; Moreno-Noguer, F. Context-aware human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6990–6999, 2020.
GhorbaniSWlokaCEtemadABrubakerM ATrojeN FProbabilistic character motion synthesis using a hierarchical deep latent variable modelComputer Graphics Forum202039822523910.1111/cgf.14116
WangZ YYuPZhaoYZhangR YZhouY FYuanJ SChenC YLearning diverse stochastic human-action generators by learning smooth latent transitionsProceedings of the AAAI Conference on Artificial Intelligence2020347122811228810.1609/aaai.v34i07.6911
Aberman, K.; Li, P. Z.; Lischinski, D.; Sorkine-Hornung, O.; Cohen-Or, D.; Chen, B. Q. Skeletonaware networks for deep motion retargeting. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 62, 2020.
Xia, S. H.; Wang, C. Y.; Chai, J. X.; Hodgins, J. Realtime style transfer for unlabeled heterogeneous human motion. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 119, 2015.
Wen, Y. H.; Yang, Z. P.; Fu, H. B.; Gao, L.; Sun, Y. N.; Liu, Y. J. Autoregressive stylized motion synthesis with generative flow. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 13607–13607, 2021.
Yuan, Y.; Kitani, K. M. Diverse trajectory forecasting with determinantal point processes. In: Proceedings of the 8th International Conference on Learning Representations, 2020.
Barsoum, E.; Kender, J.; Liu, Z. C. HP-GAN: Probabilistic 3D human motion prediction via GAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 1499–149909, 2018.
Starke, S.; Zhao, Y. W.; Komura, T.; Zaman, K. Local motion phases for learning multi-contact character movements. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 54, 2020.
Van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. WaveNet: A generative model for raw audio. In: Proceedings of the 9th ISCA Speech Synthesis Workshop, 125, 2016.
KunduJ NGorMBabuR VBiHMP-GAN: Bidirectional 3D human motion prediction GANProceedings of the AAAI Conference on Artificial Intelligence20193318553856010.1609/aaai.v33i01.33018553
Fragkiadaki, K.; Levine, S.; Felsen, P.; Malik, J. Recurrent network models for human dynamics. In: Proceedings of the IEEE International Conference on Computer Vision, 4346–4354, 2015.
Li, M. S.; Chen, S. H.; Zhao, Y. H.; Zhang, Y.; Wang, Y. F.; Tian, Q. Dynamic multiscale graph neural networks for 3D skeleton based human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 211–220, 2020.
Lee, K.; Lee, S.; Lee, J. Interactive character animation by learning multi-objective control. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 180, 2018.
Brand, M.; Hertzmann, A. Style machines. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 183–192, 2000.
Ghosh, A.; Cheema, N.; Oguz, C.; Theobalt, C.; Slusallek, P. Synthesis of compositional animations from textual descriptions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 1376–1386, 2021.
Graves, A. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.
MaoWLiuM MSalzmannMVedaldiABischofHBroxTFrahmJ MHistory repeats itself: Human motion prediction via motion attentionComputer Vision–ECCV 2020. Lecture Notes in Computer Science, Vol. 12359.2020ChamSpringer474489
Taylor, G. W.; Hinton, G. E. Factored conditional restricted Boltzmann Machines for modeling motion style. In: Proceedings of the 26th Annual International Conference on Machine Learning, 1025–1032, 2009.
Min, J. Y.; Liu, H. J.; Chai, J. X. Synthesis and editing of personalized stylistic human motion. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 39–46, 2010.
LiuZ GLyuK DWuSChenH PHaoY BJiS LAggregated multi-GANs for controlled 3D human motion predictionProceedings of the AAAI Conference on Artificial Intelligence20213532225223210.1609/aaai.v35i3.16321
ChenZLiS CYangBLiQ HLiuHMulti-scale spatial temporal graph convolutional network for skeleton-based action recognitionProceedings of the AAAI Conference on Artificial Intelligence20213521113112210.1609/aaai.v35i2.16197
Starke, S.; Zhao, Y. W.; Zinno, F.; Komura, T. Neural animation layering for synthesizing martial arts movements. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 92, 2021.
BussS RIntroduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least squares methodsIEEE Journal of Robotics and Automation20041716
WangZ YChaiJ XXiaS HCombining recurrent neural networks and adversarial training for human motion synthesis and controlIEEE Transactions on Visualization and Computer Graphics2021271142810.1109/TVCG.2019.2938520
Valle-Perez, G.; Henter, G. E.; Beskow, J.; Holzapfel, A.; Oudeyer, P. Y.; Alexanderson, S. Transflower: Probabilistic autoregressive dance generation with multimodal attention. ACM Transactions on Graphics Vol. 40, No. 6, Article No. 195, 2021.
NieQLiuZ WLiuY HVedaldiABischofHBroxTFrahmJ MUnsupervised 3D human pose representation with viewpoint and pose disentanglementComputer Vision–ECCV 2020. Lecture Notes in Computer Science, Vol. 12364.2020ChamSpringer102118
GrassiaF SPractical parameterization of rotations using the exponential mapJournal of Graphics Tools199833294810.1080/10867651.1998.10487493
PavlloDFeichtenhoferCAuliMGrangierDModeling human motion with quaternion-based neural networksInternational Journal of Computer Vision2020128485587210.1007/s11263-019-01245-6
Wang, T. C.; Liu, M. Y.; Tao, A.; Liu, G. L.; Kautz, J.; Catanzaro, B. Few-shot video-to-video synthesis. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Article No. 451, 5013–5024, 2019.
Holden, D.; Saito, J.; Komura, T. A deep learning framework for character motion synthesis and editing. ACM Transactions on Graphics Vol. 35, No. 4, Article No. 138, 2016.
YanX CRastogiAVillegasRSunkavalliKShechtmanEHadapSYumerELeeHFerrariVHebertMSminchisescuCWeissYMTVAE: Learning motion transformations to generate multimodal human dynamicsComputer Vision–ECCV 2018. Lecture Notes in Computer Science, Vol. 11209.2018ChamSpringer276293
Petrovich, M.; Black, M. J.; Varol, G. Action-conditioned 3D human motion synthesis with transformer VAE. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 10965–10975, 2021.
Ghosh, P.; Song, J.; Aksan, E.; Hilliges, O. Learning human motion models for long-term predictions. In: Proceedings of the International Conference on 3D Vision, 458–466, 2017.
Martinez, J.; Black, M. J.; Romero, J. On human motion prediction using recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4674–4683, 2017.
Zhang, P. F.; Lan, C. L.; Zeng, W. J.; Xing, J. L.; Xue, J. R.; Zheng, N. N. Semantics-guided neural networks for efficient skeleton-based human action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1109–1118, 2020.
Ling, H. Y.; Zinno, F.; Cheng, G.; Van De Panne, M. Character controllers using motion VAEs. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 40, 2020.
Henter, G. E.; Alexanderson, S.; Beskow, J. MoGlow: Probabilistic and controllable motion synthesis using normalising flows. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 236, 2020.
IonescuCPapavaDOlaruVSminchisescuCHuman3.6M: Large scale datasets and predictive methods for 3D human sensing in natural environmentsIEEE Transactions on Pattern Analysis and Machine Intelligence20143671325133910.1109/TPAMI.2013.248
Holden, D.; Komura, T.; Saito, J. Phase-functioned neural networks for character control. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 42, 2017.
XuJ WXuH ZNiB BYangX KWangX LDarrellTVedaldiABischofHBroxTFrahmJ MHierarchical style-based networks for motion synthesisComputer Vision–ECCV 2020. Lecture Notes in Computer Science, Vol. 12356.2020ChamSpringer178194
XiaS HGaoLLaiY KYuanM ZChaiJ XA survey on human performance capture and animationJournal of Computer Science and Technology201732353655410.1007/s11390-017-1742-y
307_CR18
307_CR17
307_CR16
307_CR38
307_CR37
307_CR19
307_CR10
307_CR31
S H Xia (307_CR21) 2017; 32
X Wang (307_CR20) 2014; 2014
307_CR36
307_CR35
X C Yan (307_CR8) 2018
307_CR12
307_CR34
S Ghorbani (307_CR30) 2020; 39
307_CR33
Z Chen (307_CR2) 2021; 35
307_CR5
Z Y Wang (307_CR11) 2021; 27
307_CR4
307_CR7
Z Y Wang (307_CR14) 2020; 34
307_CR6
307_CR9
S R Buss (307_CR43) 2004; 17
307_CR29
307_CR27
307_CR26
D Pavllo (307_CR45) 2020; 128
307_CR1
307_CR42
307_CR41
307_CR40
Z G Liu (307_CR15) 2021; 35
307_CR25
307_CR24
C Ionescu (307_CR44) 2014; 36
307_CR22
Q Nie (307_CR28) 2020
F S Grassia (307_CR39) 1998; 3
L Y Gui (307_CR3) 2018
W Mao (307_CR32) 2020
J W Xu (307_CR23) 2020
J N Kundu (307_CR13) 2019; 33
References_xml – reference: Zhang, P. F.; Lan, C. L.; Zeng, W. J.; Xing, J. L.; Xue, J. R.; Zheng, N. N. Semantics-guided neural networks for efficient skeleton-based human action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1109–1118, 2020.
– reference: Li, M. S.; Chen, S. H.; Zhao, Y. H.; Zhang, Y.; Wang, Y. F.; Tian, Q. Dynamic multiscale graph neural networks for 3D skeleton based human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 211–220, 2020.
– reference: Henter, G. E.; Alexanderson, S.; Beskow, J. MoGlow: Probabilistic and controllable motion synthesis using normalising flows. ACM Transactions on Graphics Vol. 39, No. 6, Article No. 236, 2020.
– reference: Ghosh, P.; Song, J.; Aksan, E.; Hilliges, O. Learning human motion models for long-term predictions. In: Proceedings of the International Conference on 3D Vision, 458–466, 2017.
– reference: Holden, D.; Komura, T.; Saito, J. Phase-functioned neural networks for character control. ACM Transactions on Graphics Vol. 36, No. 4, Article No. 42, 2017.
– reference: WangZ YChaiJ XXiaS HCombining recurrent neural networks and adversarial training for human motion synthesis and controlIEEE Transactions on Visualization and Computer Graphics2021271142810.1109/TVCG.2019.2938520
– reference: Graves, A. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.
– reference: WangZ YYuPZhaoYZhangR YZhouY FYuanJ SChenC YLearning diverse stochastic human-action generators by learning smooth latent transitionsProceedings of the AAAI Conference on Artificial Intelligence2020347122811228810.1609/aaai.v34i07.6911
– reference: XuJ WXuH ZNiB BYangX KWangX LDarrellTVedaldiABischofHBroxTFrahmJ MHierarchical style-based networks for motion synthesisComputer Vision–ECCV 2020. Lecture Notes in Computer Science, Vol. 12356.2020ChamSpringer178194
– reference: Van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. WaveNet: A generative model for raw audio. In: Proceedings of the 9th ISCA Speech Synthesis Workshop, 125, 2016.
– reference: Wen, Y. H.; Yang, Z. P.; Fu, H. B.; Gao, L.; Sun, Y. N.; Liu, Y. J. Autoregressive stylized motion synthesis with generative flow. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 13607–13607, 2021.
– reference: Yuan, Y.; Kitani, K. M. Diverse trajectory forecasting with determinantal point processes. In: Proceedings of the 8th International Conference on Learning Representations, 2020.
– reference: Starke, S.; Zhao, Y. W.; Komura, T.; Zaman, K. Local motion phases for learning multi-contact character movements. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 54, 2020.
– reference: PavlloDFeichtenhoferCAuliMGrangierDModeling human motion with quaternion-based neural networksInternational Journal of Computer Vision2020128485587210.1007/s11263-019-01245-6
– reference: Corona, E.; Pumarola, A.; Alenyà, G.; Moreno-Noguer, F. Context-aware human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6990–6999, 2020.
– reference: Petrovich, M.; Black, M. J.; Varol, G. Action-conditioned 3D human motion synthesis with transformer VAE. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 10965–10975, 2021.
– reference: GuiL YWangY XLiangX DMouraJ M FFerrariVHebertMSminchisescuCWeissYAdversarial geometry-aware human motion predictionComputer Vision–ECCV 2018. Lecture Notes in Computer Science, Vol. 11208.2018ChamSpringer823842
– reference: GhorbaniSWlokaCEtemadABrubakerM ATrojeN FProbabilistic character motion synthesis using a hierarchical deep latent variable modelComputer Graphics Forum202039822523910.1111/cgf.14116
– reference: Cui, Q. J.; Sun, H. J.; Yang, F. Learning dynamic relationships for 3D human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6518–6526, 2020.
– reference: Barsoum, E.; Kender, J.; Liu, Z. C. HP-GAN: Probabilistic 3D human motion prediction via GAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 1499–149909, 2018.
– reference: Wang, T. C.; Liu, M. Y.; Tao, A.; Liu, G. L.; Kautz, J.; Catanzaro, B. Few-shot video-to-video synthesis. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Article No. 451, 5013–5024, 2019.
– reference: Brand, M.; Hertzmann, A. Style machines. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 183–192, 2000.
– reference: Ling, H. Y.; Zinno, F.; Cheng, G.; Van De Panne, M. Character controllers using motion VAEs. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 40, 2020.
– reference: YanX CRastogiAVillegasRSunkavalliKShechtmanEHadapSYumerELeeHFerrariVHebertMSminchisescuCWeissYMTVAE: Learning motion transformations to generate multimodal human dynamicsComputer Vision–ECCV 2018. Lecture Notes in Computer Science, Vol. 11209.2018ChamSpringer276293
– reference: Fragkiadaki, K.; Levine, S.; Felsen, P.; Malik, J. Recurrent network models for human dynamics. In: Proceedings of the IEEE International Conference on Computer Vision, 4346–4354, 2015.
– reference: Ghosh, A.; Cheema, N.; Oguz, C.; Theobalt, C.; Slusallek, P. Synthesis of compositional animations from textual descriptions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 1376–1386, 2021.
– reference: KunduJ NGorMBabuR VBiHMP-GAN: Bidirectional 3D human motion prediction GANProceedings of the AAAI Conference on Artificial Intelligence20193318553856010.1609/aaai.v33i01.33018553
– reference: Aberman, K.; Li, P. Z.; Lischinski, D.; Sorkine-Hornung, O.; Cohen-Or, D.; Chen, B. Q. Skeletonaware networks for deep motion retargeting. ACM Transactions on Graphics Vol. 39, No. 4, Article No. 62, 2020.
– reference: Lee, K.; Lee, S.; Lee, J. Interactive character animation by learning multi-objective control. ACM Transactions on Graphics Vol. 37, No. 6, Article No. 180, 2018.
– reference: Holden, D.; Saito, J.; Komura, T. A deep learning framework for character motion synthesis and editing. ACM Transactions on Graphics Vol. 35, No. 4, Article No. 138, 2016.
– reference: BussS RIntroduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least squares methodsIEEE Journal of Robotics and Automation20041716
– reference: LiuZ GLyuK DWuSChenH PHaoY BJiS LAggregated multi-GANs for controlled 3D human motion predictionProceedings of the AAAI Conference on Artificial Intelligence20213532225223210.1609/aaai.v35i3.16321
– reference: NieQLiuZ WLiuY HVedaldiABischofHBroxTFrahmJ MUnsupervised 3D human pose representation with viewpoint and pose disentanglementComputer Vision–ECCV 2020. Lecture Notes in Computer Science, Vol. 12364.2020ChamSpringer102118
– reference: Martinez, J.; Black, M. J.; Romero, J. On human motion prediction using recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4674–4683, 2017.
– reference: WangXChenQ DWangW L3D human motion editing and synthesis: A surveyComputational and Mathematical Methods in Medicine2014201410453510.1155/2014/104535
– reference: ChenZLiS CYangBLiQ HLiuHMulti-scale spatial temporal graph convolutional network for skeleton-based action recognitionProceedings of the AAAI Conference on Artificial Intelligence20213521113112210.1609/aaai.v35i2.16197
– reference: GrassiaF SPractical parameterization of rotations using the exponential mapJournal of Graphics Tools199833294810.1080/10867651.1998.10487493
– reference: Starke, S.; Zhao, Y. W.; Zinno, F.; Komura, T. Neural animation layering for synthesizing martial arts movements. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 92, 2021.
– reference: Xia, S. H.; Wang, C. Y.; Chai, J. X.; Hodgins, J. Realtime style transfer for unlabeled heterogeneous human motion. ACM Transactions on Graphics Vol. 34, No. 4, Article No. 119, 2015.
– reference: IonescuCPapavaDOlaruVSminchisescuCHuman3.6M: Large scale datasets and predictive methods for 3D human sensing in natural environmentsIEEE Transactions on Pattern Analysis and Machine Intelligence20143671325133910.1109/TPAMI.2013.248
– reference: Taylor, G. W.; Hinton, G. E. Factored conditional restricted Boltzmann Machines for modeling motion style. In: Proceedings of the 26th Annual International Conference on Machine Learning, 1025–1032, 2009.
– reference: XiaS HGaoLLaiY KYuanM ZChaiJ XA survey on human performance capture and animationJournal of Computer Science and Technology201732353655410.1007/s11390-017-1742-y
– reference: MaoWLiuM MSalzmannMVedaldiABischofHBroxTFrahmJ MHistory repeats itself: Human motion prediction via motion attentionComputer Vision–ECCV 2020. Lecture Notes in Computer Science, Vol. 12359.2020ChamSpringer474489
– reference: Valle-Perez, G.; Henter, G. E.; Beskow, J.; Holzapfel, A.; Oudeyer, P. Y.; Alexanderson, S. Transflower: Probabilistic autoregressive dance generation with multimodal attention. ACM Transactions on Graphics Vol. 40, No. 6, Article No. 195, 2021.
– reference: Min, J. Y.; Liu, H. J.; Chai, J. X. Synthesis and editing of personalized stylistic human motion. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 39–46, 2010.
– ident: 307_CR24
  doi: 10.1145/2766999
– ident: 307_CR16
  doi: 10.1145/3072959.3073663
– volume: 17
  start-page: 16
  year: 2004
  ident: 307_CR43
  publication-title: IEEE Journal of Robotics and Automation
– ident: 307_CR34
  doi: 10.1109/CVPR42600.2020.00655
– ident: 307_CR10
  doi: 10.1109/ICCV48922.2021.00143
– ident: 307_CR4
– start-page: 823
  volume-title: Computer Vision–ECCV 2018. Lecture Notes in Computer Science, Vol. 11208.
  year: 2018
  ident: 307_CR3
– volume: 2014
  start-page: 104535
  year: 2014
  ident: 307_CR20
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2014/104535
– ident: 307_CR7
  doi: 10.1109/CVPR.2017.497
– ident: 307_CR35
– volume: 39
  start-page: 225
  issue: 8
  year: 2020
  ident: 307_CR30
  publication-title: Computer Graphics Forum
  doi: 10.1111/cgf.14116
– ident: 307_CR38
  doi: 10.1145/3478513.3480570
– ident: 307_CR6
  doi: 10.1109/ICCV.2015.494
– ident: 307_CR37
  doi: 10.1145/3414685.3417836
– volume: 3
  start-page: 29
  issue: 3
  year: 1998
  ident: 307_CR39
  publication-title: Journal of Graphics Tools
  doi: 10.1080/10867651.1998.10487493
– ident: 307_CR40
  doi: 10.1145/3272127.3275071
– ident: 307_CR9
  doi: 10.1145/3386569.3392422
– volume: 32
  start-page: 536
  issue: 3
  year: 2017
  ident: 307_CR21
  publication-title: Journal of Computer Science and Technology
  doi: 10.1007/s11390-017-1742-y
– volume: 128
  start-page: 855
  issue: 4
  year: 2020
  ident: 307_CR45
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-019-01245-6
– ident: 307_CR42
– volume: 36
  start-page: 1325
  issue: 7
  year: 2014
  ident: 307_CR44
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.248
– ident: 307_CR31
  doi: 10.1145/2897824.2925975
– ident: 307_CR25
  doi: 10.1109/CVPR46437.2021.01340
– ident: 307_CR1
  doi: 10.1109/CVPR42600.2020.00119
– start-page: 276
  volume-title: Computer Vision–ECCV 2018. Lecture Notes in Computer Science, Vol. 11209.
  year: 2018
  ident: 307_CR8
– ident: 307_CR5
  doi: 10.1145/1553374.1553505
– ident: 307_CR41
  doi: 10.1109/3DV.2017.00059
– volume: 27
  start-page: 14
  issue: 1
  year: 2021
  ident: 307_CR11
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2019.2938520
– ident: 307_CR17
  doi: 10.1145/3386569.3392450
– volume: 35
  start-page: 2225
  issue: 3
  year: 2021
  ident: 307_CR15
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v35i3.16321
– ident: 307_CR27
  doi: 10.1145/1730804.1730811
– start-page: 102
  volume-title: Computer Vision–ECCV 2020. Lecture Notes in Computer Science, Vol. 12364.
  year: 2020
  ident: 307_CR28
– volume: 35
  start-page: 1113
  issue: 2
  year: 2021
  ident: 307_CR2
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v35i2.16197
– ident: 307_CR22
  doi: 10.1145/344779.344865
– ident: 307_CR36
  doi: 10.1109/ICCV48922.2021.01080
– ident: 307_CR33
  doi: 10.1109/CVPR42600.2020.00029
– ident: 307_CR19
– ident: 307_CR29
  doi: 10.1109/CVPR42600.2020.00702
– ident: 307_CR26
  doi: 10.1145/3386569.3392462
– volume: 34
  start-page: 12281
  issue: 7
  year: 2020
  ident: 307_CR14
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v34i07.6911
– volume: 33
  start-page: 8553
  issue: 1
  year: 2019
  ident: 307_CR13
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v33i01.33018553
– ident: 307_CR18
  doi: 10.1145/3476576.3476651
– start-page: 474
  volume-title: Computer Vision–ECCV 2020. Lecture Notes in Computer Science, Vol. 12359.
  year: 2020
  ident: 307_CR32
– ident: 307_CR12
  doi: 10.1109/CVPRW.2018.00191
– start-page: 178
  volume-title: Computer Vision–ECCV 2020. Lecture Notes in Computer Science, Vol. 12356.
  year: 2020
  ident: 307_CR23
SSID ssib026380179
ssib051367588
ssj0001920416
ssib043749047
ssib038075566
ssib039590095
ssib044084544
Score 2.2604737
Snippet Inspired by the success of WaveNet in multi-subject speech synthesis, we propose a novel neural network based on causal convolutions for multi-subject motion...
Abstract Inspired by the success of WaveNet in multi-subject speech synthesis, we propose a novel neural network based on causal convolutions for multi-subject...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 45
SubjectTerms Artificial Intelligence
Artificial neural networks
Computer Graphics
Computer Science
Datasets
Deep learning
Image Processing and Computer Vision
Methods
Modelling
motion control
motion denoising
motion generation
Neural networks
optimization
Research Article
Speech recognition
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge-FC-RRbCvKhJ5CFE9vZ-IRa1KpCaoUQRb1Z9tiphNBu2-z-f2YcZ9Mi6ClK4iiRPRm_8YzfY-wAvLEGrBUqRSN0DCBsNFK0gPMrID73mjY4n503pxf666W5LAtufSmrHH1idtRxBbRG_gkDA4PQVpnq8_WNINUoyq4WCY3HbAddcGtmbOfo-Pzb99GiarQuWU15KGJXN3cAjLIkmjntTNVqoe2dPBTJMWszTYCGCM5MIfj6NeAjqbO-ai2pmlcrNaZOaX-ermTeAF2LTMao7k1-WSPgHrD9Kxebp7iTZ-xpwab8cDCm5-xRWr5guwWn8uIF-pfs5yEHv-mxKdWsF9vFM-LGzIdcWc4RDvNcryj6TaDlHj5IBvGsvoNfwP0y8qvMe03XX7GLk-MfX05F0WcQYOpmLQzouAi6TpU23SIuwFYeI0zAoFf6GFqcCCGGGKyukkldUqmJVQexQwwUwSv1ms2Wq2V6wzhaSxcoJZsAR6BJvqlBJ-kB4UQFwc6ZHDvOQSEvJw2N325Lu5z72mFfO-prp-bsw_aR64G546HGRzQa24ZEup0vrG6vXPmHnQoR0V2HESIGrUka36GdK-vrtpGh7eo52x_H0hVP0LvJbv99myTnSSEMn_44Dv90-78fvPfwu96yJzWir6G8fJ_N1reb9A7R0zq8L7_IH-elC1w
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBVteuml36XbpkWHnloEsqXxro5pSAiF5NSU3IQ0kgOlbEq8-_8zI8vrpKSFnJaVJRDSyHrjmXlPiM8YwAE6p0xOoGyKqFwCrVZI9ysSPg-WC5xPz7qTc_v9Ai5qHfcwZbtPIcnypt4Vu9lGl2riVhVmQ_NYPAFy3Zkw_3CmHG_JoHQzh56YUB1uYRbjWCdzLka1ZmndrdATKzBbmO88YE4zqJxev0ZIpG2RVG01J_BaY6Zo6X2zvHPfFVmAO1j2r_BrudWOX4hnFY7Kg9F-XopHef1KPK_QVNaDP1DTpP4wtb0WPw8khu1AozlzvVow_WOGzPJT8sslgWJZshbVsI380UeOwkGyaPDQpGRYJ3lZ2K-5_Y04Pz76cXiiqkqDQmi7jQK0aRltmxsL_TIt0TWB_Ewk11eHFFd0HWKKKTrbZMh9NrlLTY-pJySUMBjzVuytr9b5nZBkM33kwGxG2pQuh65Fm3VAAhUNRrcQelpLj5XCnJU0fvsd-XJZfk_L73n5vVmIL7shf0b-jv91_sYbtOvI1Nul4er60teT7E1MhPF68hPJdc0aQk_WblxoV52Oq75diP1pe319Hwye3Fogx8xAc_9jFp5nnTAa_XWyiPnxPyf8_kG9P4infF7GnPN9sbe53uaPBKk28VM5QjdyKQxo
  priority: 102
  providerName: Springer Nature
Title A causal convolutional neural network for multi-subject motion modeling and generation
URI https://link.springer.com/article/10.1007/s41095-022-0307-3
https://www.proquest.com/docview/2895585351
https://www.proquest.com/docview/2908228032
https://doaj.org/article/3bd893f996924e05af59539a2860b8f2
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUoXHppC7TqFlj5wAlkkcR2dn1ctiCEAKG2IG6WPXYqIbQgdvf_M-N4P6iAXrgkSuJkrfEk82bHfo-xXXDaaDBGyBi0UMGDMEEXog8YXwHxuVO0wPn8oj65Uqc3-mZJ6ovmhLX0wK3hDqQPGFIbhOWYKcRCuwYfLo2r-nXh-036-mLMW0qm0JMq9KqiXNSfiFVdLwEXaUgsc7EiVcmeMkv1J5JhVnoR-DQRm-lM7HXb4qJCJV1V_HFMyZWUs5IprctTZZEWPlcikTDKZ0EvaQM8A7T_1GBTaDv-wj5lTMoHrS3W2UocbbDPGZ_y_PaPN9n1gIObjrEpzVXPPotHxImZdmlGOUcYzNM8RTGeevqbh7dSQTyp7mAPuBsF_jfxXdP5r-zq-OjP8ERkXQYBuqonQoMKPa-qWCrd9EIPTOkwswRMdgsXfB8DIAQfvFFl1LGJMtahbCA0iH0COCm_sdXR_Sh-Zxy9pPFUio2AI1BHV1eAo-wAYUQJ3nRYMTOchUxaTtoZd3ZOt5xsbdHWlmxtZYftzW95aBk73mp8SKMxb0hk2-kEuqDNLmj_54Idtj0bS5u_AGOLiazGVEzq8uXLJDVPymB49_5s-BeXX-3wj_fo8Bb7WCE2ayefb7PVyeM07iC2mvguWxv8PD_7jfvDo4vLX132YVgp2tbDbnrFngA3DBZq
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9gAX3ohAAR_gArLw-rGJDwi10CqlbYRQi3ozfm0lhJLSTYT4U_xGZrzepEXQW0_R7nqVlccz_sbz-Ah5EZw2OhjDZIqaqegDM1FzNgqwvwbA505hgfPhpB4fq48n-mSN_O5rYTCtsreJ2VDHWcAz8jfgGGiAtlJX785-MGSNwuhqT6HRLYv99OsnuGzt270PIN-XQuzuHL0fs8IqwIIW9ZzpoOLQK5EqpZthHAZTOfCLArhq3EU_AvMdoo_eqCrp1CSZ6lg1ITawc8fg8AAUTP4GwAwDWrSxvTP59LlfwQJWM69WcS_s5q4vACZpkKRzVQmr5FCZC3EvpH9WerXhamyopktDsW8dHuMq87kKjtnDSso-VIv1gKriueBasNz8UV7abDMnwSUg_VfsN2-pu3fIrYKF6Va3eO-StTS9R24XXEyL1Wnvky9bNLhFC0MxR77oClxhL878kzPZKcBvmvMjWbvweLxEO4oimtl-4Auom0Z6mvts4_0H5PhaJPeQrE9n0_SIUFidjccQcAoggTq5WgSVuAsAX6rgzYDwfuJsKM3SkbPju122ec5zbWGuLc61lQPyavnKWdcp5KrB2yiN5UBs8p1vzM5PbbEZVvoIaLIBjxSc5MS1a0CvpHFiVHM_asSAbPaytMXytHalJ_9-jBT3yEgGb7_uxb96_N8Pfnz1fz0nN8ZHhwf2YG-y_4TcFID8utT2TbI-P1-kp4Dc5v5ZURdKvl63hv4BeSZKTw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIhLeatbCvjACRTVz-z6WJauyqviQFFvll-phFBaNbv_vzOOvduigtRTFMeWLHsSf5OZ-T5C3gWnjQ7GNDJF3ajoQ2OiZs0swPkaAJ87hQXO34_boxP15VSfFp3ToWa715DkWNOALE39cv8idvvrwjfFWa4sFk1mOZT3yQNwVDiS58_beTUoAcbF-CYMheTq-hp-kQY1MzeFqUpOlbkWhkI1ZqU3559GfjNd-L1-j_CIqSyvKhgm8yopa-T0tlneOPuyRMANXPtXKDafcIsnZLtAU3ow2tJTci_1z8jjAlNp-QgM0FSVIGrbc_LrgAa3GmA0ZrEXa4Y7ZMvMl5xrTgEg05zB2Awrjz-A6CgiRLMeD0yKuj7Ss8yEje0vyMni8Of8qCmKDU3Qol02Oqg49UokrnQ3jdNguAOfM4AbzFz0MzgaQ_TRG8WTTl2SqY28C7EDVBSDk_Il2erP-7RDKNhP5zFImwJsSptcK4JKzAUAGDx4MyGsrqUNhc4cVTX-2DURc15-C8tvcfmtnJD36yEXI5fH_zp_xA1ad0Qa7txwfnlmy1ttpY-A9zrwGcGNTUy7DixfGidmLfOzTkzIXt1eW74NgwUXV4OTJjW__TGK0KNmGIz-UC1i8_ifE969U--35OGPTwv77fPx11fkkQCkNqai75Gt5eUqvQaktfRv8tt0BZAYE8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+causal+convolutional+neural+network+for+multi-subject+motion+modeling+and+generation&rft.jtitle=Computational+visual+media+%28Beijing%29&rft.au=Hou%2C+Shuaiying&rft.au=Wang%2C+Congyi&rft.au=Zhuang%2C+Wenlin&rft.au=Chen%2C+Yu&rft.date=2024-02-01&rft.issn=2096-0433&rft.eissn=2096-0662&rft.volume=10&rft.issue=1&rft.spage=45&rft.epage=59&rft_id=info:doi/10.1007%2Fs41095-022-0307-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41095_022_0307_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-0433&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-0433&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-0433&client=summon