Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM)

Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow‐Shelf Approximation (SSA), sometimes combined into so‐called “hybrid” models. Such models, while computationally efficient, are based on a si...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Earth Surface Vol. 117; no. F1
Main Authors Larour, E., Seroussi, H., Morlighem, M., Rignot, E.
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.03.2012
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow‐Shelf Approximation (SSA), sometimes combined into so‐called “hybrid” models. Such models, while computationally efficient, are based on a simplified set of physical assumptions about the mechanical regime of the ice flow, which does not uniformly apply everywhere on the ice sheet/ice shelf system, especially near grounding lines, where rapid changes are taking place at present. Here, we present a new thermomechanical finite element model of ice flow named ISSM (Ice Sheet System Model) that includes higher‐order stresses, high spatial resolution capability and data assimilation techniques to better capture ice dynamics and produce realistic simulations of ice sheet flow at the continental scale. ISSM includes several approximations of the momentum balance equations, ranging from the two‐dimensional SSA to the three‐dimensional full‐Stokes formulation. It also relies on a massively parallelized architecture and state‐of‐the‐art scalable tools. ISSM employs data assimilation techniques, at all levels of approximation of the momentum balance equations, to infer basal drag at the ice‐bed interface from satellite radar interferometry‐derived observations of ice motion. Following a validation of ISSM with standard benchmarks, we present a demonstration of its capability in the case of the Greenland Ice Sheet. We show ISSM is able to simulate the ice flow of an entire ice sheet realistically at a high spatial resolution, with higher‐order physics, thereby providing a pathway for improving projections of ice sheet evolution in a warming climate. Key Points Large scale capable, high resolution, finite element ice sheet/shelf flow model Higher order thermal/mechanical model, including full‐Stokes Continental scale inversion of basal friction on the Greenland Ice Sheet
AbstractList Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow‐Shelf Approximation (SSA), sometimes combined into so‐called “hybrid” models. Such models, while computationally efficient, are based on a simplified set of physical assumptions about the mechanical regime of the ice flow, which does not uniformly apply everywhere on the ice sheet/ice shelf system, especially near grounding lines, where rapid changes are taking place at present. Here, we present a new thermomechanical finite element model of ice flow named ISSM (Ice Sheet System Model) that includes higher‐order stresses, high spatial resolution capability and data assimilation techniques to better capture ice dynamics and produce realistic simulations of ice sheet flow at the continental scale. ISSM includes several approximations of the momentum balance equations, ranging from the two‐dimensional SSA to the three‐dimensional full‐Stokes formulation. It also relies on a massively parallelized architecture and state‐of‐the‐art scalable tools. ISSM employs data assimilation techniques, at all levels of approximation of the momentum balance equations, to infer basal drag at the ice‐bed interface from satellite radar interferometry‐derived observations of ice motion. Following a validation of ISSM with standard benchmarks, we present a demonstration of its capability in the case of the Greenland Ice Sheet. We show ISSM is able to simulate the ice flow of an entire ice sheet realistically at a high spatial resolution, with higher‐order physics, thereby providing a pathway for improving projections of ice sheet evolution in a warming climate. Large scale capable, high resolution, finite element ice sheet/shelf flow model Higher order thermal/mechanical model, including full‐Stokes Continental scale inversion of basal friction on the Greenland Ice Sheet
Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow-Shelf Approximation (SSA), sometimes combined into so-called "hybrid" models. Such models, while computationally efficient, are based on a simplified set of physical assumptions about the mechanical regime of the ice flow, which does not uniformly apply everywhere on the ice sheet/ice shelf system, especially near grounding lines, where rapid changes are taking place at present. Here, we present a new thermomechanical finite element model of ice flow named ISSM (Ice Sheet System Model) that includes higher-order stresses, high spatial resolution capability and data assimilation techniques to better capture ice dynamics and produce realistic simulations of ice sheet flow at the continental scale. ISSM includes several approximations of the momentum balance equations, ranging from the two-dimensional SSA to the three-dimensional full-Stokes formulation. It also relies on a massively parallelized architecture and state-of-the-art scalable tools. ISSM employs data assimilation techniques, at all levels of approximation of the momentum balance equations, to infer basal drag at the ice-bed interface from satellite radar interferometry-derived observations of ice motion. Following a validation of ISSM with standard benchmarks, we present a demonstration of its capability in the case of the Greenland Ice Sheet. We show ISSM is able to simulate the ice flow of an entire ice sheet realistically at a high spatial resolution, with higher-order physics, thereby providing a pathway for improving projections of ice sheet evolution in a warming climate.
Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow‐Shelf Approximation (SSA), sometimes combined into so‐called “hybrid” models. Such models, while computationally efficient, are based on a simplified set of physical assumptions about the mechanical regime of the ice flow, which does not uniformly apply everywhere on the ice sheet/ice shelf system, especially near grounding lines, where rapid changes are taking place at present. Here, we present a new thermomechanical finite element model of ice flow named ISSM (Ice Sheet System Model) that includes higher‐order stresses, high spatial resolution capability and data assimilation techniques to better capture ice dynamics and produce realistic simulations of ice sheet flow at the continental scale. ISSM includes several approximations of the momentum balance equations, ranging from the two‐dimensional SSA to the three‐dimensional full‐Stokes formulation. It also relies on a massively parallelized architecture and state‐of‐the‐art scalable tools. ISSM employs data assimilation techniques, at all levels of approximation of the momentum balance equations, to infer basal drag at the ice‐bed interface from satellite radar interferometry‐derived observations of ice motion. Following a validation of ISSM with standard benchmarks, we present a demonstration of its capability in the case of the Greenland Ice Sheet. We show ISSM is able to simulate the ice flow of an entire ice sheet realistically at a high spatial resolution, with higher‐order physics, thereby providing a pathway for improving projections of ice sheet evolution in a warming climate. Key Points Large scale capable, high resolution, finite element ice sheet/shelf flow model Higher order thermal/mechanical model, including full‐Stokes Continental scale inversion of basal friction on the Greenland Ice Sheet
Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow-Shelf Approximation (SSA), sometimes combined into so-called "hybrid" models. Such models, while computationally efficient, are based on a simplified set of physical assumptions about the mechanical regime of the ice flow, which does not uniformly apply everywhere on the ice sheet/ice shelf system, especially near grounding lines, where rapid changes are taking place at present. Here, we present a new thermomechanical finite element model of ice flow named ISSM (Ice Sheet System Model) that includes higher-order stresses, high spatial resolution capability and data assimilation techniques to better capture ice dynamics and produce realistic simulations of ice sheet flow at the continental scale. ISSM includes several approximations of the momentum balance equations, ranging from the two-dimensional SSA to the three-dimensional full-Stokes formulation. It also relies on a massively parallelized architecture and state-of-the-art scalable tools. ISSM employs data assimilation techniques, at all levels of approximation of the momentum balance equations, to infer basal drag at the ice-bed interface from satellite radar interferometry-derived observations of ice motion. Following a validation of ISSM with standard benchmarks, we present a demonstration of its capability in the case of the Greenland Ice Sheet. We show ISSM is able to simulate the ice flow of an entire ice sheet realistically at a high spatial resolution, with higher-order physics, thereby providing a pathway for improving projections of ice sheet evolution in a warming climate. Key Points Large scale capable, high resolution, finite element ice sheet/shelf flow model Higher order thermal/mechanical model, including full-Stokes Continental scale inversion of basal friction on the Greenland Ice Sheet
Author Morlighem, M.
Larour, E.
Seroussi, H.
Rignot, E.
Author_xml – sequence: 1
  givenname: E.
  surname: Larour
  fullname: Larour, E.
  email: Eric.Larour@jpl.nasa.gov
  organization: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
– sequence: 2
  givenname: H.
  surname: Seroussi
  fullname: Seroussi, H.
  organization: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
– sequence: 3
  givenname: M.
  surname: Morlighem
  fullname: Morlighem, M.
  organization: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
– sequence: 4
  givenname: E.
  surname: Rignot
  fullname: Rignot, E.
  organization: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25974238$$DView record in Pascal Francis
BookMark eNp90V1v0zAUBmALDYkydscPiEBIQ2rAX3Hiy6nQ0qkDqQUxcWM5ycnqkdrFdgX99zi0mtCkzRdxpPO8ydE5z9GJdRYQeknwO4KpfE8xIZdTjCnh-AkaUVKInFJMT9AIE17lmNLyGToL4RanwwvBMRkhP3E2Ggs26j4Lje5hnK3NzTpzvgV_fA9bHU2qewiu30Xj7DgzDWRhDRCzjWuhN_Ym24XhGdeQzVNx9a-42ocIm-xqMNn5fLW6evsCPe10H-DseJ-ib9OPXyef8sWX2XxyscibggqWV0zwCmtNodUt1x0VNZbQdp0gQjPS1VUrWY0JxXUBlZa8FoUuOtqVDZc1AXaKzg_f3Xr3awchqo0JDfS9tuB2QaWpcSGYFDzRV_fordt5m7pTUrAS00rIRxGtUruEFQm9fgiRkhIpMeM0qTdHpYeZd17bxgS19Waj_V7RQpZJVcmND67xLgQP3R0heOhfqv-3nji9xxsT9bCv6LXpHwqRQ-i36WH_6A_U5Ww5lYSlTH7ImLTdP3cZ7X8qUbKyUN8_z9Tymi0XH6of6pr9BRCHyrk
CitedBy_id crossref_primary_10_1017_jog_2022_66
crossref_primary_10_5194_tc_18_1139_2024
crossref_primary_10_1002_jgrf_20081
crossref_primary_10_1017_jog_2022_68
crossref_primary_10_1029_2012JF002371
crossref_primary_10_5194_gmd_7_883_2014
crossref_primary_10_1038_s41467_022_29529_5
crossref_primary_10_5194_tc_7_1659_2013
crossref_primary_10_1017_jog_2023_39
crossref_primary_10_5194_gmd_17_899_2024
crossref_primary_10_1038_s43247_022_00385_x
crossref_primary_10_1029_2012GL053317
crossref_primary_10_1088_1361_6420_acd719
crossref_primary_10_1002_2017GL073478
crossref_primary_10_5194_gmd_11_1683_2018
crossref_primary_10_5194_tc_15_1975_2021
crossref_primary_10_5194_tc_17_5027_2023
crossref_primary_10_5194_tc_7_1161_2013
crossref_primary_10_1007_s00382_022_06317_x
crossref_primary_10_1017_jog_2021_88
crossref_primary_10_1017_jog_2024_10
crossref_primary_10_1002_esp_5302
crossref_primary_10_1007_s10596_024_10329_3
crossref_primary_10_5194_tc_13_1621_2019
crossref_primary_10_5194_tc_19_1205_2025
crossref_primary_10_1017_aog_2019_41
crossref_primary_10_5194_gmd_10_155_2017
crossref_primary_10_5194_tc_14_3537_2020
crossref_primary_10_5194_tc_12_3187_2018
crossref_primary_10_1002_jgrf_20076
crossref_primary_10_1016_j_cageo_2020_104526
crossref_primary_10_1002_grl_50824
crossref_primary_10_1590_0001_3765202320210560
crossref_primary_10_1016_j_jcpx_2021_100090
crossref_primary_10_1038_s41467_023_39588_x
crossref_primary_10_5194_esd_9_1169_2018
crossref_primary_10_1029_2019RG000672
crossref_primary_10_1016_j_jcp_2024_113511
crossref_primary_10_1017_jfm_2018_624
crossref_primary_10_1017_jog_2022_63
crossref_primary_10_5194_gmd_14_2545_2021
crossref_primary_10_1002_jgrf_20062
crossref_primary_10_1017_jog_2023_13
crossref_primary_10_1029_2019JF005252
crossref_primary_10_1061__ASCE_HE_1943_5584_0000860
crossref_primary_10_5194_tc_12_1047_2018
crossref_primary_10_5194_gmd_10_4393_2017
crossref_primary_10_21105_joss_05584
crossref_primary_10_5194_tc_17_1585_2023
crossref_primary_10_1109_TGRS_2024_3446368
crossref_primary_10_3189_2015JoG14J174
crossref_primary_10_1029_2020GL092141
crossref_primary_10_1002_2016GL071538
crossref_primary_10_5194_tc_18_3991_2024
crossref_primary_10_5194_gmd_16_407_2023
crossref_primary_10_1017_jog_2020_8
crossref_primary_10_5194_tc_10_1965_2016
crossref_primary_10_5194_tc_9_179_2015
crossref_primary_10_1029_2020JF005921
crossref_primary_10_1073_pnas_1904822116
crossref_primary_10_5194_tc_11_1283_2017
crossref_primary_10_1002_pamm_202300260
crossref_primary_10_1002_wat2_1496
crossref_primary_10_1038_s43017_022_00348_y
crossref_primary_10_5194_cp_17_419_2021
crossref_primary_10_1029_2021GL093213
crossref_primary_10_5194_tc_17_2701_2023
crossref_primary_10_1002_2013JF002943
crossref_primary_10_5194_tc_13_2133_2019
crossref_primary_10_5194_tc_19_955_2025
crossref_primary_10_1038_s41550_022_01782_0
crossref_primary_10_1038_s41586_023_06863_2
crossref_primary_10_21105_joss_04679
crossref_primary_10_5194_tc_18_2613_2024
crossref_primary_10_5194_gmd_14_5107_2021
crossref_primary_10_1002_2017JB014423
crossref_primary_10_1016_j_procs_2016_05_470
crossref_primary_10_1029_2018GL079827
crossref_primary_10_5194_tc_10_193_2016
crossref_primary_10_5194_tc_17_3409_2023
crossref_primary_10_3189_2014JoG13J202
crossref_primary_10_1038_s41586_022_05037_w
crossref_primary_10_5194_gmd_15_3691_2022
crossref_primary_10_1029_2019GL084924
crossref_primary_10_1029_2020GL091790
crossref_primary_10_5194_gmd_11_4563_2018
crossref_primary_10_5194_tc_17_4705_2023
crossref_primary_10_5194_tc_12_3383_2018
crossref_primary_10_5194_tc_16_179_2022
crossref_primary_10_1016_j_epsl_2019_03_035
crossref_primary_10_5194_gmd_15_8269_2022
crossref_primary_10_1002_pamm_202400076
crossref_primary_10_1137_15M1040839
crossref_primary_10_5194_tc_14_599_2020
crossref_primary_10_3389_feart_2020_00105
crossref_primary_10_1017_jog_2022_12
crossref_primary_10_1061__ASCE_HE_1943_5584_0001585
crossref_primary_10_1016_j_jcp_2016_10_060
crossref_primary_10_1029_2024GL109168
crossref_primary_10_5194_se_5_569_2014
crossref_primary_10_5194_tc_6_589_2012
crossref_primary_10_1038_s41598_024_77486_4
crossref_primary_10_1002_2015RG000495
crossref_primary_10_1016_j_quascirev_2016_01_032
crossref_primary_10_1088_0034_4885_78_4_046801
crossref_primary_10_1126_sciadv_adi9014
crossref_primary_10_1002_2014JF003359
crossref_primary_10_5194_tc_14_2283_2020
crossref_primary_10_1016_j_quascirev_2020_106492
crossref_primary_10_5194_tc_8_2075_2014
crossref_primary_10_5194_gmd_16_5305_2023
crossref_primary_10_5194_gmd_9_3907_2016
crossref_primary_10_5194_tc_12_1433_2018
crossref_primary_10_1029_2021GL092450
crossref_primary_10_3189_2013JoG13J054
crossref_primary_10_1029_2017JF004561
crossref_primary_10_5194_tc_17_2851_2023
crossref_primary_10_1175_JCLI_D_12_00557_1
crossref_primary_10_1002_2017GL072648
crossref_primary_10_1073_pnas_2105080118
crossref_primary_10_3189_2013JoG12J129
crossref_primary_10_5194_gmd_9_1087_2016
crossref_primary_10_3189_2013JoG12J125
crossref_primary_10_1073_pnas_1512482112
crossref_primary_10_5194_tc_12_3511_2018
crossref_primary_10_1029_2019GL085672
crossref_primary_10_5194_gmd_12_387_2019
crossref_primary_10_1029_2022GL098009
crossref_primary_10_3189_2014AoG67A001
crossref_primary_10_1016_j_jcp_2013_06_032
crossref_primary_10_1016_j_epsl_2023_118077
crossref_primary_10_1016_j_quascirev_2016_01_013
crossref_primary_10_1017_jog_2016_100
crossref_primary_10_5194_tc_17_3667_2023
crossref_primary_10_1029_2024GL111386
crossref_primary_10_1029_2024EF004561
crossref_primary_10_5194_tc_16_2355_2022
crossref_primary_10_1017_jog_2021_38
crossref_primary_10_1016_j_jcp_2023_112428
crossref_primary_10_5194_esd_11_35_2020
crossref_primary_10_1126_science_1220530
crossref_primary_10_5194_tc_10_597_2016
crossref_primary_10_1002_2014JF003375
crossref_primary_10_1016_j_quascirev_2018_07_004
crossref_primary_10_1007_s40641_017_0073_y
crossref_primary_10_5194_gmd_8_3199_2015
crossref_primary_10_1029_2022GL098910
crossref_primary_10_1002_jgrf_20125
crossref_primary_10_5194_gmd_15_3753_2022
crossref_primary_10_5194_tc_7_1931_2013
crossref_primary_10_1029_2023GL103538
crossref_primary_10_1029_2022JE007193
crossref_primary_10_1126_science_aav7908
crossref_primary_10_5194_tc_17_4889_2023
crossref_primary_10_1029_2024JF007758
crossref_primary_10_5194_tc_19_303_2025
crossref_primary_10_1029_2021JF006332
crossref_primary_10_5194_gmd_14_2443_2021
crossref_primary_10_5194_gmd_17_4943_2024
crossref_primary_10_5194_tc_7_19_2013
crossref_primary_10_1002_2015JF003580
crossref_primary_10_5194_tc_12_3861_2018
crossref_primary_10_1016_j_epsl_2019_115961
crossref_primary_10_5194_gmd_12_1067_2019
crossref_primary_10_5194_tc_14_3071_2020
crossref_primary_10_3390_rs16111854
crossref_primary_10_1029_2018GL079751
crossref_primary_10_5194_tc_18_4873_2024
crossref_primary_10_5194_gmd_7_1_2014
crossref_primary_10_3189_2012JoG11J195
crossref_primary_10_1002_2014JF003157
crossref_primary_10_1029_2022JF006744
crossref_primary_10_5194_tc_10_497_2016
crossref_primary_10_5194_tc_16_1675_2022
crossref_primary_10_5194_tc_17_4661_2023
crossref_primary_10_5194_gmd_6_1299_2013
crossref_primary_10_1080_10556788_2017_1396602
crossref_primary_10_1029_2023GL107571
crossref_primary_10_1029_2021JF006429
crossref_primary_10_5194_gmd_11_3747_2018
crossref_primary_10_1002_2016JF004187
crossref_primary_10_5194_npg_21_569_2014
crossref_primary_10_5194_tc_8_2335_2014
crossref_primary_10_1016_j_jcp_2017_08_055
crossref_primary_10_1126_sciadv_adm7813
crossref_primary_10_5670_oceanog_2018_216
crossref_primary_10_1016_j_jcp_2015_04_047
crossref_primary_10_5194_gmd_15_1195_2022
crossref_primary_10_1002_2015GL067365
crossref_primary_10_5194_tc_12_1511_2018
crossref_primary_10_4208_cicp_310813_010414a
crossref_primary_10_1029_2021JF006439
crossref_primary_10_1029_2024JH000169
crossref_primary_10_5194_tc_8_1699_2014
crossref_primary_10_1016_j_epsl_2020_116718
crossref_primary_10_3389_feart_2018_00156
crossref_primary_10_5194_tc_16_761_2022
crossref_primary_10_5194_gmd_12_215_2019
crossref_primary_10_5194_tc_19_107_2025
crossref_primary_10_1002_2014JF003181
crossref_primary_10_3189_2013JoG12J182
crossref_primary_10_5194_tc_16_581_2022
crossref_primary_10_1029_2011JF002146
crossref_primary_10_5194_esd_8_283_2017
crossref_primary_10_1016_j_jcp_2015_12_025
crossref_primary_10_1016_j_quascirev_2024_108840
crossref_primary_10_1002_2016GL067695
crossref_primary_10_1016_j_jcp_2016_10_045
crossref_primary_10_3847_2041_8213_aab54f
crossref_primary_10_5194_tc_9_217_2015
crossref_primary_10_5194_tc_10_1055_2016
crossref_primary_10_5194_tc_12_3931_2018
crossref_primary_10_1175_BAMS_D_12_00100_1
crossref_primary_10_5194_tc_14_3309_2020
crossref_primary_10_1029_2019GL085228
crossref_primary_10_1002_wcc_285
crossref_primary_10_5194_gmd_12_933_2019
crossref_primary_10_1029_2020JB019560
crossref_primary_10_1017_jog_2024_63
crossref_primary_10_1126_sciadv_1700537
crossref_primary_10_1002_2014JF003178
crossref_primary_10_1214_19_AOAS1305
crossref_primary_10_1002_2017GL075174
crossref_primary_10_5194_gmd_16_2277_2023
crossref_primary_10_1002_2015JF003499
crossref_primary_10_5194_tc_13_723_2019
crossref_primary_10_1109_TGRS_2023_3255219
crossref_primary_10_1002_2017GL073309
crossref_primary_10_5194_tc_18_1381_2024
crossref_primary_10_5194_tc_16_4107_2022
crossref_primary_10_1016_j_quascirev_2013_07_033
crossref_primary_10_5194_gmd_13_4491_2020
crossref_primary_10_1029_2019GL086821
crossref_primary_10_1017_jog_2023_2
crossref_primary_10_1017_jog_2024_50
crossref_primary_10_5194_gmd_17_6227_2024
crossref_primary_10_1017_jog_2018_107
crossref_primary_10_5194_gmd_11_2955_2018
crossref_primary_10_5194_tc_14_2819_2020
crossref_primary_10_5194_tc_16_2265_2022
crossref_primary_10_1016_j_envsoft_2016_05_003
crossref_primary_10_5194_tc_16_451_2022
crossref_primary_10_5194_tc_17_4549_2023
crossref_primary_10_1029_2024GL111092
crossref_primary_10_1002_2016RG000545
crossref_primary_10_1002_2017GL072910
crossref_primary_10_1017_aog_2016_19
crossref_primary_10_1088_1742_6596_788_1_012051
crossref_primary_10_5194_gmd_13_2805_2020
crossref_primary_10_5194_tc_12_3085_2018
crossref_primary_10_5194_tc_10_1259_2016
crossref_primary_10_5194_tc_14_841_2020
crossref_primary_10_1029_2023GL106286
crossref_primary_10_1029_2021JF006249
crossref_primary_10_1038_s43247_021_00289_2
crossref_primary_10_3189_2013AoG63A085
crossref_primary_10_5194_tc_12_3735_2018
crossref_primary_10_5194_tc_13_879_2019
crossref_primary_10_1017_jog_2017_51
crossref_primary_10_5194_tc_16_397_2022
crossref_primary_10_1017_jog_2021_134
crossref_primary_10_5194_gmd_13_4925_2020
crossref_primary_10_5194_tc_8_2119_2014
crossref_primary_10_5194_tc_14_811_2020
crossref_primary_10_1029_2021GL095440
crossref_primary_10_5194_tc_11_1851_2017
crossref_primary_10_5194_tc_19_283_2025
crossref_primary_10_5194_tc_13_373_2019
crossref_primary_10_1029_2018JF004775
crossref_primary_10_5194_tc_11_117_2017
crossref_primary_10_1029_2018JF004774
crossref_primary_10_1093_gji_ggab452
crossref_primary_10_5194_gmd_8_1197_2015
crossref_primary_10_1016_j_nonrwa_2024_104197
crossref_primary_10_1093_gji_ggaf015
crossref_primary_10_1029_2022GL098539
crossref_primary_10_3390_rs13122361
crossref_primary_10_5194_tc_16_3723_2022
crossref_primary_10_1029_2019GL083532
crossref_primary_10_1017_jog_2022_5
crossref_primary_10_5194_tc_15_2647_2021
crossref_primary_10_1016_j_icarus_2023_115717
crossref_primary_10_1017_jog_2022_77
crossref_primary_10_1093_gji_ggae060
crossref_primary_10_5194_gmd_8_1275_2015
crossref_primary_10_1002_2014GL060140
crossref_primary_10_1017_jog_2017_61
crossref_primary_10_5194_gmd_13_955_2020
crossref_primary_10_1029_2022JF006958
crossref_primary_10_5194_tc_14_3349_2020
crossref_primary_10_1016_j_polar_2018_12_003
crossref_primary_10_1002_2016JF003842
crossref_primary_10_5194_tc_10_1753_2016
crossref_primary_10_5194_gmd_11_5003_2018
crossref_primary_10_1029_2024GL110691
crossref_primary_10_1029_2023JF007513
crossref_primary_10_5194_tc_11_281_2017
crossref_primary_10_5194_tc_15_215_2021
Cites_doi 10.1145/1250734.1250746
10.1029/2009GL038110
10.5194/tc-5-659-2011
10.5194/tc-2-95-2008
10.3189/172756409789624283
10.1145/1377596.1377598
10.1017/S0260305500013495
10.3189/172756407782282543
10.1142/S0218202504003866
10.1017/S0022143000029804
10.1137/0907058
10.1016/j.procs.2010.04.206
10.1017/S0022112006003570
10.1029/2010GL043334
10.3189/172756504781830088
10.1093/qjmam/hbp025
10.1137/1.9780898717570
10.3189/172756500781833412
10.1016/0167-8191(96)00024-5
10.1029/2002JB002329
10.2172/378911
10.3189/172756500781832891
10.1029/2008GL033365
10.5194/tc-5-315-2011
10.3189/002214309790152564
10.1038/nature07809
10.1016/0045-7825(81)90049-9
10.1029/2002JB002107
10.3189/172756494794587041
10.1098/rsta.2006.1800
10.1146/annurev.fl.14.010182.000511
10.3189/002214311795306745
10.1029/2010GL043201
10.3189/002214309790152537
10.1029/2004GL021693
10.1029/2003JF000065
10.1017/S0962492904000212
10.1007/978-94-009-3745-1_7
10.1017/S002214300001621X
10.1016/0045-7825(84)90158-0
10.1017/S0260305500011915
10.1017/S0022143000015744
10.1017/S0022143000024709
10.1016/j.gloplacha.2003.11.011
10.1016/j.epsl.2007.10.018
10.1029/2009JF001293
10.1016/j.parco.2005.07.004
10.1090/S0002-9904-1943-07818-4
10.1029/2011GL048659
10.5194/tc-2-67-2008
10.1029/2011GL047338
10.3189/172756400781820534
10.1029/2008JF001124
10.1126/science.1162543
10.3189/172756411799096312
10.1007/s003820050149
10.1017/S0260305500013288
10.1098/rspa.1955.0066
10.1007/978-1-4612-1986-6_8
10.1029/2001JD900054
10.1126/science.1208336
10.1029/96JC02775
10.3189/172756405781812510
10.1002/(SICI)1097-0363(20000330)32:6<725::AID-FLD935>3.0.CO;2-4
10.1007/BFb0014497
10.1029/91JB02454
10.1029/2008JF001170
10.1029/2006JF000664
10.1016/j.epsl.2004.04.011
10.1007/978-94-015-1167-4
10.1137/1.9780898719505
10.3189/002214310791968395
10.3189/S0260305500013197
10.1029/JB094iB04p04071
10.3189/002214310792447734
10.3189/002214389793701581
10.1029/2011JF001962
10.1137/S0895479899358194
10.1029/2007GL030980
10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2
10.1029/2010GL043853
ContentType Journal Article
Copyright Copyright 2012 by the American Geophysical Union
2015 INIST-CNRS
Copyright American Geophysical Union 2012
Copyright_xml – notice: Copyright 2012 by the American Geophysical Union
– notice: 2015 INIST-CNRS
– notice: Copyright American Geophysical Union 2012
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7ST
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
DOI 10.1029/2011JF002140
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
ProQuest Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Research Library Prep
Meteorological & Geoastrophysical Abstracts - Academic

Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9011
EndPage n/a
ExternalDocumentID 2624904031
2612317471
3835781811
25974238
10_1029_2011JF002140
JGRF913
ark_67375_WNG_RX3RLD8Z_X
Genre article
Feature
GeographicLocations polar regions
Antarctica
Greenland ice sheet
Arctic region
Greenland
PN, Greenland, Greenland Ice Sheet
GeographicLocations_xml – name: PN, Greenland, Greenland Ice Sheet
– name: Greenland
– name: Antarctica
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
05W
0R~
33P
3V.
52M
702
7ST
7TG
7UA
7XB
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ABJCF
ACGOD
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AFRAH
AIURR
ALVPJ
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
C1K
CCPQU
DPXWK
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
KL.
KR7
L.G
L6V
L7M
LEEKS
LK5
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PYCSY
Q9U
R.K
SOI
SUPJJ
WBKPD
ID FETCH-LOGICAL-c5263-836480aa2edad4af26b09edff616a31fb8d93b0120b5e8a94b65a5f2f7c49b1e3
IEDL.DBID BENPR
ISSN 0148-0227
2169-9003
IngestDate Fri Jul 11 16:53:45 EDT 2025
Fri Jul 25 10:57:02 EDT 2025
Fri Jul 25 11:08:36 EDT 2025
Fri Jul 25 11:15:28 EDT 2025
Mon Jul 21 09:16:06 EDT 2025
Tue Jul 01 02:42:23 EDT 2025
Thu Apr 24 22:57:46 EDT 2025
Wed Jan 22 16:55:06 EST 2025
Wed Oct 30 09:58:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue F1
Keywords projects
mass balance
simulation
ice
Modeling
dynamics
ice shelves
spatial resolution
Hybrid model
projection
satellites
Validation
stress
interfaces
interferometry
Satellite observation
finite element analysis
trajectory
ice sheets
Drag
standard samples
Radar observation
Ice shelf
radar methods
Data assimilation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5263-836480aa2edad4af26b09edff616a31fb8d93b0120b5e8a94b65a5f2f7c49b1e3
Notes ArticleID:2011JF002140
istex:258625D01261995B0BF64E504E0CBD777C31640E
Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.
ark:/67375/WNG-RX3RLD8Z-X
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Feature-1
ObjectType-Article-2
content type line 23
PQID 1721990342
PQPubID 54727
PageCount 20
ParticipantIDs proquest_miscellaneous_1024663964
proquest_journals_963702869
proquest_journals_928836135
proquest_journals_1721990342
pascalfrancis_primary_25974238
crossref_primary_10_1029_2011JF002140
crossref_citationtrail_10_1029_2011JF002140
wiley_primary_10_1029_2011JF002140_JGRF913
istex_primary_ark_67375_WNG_RX3RLD8Z_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2012
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: March 2012
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Earth Surface
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Amestoy, P. R., I. S. Duff, J. Koster, and J.-Y. L'Excellent (2001), A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 15-41.
Hutter, K. (1983), Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets, D. Reidel, Dordrecht, Netherlands.
Khazendar, A., E. Rignot, and E. Larour (2009), Roles of marine ice, rheology, and fracture in the flow and stability of the Brunt/Stancomb-Wills Ice Shelf, J. Geophys. Res., 114, F04007, doi:10.1029/2008JF001124.
Le Brocq, A., A. Payne, M. Siegert, and R. Alley (2009), A subglacial water-flow model for west Antarctica, J. Glaciol., 55(193), 879-888.
Karypis, G., and V. Kumar (1998), A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Univ. of Minnesota, Minneapolis.
De Smedt, B., F. Pattyn, and P. De Groen (2010), Using the unstable manifold correction in a Picard iteration to solve the velocity field in higher-order ice-flow models, J. Glaciol., 56, 257-261.
Nowicki, S. M. J., and D. J. Wingham (2008), Conditions for a steady ice sheet-ice shelf junction, Earth Planet. Sci. Lett., 265, 246-255.
Huybrechts, P., J. Gregory, I. Janssens, and M. Wild (2003), Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations, Global Planet. Change, 42, 83-105.
Gresho, P. M., and R. L. Sani (2000b), Incompressible Flow and the Finite Element Method, Volume 2: Isothermal Laminar Flow, Wiley, New York.
Utke, J., U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and C. Wunsch (2008), OpenAD/F: A modular open-source tool for automatic differentiation of Fortran codes, ACM Trans. Math. Softw., 34, 1-36, doi:10.1145/1377596.1377598.
Payne, A., et al. (2000), Results from the EISMINT model intercomparison: The effects of thermomechanical coupling, J. Glaciol., 46, 227-238.
Schoof, C. (2007b), Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res., 112, F03S28, doi:10.1029/2006JF000664.
Alley, R., H. Horgan, I. Joughin, K. Cuffey, T. Dupont, B. Parizek, S. Anandakrishnan, and J. Bassis (2008), A simple law for ice-shelf calving, Science, 322, 1344, doi:10.1126/science.1162543.
Pattyn, F., et al. (2008), Benchmark experiments for higher-order and full-stokes ice sheet models (ISMIP-HOM), Cryosphere, 2, 95-108.
MacAyeal, D. (1989), Large-scale ice flow over a viscous basal sediment: Theory and application to Ice Stream-B, Antarctica, J. Geophys. Res., 94, 4071-4087.
Gagliardini, O., and T. Zwinger (2008), The ISMIP-HOM benchmark experiments performed using the finite-element code Elmer, Cryosphere, 2, 67-76.
Khazendar, A., E. Rignot, and E. Larour (2007), Larsen B Ice Shelf rheology preceding its disintegration inferred by a control method, Geophys. Res. Lett., 34, L19503, doi:10.1029/2007GL030980.
Hutter, K. (1982), Dynamics of glaciers and large ice masses, Ann. Rev. Fluid Mech., 14, 87-130.
Morlighem, M., E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry (2010), Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica, Geophys. Res. Lett., 37, L14502, doi:10.1029/2010GL043853.
International Panel on Climate Change (IPCC) (2007), Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. K. Pachauri et al., Geneva, Switzerland.
Gudmundsson, G. (2003), Transmission of basal variability to a glacier surface, J. Geophys. Res., 108(B5), 2253, doi:10.1029/2002JB002107.
Shewchuk, J. R. (2001), Delaunay refinement algorithms for triangular mesh generation, Comput. Geometry, 22, 1-3.
Pollard, D., and R. DeConto (2009), Modelling West Antarctica ice sheet growth and collapse through the past five million years, Nature, 458, 329-332.
Gresho, P. M., and R. L. Sani (2000a), Incompressible Flow and the Finite Element Method, Volume 1: Advection-diffusion, Wiley, New York.
Jay-Allemand, M., F. Gillet-Chaulet, O. Gagliardini, and M. Nodet (2011), Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982-1983 surge, Cryosphere, 5, 659-672.
Brezzi, F., L. Marini, and E. Suli (2004), Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci., 14, 1893-1903.
Huybrechts, P., A. Payne, and the EISMINT Intercomparison Group (1996), The EISMINT benchmarks for testing ice-sheet models, Ann. Glaciol., 23, 1-14.
Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey (1997), A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753-5766.
Rignot, E. (2008), Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data, Geophys. Res. Lett., 35, L12505, doi:10.1029/2008GL033365.
MacAyeal, D. (1993), A tutorial on the use of control methods in ice-sheet modeling, J. Glaciol., 39, 91-98.
Narayanan, S. H. K., B. Norris, and B. Winnicka (2010), ADIC2: Development of a component source transformation system for differentiating C and C++, Procedia Comp. Sci., 1, 1845-1853.
Vieli, A., A. J. Payne, Z. Du, and A. Shepherd (2006), Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic peninsula, Philos. Trans R. Soc. A, 364, 1815-1839.
Burgess, E. W., R. R. Forster, J. E. Box, E. Mosley-Thompson, D. H. Bromwich, R. C. Bales, and L. C. Smith (2010), A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958-2007), J. Geophys. Res., 115, F02004, doi:10.1029/2009JF001293.
Gropp, W., and E. Lusk (1996), User's Guide for mpich, a Portable Implementation of MPI, Tech. Rep. aNL-96/6, Argonne Natl. Lab., Argonne, Ill.
Hughes, T., W. Liu, and T. Zimmermann (1981), Lagrangian-Eulerian finite-element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Eng., 29, 329-349.
Hindmarsh, R., and A. Payne (1996), Titne-step limits for stable solutions of the ice-sheet equation, Ann. Glaciol., 23, 74-85.
Rignot, E., J. Mouginot, and B. Scheuchl (2011), Ice flow of the Antarctic Ice Sheet, Science, 333, 1427-1430.
Weertman, J. (1957), On the sliding of glaciers, J. Glaciol., 3, 33-38.
Box, J., and D. Decker (2010), Analysis of Greenland marine-terminating glacier area changes: 2000-2010, Ann. Glaciol., 52, 91-98.
Durand, G., O. Gagliardini, T. Zwinger, E. Le Meur, and R. Hindmarsh (2009b), Full Stokes modeling of marine ice sheets: Influence of the grid size, Ann. Glaciol., 50, 109-114.
Paterson, W. (1994), The Physics of Glaciers, 3rd ed., Pergamon Press, New York.
Johnson, C., U. Navert, and J. Pitkaranta (1984), Finite-element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Eng., 45, 285-312.
Bamber, J., R. Hardy, and I. Jougin (2000), An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry, J. Glaciol., 46, 67-74.
MacAyeal, D. (1992), The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods, J. Geophys. Res., 97, 595-603.
Schoof, C., and R. Hindmarsh (2010), Thin-film flows with wall slip: An asymptotic analysis of higher order glacier flow models, Q. J. Mech. Appl. Math., 63, 73-114.
Rommelaere, V., and D. MacAyeal (1997), Large-scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method, Ann. Glaciol., 24, 43-48.
Morlighem, M., E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry (2011), A mass conservation approach for mapping glacier ice thickness, Geophys. Res. Lett., 38, L19503, doi:10.1029/2011GL048659.
Stroustrup, B. (1997), The C++ Programming Language, 3rd ed., Addison-Wesley, Reading, Mass.
Amestoy, P. R., A. Guermouche, J.-Y. L'Excellent, and S. Pralet (2006), Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 136-156.
Goldberg, D. N., and O. V. Sergienko (2011), Data assimilation using a hybrid ice flow model, Cryosphere, 5, 315-327.
Seroussi, H., M. Morlighem, E. Rignot, E. Larour, D. Aubry, H. Ben Dhia, and S. S. Kristensen (2011), Ice flux divergence anomalies on 79north Glacier, Greenland, Geophys. Res. Lett., 38, L09501, doi:10.1029/2011GL047338.
Blatter, H. (1995), Velocity and stress-fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333-344.
Greve, R. (2005), Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet, Ann. Glaciol., 42, 424-432.
Courant, R. (1943), Variational methods for the solution of problems of equilibrium and vibrations, Bull. Am. Math. Soc., 49, 1-23.
Durand, G., O. Gagliardini, B. deFleurian, T. Zwinger, and E. Le Meur (2009a), Marine ice sheet dynamics: Hysteresis and neutral equilibrium, J. Geophys. Res., 114, F03009, doi:10.1029/2008JF001170.
Schoof, C. (2007a), Marine ice-sheet dynamics. Part 1. The case of rapid sliding, J. Fluid Mech., 573, 27-55.
Lestringant, R. (1994), A two-dimensional finite-element study of flow in the transition zone between an ice sheet and an ice shelf, Ann. Glaciol., 20, 67-72.
Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869.
Pattyn, F. (1996), Numerical modelling of a fast-flowing outlet glacier: Experiments with different basal conditions, Ann. Glaciol., 23, 237-246.
Bassis, J. N. (2011), The statistical physics of iceberg calving and the emergence of universal calving laws, J. Glaciol., 57, 3-16.
Leng, W., L. Ju, M. Gunzburger, T. Ringler, and S. Price (2010), A parallel high-order accurate finite element nonlinear Stokes ice-sheet model and benchmark experiments, J. Geophys. Res., 117, F01001, doi:10.1029/2011JF001962.
Payne, A., and D. Baldwin (2000), Analysis of ice-flow instabilities identified in the EISMINT inter
2010; 56
1982; 14
2006; 32
2000; 46
2008; 34
2008; 35
2011; 57
1992; 97
2008; 2
2008; 265
2007; 34
2009; 114
2010; 63
2001; 106
1994; 20
1997; 102
2009; 55
1979; 23
1993; 39
2010; 1
2001
1986; 7
2000
2009; 50
2010; 117
2010; 115
2007; 573
1997; 13
1987
1943; 49
2005; 32
1983
1989; 35
2003; 42
2006; 364
1996; 23
1996; 22
1988
2011; 333
2010; 37
2004; 223
2010
1999; 29
1984; 45
1997; 24
2009
1998
1997
2008
2005; 42
1996
2007
2006
1981; 29
1994
2005
2004
2008; 322
2002
2004; 109
2001; 22
2001; 23
2011; 38
2011; 5
1957; 3
2009; 458
1995; 41
2009; 36
2007; 112
1989; 94
2003; 108
2004; 50
1996; 1148
2004; 14
2000; 32
1955; 228
2000; 30
2007; 45
2010; 52
2005; 14
e_1_2_10_44_1
e_1_2_10_40_1
Pilato C. M. (e_1_2_10_77_1) 2008
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_51_1
Gresho P. M. (e_1_2_10_31_1) 2000
Paterson W. (e_1_2_10_71_1) 1994
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
Vaughan G. V. (e_1_2_10_96_1) 2000
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
Donea J. (e_1_2_10_21_1) 2004
Kernighan B. W. (e_1_2_10_53_1) 1988
Gresho P. M. (e_1_2_10_32_1) 2000
e_1_2_10_60_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
Stroustrup B. (e_1_2_10_92_1) 1997
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_72_1
e_1_2_10_95_1
Cuffey K. (e_1_2_10_19_1) 2010
e_1_2_10_4_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
Shewchuk J. R. (e_1_2_10_91_1) 2001; 22
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
Karypis G. (e_1_2_10_52_1) 1998
e_1_2_10_73_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_81_1
International Panel on Climate Change (IPCC) (e_1_2_10_47_1) 2007
e_1_2_10_62_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_89_1
References_xml – reference: Walter, F., S. O'Neel, D. McNamara, W. T. Pfeffer, J. N. Bassis, and H. A. Fricker (2010), Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska, Geophys. Res. Lett., 37, L15501, doi:10.1029/2010GL043201.
– reference: De Smedt, B., F. Pattyn, and P. De Groen (2010), Using the unstable manifold correction in a Picard iteration to solve the velocity field in higher-order ice-flow models, J. Glaciol., 56, 257-261.
– reference: Hindmarsh, R., and A. Payne (1996), Titne-step limits for stable solutions of the ice-sheet equation, Ann. Glaciol., 23, 74-85.
– reference: Jay-Allemand, M., F. Gillet-Chaulet, O. Gagliardini, and M. Nodet (2011), Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982-1983 surge, Cryosphere, 5, 659-672.
– reference: MacAyeal, D. (1989), Large-scale ice flow over a viscous basal sediment: Theory and application to Ice Stream-B, Antarctica, J. Geophys. Res., 94, 4071-4087.
– reference: Schoof, C. (2007b), Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res., 112, F03S28, doi:10.1029/2006JF000664.
– reference: Habashi, W., J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin, and M. Vallet (2000), Anisotropic mesh adaptation: Towards user-independent, mesh-independent, and solver-independent CFD. Part I: General principles, Int. J. Numer. Meth. Eng., 32, 725-744.
– reference: Zwinger, T., R. Greve, O. Gagliardini, T. Shiraiwa, and M. Lyly (2007), A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka, Ann. Glaciol., 45, 29-37.
– reference: Greve, R. (2005), Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet, Ann. Glaciol., 42, 424-432.
– reference: Khazendar, A., E. Rignot, and E. Larour (2007), Larsen B Ice Shelf rheology preceding its disintegration inferred by a control method, Geophys. Res. Lett., 34, L19503, doi:10.1029/2007GL030980.
– reference: Morlighem, M., E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry (2010), Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica, Geophys. Res. Lett., 37, L14502, doi:10.1029/2010GL043853.
– reference: Schoof, C. (2007a), Marine ice-sheet dynamics. Part 1. The case of rapid sliding, J. Fluid Mech., 573, 27-55.
– reference: Le Brocq, A., A. Payne, M. Siegert, and R. Alley (2009), A subglacial water-flow model for west Antarctica, J. Glaciol., 55(193), 879-888.
– reference: Glen, J. (1955), The creep of polycrystalline ice, Proc. R. Soc. A, 228, 519-538.
– reference: Rignot, E., J. Mouginot, and B. Scheuchl (2011), Ice flow of the Antarctic Ice Sheet, Science, 333, 1427-1430.
– reference: Brezzi, F., L. Marini, and E. Suli (2004), Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci., 14, 1893-1903.
– reference: Gudmundsson, G. (2003), Transmission of basal variability to a glacier surface, J. Geophys. Res., 108(B5), 2253, doi:10.1029/2002JB002107.
– reference: Leng, W., L. Ju, M. Gunzburger, T. Ringler, and S. Price (2010), A parallel high-order accurate finite element nonlinear Stokes ice-sheet model and benchmark experiments, J. Geophys. Res., 117, F01001, doi:10.1029/2011JF001962.
– reference: Burgess, E. W., R. R. Forster, J. E. Box, E. Mosley-Thompson, D. H. Bromwich, R. C. Bales, and L. C. Smith (2010), A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958-2007), J. Geophys. Res., 115, F02004, doi:10.1029/2009JF001293.
– reference: Rommelaere, V., and D. MacAyeal (1997), Large-scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method, Ann. Glaciol., 24, 43-48.
– reference: Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey (1997), A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753-5766.
– reference: Utke, J., U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and C. Wunsch (2008), OpenAD/F: A modular open-source tool for automatic differentiation of Fortran codes, ACM Trans. Math. Softw., 34, 1-36, doi:10.1145/1377596.1377598.
– reference: Hutter, K. (1983), Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets, D. Reidel, Dordrecht, Netherlands.
– reference: Pattyn, F., et al. (2008), Benchmark experiments for higher-order and full-stokes ice sheet models (ISMIP-HOM), Cryosphere, 2, 95-108.
– reference: Blatter, H. (1995), Velocity and stress-fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333-344.
– reference: Joughin, I., B. Smith, I. Howat, T. Scambos, and T. Moon (2010), Greenland flow variability from ice-sheet-wide velocity mapping, J. Glaciol., 56, 416-430.
– reference: Karypis, G., and V. Kumar (1998), A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Univ. of Minnesota, Minneapolis.
– reference: Cuffey, K., and W. S. B. Paterson (2010), The Physics of Glaciers, 4th ed., Elsevier, Burlington, Mass.
– reference: MacAyeal, D. (1992), The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods, J. Geophys. Res., 97, 595-603.
– reference: Pattyn, F. (2003), A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes, J. Geophys. Res., 108(B8), 2382, doi:10.1029/2002JB002329.
– reference: Huybrechts, P., J. Gregory, I. Janssens, and M. Wild (2003), Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations, Global Planet. Change, 42, 83-105.
– reference: Huybrechts, P., A. Payne, and the EISMINT Intercomparison Group (1996), The EISMINT benchmarks for testing ice-sheet models, Ann. Glaciol., 23, 1-14.
– reference: Gropp, W., and E. Lusk (1996), User's Guide for mpich, a Portable Implementation of MPI, Tech. Rep. aNL-96/6, Argonne Natl. Lab., Argonne, Ill.
– reference: Vogel, C. R. (2002), Computational Methods for Inverse Problems, Soc. Ind. Appl. Math., Philadelphia, Pa.
– reference: Budd, W. F., P. Keage, and N. Blundy (1979), Empirical studies of ice sliding, J. Glaciol., 23, 157-170.
– reference: Bamber, J., R. Hardy, and I. Jougin (2000), An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry, J. Glaciol., 46, 67-74.
– reference: Lestringant, R. (1994), A two-dimensional finite-element study of flow in the transition zone between an ice sheet and an ice shelf, Ann. Glaciol., 20, 67-72.
– reference: Schoof, C., and R. Hindmarsh (2010), Thin-film flows with wall slip: An asymptotic analysis of higher order glacier flow models, Q. J. Mech. Appl. Math., 63, 73-114.
– reference: Briggs, W., V. Henson, and S. McCormick (2000), A Multigrid Tutorial, 2nd ed., Soc. Ind. Appl. Math., Philadelphia, Pa.
– reference: Durand, G., O. Gagliardini, T. Zwinger, E. Le Meur, and R. Hindmarsh (2009b), Full Stokes modeling of marine ice sheets: Influence of the grid size, Ann. Glaciol., 50, 109-114.
– reference: Fausto, R., A. Ahlstrøm, D. vanAs, S. Johnsen, P. Langen, and S. Konrad (2009), Improving surface boundary conditions with focus on coupling snow densification and meltwater retention in large-scale ice-sheet models of Greenland, J. Glaciol., 55, 869-878.
– reference: Larour, E., E. Rignot, I. Joughin, and D. Aubry (2005), Rheology of the Ronne Ice Shelf, Antarctica, inferred from satellite radar interferometry data using an inverse control method, Geophys. Res. Lett., 32, L05503, doi:10.1029/2004GL021693.
– reference: Hutter, K. (1982), Dynamics of glaciers and large ice masses, Ann. Rev. Fluid Mech., 14, 87-130.
– reference: Alley, R., H. Horgan, I. Joughin, K. Cuffey, T. Dupont, B. Parizek, S. Anandakrishnan, and J. Bassis (2008), A simple law for ice-shelf calving, Science, 322, 1344, doi:10.1126/science.1162543.
– reference: Pollard, D., and R. DeConto (2009), Modelling West Antarctica ice sheet growth and collapse through the past five million years, Nature, 458, 329-332.
– reference: Amestoy, P. R., I. S. Duff, J. Koster, and J.-Y. L'Excellent (2001), A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 15-41.
– reference: Morlighem, M., E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry (2011), A mass conservation approach for mapping glacier ice thickness, Geophys. Res. Lett., 38, L19503, doi:10.1029/2011GL048659.
– reference: International Panel on Climate Change (IPCC) (2007), Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. K. Pachauri et al., Geneva, Switzerland.
– reference: Pattyn, F. (1996), Numerical modelling of a fast-flowing outlet glacier: Experiments with different basal conditions, Ann. Glaciol., 23, 237-246.
– reference: Ritz, C., A. Fabre, and A. Letreguilly (1997), Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: Consequences for the evolution through the last climatic cycle, Clim. Dyn., 13, 11-24.
– reference: Durand, G., O. Gagliardini, B. deFleurian, T. Zwinger, and E. Le Meur (2009a), Marine ice sheet dynamics: Hysteresis and neutral equilibrium, J. Geophys. Res., 114, F03009, doi:10.1029/2008JF001170.
– reference: Gagliardini, O., G. Durand, T. Zwinger, R. C. A. Hindmarsh, and E. Le Meur (2010), Coupling of ice-shelf melting and buttressing is a key process in ice-sheets dynamics, Geophys. Res. Lett., 37, L14501, doi:10.1029/2010GL043334.
– reference: Ettema, J., M. R. vanden Broeke, E. vanMeijgaard, W. J. van deBerg, J. L. Bamber, J. E. Box, and R. C. Bales (2009), Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling, Geophys. Res. Lett., 36, L12501, doi:10.1029/2009GL038110.
– reference: Weertman, J. (1957), On the sliding of glaciers, J. Glaciol., 3, 33-38.
– reference: Vaughan, G. V., B. Elliston, T. Tromey, and I. L. Taylor (2000), GNU Autoconf, Automake, and Libtool, New Riders, Indianapolis, Indiana.
– reference: Goldberg, D. N., and O. V. Sergienko (2011), Data assimilation using a hybrid ice flow model, Cryosphere, 5, 315-327.
– reference: Hughes, T., W. Liu, and T. Zimmermann (1981), Lagrangian-Eulerian finite-element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Eng., 29, 329-349.
– reference: Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869.
– reference: Amestoy, P. R., A. Guermouche, J.-Y. L'Excellent, and S. Pralet (2006), Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 136-156.
– reference: Payne, A., et al. (2000), Results from the EISMINT model intercomparison: The effects of thermomechanical coupling, J. Glaciol., 46, 227-238.
– reference: Gropp, W., E. Lusk, N. Doss, and A. Skjellum (1996), A high-performance, portable implementation of the MPI message passing interface standard, Parallel Comput., 22, 789-828.
– reference: Truffer, M. (2004), The basal speed of valley glaciers: An inverse approach, J. Glaciol., 50, 236-242.
– reference: Stroustrup, B. (1997), The C++ Programming Language, 3rd ed., Addison-Wesley, Reading, Mass.
– reference: Box, J., and D. Decker (2010), Analysis of Greenland marine-terminating glacier area changes: 2000-2010, Ann. Glaciol., 52, 91-98.
– reference: MacAyeal, D. (1993), A tutorial on the use of control methods in ice-sheet modeling, J. Glaciol., 39, 91-98.
– reference: Johnson, C., U. Navert, and J. Pitkaranta (1984), Finite-element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Eng., 45, 285-312.
– reference: Pilato, C. M., B. Collins-Sussman, and B. W. Fitzpatrick (2008), Version Control With Subversion, 2nd ed., O'Reilly Media, Sebastopol, Calif.
– reference: Bamber, J., R. Layberry, and S. Gogineni (2001), A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors, J. Geophys. Res., 106, 33,773-33,780.
– reference: Gresho, P. M., and R. L. Sani (2000b), Incompressible Flow and the Finite Element Method, Volume 2: Isothermal Laminar Flow, Wiley, New York.
– reference: Shewchuk, J. R. (2001), Delaunay refinement algorithms for triangular mesh generation, Comput. Geometry, 22, 1-3.
– reference: Seroussi, H., M. Morlighem, E. Rignot, E. Larour, D. Aubry, H. Ben Dhia, and S. S. Kristensen (2011), Ice flux divergence anomalies on 79north Glacier, Greenland, Geophys. Res. Lett., 38, L09501, doi:10.1029/2011GL047338.
– reference: Narayanan, S. H. K., B. Norris, and B. Winnicka (2010), ADIC2: Development of a component source transformation system for differentiating C and C++, Procedia Comp. Sci., 1, 1845-1853.
– reference: Paterson, W. (1994), The Physics of Glaciers, 3rd ed., Pergamon Press, New York.
– reference: Rignot, E. (2008), Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data, Geophys. Res. Lett., 35, L12505, doi:10.1029/2008GL033365.
– reference: Benzi, M., G. Golub, and J. Liesen (2005), Numerical solution of saddle point problems, Acta Numer., 14, 1-137.
– reference: Vieli, A., A. J. Payne, Z. Du, and A. Shepherd (2006), Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic peninsula, Philos. Trans R. Soc. A, 364, 1815-1839.
– reference: Courant, R. (1943), Variational methods for the solution of problems of equilibrium and vibrations, Bull. Am. Math. Soc., 49, 1-23.
– reference: Hindmarsh, R. (2004), A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling, J. Geophys. Res., 109, F01012, doi:10.1029/2003JF000065.
– reference: Shapiro, N., and M. Ritzwoller (2004), Inferring surface heat flux distributions guided by a global seismic model: Particular application to Antarctica, Earth Planet. Sci. Lett., 223, 213-224.
– reference: van derVeen, C. J., and I. M. Whillans (1989), Force budget: I. Theory and numerical methods, J. Glaciol., 35, 53-60.
– reference: Gagliardini, O., and T. Zwinger (2008), The ISMIP-HOM benchmark experiments performed using the finite-element code Elmer, Cryosphere, 2, 67-76.
– reference: Holland, D., and A. Jenkins (1999), Modeling thermodynamic ice-ocean interactions at the base of an ice shelf, J. Phys. Oceanogr., 29, 1787-1800.
– reference: Kernighan, B. W. (1988), The C Programming Language, 2nd ed., Prentice Hall, Englewood Cliffs, N. J.
– reference: Bassis, J. N. (2011), The statistical physics of iceberg calving and the emergence of universal calving laws, J. Glaciol., 57, 3-16.
– reference: Payne, A., and D. Baldwin (2000), Analysis of ice-flow instabilities identified in the EISMINT inter-comparison exercise, Ann. Glaciol., 30, 204-210.
– reference: Gresho, P. M., and R. L. Sani (2000a), Incompressible Flow and the Finite Element Method, Volume 1: Advection-diffusion, Wiley, New York.
– reference: Nowicki, S. M. J., and D. J. Wingham (2008), Conditions for a steady ice sheet-ice shelf junction, Earth Planet. Sci. Lett., 265, 246-255.
– reference: Khazendar, A., E. Rignot, and E. Larour (2009), Roles of marine ice, rheology, and fracture in the flow and stability of the Brunt/Stancomb-Wills Ice Shelf, J. Geophys. Res., 114, F04007, doi:10.1029/2008JF001124.
– year: 2009
– volume: 37
  year: 2010
  article-title: Coupling of ice‐shelf melting and buttressing is a key process in ice‐sheets dynamics
  publication-title: Geophys. Res. Lett.
– start-page: 117
  year: 1987
  end-page: 140
– volume: 41
  start-page: 333
  year: 1995
  end-page: 344
  article-title: Velocity and stress‐fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients
  publication-title: J. Glaciol.
– volume: 23
  start-page: 74
  year: 1996
  end-page: 85
  article-title: Titne‐step limits for stable solutions of the ice‐sheet equation
  publication-title: Ann. Glaciol.
– year: 2005
– volume: 223
  start-page: 213
  year: 2004
  end-page: 224
  article-title: Inferring surface heat flux distributions guided by a global seismic model: Particular application to Antarctica
  publication-title: Earth Planet. Sci. Lett.
– volume: 45
  start-page: 29
  year: 2007
  end-page: 37
  article-title: A full Stokes‐flow thermo‐mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka
  publication-title: Ann. Glaciol.
– volume: 94
  start-page: 4071
  year: 1989
  end-page: 4087
  article-title: Large‐scale ice flow over a viscous basal sediment: Theory and application to Ice Stream‐B, Antarctica
  publication-title: J. Geophys. Res.
– start-page: 163
  year: 1997
  end-page: 202
– year: 2001
– volume: 55
  start-page: 869
  year: 2009
  end-page: 878
  article-title: Improving surface boundary conditions with focus on coupling snow densification and meltwater retention in large‐scale ice‐sheet models of Greenland
  publication-title: J. Glaciol.
– volume: 102
  start-page: 5753
  year: 1997
  end-page: 5766
  article-title: A finite‐volume, incompressible Navier Stokes model for studies of the ocean on parallel computers
  publication-title: J. Geophys. Res.
– volume: 108
  issue: B5
  year: 2003
  article-title: Transmission of basal variability to a glacier surface
  publication-title: J. Geophys. Res.
– start-page: 89
  year: 2007
  end-page: 100
– volume: 50
  start-page: 236
  year: 2004
  end-page: 242
  article-title: The basal speed of valley glaciers: An inverse approach
  publication-title: J. Glaciol.
– volume: 112
  year: 2007
  article-title: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis
  publication-title: J. Geophys. Res.
– volume: 5
  start-page: 315
  year: 2011
  end-page: 327
  article-title: Data assimilation using a hybrid ice flow model
  publication-title: Cryosphere
– volume: 38
  year: 2011
  article-title: Ice flux divergence anomalies on 79north Glacier, Greenland
  publication-title: Geophys. Res. Lett.
– year: 1994
– volume: 333
  start-page: 1427
  year: 2011
  end-page: 1430
  article-title: Ice flow of the Antarctic Ice Sheet
  publication-title: Science
– volume: 57
  start-page: 3
  year: 2011
  end-page: 16
  article-title: The statistical physics of iceberg calving and the emergence of universal calving laws
  publication-title: J. Glaciol.
– year: 1998
– volume: 50
  start-page: 109
  year: 2009
  end-page: 114
  article-title: Full Stokes modeling of marine ice sheets: Influence of the grid size
  publication-title: Ann. Glaciol.
– volume: 63
  start-page: 73
  year: 2010
  end-page: 114
  article-title: Thin‐film flows with wall slip: An asymptotic analysis of higher order glacier flow models
  publication-title: Q. J. Mech. Appl. Math.
– volume: 228
  start-page: 519
  year: 1955
  end-page: 538
  article-title: The creep of polycrystalline ice
  publication-title: Proc. R. Soc. A
– volume: 20
  start-page: 67
  year: 1994
  end-page: 72
  article-title: A two‐dimensional finite‐element study of flow in the transition zone between an ice sheet and an ice shelf
  publication-title: Ann. Glaciol.
– volume: 22
  start-page: 1
  year: 2001
  end-page: 3
  article-title: Delaunay refinement algorithms for triangular mesh generation
  publication-title: Comput. Geometry
– volume: 37
  year: 2010
  article-title: Spatial patterns of basal drag inferred using control methods from a full‐Stokes and simpler models for Pine Island Glacier, West Antarctica
  publication-title: Geophys. Res. Lett.
– volume: 37
  year: 2010
  article-title: Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska
  publication-title: Geophys. Res. Lett.
– volume: 29
  start-page: 1787
  year: 1999
  end-page: 1800
  article-title: Modeling thermodynamic ice‐ocean interactions at the base of an ice shelf
  publication-title: J. Phys. Oceanogr.
– year: 2008
– volume: 106
  start-page: 33,773
  year: 2001
  end-page: 33,780
  article-title: A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors
  publication-title: J. Geophys. Res.
– year: 1997
– volume: 52
  start-page: 91
  year: 2010
  end-page: 98
  article-title: Analysis of Greenland marine‐terminating glacier area changes: 2000–2010
  publication-title: Ann. Glaciol.
– volume: 114
  year: 2009
  article-title: Roles of marine ice, rheology, and fracture in the flow and stability of the Brunt/Stancomb‐Wills Ice Shelf
  publication-title: J. Geophys. Res.
– volume: 2
  start-page: 95
  year: 2008
  end-page: 108
  article-title: Benchmark experiments for higher‐order and full‐stokes ice sheet models (ISMIP‐HOM)
  publication-title: Cryosphere
– volume: 14
  start-page: 1893
  year: 2004
  end-page: 1903
  article-title: Discontinuous Galerkin methods for first‐order hyperbolic problems
  publication-title: Math. Models Methods Appl. Sci.
– volume: 5
  start-page: 659
  year: 2011
  end-page: 672
  article-title: Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982–1983 surge
  publication-title: Cryosphere
– volume: 45
  start-page: 285
  year: 1984
  end-page: 312
  article-title: Finite‐element methods for linear hyperbolic problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 32
  year: 2005
  article-title: Rheology of the Ronne Ice Shelf, Antarctica, inferred from satellite radar interferometry data using an inverse control method
  publication-title: Geophys. Res. Lett.
– volume: 35
  year: 2008
  article-title: Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data
  publication-title: Geophys. Res. Lett.
– volume: 46
  start-page: 67
  year: 2000
  end-page: 74
  article-title: An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry
  publication-title: J. Glaciol.
– volume: 115
  year: 2010
  article-title: A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958–2007)
  publication-title: J. Geophys. Res.
– year: 1983
– volume: 56
  start-page: 416
  year: 2010
  end-page: 430
  article-title: Greenland flow variability from ice‐sheet‐wide velocity mapping
  publication-title: J. Glaciol.
– volume: 30
  start-page: 204
  year: 2000
  end-page: 210
  article-title: Analysis of ice‐flow instabilities identified in the EISMINT inter‐comparison exercise
  publication-title: Ann. Glaciol.
– volume: 34
  year: 2007
  article-title: Larsen B Ice Shelf rheology preceding its disintegration inferred by a control method
  publication-title: Geophys. Res. Lett.
– volume: 117
  year: 2010
  article-title: A parallel high‐order accurate finite element nonlinear Stokes ice‐sheet model and benchmark experiments
  publication-title: J. Geophys. Res.
– volume: 46
  start-page: 227
  year: 2000
  end-page: 238
  article-title: Results from the EISMINT model intercomparison: The effects of thermomechanical coupling
  publication-title: J. Glaciol.
– volume: 458
  start-page: 329
  year: 2009
  end-page: 332
  article-title: Modelling West Antarctica ice sheet growth and collapse through the past five million years
  publication-title: Nature
– volume: 364
  start-page: 1815
  year: 2006
  end-page: 1839
  article-title: Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic peninsula
  publication-title: Philos. Trans R. Soc. A
– year: 2007
– volume: 13
  start-page: 11
  year: 1997
  end-page: 24
  article-title: Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: Consequences for the evolution through the last climatic cycle
  publication-title: Clim. Dyn.
– volume: 32
  start-page: 136
  year: 2006
  end-page: 156
  article-title: Hybrid scheduling for the parallel solution of linear systems
  publication-title: Parallel Comput.
– year: 2000
– year: 1996
– volume: 109
  year: 2004
  article-title: A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling
  publication-title: J. Geophys. Res.
– volume: 35
  start-page: 53
  year: 1989
  end-page: 60
  article-title: Force budget: I. Theory and numerical methods
  publication-title: J. Glaciol.
– volume: 56
  start-page: 257
  year: 2010
  end-page: 261
  article-title: Using the unstable manifold correction in a Picard iteration to solve the velocity field in higher‐order ice‐flow models
  publication-title: J. Glaciol.
– volume: 322
  year: 2008
  article-title: A simple law for ice‐shelf calving
  publication-title: Science
– volume: 2
  start-page: 67
  year: 2008
  end-page: 76
  article-title: The ISMIP‐HOM benchmark experiments performed using the finite‐element code Elmer
  publication-title: Cryosphere
– volume: 39
  start-page: 91
  year: 1993
  end-page: 98
  article-title: A tutorial on the use of control methods in ice‐sheet modeling
  publication-title: J. Glaciol.
– volume: 14
  start-page: 1
  year: 2005
  end-page: 137
  article-title: Numerical solution of saddle point problems
  publication-title: Acta Numer.
– volume: 23
  start-page: 157
  year: 1979
  end-page: 170
  article-title: Empirical studies of ice sliding
  publication-title: J. Glaciol.
– year: 2010
– volume: 49
  start-page: 1
  year: 1943
  end-page: 23
  article-title: Variational methods for the solution of problems of equilibrium and vibrations
  publication-title: Bull. Am. Math. Soc.
– start-page: 413
  year: 2004
  end-page: 437
– volume: 24
  start-page: 43
  year: 1997
  end-page: 48
  article-title: Large‐scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method
  publication-title: Ann. Glaciol.
– volume: 22
  start-page: 789
  year: 1996
  end-page: 828
  article-title: A high‐performance, portable implementation of the MPI message passing interface standard
  publication-title: Parallel Comput.
– volume: 114
  year: 2009
  article-title: Marine ice sheet dynamics: Hysteresis and neutral equilibrium
  publication-title: J. Geophys. Res.
– volume: 23
  start-page: 237
  year: 1996
  end-page: 246
  article-title: Numerical modelling of a fast‐flowing outlet glacier: Experiments with different basal conditions
  publication-title: Ann. Glaciol.
– volume: 3
  start-page: 33
  year: 1957
  end-page: 38
  article-title: On the sliding of glaciers
  publication-title: J. Glaciol.
– volume: 32
  start-page: 725
  year: 2000
  end-page: 744
  article-title: Anisotropic mesh adaptation: Towards user‐independent, mesh‐independent, and solver‐independent CFD. Part I: General principles
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 1
  start-page: 1845
  year: 2010
  end-page: 1853
  article-title: ADIC2: Development of a component source transformation system for differentiating C and C++
  publication-title: Procedia Comp. Sci.
– volume: 1148
  start-page: 203
  year: 1996
  end-page: 222
– volume: 29
  start-page: 329
  year: 1981
  end-page: 349
  article-title: Lagrangian‐Eulerian finite‐element formulation for incompressible viscous flows
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2002
– volume: 573
  start-page: 27
  year: 2007
  end-page: 55
  article-title: Marine ice‐sheet dynamics. Part 1. The case of rapid sliding
  publication-title: J. Fluid Mech.
– volume: 42
  start-page: 424
  year: 2005
  end-page: 432
  article-title: Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet
  publication-title: Ann. Glaciol.
– year: 1988
– year: 2006
– volume: 14
  start-page: 87
  year: 1982
  end-page: 130
  article-title: Dynamics of glaciers and large ice masses
  publication-title: Ann. Rev. Fluid Mech.
– volume: 97
  start-page: 595
  year: 1992
  end-page: 603
  article-title: The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods
  publication-title: J. Geophys. Res.
– volume: 23
  start-page: 1
  year: 1996
  end-page: 14
  article-title: The EISMINT benchmarks for testing ice‐sheet models
  publication-title: Ann. Glaciol.
– volume: 55
  start-page: 879
  issue: 193
  year: 2009
  end-page: 888
  article-title: A subglacial water‐flow model for west Antarctica
  publication-title: J. Glaciol.
– volume: 42
  start-page: 83
  year: 2003
  end-page: 105
  article-title: Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations
  publication-title: Global Planet. Change
– volume: 265
  start-page: 246
  year: 2008
  end-page: 255
  article-title: Conditions for a steady ice sheet‐ice shelf junction
  publication-title: Earth Planet. Sci. Lett.
– volume: 108
  issue: B8
  year: 2003
  article-title: A new three‐dimensional higher‐order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes
  publication-title: J. Geophys. Res.
– volume: 23
  start-page: 15
  year: 2001
  end-page: 41
  article-title: A fully asynchronous multifrontal solver using distributed dynamic scheduling
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 38
  year: 2011
  article-title: A mass conservation approach for mapping glacier ice thickness
  publication-title: Geophys. Res. Lett.
– volume: 34
  start-page: 1
  year: 2008
  end-page: 36
  article-title: OpenAD/F: A modular open‐source tool for automatic differentiation of Fortran codes
  publication-title: ACM Trans. Math. Softw.
– volume: 36
  year: 2009
  article-title: Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling
  publication-title: Geophys. Res. Lett.
– volume: 7
  start-page: 856
  year: 1986
  end-page: 869
  article-title: GMRES: A generalized minimal residual method for solving nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
– ident: e_1_2_10_68_1
  doi: 10.1145/1250734.1250746
– ident: e_1_2_10_24_1
  doi: 10.1029/2009GL038110
– volume-title: The Physics of Glaciers
  year: 1994
  ident: e_1_2_10_71_1
– ident: e_1_2_10_48_1
  doi: 10.5194/tc-5-659-2011
– ident: e_1_2_10_74_1
  doi: 10.5194/tc-2-95-2008
– ident: e_1_2_10_23_1
  doi: 10.3189/172756409789624283
– ident: e_1_2_10_94_1
  doi: 10.1145/1377596.1377598
– ident: e_1_2_10_72_1
  doi: 10.1017/S0260305500013495
– ident: e_1_2_10_101_1
  doi: 10.3189/172756407782282543
– ident: e_1_2_10_14_1
  doi: 10.1142/S0218202504003866
– ident: e_1_2_10_16_1
  doi: 10.1017/S0022143000029804
– ident: e_1_2_10_26_1
– ident: e_1_2_10_84_1
  doi: 10.1137/0907058
– ident: e_1_2_10_67_1
  doi: 10.1016/j.procs.2010.04.206
– ident: e_1_2_10_85_1
  doi: 10.1017/S0022112006003570
– ident: e_1_2_10_28_1
  doi: 10.1029/2010GL043334
– ident: e_1_2_10_93_1
  doi: 10.3189/172756504781830088
– ident: e_1_2_10_87_1
  doi: 10.1093/qjmam/hbp025
– ident: e_1_2_10_7_1
– ident: e_1_2_10_98_1
  doi: 10.1137/1.9780898717570
– ident: e_1_2_10_8_1
  doi: 10.3189/172756500781833412
– ident: e_1_2_10_35_1
  doi: 10.1016/0167-8191(96)00024-5
– ident: e_1_2_10_73_1
  doi: 10.1029/2002JB002329
– ident: e_1_2_10_34_1
  doi: 10.2172/378911
– ident: e_1_2_10_76_1
  doi: 10.3189/172756500781832891
– ident: e_1_2_10_80_1
  doi: 10.1029/2008GL033365
– ident: e_1_2_10_30_1
  doi: 10.5194/tc-5-315-2011
– ident: e_1_2_10_57_1
  doi: 10.3189/002214309790152564
– ident: e_1_2_10_78_1
  doi: 10.1038/nature07809
– ident: e_1_2_10_42_1
  doi: 10.1016/0045-7825(81)90049-9
– ident: e_1_2_10_36_1
  doi: 10.1029/2002JB002107
– ident: e_1_2_10_59_1
  doi: 10.3189/172756494794587041
– volume-title: Version Control With Subversion
  year: 2008
  ident: e_1_2_10_77_1
– ident: e_1_2_10_97_1
  doi: 10.1098/rsta.2006.1800
– ident: e_1_2_10_43_1
  doi: 10.1146/annurev.fl.14.010182.000511
– ident: e_1_2_10_10_1
  doi: 10.3189/002214311795306745
– ident: e_1_2_10_99_1
  doi: 10.1029/2010GL043201
– start-page: 413
  volume-title: Encyclopedia of Computational Mechanics
  year: 2004
  ident: e_1_2_10_21_1
– ident: e_1_2_10_25_1
  doi: 10.3189/002214309790152537
– ident: e_1_2_10_56_1
  doi: 10.1029/2004GL021693
– ident: e_1_2_10_39_1
  doi: 10.1029/2003JF000065
– ident: e_1_2_10_11_1
  doi: 10.1017/S0962492904000212
– ident: e_1_2_10_64_1
  doi: 10.1007/978-94-009-3745-1_7
– ident: e_1_2_10_12_1
  doi: 10.1017/S002214300001621X
– ident: e_1_2_10_49_1
  doi: 10.1016/0045-7825(84)90158-0
– ident: e_1_2_10_83_1
  doi: 10.1017/S0260305500011915
– ident: e_1_2_10_62_1
  doi: 10.1017/S0022143000015744
– ident: e_1_2_10_100_1
  doi: 10.1017/S0022143000024709
– volume-title: Incompressible Flow and the Finite Element Method, Volume 2: Isothermal Laminar Flow
  year: 2000
  ident: e_1_2_10_32_1
– ident: e_1_2_10_46_1
  doi: 10.1016/j.gloplacha.2003.11.011
– ident: e_1_2_10_70_1
  doi: 10.1016/j.epsl.2007.10.018
– ident: e_1_2_10_17_1
  doi: 10.1029/2009JF001293
– ident: e_1_2_10_5_1
  doi: 10.1016/j.parco.2005.07.004
– ident: e_1_2_10_18_1
  doi: 10.1090/S0002-9904-1943-07818-4
– ident: e_1_2_10_66_1
  doi: 10.1029/2011GL048659
– volume-title: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill‐Reducing Orderings of Sparse Matrices
  year: 1998
  ident: e_1_2_10_52_1
– ident: e_1_2_10_27_1
  doi: 10.5194/tc-2-67-2008
– ident: e_1_2_10_88_1
  doi: 10.1029/2011GL047338
– volume: 22
  start-page: 1
  year: 2001
  ident: e_1_2_10_91_1
  article-title: Delaunay refinement algorithms for triangular mesh generation
  publication-title: Comput. Geometry
– ident: e_1_2_10_75_1
  doi: 10.3189/172756400781820534
– ident: e_1_2_10_55_1
  doi: 10.1029/2008JF001124
– volume-title: The Physics of Glaciers
  year: 2010
  ident: e_1_2_10_19_1
– ident: e_1_2_10_3_1
  doi: 10.1126/science.1162543
– ident: e_1_2_10_13_1
  doi: 10.3189/172756411799096312
– ident: e_1_2_10_82_1
  doi: 10.1007/s003820050149
– ident: e_1_2_10_40_1
  doi: 10.1017/S0260305500013288
– ident: e_1_2_10_29_1
  doi: 10.1098/rspa.1955.0066
– ident: e_1_2_10_6_1
  doi: 10.1007/978-1-4612-1986-6_8
– ident: e_1_2_10_9_1
  doi: 10.1029/2001JD900054
– ident: e_1_2_10_81_1
  doi: 10.1126/science.1208336
– volume-title: GNU Autoconf, Automake, and Libtool
  year: 2000
  ident: e_1_2_10_96_1
– volume-title: The C++ Programming Language
  year: 1997
  ident: e_1_2_10_92_1
– ident: e_1_2_10_63_1
  doi: 10.1029/96JC02775
– ident: e_1_2_10_33_1
  doi: 10.3189/172756405781812510
– ident: e_1_2_10_37_1
  doi: 10.1002/(SICI)1097-0363(20000330)32:6<725::AID-FLD935>3.0.CO;2-4
– ident: e_1_2_10_50_1
– ident: e_1_2_10_90_1
  doi: 10.1007/BFb0014497
– ident: e_1_2_10_61_1
  doi: 10.1029/91JB02454
– ident: e_1_2_10_22_1
  doi: 10.1029/2008JF001170
– ident: e_1_2_10_86_1
  doi: 10.1029/2006JF000664
– ident: e_1_2_10_2_1
– ident: e_1_2_10_89_1
  doi: 10.1016/j.epsl.2004.04.011
– ident: e_1_2_10_44_1
  doi: 10.1007/978-94-015-1167-4
– volume-title: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_10_47_1
– volume-title: The C Programming Language
  year: 1988
  ident: e_1_2_10_53_1
– ident: e_1_2_10_38_1
– ident: e_1_2_10_15_1
  doi: 10.1137/1.9780898719505
– ident: e_1_2_10_69_1
– ident: e_1_2_10_20_1
  doi: 10.3189/002214310791968395
– ident: e_1_2_10_45_1
  doi: 10.3189/S0260305500013197
– ident: e_1_2_10_60_1
  doi: 10.1029/JB094iB04p04071
– ident: e_1_2_10_79_1
– ident: e_1_2_10_51_1
  doi: 10.3189/002214310792447734
– ident: e_1_2_10_95_1
  doi: 10.3189/002214389793701581
– ident: e_1_2_10_58_1
  doi: 10.1029/2011JF001962
– ident: e_1_2_10_4_1
  doi: 10.1137/S0895479899358194
– ident: e_1_2_10_54_1
  doi: 10.1029/2007GL030980
– volume-title: Incompressible Flow and the Finite Element Method, Volume 1: Advection‐diffusion
  year: 2000
  ident: e_1_2_10_31_1
– ident: e_1_2_10_41_1
  doi: 10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2
– ident: e_1_2_10_65_1
  doi: 10.1029/2010GL043853
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816912
Score 2.5398302
Snippet Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms assimilation
Atmospheric sciences
Benchmarks
Climate change
Cryosphere
Data collection
Earth sciences
Earth, ocean, space
Exact sciences and technology
Global warming
Ice
Ice shelves
Interferometry
Laminar flow
modeling
Sea level
sheet
shelf
system
Thermodynamics
Title Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM)
URI https://api.istex.fr/ark:/67375/WNG-RX3RLD8Z-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JF002140
https://www.proquest.com/docview/1721990342
https://www.proquest.com/docview/928836135
https://www.proquest.com/docview/963702869
https://www.proquest.com/docview/1024663964
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY-sILAgEibKuMBIiPRUv9FfsJ8bF0q6BCLRMVL5HT2EPa1I6mk_jzuXPcaBWwt0hnJ4rv7Luzf74fIc-zPPcqM3XqnM9SAQ4jtdL71FnPtdeZNy3aYqxOzsRoJmcRm9NEWOVmTQwLdb2c4x75ERhKDr5QmXdXv1IkjcLD1cigsUN6sAJryL16H47HXyfdJguySphw4sngIcVduwh-z5g5Qt83KkLVsGzLLfVwhH8jTNI2MFK-pbjYikFvRrLBFRX3yb0YQ9L3rdIfkDtu8ZCssM4UhIx4u5Hi-9whxVrENBTXjM8N4qdBDjl2NLlDCisFbX46t6aBFQdcGUUw_DmF0JCegnAahG1pc4rcaZf01el0-uX1I3JWHH_7eJJGQoV0LpniqeZK6Mxa5mpbC-uZqjLjau_VQFk-8JWuDa_wOm0lnbZGVEqC5pjP58JUA8cfk93FcuGeEOodk9zUVrMKZNAdEkNura4kvI7LOiFvN-NZzmO1cSS9uCzDqTcz5c3RT8iLrvVVW2XjP-1eBtV0jezqApFpuSy_j4flZMYnnz_pH-UsIf0t3XUdGCZQEKYkZH-jzDLO2qbEdBi8MxcsIXt_iw0yM4M1y39LNwaakGedFOYqHsDYhVteN_g_AiI8o0RC3gQDuvVvy9FwUpgBf3rr5_bIXejEWlzcPtldr67dAQRK66pPdnQx7MdJ8Qdcjw4x
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAXBALE0lKMRBGPrrqx9-UDQoiyeTTNIWlFxMV4szZIVEnJpgJ-FP-RGe9DjYDeeltpvE7W8_rGHs8APAuSxMaBLHxjbOCH6DB8HVnrG21FatPAyirbYhT3TsPBNJpuwO_mLgylVTY20RnqYjGjPfIDFJQEfWEs355_96lpFB2uNh00Kqk4Mr9-YMRWvukfInv3OM8-nLzv-XVTAX8W8Vj4qYjDNNCam0IXobY8zgNpCmvjTqxFx-ZpIUVOV0rzyKRahnkc4b_nNpmFMu8YgfPegK1QCEkKlWbddkuHelhId77K8cGnPcI61T7g8oA87SBzNcqCNSe4Rfz8SUmZukS-2KqhxhrivYybnePL7sDtGrGyd5WI3YUNM78HS6pqhQCV7lIyms_sM6p8zFwpz_q5pGxtpGNEXwv4PkO7xMqvxqyY68GDjpNR6v0XhkCU9ZE4ccSqkDqjTm1n7EV_Mjl-eR9Or2WlH8DmfDE3D4FZwyMhC53yHGn4OoahQus0j3A6ERUevG7WU83q2ubUYuNMuTN2LtXl1fdgrx19XtX0-M-454417SC9_EZ5cEmkPo66ajwV4-Fh-klNPdhd4137AqdwDUGRBzsNM1VtI0pFwTdiARFyD7b_JkvqA426E_2b2qiDB09bKloGOu7Rc7O4KOl7QsSTMg49eOUE6MqvVYPuOJMd8ejKn3sCN3snx0M17I-OtuEWTsCrjLwd2FwtL8xjhGirfNcpBoPP162JfwCcREl9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DRaCfGCQIAIG8NIDPGxqKmdOPEDQkDXrd2oppaJihfjNDZITO1oOgE_jX_HXb60Ctjb3iKd7cj3ffb5DuBJEMdOBirzrXWBH6LB8E3knG-NE4lLAqfKbIuRPDgJh9NougG_67cwlFZZ68RCUWeLGZ2Rd5BRYrSFUnVclRVx3Ou_PvvuUwMpumitu2mUHHJof_3A6C1_NeghqXc47-99eHfgVw0G_FnEpfATIcMkMIbbzGShcVymgbKZc7Irjei6NMmUSOl5aRrZxKgwlRHuhLt4Fqq0awWuew3aMQZFQQvab_dGx-PmgIc6WqjitpXjh08nhlXifcBVh-zusF9ULAvWTGKbqPuTUjRNjlRyZXuNNf_3ohddmMH-LbhZ-a_sTclwt2HDzu_AkmpcobtKLysZrWd3GdVBZkVhz-o7p9xthGN8X7H7LkMtxfKv1q5Y0ZEHzSijRPwvDN1SNkDgpACWZdUZ9W07Zc8Gk8n753fh5EpwfQ9a88Xc3gfmLI-EykzCU4ThdMS_MCZJI1xORJkHL2t86llV6Zwabpzq4sadK30R-x7sNKPPygof_xn3tCBNM8gsv1FWXBzpj6N9PZ6K8VEv-aSnHmyv0a6ZwCl4QxfJg62amLrSGLmmUBw9AxFyDzb_BivqCo2SFP0bWguHB48bKOoJuvwxc7s4z2k_IXqXSoYevCgY6NLd6uH-uK-64sGlv3sE11EK9dFgdLgJN3A-L9PztqC1Wp7bh-ivrdLtSjIYfL5qYfwDvMFPDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continental+scale%2C+high+order%2C+high+spatial+resolution%2C+ice+sheet+modeling+using+the+Ice+Sheet+System+Model+%28ISSM%29&rft.jtitle=Journal+of+geophysical+research.+Earth+surface&rft.au=Larour%2C+E&rft.au=Seroussi%2C+H&rft.au=Morlighem%2C+M&rft.au=Rignot%2C+E&rft.date=2012-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9003&rft.eissn=2169-9011&rft.volume=117&rft.issue=1&rft_id=info:doi/10.1029%2F2011JF002140&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2624904031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon