Tubastatin A potently inhibits GPX4 activity to potentiate cancer radiotherapy through boosting ferroptosis
Ferroptosis, an iron-dependent lipid peroxidation-driven programmed cell death, is closely related to cancer therapy. The development of druggable ferroptosis inducers and their rational application in cancer therapy are critical. Here, we identified Tubastatin A, an HDAC6 inhibitor as a novel drugg...
Saved in:
Published in | Redox biology Vol. 62; p. 102677 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ferroptosis, an iron-dependent lipid peroxidation-driven programmed cell death, is closely related to cancer therapy. The development of druggable ferroptosis inducers and their rational application in cancer therapy are critical. Here, we identified Tubastatin A, an HDAC6 inhibitor as a novel druggable ferroptosis inducer through large-scale drug screening. Tubastatin A directly bonded to GPX4 and inhibited GPX4 enzymatic activity through biotin-linked Tubastatin A putdown and LC/MS analysis, which is independent of its inhibition of HDAC6. In addition, our results showed that radiotherapy not only activated Nrf2-mediated GPX4 transcription but also inhibited lysosome-mediated GPX4 degradation, subsequently inducing ferroptosis tolerance and radioresistance in cancer cells. Tubastatin A overcame ferroptosis resistance and radioresistance of cancer cells by inhibiting GPX4 enzymatic activity. More importantly, Tubastatin A has excellent bioavailability, as demonstrated by its ability to significantly promote radiotherapy-induced lipid peroxidation and tumour suppression in a mouse xenograft model. Our findings identify a novel druggable ferroptosis inducer, Tubastatin A, which enhances radiotherapy-mediated antitumor effects. This work provides a compelling rationale for the clinical evaluation of Tubastatin A, especially in combination with radiotherapy. |
---|---|
AbstractList | Ferroptosis, an iron-dependent lipid peroxidation-driven programmed cell death, is closely related to cancer therapy. The development of druggable ferroptosis inducers and their rational application in cancer therapy are critical. Here, we identified Tubastatin A, an HDAC6 inhibitor as a novel druggable ferroptosis inducer through large-scale drug screening. Tubastatin A directly bonded to GPX4 and inhibited GPX4 enzymatic activity through biotin-linked Tubastatin A putdown and LC/MS analysis, which is independent of its inhibition of HDAC6. In addition, our results showed that radiotherapy not only activated Nrf2-mediated GPX4 transcription but also inhibited lysosome-mediated GPX4 degradation, subsequently inducing ferroptosis tolerance and radioresistance in cancer cells. Tubastatin A overcame ferroptosis resistance and radioresistance of cancer cells by inhibiting GPX4 enzymatic activity. More importantly, Tubastatin A has excellent bioavailability, as demonstrated by its ability to significantly promote radiotherapy-induced lipid peroxidation and tumour suppression in a mouse xenograft model. Our findings identify a novel druggable ferroptosis inducer, Tubastatin A, which enhances radiotherapy-mediated antitumor effects. This work provides a compelling rationale for the clinical evaluation of Tubastatin A, especially in combination with radiotherapy. Ferroptosis, an iron-dependent lipid peroxidation-driven programmed cell death, is closely related to cancer therapy. The development of druggable ferroptosis inducers and their rational application in cancer therapy are critical. Here, we identified Tubastatin A, an HDAC6 inhibitor as a novel druggable ferroptosis inducer through large-scale drug screening. Tubastatin A directly bonded to GPX4 and inhibited GPX4 enzymatic activity through biotin-linked Tubastatin A putdown and LC/MS analysis, which is independent of its inhibition of HDAC6. In addition, our results showed that radiotherapy not only activated Nrf2-mediated GPX4 transcription but also inhibited lysosome-mediated GPX4 degradation, subsequently inducing ferroptosis tolerance and radioresistance in cancer cells. Tubastatin A overcame ferroptosis resistance and radioresistance of cancer cells by inhibiting GPX4 enzymatic activity. More importantly, Tubastatin A has excellent bioavailability, as demonstrated by its ability to significantly promote radiotherapy-induced lipid peroxidation and tumour suppression in a mouse xenograft model. Our findings identify a novel druggable ferroptosis inducer, Tubastatin A, which enhances radiotherapy-mediated antitumor effects. This work provides a compelling rationale for the clinical evaluation of Tubastatin A, especially in combination with radiotherapy.Ferroptosis, an iron-dependent lipid peroxidation-driven programmed cell death, is closely related to cancer therapy. The development of druggable ferroptosis inducers and their rational application in cancer therapy are critical. Here, we identified Tubastatin A, an HDAC6 inhibitor as a novel druggable ferroptosis inducer through large-scale drug screening. Tubastatin A directly bonded to GPX4 and inhibited GPX4 enzymatic activity through biotin-linked Tubastatin A putdown and LC/MS analysis, which is independent of its inhibition of HDAC6. In addition, our results showed that radiotherapy not only activated Nrf2-mediated GPX4 transcription but also inhibited lysosome-mediated GPX4 degradation, subsequently inducing ferroptosis tolerance and radioresistance in cancer cells. Tubastatin A overcame ferroptosis resistance and radioresistance of cancer cells by inhibiting GPX4 enzymatic activity. More importantly, Tubastatin A has excellent bioavailability, as demonstrated by its ability to significantly promote radiotherapy-induced lipid peroxidation and tumour suppression in a mouse xenograft model. Our findings identify a novel druggable ferroptosis inducer, Tubastatin A, which enhances radiotherapy-mediated antitumor effects. This work provides a compelling rationale for the clinical evaluation of Tubastatin A, especially in combination with radiotherapy. |
ArticleNumber | 102677 |
Author | Deng, Rong Zhang, Hai-Liang Feng, Gong-Kan Huang, Jia-Jia Ye, Zhi-Peng Liu, Shan Li, Jing Hu, Bing-Xin Yang, Dong Li, Zhi-Ling Li, Zhi-Ming Du, Tian Zhu, Xiao-Feng Cao, Jiang-Hua Guo, Yi-Qing Chen, Yu-Hong Li, Li-Chao |
Author_xml | – sequence: 1 givenname: Shan surname: Liu fullname: Liu, Shan organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 2 givenname: Hai-Liang surname: Zhang fullname: Zhang, Hai-Liang organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 3 givenname: Jing surname: Li fullname: Li, Jing organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 4 givenname: Zhi-Peng surname: Ye fullname: Ye, Zhi-Peng organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 5 givenname: Tian surname: Du fullname: Du, Tian organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 6 givenname: Li-Chao surname: Li fullname: Li, Li-Chao organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 7 givenname: Yi-Qing surname: Guo fullname: Guo, Yi-Qing organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 8 givenname: Dong surname: Yang fullname: Yang, Dong organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 9 givenname: Zhi-Ling surname: Li fullname: Li, Zhi-Ling organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 10 givenname: Jiang-Hua surname: Cao fullname: Cao, Jiang-Hua organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 11 givenname: Bing-Xin surname: Hu fullname: Hu, Bing-Xin organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 12 givenname: Yu-Hong surname: Chen fullname: Chen, Yu-Hong organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 13 givenname: Gong-Kan surname: Feng fullname: Feng, Gong-Kan organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 14 givenname: Zhi-Ming surname: Li fullname: Li, Zhi-Ming organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 15 givenname: Rong surname: Deng fullname: Deng, Rong email: dengrong@sysucc.org.cn organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 16 givenname: Jia-Jia surname: Huang fullname: Huang, Jia-Jia email: huangjiaj@sysucc.org.cn organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China – sequence: 17 givenname: Xiao-Feng surname: Zhu fullname: Zhu, Xiao-Feng email: zhuxfeng@mail.sysu.edu.cn organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36989572$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAUtFARLaW_AAnlyGUXf8WJDwhVFZRKleBQJG7Wi-1svGTjYDsr9t_jNEvVcgBfbD3PzHv2zEt0MvjBIvSa4DXBRLzbroM1_teaYspyhYqqeobOKCVsRRmpTh6dT9FFjFucV11zSvALdMqErGVZ0TP0425qICZIbigui9EnO6T-ULihc41Lsbj--p0XoJPbu3Qokj9CHCRbaBi0DUUA43zqbIAxI7rgp01XNN7HrLkpWhuCH5OPLr5Cz1voo7047ufo26ePd1efV7dfrm-uLm9XuqQirahu85ScClzJuqSAzVywUoOE1tQVY6TkrRDagGQSAzFa41YAEUaWbVOxc3Sz6BoPWzUGt4NwUB6cui_4sFEQktO9VVrzsrQcC0GBV0ChbmpmiMYNNyXjs9aHRWucmp01Or89QP9E9OnN4Dq18XtFMK64ZHVWeHtUCP7nZGNSOxe17XsYrJ-iopWkErOMztA3j5s9dPljVwawBaCDjzHY9gFCsJpzobbqPhdqzoVacpFZ8i-WdrPjfp7Y9f_hvl-4Nhu2dzaoqJ3NvhsXrE75R90_-b8BLTXWyg |
CitedBy_id | crossref_primary_10_1007_s11684_024_1082_6 crossref_primary_10_1038_s41419_025_07516_0 crossref_primary_10_20517_cdr_2024_123 crossref_primary_10_2174_0118744710262369231110065230 crossref_primary_10_1038_s41392_024_01769_5 crossref_primary_10_4103_ejpi_EJPI_D_24_00099 crossref_primary_10_1371_journal_pone_0291779 crossref_primary_10_2174_0113895575308546240607073310 crossref_primary_10_34172_ajchor_34 crossref_primary_10_3892_or_2024_8851 crossref_primary_10_1007_s11033_024_10084_9 crossref_primary_10_2147_DDDT_S472178 crossref_primary_10_1186_s12645_024_00261_7 crossref_primary_10_1111_imr_13280 crossref_primary_10_1016_j_canlet_2024_216935 crossref_primary_10_1007_s00280_024_04731_y crossref_primary_10_3390_jpm14070704 crossref_primary_10_1002_slct_202402975 crossref_primary_10_1186_s43556_023_00142_2 crossref_primary_10_1016_j_toxicon_2025_108233 crossref_primary_10_3390_antiox13070778 crossref_primary_10_1016_j_radonc_2023_109689 crossref_primary_10_1016_j_phymed_2025_156611 crossref_primary_10_1016_j_jpha_2024_03_001 crossref_primary_10_1039_D4MD00898G crossref_primary_10_1186_s12957_024_03544_w crossref_primary_10_20517_cdr_2024_151 crossref_primary_10_1021_acs_jmedchem_4c00729 crossref_primary_10_1002_2211_5463_13896 crossref_primary_10_1021_acsami_4c09587 crossref_primary_10_1186_s13045_024_01564_3 crossref_primary_10_3892_or_2024_8764 crossref_primary_10_1016_j_bbrc_2024_149524 crossref_primary_10_1186_s12967_024_05881_6 crossref_primary_10_1080_14728222_2024_2404571 crossref_primary_10_2174_0115701808255183230922110002 crossref_primary_10_2174_1574888X18666230714151746 crossref_primary_10_2196_66286 crossref_primary_10_1002_cbin_12245 crossref_primary_10_1016_j_cbi_2024_110892 crossref_primary_10_1016_j_jddst_2024_105998 crossref_primary_10_1016_j_ejmech_2024_117015 crossref_primary_10_1016_j_ejmech_2024_116548 crossref_primary_10_1089_ars_2024_0608 crossref_primary_10_1016_j_ecoenv_2024_116680 crossref_primary_10_3390_biomedicines11102792 |
Cites_doi | 10.1038/s41586-019-1170-y 10.1186/s12885-022-10465-y 10.1016/j.chembiol.2019.01.008 10.1016/j.cell.2012.03.042 10.1038/s41586-019-1707-0 10.1021/acschembio.9b00939 10.3389/fonc.2023.1119369 10.1111/jcmm.17582 10.1016/j.redox.2023.102626 10.1038/nrclinonc.2012.194 10.1073/pnas.2017152117 10.1038/cddis.2017.415 10.1016/j.cellsig.2022.110580 10.1007/s10495-018-1480-9 10.1126/science.aaw9872 10.1038/s41418-022-01051-7 10.1038/s41568-022-00459-0 10.1021/acscentsci.9b01063 10.1038/s41586-021-03539-7 10.1016/j.canlet.2023.216078 10.1038/s41586-019-1705-2 10.1038/s41422-019-0263-3 10.1126/sciadv.aba8968 10.1016/j.tips.2017.11.003 10.1038/nature14344 10.1016/S0140-6736(20)32381-3 10.1016/j.ccell.2022.02.003 10.1016/j.ccell.2019.04.002 10.1038/s41589-020-0472-6 10.1038/nature23007 10.1158/2159-8290.CD-19-0338 10.1038/s41556-018-0178-0 10.1038/s41467-022-35707-2 10.1038/s41556-021-00818-3 10.1080/15548627.2022.2105562 10.1038/s41580-020-00324-8 10.1038/s41418-022-01096-8 10.1126/sciadv.ade9585 10.1016/j.molcel.2020.11.024 10.1016/j.cell.2013.12.010 10.1016/j.canlet.2022.215919 10.1038/s41586-020-2623-z 10.1016/j.cell.2017.09.021 10.3390/diagnostics12030656 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. 2023 The Authors 2023 |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2023 The Authors 2023 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.redox.2023.102677 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-2317 |
ExternalDocumentID | oai_doaj_org_article_cc455e40662a47a2a8b83d1c0b4d5347 PMC10074938 36989572 10_1016_j_redox_2023_102677 S2213231723000782 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABGSF ABMAC ACGFS ADBBV ADEZE ADRAZ ADUVX AENEX AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB M48 MO0 M~E NCXOZ O-L O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c526t-2cf210426079852a0dcf21e9ca9afd8733154f66cda9390a1dcc0f6a16d95fb73 |
IEDL.DBID | IXB |
ISSN | 2213-2317 |
IngestDate | Wed Aug 27 01:31:04 EDT 2025 Thu Aug 21 18:38:27 EDT 2025 Fri Jul 11 09:40:30 EDT 2025 Thu Jan 02 22:51:29 EST 2025 Tue Jul 01 00:47:10 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Tue Jul 25 20:55:45 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c526t-2cf210426079852a0dcf21e9ca9afd8733154f66cda9390a1dcc0f6a16d95fb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally: Shan Liu, Hai-Liang Zhang, Jing Li. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2213231723000782 |
PMID | 36989572 |
PQID | 2792903074 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cc455e40662a47a2a8b83d1c0b4d5347 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10074938 proquest_miscellaneous_2792903074 pubmed_primary_36989572 crossref_primary_10_1016_j_redox_2023_102677 crossref_citationtrail_10_1016_j_redox_2023_102677 elsevier_sciencedirect_doi_10_1016_j_redox_2023_102677 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Redox biology |
PublicationTitleAlternate | Redox Biol |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Ye, Chaudhary, Zandkarimi, Harken, Kinslow, Upadhyayula, Dovas, Higgins, Tan, Zhang, Buonanno, Wang, Hei, Bruce, Canoll, Cheng, Stockwell (bib20) 2020; 15 Jiang, Yin, Zhang, Yin, Tang, Xu, Wu, Shen, Zhou, Yu, Yan (bib29) 2023; 60 Taylor, Das, Ray (bib39) 2018; 23 Chen, Zhang, Cao, Shi, Zhang, Wang, Gong (bib34) 2022; 26 Jiang, Kon, Li, Wang, Su, Hibshoosh, Baer, Gu (bib22) 2015; 520 Yang, SriRamaratnam, Welsch, Shimada, Skouta, Viswanathan, Cheah, Clemons, Shamji, Clish, Brown, Girotti, Cornish, Schreiber, Stockwell (bib7) 2014; 156 Zou, Li, Graham, Deik, Eaton, Wang, Sandoval-Gomez, Clish, Doench, Schreiber (bib6) 2020; 16 Zheng, Chen, Liu, Zeng, Zhou, Liu, Bai, Zhang, Pan, Shao (bib42) 2023; 19 Doll, Freitas, Shah, Aldrovandi, da Silva, Ingold, Goya Grocin, Xavier da Silva, Panzilius, Scheel, Mourao, Buday, Sato, Wanninger, Vignane, Mohana, Rehberg, Flatley, Schepers, Kurz, White, Sauer, Sattler, Tate, Schmitz, Schulze, O'Donnell, Proneth, Popowicz, Pratt, Angeli, Conrad (bib9) 2019; 575 Liao, Wang, Wang, Kryczek, Li, Bian, Sell, Wei, Grove, Johnson, Kennedy, Gijon, Shah, Zou (bib16) 2022; 40 Muller, Lim, Bebber, Seidel, Tishina, Dahlhaus, Stroh, Beck, Yapici, Nakayama, Torres Fernandez, Bragelmann, Leprivier, von Karstedt (bib27) 2023; 30 Ouellette, Zhou, Yan (bib38) 2022; 12 Jaffray (bib40) 2012; 9 Zhang, Shi, Liu, Feng, Gong, Koppula, Sirohi, Li, Wei, Lee, Zhuang, Chen, Xiao, Hung, Chen, Huang, Li, Gan (bib23) 2018; 20 Verma, Vinik, Saroha, Nair, Ruppin, Mills, Karn, Dubey, Khera, Raj, Maina, Lev (bib14) 2020; 6 Loibl, Poortmans, Morrow, Denkert, Curigliano (bib35) 2021; 397 Lei, Zhuang, Gan (bib4) 2022; 22 Shen, Luo, Chen, Ma, Mao, Zhang, Zheng, Wang, Wan, Wang, Ouyang, Yi, Liu, Huang, Zhang, Liu, McLeod, He (bib32) 2022; 550 Zhang, Hu, Li, Du, Shan, Ye, Peng, Li, Huang, Zhu, Chen, Feng, Yang, Deng, Zhu (bib3) 2022; 24 Wang, Mu, He, Zhang (bib36) 2018; 39 Yi, Zhu, Wu, Thompson, Jiang (bib15) 2020; 117 Ubellacker, Tasdogan, Ramesh, Shen, Mitchell, Martin-Sandoval, Gu, McCormick, Durham, Spitz, Zhao, Mathews, Morrison (bib24) 2020; 585 Bersuker, Hendricks, Li, Magtanong, Ford, Tang, Roberts, Tong, Maimone, Zoncu, Bassik, Nomura, Dixon, Olzmann (bib8) 2019; 575 Lei, Zhang, Koppula, Liu, Zhang, Lin, Ajani, Xiao, Liao, Wang, Gan (bib19) 2020; 30 Wei, Zhu, Yang, Zhou, Xia, Ren, Zhao, Wu, Liu (bib41) 2023; 9 Stockwell, Friedmann Angeli, Bayir, Bush, Conrad, Dixon, Fulda, Gascon, Hatzios, Kagan, Noel, Jiang, Linkermann, Murphy, Overholtzer, Oyagi, Pagnussat, Park, Ran, Rosenfeld, Salnikow, Tang, Torti, Torti, Toyokuni, Woerpel, Zhang (bib13) 2017; 171 Yan, Ai, Sun, Ma, Cao, Wang, Zhang, Wang (bib5) 2021; 81 Chen, Zheng, Guan, Liu, Dan, Zhu, Song, Zhou, Zhao, Zhang, Bai, Pan, Zhang, Shao (bib31) 2023; 30 Anandhan, Dodson, Shakya, Chen, Liu, Wei, Tan, Wang, Jiang, Yang, Garcia, Chambers, Chapman, Ooi, Yang-Hartwich, Stockwell, Zhang (bib28) 2023; 9 Wang, Green, Choi, Gijon, Kennedy, Johnson, Liao, Lang, Kryczek, Sell, Xia, Zhou, Li, Li, Li, Wei, Vatan, Zhang, Szeliga, Gu, Liu, Lawrence, Lamb, Tanno, Cieslik, Stone, Georgiou, Chan, Chinnaiyan, Zou (bib17) 2019; 569 Leyk, Daly, Janssen-Bienhold, Kennedy, Richter-Landsberg (bib21) 2017; 8 Mao, Liu, Zhang, Lei, Yan, Lee, Koppula, Wu, Zhuang, Fang, Poyurovsky, Olszewski, Gan (bib11) 2021; 593 Cai, Ren, Chen, Wang, Chu (bib33) 2023; 13 Dixon, Lemberg, Lamprecht, Skouta, Zaitsev, Gleason, Patel, Bauer, Cantley, Yang, Morrison, Stockwell (bib1) 2012; 149 Lang, Green, Wang, Yu, Choi, Jiang, Liao, Zhou, Zhang, Dow, Saripalli, Kryczek, Wei, Szeliga, Vatan, Stone, Georgiou, Cieslik, Wahl, Morgan, Chinnaiyan, Lawrence, Zou (bib18) 2019; 9 Darvish, Bahreyni Toossi, Azimian, Shakeri, Dolat, Ahmadizad Firouzjaei, Rezaie, Amraee, Aghaee-Bakhtiari (bib37) 2023; 104 Badgley, Kremer, Maurer, DelGiorno, Lee, Purohit, Sagalovskiy, Ma, Kapilian, Firl, Decker, Sastra, Palermo, Andrade, Sajjakulnukit, Zhang, Tolstyka, Hirschhorn, Lamb, Liu, Gu, Seeley, Stone, Georgiou, Manor, Iuga, Wahl, Stockwell, Lyssiotis, Olive (bib44) 2020; 368 Li, Song, Gu, Li, Zang, Shi, Chen, Zhu, Zhou, Wang, Li, Qi, Lu (bib43) 2023; 557 Jiang, Stockwell, Conrad (bib12) 2021; 22 Hassannia, Vandenabeele, Vanden Berghe (bib2) 2019; 35 Viswanathan, Ryan, Dhruv, Gill, Eichhoff, Seashore-Ludlow, Kaffenberger, Eaton, Shimada, Aguirre, Viswanathan, Chattopadhyay, Tamayo, Yang, Rees, Chen, Boskovic, Javaid, Huang, Wu, Tseng, Roider, Gao, Cleary, Wolpin, Mesirov, Haber, Engelman, Boehm, Kotz, Hon, Chen, Hahn, Levesque, Doench, Berens, Shamji, Clemons, Stockwell, Schreiber (bib25) 2017; 547 Amos, Jiang, Zong, Gu, Zhou, Yin, He, Xu, Wu (bib30) 2023; 23 Kraft, Bezjian, Pfeiffer, Ringelstetter, Muller, Zandkarimi, Merl-Pham, Bao, Anastasov, Kossl, Brandner, Daniels, Schmitt-Kopplin, Hauck, Stockwell, Hadian, Schick (bib10) 2020; 6 Lin, Liu, Long, Kang, Kroemer, Tang, Yang (bib26) 2022; 13 Zhang, Tan, Daniels, Zandkarimi, Liu, Brown, Uchida, O'Connor, Stockwell (bib45) 2019; 26 Badgley (10.1016/j.redox.2023.102677_bib44) 2020; 368 Jaffray (10.1016/j.redox.2023.102677_bib40) 2012; 9 Chen (10.1016/j.redox.2023.102677_bib31) 2023; 30 Yi (10.1016/j.redox.2023.102677_bib15) 2020; 117 Liao (10.1016/j.redox.2023.102677_bib16) 2022; 40 Lang (10.1016/j.redox.2023.102677_bib18) 2019; 9 Zhang (10.1016/j.redox.2023.102677_bib3) 2022; 24 Verma (10.1016/j.redox.2023.102677_bib14) 2020; 6 Dixon (10.1016/j.redox.2023.102677_bib1) 2012; 149 Hassannia (10.1016/j.redox.2023.102677_bib2) 2019; 35 Ye (10.1016/j.redox.2023.102677_bib20) 2020; 15 Ubellacker (10.1016/j.redox.2023.102677_bib24) 2020; 585 Viswanathan (10.1016/j.redox.2023.102677_bib25) 2017; 547 Darvish (10.1016/j.redox.2023.102677_bib37) 2023; 104 Cai (10.1016/j.redox.2023.102677_bib33) 2023; 13 Doll (10.1016/j.redox.2023.102677_bib9) 2019; 575 Zhang (10.1016/j.redox.2023.102677_bib45) 2019; 26 Amos (10.1016/j.redox.2023.102677_bib30) 2023; 23 Jiang (10.1016/j.redox.2023.102677_bib12) 2021; 22 Shen (10.1016/j.redox.2023.102677_bib32) 2022; 550 Loibl (10.1016/j.redox.2023.102677_bib35) 2021; 397 Jiang (10.1016/j.redox.2023.102677_bib22) 2015; 520 Wang (10.1016/j.redox.2023.102677_bib36) 2018; 39 Kraft (10.1016/j.redox.2023.102677_bib10) 2020; 6 Wang (10.1016/j.redox.2023.102677_bib17) 2019; 569 Leyk (10.1016/j.redox.2023.102677_bib21) 2017; 8 Zhang (10.1016/j.redox.2023.102677_bib23) 2018; 20 Li (10.1016/j.redox.2023.102677_bib43) 2023; 557 Lin (10.1016/j.redox.2023.102677_bib26) 2022; 13 Mao (10.1016/j.redox.2023.102677_bib11) 2021; 593 Jiang (10.1016/j.redox.2023.102677_bib29) 2023; 60 Yan (10.1016/j.redox.2023.102677_bib5) 2021; 81 Muller (10.1016/j.redox.2023.102677_bib27) 2023; 30 Lei (10.1016/j.redox.2023.102677_bib4) 2022; 22 Zou (10.1016/j.redox.2023.102677_bib6) 2020; 16 Chen (10.1016/j.redox.2023.102677_bib34) 2022; 26 Ouellette (10.1016/j.redox.2023.102677_bib38) 2022; 12 Wei (10.1016/j.redox.2023.102677_bib41) 2023; 9 Lei (10.1016/j.redox.2023.102677_bib19) 2020; 30 Stockwell (10.1016/j.redox.2023.102677_bib13) 2017; 171 Taylor (10.1016/j.redox.2023.102677_bib39) 2018; 23 Zheng (10.1016/j.redox.2023.102677_bib42) 2023; 19 Bersuker (10.1016/j.redox.2023.102677_bib8) 2019; 575 Yang (10.1016/j.redox.2023.102677_bib7) 2014; 156 Anandhan (10.1016/j.redox.2023.102677_bib28) 2023; 9 |
References_xml | – volume: 60 year: 2023 ident: bib29 article-title: STC2 activates PRMT5 to induce radioresistance through DNA damage repair and ferroptosis pathways in esophageal squamous cell carcinoma publication-title: Redox Biol. – volume: 23 start-page: 563 year: 2018 end-page: 575 ident: bib39 article-title: Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma publication-title: Apoptosis – volume: 117 start-page: 31189 year: 2020 end-page: 31197 ident: bib15 article-title: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 575 start-page: 688 year: 2019 end-page: 692 ident: bib8 article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis publication-title: Nature – volume: 6 year: 2020 ident: bib14 article-title: Synthetic lethal combination targeting BET uncovered intrinsic susceptibility of TNBC to ferroptosis publication-title: Sci. Adv. – volume: 149 start-page: 1060 year: 2012 end-page: 1072 ident: bib1 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell – volume: 13 year: 2023 ident: bib33 article-title: Ferroptosis and tumor immunotherapy: a promising combination therapy for tumors publication-title: Front. Oncol. – volume: 13 start-page: 7965 year: 2022 ident: bib26 article-title: The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis publication-title: Nat. Commun. – volume: 6 start-page: 41 year: 2020 end-page: 53 ident: bib10 article-title: GTP cyclohydrolase 1/Tetrahydrobiopterin counteract ferroptosis through lipid remodeling publication-title: ACS Cent. Sci. – volume: 520 start-page: 57 year: 2015 end-page: 62 ident: bib22 article-title: Ferroptosis as a p53-mediated activity during tumour suppression publication-title: Nature – volume: 26 start-page: 623 year: 2019 end-page: 633 e629 ident: bib45 article-title: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model publication-title: Cell Chem. Biol. – volume: 575 start-page: 693 year: 2019 end-page: 698 ident: bib9 article-title: FSP1 is a glutathione-independent ferroptosis suppressor publication-title: Nature – volume: 593 start-page: 586 year: 2021 end-page: 590 ident: bib11 article-title: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer publication-title: Nature – volume: 585 start-page: 113 year: 2020 end-page: 118 ident: bib24 article-title: Lymph protects metastasizing melanoma cells from ferroptosis publication-title: Nature – volume: 397 start-page: 1750 year: 2021 end-page: 1769 ident: bib35 article-title: Breast cancer publication-title: Lancet – volume: 24 start-page: 88 year: 2022 end-page: 98 ident: bib3 article-title: PKCbetaII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis publication-title: Nat. Cell Biol. – volume: 547 start-page: 453 year: 2017 end-page: 457 ident: bib25 article-title: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway publication-title: Nature – volume: 156 start-page: 317 year: 2014 end-page: 331 ident: bib7 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell – volume: 19 start-page: 839 year: 2023 end-page: 857 ident: bib42 article-title: SDC1-dependent TGM2 determines radiosensitivity in glioblastoma by coordinating EPG5-mediated fusion of autophagosomes with lysosomes publication-title: Autophagy – volume: 30 start-page: 146 year: 2020 end-page: 162 ident: bib19 article-title: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression publication-title: Cell Res. – volume: 12 year: 2022 ident: bib38 article-title: Cell signaling pathways that promote radioresistance of cancer cells publication-title: Diagnostics – volume: 557 year: 2023 ident: bib43 article-title: RBBP4 regulates the expression of the Mre11-Rad50-NBS1 (MRN) complex and promotes DNA double-strand break repair to mediate glioblastoma chemoradiotherapy resistance publication-title: Cancer Lett. – volume: 9 start-page: 688 year: 2012 end-page: 699 ident: bib40 article-title: Image-guided radiotherapy: from current concept to future perspectives publication-title: Nat. Rev. Clin. Oncol. – volume: 104 year: 2023 ident: bib37 article-title: The role of microRNA-induced apoptosis in diverse radioresistant cancers publication-title: Cell. Signal. – volume: 9 year: 2023 ident: bib41 article-title: Hypoxia-induced autophagy is involved in radioresistance via HIF1A-associated beclin-1 in glioblastoma multiforme publication-title: Heliyon – volume: 40 start-page: 365 year: 2022 end-page: 378 e366 ident: bib16 article-title: CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4 publication-title: Cancer Cell – volume: 20 start-page: 1181 year: 2018 end-page: 1192 ident: bib23 article-title: BAP1 links metabolic regulation of ferroptosis to tumour suppression publication-title: Nat. Cell Biol. – volume: 35 start-page: 830 year: 2019 end-page: 849 ident: bib2 article-title: Targeting ferroptosis to iron out cancer publication-title: Cancer Cell – volume: 23 start-page: 117 year: 2023 ident: bib30 article-title: Depletion of SOD2 enhances nasopharyngeal carcinoma cell radiosensitivity via ferroptosis induction modulated by DHODH inhibition publication-title: BMC Cancer – volume: 22 start-page: 266 year: 2021 end-page: 282 ident: bib12 article-title: Ferroptosis: mechanisms, biology and role in disease publication-title: Nat. Rev. Mol. Cell Biol. – volume: 171 start-page: 273 year: 2017 end-page: 285 ident: bib13 article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease publication-title: Cell – volume: 22 start-page: 381 year: 2022 end-page: 396 ident: bib4 article-title: Targeting ferroptosis as a vulnerability in cancer publication-title: Nat. Rev. Cancer – volume: 81 start-page: 355 year: 2021 end-page: 369 e310 ident: bib5 article-title: Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1 publication-title: Mol. Cell – volume: 30 start-page: 442 year: 2023 end-page: 456 ident: bib27 article-title: Elevated FSP1 protects KRAS-mutated cells from ferroptosis during tumor initiation publication-title: Cell Death Differ. – volume: 9 start-page: 1673 year: 2019 end-page: 1685 ident: bib18 article-title: Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11 publication-title: Cancer Discov. – volume: 30 start-page: 137 year: 2023 end-page: 151 ident: bib31 article-title: SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma publication-title: Cell Death Differ. – volume: 15 start-page: 469 year: 2020 end-page: 484 ident: bib20 article-title: Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers publication-title: ACS Chem. Biol. – volume: 550 year: 2022 ident: bib32 article-title: PARPi treatment enhances radiotherapy-induced ferroptosis and antitumor immune responses via the cGAS signaling pathway in colorectal cancer publication-title: Cancer Lett. – volume: 26 start-page: 5528 year: 2022 end-page: 5538 ident: bib34 article-title: NOD2-mediated HDAC6/NF-kappab signalling pathway regulates ferroptosis induced by extracellular histone H3 in acute liver failure publication-title: J. Cell Mol. Med. – volume: 39 start-page: 24 year: 2018 end-page: 48 ident: bib36 article-title: Cancer radiosensitizers publication-title: Trends Pharmacol. Sci. – volume: 368 start-page: 85 year: 2020 end-page: 89 ident: bib44 article-title: Cysteine depletion induces pancreatic tumor ferroptosis in mice publication-title: Science – volume: 16 start-page: 302 year: 2020 end-page: 309 ident: bib6 article-title: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis publication-title: Nat. Chem. Biol. – volume: 9 year: 2023 ident: bib28 article-title: NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8 publication-title: Sci. Adv. – volume: 569 start-page: 270 year: 2019 end-page: 274 ident: bib17 article-title: CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy publication-title: Nature – volume: 8 year: 2017 ident: bib21 article-title: HDAC6 inhibition by tubastatin A is protective against oxidative stress in a photoreceptor cell line and restores visual function in a zebrafish model of inherited blindness publication-title: Cell Death Dis. – volume: 569 start-page: 270 year: 2019 ident: 10.1016/j.redox.2023.102677_bib17 article-title: CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy publication-title: Nature doi: 10.1038/s41586-019-1170-y – volume: 23 start-page: 117 year: 2023 ident: 10.1016/j.redox.2023.102677_bib30 article-title: Depletion of SOD2 enhances nasopharyngeal carcinoma cell radiosensitivity via ferroptosis induction modulated by DHODH inhibition publication-title: BMC Cancer doi: 10.1186/s12885-022-10465-y – volume: 26 start-page: 623 year: 2019 ident: 10.1016/j.redox.2023.102677_bib45 article-title: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2019.01.008 – volume: 149 start-page: 1060 year: 2012 ident: 10.1016/j.redox.2023.102677_bib1 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 575 start-page: 693 year: 2019 ident: 10.1016/j.redox.2023.102677_bib9 article-title: FSP1 is a glutathione-independent ferroptosis suppressor publication-title: Nature doi: 10.1038/s41586-019-1707-0 – volume: 15 start-page: 469 year: 2020 ident: 10.1016/j.redox.2023.102677_bib20 article-title: Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.9b00939 – volume: 13 year: 2023 ident: 10.1016/j.redox.2023.102677_bib33 article-title: Ferroptosis and tumor immunotherapy: a promising combination therapy for tumors publication-title: Front. Oncol. doi: 10.3389/fonc.2023.1119369 – volume: 26 start-page: 5528 year: 2022 ident: 10.1016/j.redox.2023.102677_bib34 article-title: NOD2-mediated HDAC6/NF-kappab signalling pathway regulates ferroptosis induced by extracellular histone H3 in acute liver failure publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.17582 – volume: 60 year: 2023 ident: 10.1016/j.redox.2023.102677_bib29 article-title: STC2 activates PRMT5 to induce radioresistance through DNA damage repair and ferroptosis pathways in esophageal squamous cell carcinoma publication-title: Redox Biol. doi: 10.1016/j.redox.2023.102626 – volume: 9 start-page: 688 year: 2012 ident: 10.1016/j.redox.2023.102677_bib40 article-title: Image-guided radiotherapy: from current concept to future perspectives publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2012.194 – volume: 117 start-page: 31189 year: 2020 ident: 10.1016/j.redox.2023.102677_bib15 article-title: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2017152117 – volume: 8 year: 2017 ident: 10.1016/j.redox.2023.102677_bib21 article-title: HDAC6 inhibition by tubastatin A is protective against oxidative stress in a photoreceptor cell line and restores visual function in a zebrafish model of inherited blindness publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.415 – volume: 104 year: 2023 ident: 10.1016/j.redox.2023.102677_bib37 article-title: The role of microRNA-induced apoptosis in diverse radioresistant cancers publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2022.110580 – volume: 23 start-page: 563 year: 2018 ident: 10.1016/j.redox.2023.102677_bib39 article-title: Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma publication-title: Apoptosis doi: 10.1007/s10495-018-1480-9 – volume: 368 start-page: 85 year: 2020 ident: 10.1016/j.redox.2023.102677_bib44 article-title: Cysteine depletion induces pancreatic tumor ferroptosis in mice publication-title: Science doi: 10.1126/science.aaw9872 – volume: 30 start-page: 137 year: 2023 ident: 10.1016/j.redox.2023.102677_bib31 article-title: SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma publication-title: Cell Death Differ. doi: 10.1038/s41418-022-01051-7 – volume: 22 start-page: 381 year: 2022 ident: 10.1016/j.redox.2023.102677_bib4 article-title: Targeting ferroptosis as a vulnerability in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-022-00459-0 – volume: 6 start-page: 41 year: 2020 ident: 10.1016/j.redox.2023.102677_bib10 article-title: GTP cyclohydrolase 1/Tetrahydrobiopterin counteract ferroptosis through lipid remodeling publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b01063 – volume: 593 start-page: 586 year: 2021 ident: 10.1016/j.redox.2023.102677_bib11 article-title: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer publication-title: Nature doi: 10.1038/s41586-021-03539-7 – volume: 557 year: 2023 ident: 10.1016/j.redox.2023.102677_bib43 article-title: RBBP4 regulates the expression of the Mre11-Rad50-NBS1 (MRN) complex and promotes DNA double-strand break repair to mediate glioblastoma chemoradiotherapy resistance publication-title: Cancer Lett. doi: 10.1016/j.canlet.2023.216078 – volume: 575 start-page: 688 year: 2019 ident: 10.1016/j.redox.2023.102677_bib8 article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis publication-title: Nature doi: 10.1038/s41586-019-1705-2 – volume: 30 start-page: 146 year: 2020 ident: 10.1016/j.redox.2023.102677_bib19 article-title: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression publication-title: Cell Res. doi: 10.1038/s41422-019-0263-3 – volume: 6 year: 2020 ident: 10.1016/j.redox.2023.102677_bib14 article-title: Synthetic lethal combination targeting BET uncovered intrinsic susceptibility of TNBC to ferroptosis publication-title: Sci. Adv. doi: 10.1126/sciadv.aba8968 – volume: 39 start-page: 24 year: 2018 ident: 10.1016/j.redox.2023.102677_bib36 article-title: Cancer radiosensitizers publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2017.11.003 – volume: 520 start-page: 57 year: 2015 ident: 10.1016/j.redox.2023.102677_bib22 article-title: Ferroptosis as a p53-mediated activity during tumour suppression publication-title: Nature doi: 10.1038/nature14344 – volume: 397 start-page: 1750 year: 2021 ident: 10.1016/j.redox.2023.102677_bib35 article-title: Breast cancer publication-title: Lancet doi: 10.1016/S0140-6736(20)32381-3 – volume: 40 start-page: 365 year: 2022 ident: 10.1016/j.redox.2023.102677_bib16 article-title: CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4 publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.02.003 – volume: 35 start-page: 830 year: 2019 ident: 10.1016/j.redox.2023.102677_bib2 article-title: Targeting ferroptosis to iron out cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.04.002 – volume: 16 start-page: 302 year: 2020 ident: 10.1016/j.redox.2023.102677_bib6 article-title: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0472-6 – volume: 547 start-page: 453 year: 2017 ident: 10.1016/j.redox.2023.102677_bib25 article-title: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway publication-title: Nature doi: 10.1038/nature23007 – volume: 9 start-page: 1673 year: 2019 ident: 10.1016/j.redox.2023.102677_bib18 article-title: Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-19-0338 – volume: 20 start-page: 1181 year: 2018 ident: 10.1016/j.redox.2023.102677_bib23 article-title: BAP1 links metabolic regulation of ferroptosis to tumour suppression publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0178-0 – volume: 13 start-page: 7965 year: 2022 ident: 10.1016/j.redox.2023.102677_bib26 article-title: The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis publication-title: Nat. Commun. doi: 10.1038/s41467-022-35707-2 – volume: 9 year: 2023 ident: 10.1016/j.redox.2023.102677_bib41 article-title: Hypoxia-induced autophagy is involved in radioresistance via HIF1A-associated beclin-1 in glioblastoma multiforme publication-title: Heliyon – volume: 24 start-page: 88 year: 2022 ident: 10.1016/j.redox.2023.102677_bib3 article-title: PKCbetaII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis publication-title: Nat. Cell Biol. doi: 10.1038/s41556-021-00818-3 – volume: 19 start-page: 839 year: 2023 ident: 10.1016/j.redox.2023.102677_bib42 article-title: SDC1-dependent TGM2 determines radiosensitivity in glioblastoma by coordinating EPG5-mediated fusion of autophagosomes with lysosomes publication-title: Autophagy doi: 10.1080/15548627.2022.2105562 – volume: 22 start-page: 266 year: 2021 ident: 10.1016/j.redox.2023.102677_bib12 article-title: Ferroptosis: mechanisms, biology and role in disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-00324-8 – volume: 30 start-page: 442 year: 2023 ident: 10.1016/j.redox.2023.102677_bib27 article-title: Elevated FSP1 protects KRAS-mutated cells from ferroptosis during tumor initiation publication-title: Cell Death Differ. doi: 10.1038/s41418-022-01096-8 – volume: 9 year: 2023 ident: 10.1016/j.redox.2023.102677_bib28 article-title: NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8 publication-title: Sci. Adv. doi: 10.1126/sciadv.ade9585 – volume: 81 start-page: 355 year: 2021 ident: 10.1016/j.redox.2023.102677_bib5 article-title: Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.11.024 – volume: 156 start-page: 317 year: 2014 ident: 10.1016/j.redox.2023.102677_bib7 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell doi: 10.1016/j.cell.2013.12.010 – volume: 550 year: 2022 ident: 10.1016/j.redox.2023.102677_bib32 article-title: PARPi treatment enhances radiotherapy-induced ferroptosis and antitumor immune responses via the cGAS signaling pathway in colorectal cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2022.215919 – volume: 585 start-page: 113 year: 2020 ident: 10.1016/j.redox.2023.102677_bib24 article-title: Lymph protects metastasizing melanoma cells from ferroptosis publication-title: Nature doi: 10.1038/s41586-020-2623-z – volume: 171 start-page: 273 year: 2017 ident: 10.1016/j.redox.2023.102677_bib13 article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease publication-title: Cell doi: 10.1016/j.cell.2017.09.021 – volume: 12 year: 2022 ident: 10.1016/j.redox.2023.102677_bib38 article-title: Cell signaling pathways that promote radioresistance of cancer cells publication-title: Diagnostics doi: 10.3390/diagnostics12030656 |
SSID | ssj0000884210 |
Score | 2.5316813 |
Snippet | Ferroptosis, an iron-dependent lipid peroxidation-driven programmed cell death, is closely related to cancer therapy. The development of druggable ferroptosis... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102677 |
SubjectTerms | Animals Apoptosis Ferroptosis Humans Lipid Peroxidation Mice Neoplasms Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism Research Paper |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMLchIHAlsbMePY6laKiQQh1bam-X4oQaqZJVkJfrv64mT1QakcuGaOI_xjD1f4vH3IfReSGM4CSxX3pqcBWpzSZzPqXTEEuJY-nXx7Tu_uGJf1-V6T-oLasISPXDquE_WsrL0DIjKDROGGFlJ6gq7qpgrKRv3kcect_cxNc7BUjIyUhEQUtA8ghgxUw6NxV1Axvn7I0iHA3cBF2KRlkb2_kV2-ht9_llEuZeVzp-gxxOcxCfJjEP0wDdP0cMkMHn7DP263MY0BavtDT7BmzYC5OHmFtfNdV3VQ4-__FgzDFsbQEECD-3UJLrLYwvx0OHOuHrapRVbJFUfHKF5D_XSOPiuazdD29f9c3R1fnZ5epFP8gq5LQkfcmJD7CJgqBdKlsSsHBzwyhplgpMg5liywLl1RlG1MoWzdhW4KbhTZagEfYEOmrbxrxAuDLEcwGARDAsRNXrhXUyDxFJWqarIEJl7V9uJexwkMG70XGT2U48u0eASnVySoQ-7izaJeuP-5p_BbbumwJs9HojRpKdo0v-Kpgzx2el6giAJWsRb1fc__d0cIjoOUFh1MY1vt70GhkYFUynL0MsUMrt3pCDfWQqSIbkIpoURyzNNfT2SgEN1C1NUvv4fZh-hR2BLKoE7RgdDt_VvItgaqrfjuLoDUB0nuw priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERIXRHl1gSIjcSTVxnb8OCBUEKVCKuLQlfZmOX7QwCrZJlmp--_x5LEQqHrgGMdxHM848yUefx9Cb4Q0hpPAEuWtSVigNpHE-YRKRywhjvW_Ls6_8rMF-7LMlntoVEUdBrC58dMO9KQW9er4-mr7Pk74d79ztYBb8_oYlMCBioALcQfdjaFJgKTB-YD3u1ezlIx0DAWEpDSJ2EaMTEQ3tzOJVh2p_yRo_QtK_86t_CNYnT5EDwaUiU96tzhAe758hO71upPbx-jnxSZGL1iEL_EJXlcRN7erLS7KyyIv2gZ__rZkGHY8gLAEbquhSrSixxbcpMa1ccWweSvW6MV-cETsDaRR4-Drulq3VVM0T9Di9NPFx7NkUF1IbEZ4mxAb4hABcb1QMiNm7qDAK2uUCU6CxmPGAufWGUXV3KTO2nngJuVOZSEX9CnaL6vSHyKcGmI5YMQ0GBYimPTCuxgdiaUsV3k6Q2QcXW0HSnJQxljpMffsh-5MosEkujfJDL3dXbTuGTlur_4BzLarCnTaXUFVf9fD7NTWsizzDNjwDROGGJlL6lI7z5nLKIuN8NHoekAmPeKITRW33_316CI6zltYjDGlrzaNBuJGBW9YNkPPepfZ9ZGCqmcmyAzJiTNNHmJ6piwuO25wSHphisrn_9vjF-g-HPXZcC_Rfltv_FHEXW3-qptLvwDuay0K priority: 102 providerName: Scholars Portal |
Title | Tubastatin A potently inhibits GPX4 activity to potentiate cancer radiotherapy through boosting ferroptosis |
URI | https://dx.doi.org/10.1016/j.redox.2023.102677 https://www.ncbi.nlm.nih.gov/pubmed/36989572 https://www.proquest.com/docview/2792903074 https://pubmed.ncbi.nlm.nih.gov/PMC10074938 https://doaj.org/article/cc455e40662a47a2a8b83d1c0b4d5347 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuiDdLYWUkjoTd2I5jH7cVpaIqQtCKvVmOH22gSlZJVmr_PR4nWRGQeuASKc7YcTzjmYk9_gahd7nQmhPPEumMTpinJhHEuoQKSwwhlvVLF2df-MkF-7zO1nvoaDwLA2GVg-7vdXrU1kPJYhjNxaYsF98JCX9SwfwFJzoauqCHKRPxEN_6cLfOEmYRIxGUAOgTqDCCD8UwL4DlvPkAScQBxYDn-cRARRz_iZ361w_9O5zyD_t0_Ag9HBxLvOr7_hjtueoJut-nmrx9in6db4PBgn33Cq_wpg6ucnd9i8vqqizKrsWfvq4ZhkMOkEsCd_VAEhjnsAHJaHCjbTmc1woUfX4fHJz0FiKnsXdNU2-6ui3bZ-ji-OP50UkyJFpITEZ4lxDjwxABVn0uRUb00kKBk0ZL7a2AtI4Z85wbqyWVS51aY5ae65Rbmfkip8_RflVX7iXCqSaGg1uYes188B9d7mwwiMRQVsginSEyjq4yAwo5JMO4VmO42U8VWaKAJapnyQy931Xa9CAcd5MfAtt2pICgHQvq5lINIqSMYVnmGADga5ZrokUhqE3NsmA2oyw0wkemq4lAhqbKu9_-dhQRFaYq7L_oytXbVgFWowSlymboRS8yuz5SSOSZ5WSGxESYJh8xfVKVVxEOHOJcmKTi1f_2-AA9gLs-AO412u-arXsTXK2umKN7q9NvP07ncaliHmdWuJ4x8Rtfpyw6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4s3yNBLcCLtxHCc-cGiBsksfQmIr7c11_KBpq2SVZAX7u_iDeBJnRUDqAalX23Ecz3hm7Iy_D6HXSSolI5YG3CgZUBupICXaBFGqiSJE0-7o4vCITY_pl0W82EK_-rswkFbpbX9n01tr7UvGfjbHyzwffyPE7aSc-3NBdOvofGblvln_cPu2-v3soxPyG0L2Ps0_TANPLRComLAmIMq6vQ6gsyc8jYmcaCgwXEkurU6ByDCmljGlJY_4RIZaqYllMmSaxzZLItfvNXTdRR8JWIPZYndzsOOWLSUtCgIMMIAR9mhHbV4Z4ID-fAes5QCbwJJk4BFb4oCBY_w38P07f_MPh7h3B932kSze6SbrLtoyxT10o-O2XN9H5_OV85Dwo7_AO3hZuti8uVjjvDjNs7yp8eevC4rhVgWQV-Cm9E2cphisQBUrXEmd-wtirkVHKITdrqCGVG1sTVWVy6as8_oBOr6S6X-ItouyMI8RDiVRDOLQ0EpqXcBqEqOdByYqohnPwhEi_ewK5WHPgX3jQvT5bWeiFYkAkYhOJCP0dvPQskP9uLz5Loht0xQgu9uCsvouvM4KpWgcGwqI-5Imksg0SyMdqklGdRxR1wnrhS4GK8B1lV_-9le9ighnG-CHjyxMuaoFgENysOJ0hB51KrMZYwTMoXFCRigdKNPgI4Y1RX7a4o9DYg3lUfrkf0f8Et2czg8PxMHsaP8pugU1XfbdM7TdVCvz3MV5TfaiXVcYnVz1Qv4NzilmFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tubastatin+A+potently+inhibits+GPX4+activity+to+potentiate+cancer+radiotherapy+through+boosting+ferroptosis&rft.jtitle=Redox+biology&rft.au=Liu%2C+Shan&rft.au=Zhang%2C+Hai-Liang&rft.au=Li%2C+Jing&rft.au=Ye%2C+Zhi-Peng&rft.date=2023-06-01&rft.pub=Elsevier+B.V&rft.issn=2213-2317&rft.eissn=2213-2317&rft.volume=62&rft_id=info:doi/10.1016%2Fj.redox.2023.102677&rft.externalDocID=S2213231723000782 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon |