Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM)
Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow‐Shelf Approximation (SSA), sometimes combined into so‐called “hybrid” models. Such models, while computationally efficient, are based on a si...
Saved in:
Published in | Journal of Geophysical Research: Earth Surface Vol. 117; no. F1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.03.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow‐Shelf Approximation (SSA), sometimes combined into so‐called “hybrid” models. Such models, while computationally efficient, are based on a simplified set of physical assumptions about the mechanical regime of the ice flow, which does not uniformly apply everywhere on the ice sheet/ice shelf system, especially near grounding lines, where rapid changes are taking place at present. Here, we present a new thermomechanical finite element model of ice flow named ISSM (Ice Sheet System Model) that includes higher‐order stresses, high spatial resolution capability and data assimilation techniques to better capture ice dynamics and produce realistic simulations of ice sheet flow at the continental scale. ISSM includes several approximations of the momentum balance equations, ranging from the two‐dimensional SSA to the three‐dimensional full‐Stokes formulation. It also relies on a massively parallelized architecture and state‐of‐the‐art scalable tools. ISSM employs data assimilation techniques, at all levels of approximation of the momentum balance equations, to infer basal drag at the ice‐bed interface from satellite radar interferometry‐derived observations of ice motion. Following a validation of ISSM with standard benchmarks, we present a demonstration of its capability in the case of the Greenland Ice Sheet. We show ISSM is able to simulate the ice flow of an entire ice sheet realistically at a high spatial resolution, with higher‐order physics, thereby providing a pathway for improving projections of ice sheet evolution in a warming climate.
Key Points
Large scale capable, high resolution, finite element ice sheet/shelf flow model
Higher order thermal/mechanical model, including full‐Stokes
Continental scale inversion of basal friction on the Greenland Ice Sheet |
---|---|
AbstractList | Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow‐Shelf Approximation (SSA), sometimes combined into so‐called “hybrid” models. Such models, while computationally efficient, are based on a simplified set of physical assumptions about the mechanical regime of the ice flow, which does not uniformly apply everywhere on the ice sheet/ice shelf system, especially near grounding lines, where rapid changes are taking place at present. Here, we present a new thermomechanical finite element model of ice flow named ISSM (Ice Sheet System Model) that includes higher‐order stresses, high spatial resolution capability and data assimilation techniques to better capture ice dynamics and produce realistic simulations of ice sheet flow at the continental scale. ISSM includes several approximations of the momentum balance equations, ranging from the two‐dimensional SSA to the three‐dimensional full‐Stokes formulation. It also relies on a massively parallelized architecture and state‐of‐the‐art scalable tools. ISSM employs data assimilation techniques, at all levels of approximation of the momentum balance equations, to infer basal drag at the ice‐bed interface from satellite radar interferometry‐derived observations of ice motion. Following a validation of ISSM with standard benchmarks, we present a demonstration of its capability in the case of the Greenland Ice Sheet. We show ISSM is able to simulate the ice flow of an entire ice sheet realistically at a high spatial resolution, with higher‐order physics, thereby providing a pathway for improving projections of ice sheet evolution in a warming climate.
Large scale capable, high resolution, finite element ice sheet/shelf flow model
Higher order thermal/mechanical model, including full‐Stokes
Continental scale inversion of basal friction on the Greenland Ice Sheet Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow-Shelf Approximation (SSA), sometimes combined into so-called "hybrid" models. Such models, while computationally efficient, are based on a simplified set of physical assumptions about the mechanical regime of the ice flow, which does not uniformly apply everywhere on the ice sheet/ice shelf system, especially near grounding lines, where rapid changes are taking place at present. Here, we present a new thermomechanical finite element model of ice flow named ISSM (Ice Sheet System Model) that includes higher-order stresses, high spatial resolution capability and data assimilation techniques to better capture ice dynamics and produce realistic simulations of ice sheet flow at the continental scale. ISSM includes several approximations of the momentum balance equations, ranging from the two-dimensional SSA to the three-dimensional full-Stokes formulation. It also relies on a massively parallelized architecture and state-of-the-art scalable tools. ISSM employs data assimilation techniques, at all levels of approximation of the momentum balance equations, to infer basal drag at the ice-bed interface from satellite radar interferometry-derived observations of ice motion. Following a validation of ISSM with standard benchmarks, we present a demonstration of its capability in the case of the Greenland Ice Sheet. We show ISSM is able to simulate the ice flow of an entire ice sheet realistically at a high spatial resolution, with higher-order physics, thereby providing a pathway for improving projections of ice sheet evolution in a warming climate. Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow‐Shelf Approximation (SSA), sometimes combined into so‐called “hybrid” models. Such models, while computationally efficient, are based on a simplified set of physical assumptions about the mechanical regime of the ice flow, which does not uniformly apply everywhere on the ice sheet/ice shelf system, especially near grounding lines, where rapid changes are taking place at present. Here, we present a new thermomechanical finite element model of ice flow named ISSM (Ice Sheet System Model) that includes higher‐order stresses, high spatial resolution capability and data assimilation techniques to better capture ice dynamics and produce realistic simulations of ice sheet flow at the continental scale. ISSM includes several approximations of the momentum balance equations, ranging from the two‐dimensional SSA to the three‐dimensional full‐Stokes formulation. It also relies on a massively parallelized architecture and state‐of‐the‐art scalable tools. ISSM employs data assimilation techniques, at all levels of approximation of the momentum balance equations, to infer basal drag at the ice‐bed interface from satellite radar interferometry‐derived observations of ice motion. Following a validation of ISSM with standard benchmarks, we present a demonstration of its capability in the case of the Greenland Ice Sheet. We show ISSM is able to simulate the ice flow of an entire ice sheet realistically at a high spatial resolution, with higher‐order physics, thereby providing a pathway for improving projections of ice sheet evolution in a warming climate. Key Points Large scale capable, high resolution, finite element ice sheet/shelf flow model Higher order thermal/mechanical model, including full‐Stokes Continental scale inversion of basal friction on the Greenland Ice Sheet Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the Shallow-Shelf Approximation (SSA), sometimes combined into so-called "hybrid" models. Such models, while computationally efficient, are based on a simplified set of physical assumptions about the mechanical regime of the ice flow, which does not uniformly apply everywhere on the ice sheet/ice shelf system, especially near grounding lines, where rapid changes are taking place at present. Here, we present a new thermomechanical finite element model of ice flow named ISSM (Ice Sheet System Model) that includes higher-order stresses, high spatial resolution capability and data assimilation techniques to better capture ice dynamics and produce realistic simulations of ice sheet flow at the continental scale. ISSM includes several approximations of the momentum balance equations, ranging from the two-dimensional SSA to the three-dimensional full-Stokes formulation. It also relies on a massively parallelized architecture and state-of-the-art scalable tools. ISSM employs data assimilation techniques, at all levels of approximation of the momentum balance equations, to infer basal drag at the ice-bed interface from satellite radar interferometry-derived observations of ice motion. Following a validation of ISSM with standard benchmarks, we present a demonstration of its capability in the case of the Greenland Ice Sheet. We show ISSM is able to simulate the ice flow of an entire ice sheet realistically at a high spatial resolution, with higher-order physics, thereby providing a pathway for improving projections of ice sheet evolution in a warming climate. Key Points Large scale capable, high resolution, finite element ice sheet/shelf flow model Higher order thermal/mechanical model, including full-Stokes Continental scale inversion of basal friction on the Greenland Ice Sheet |
Author | Morlighem, M. Larour, E. Seroussi, H. Rignot, E. |
Author_xml | – sequence: 1 givenname: E. surname: Larour fullname: Larour, E. email: Eric.Larour@jpl.nasa.gov organization: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA – sequence: 2 givenname: H. surname: Seroussi fullname: Seroussi, H. organization: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA – sequence: 3 givenname: M. surname: Morlighem fullname: Morlighem, M. organization: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA – sequence: 4 givenname: E. surname: Rignot fullname: Rignot, E. organization: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25974238$$DView record in Pascal Francis |
BookMark | eNp90V1v0zAUBmALDYkydscPiEBIQ2rAX3Hiy6nQ0qkDqQUxcWM5ycnqkdrFdgX99zi0mtCkzRdxpPO8ydE5z9GJdRYQeknwO4KpfE8xIZdTjCnh-AkaUVKInFJMT9AIE17lmNLyGToL4RanwwvBMRkhP3E2Ggs26j4Lje5hnK3NzTpzvgV_fA9bHU2qewiu30Xj7DgzDWRhDRCzjWuhN_Ym24XhGdeQzVNx9a-42ocIm-xqMNn5fLW6evsCPe10H-DseJ-ib9OPXyef8sWX2XxyscibggqWV0zwCmtNodUt1x0VNZbQdp0gQjPS1VUrWY0JxXUBlZa8FoUuOtqVDZc1AXaKzg_f3Xr3awchqo0JDfS9tuB2QaWpcSGYFDzRV_fordt5m7pTUrAS00rIRxGtUruEFQm9fgiRkhIpMeM0qTdHpYeZd17bxgS19Waj_V7RQpZJVcmND67xLgQP3R0heOhfqv-3nji9xxsT9bCv6LXpHwqRQ-i36WH_6A_U5Ww5lYSlTH7ImLTdP3cZ7X8qUbKyUN8_z9Tymi0XH6of6pr9BRCHyrk |
CitedBy_id | crossref_primary_10_1017_jog_2022_66 crossref_primary_10_5194_tc_18_1139_2024 crossref_primary_10_1002_jgrf_20081 crossref_primary_10_1017_jog_2022_68 crossref_primary_10_1029_2012JF002371 crossref_primary_10_5194_gmd_7_883_2014 crossref_primary_10_1038_s41467_022_29529_5 crossref_primary_10_5194_tc_7_1659_2013 crossref_primary_10_1017_jog_2023_39 crossref_primary_10_5194_gmd_17_899_2024 crossref_primary_10_1038_s43247_022_00385_x crossref_primary_10_1029_2012GL053317 crossref_primary_10_1088_1361_6420_acd719 crossref_primary_10_1002_2017GL073478 crossref_primary_10_5194_gmd_11_1683_2018 crossref_primary_10_5194_tc_15_1975_2021 crossref_primary_10_5194_tc_17_5027_2023 crossref_primary_10_5194_tc_7_1161_2013 crossref_primary_10_1007_s00382_022_06317_x crossref_primary_10_1017_jog_2021_88 crossref_primary_10_1017_jog_2024_10 crossref_primary_10_1002_esp_5302 crossref_primary_10_1007_s10596_024_10329_3 crossref_primary_10_5194_tc_13_1621_2019 crossref_primary_10_5194_tc_19_1205_2025 crossref_primary_10_1017_aog_2019_41 crossref_primary_10_5194_gmd_10_155_2017 crossref_primary_10_5194_tc_14_3537_2020 crossref_primary_10_5194_tc_12_3187_2018 crossref_primary_10_1002_jgrf_20076 crossref_primary_10_1016_j_cageo_2020_104526 crossref_primary_10_1002_grl_50824 crossref_primary_10_1590_0001_3765202320210560 crossref_primary_10_1016_j_jcpx_2021_100090 crossref_primary_10_1038_s41467_023_39588_x crossref_primary_10_5194_esd_9_1169_2018 crossref_primary_10_1029_2019RG000672 crossref_primary_10_1016_j_jcp_2024_113511 crossref_primary_10_1017_jfm_2018_624 crossref_primary_10_1017_jog_2022_63 crossref_primary_10_5194_gmd_14_2545_2021 crossref_primary_10_1002_jgrf_20062 crossref_primary_10_1017_jog_2023_13 crossref_primary_10_1029_2019JF005252 crossref_primary_10_1061__ASCE_HE_1943_5584_0000860 crossref_primary_10_5194_tc_12_1047_2018 crossref_primary_10_5194_gmd_10_4393_2017 crossref_primary_10_21105_joss_05584 crossref_primary_10_5194_tc_17_1585_2023 crossref_primary_10_1109_TGRS_2024_3446368 crossref_primary_10_3189_2015JoG14J174 crossref_primary_10_1029_2020GL092141 crossref_primary_10_1002_2016GL071538 crossref_primary_10_5194_tc_18_3991_2024 crossref_primary_10_5194_gmd_16_407_2023 crossref_primary_10_1017_jog_2020_8 crossref_primary_10_5194_tc_10_1965_2016 crossref_primary_10_5194_tc_9_179_2015 crossref_primary_10_1029_2020JF005921 crossref_primary_10_1073_pnas_1904822116 crossref_primary_10_5194_tc_11_1283_2017 crossref_primary_10_1002_pamm_202300260 crossref_primary_10_1002_wat2_1496 crossref_primary_10_1038_s43017_022_00348_y crossref_primary_10_5194_cp_17_419_2021 crossref_primary_10_1029_2021GL093213 crossref_primary_10_5194_tc_17_2701_2023 crossref_primary_10_1002_2013JF002943 crossref_primary_10_5194_tc_13_2133_2019 crossref_primary_10_5194_tc_19_955_2025 crossref_primary_10_1038_s41550_022_01782_0 crossref_primary_10_1038_s41586_023_06863_2 crossref_primary_10_21105_joss_04679 crossref_primary_10_5194_tc_18_2613_2024 crossref_primary_10_5194_gmd_14_5107_2021 crossref_primary_10_1002_2017JB014423 crossref_primary_10_1016_j_procs_2016_05_470 crossref_primary_10_1029_2018GL079827 crossref_primary_10_5194_tc_10_193_2016 crossref_primary_10_5194_tc_17_3409_2023 crossref_primary_10_3189_2014JoG13J202 crossref_primary_10_1038_s41586_022_05037_w crossref_primary_10_5194_gmd_15_3691_2022 crossref_primary_10_1029_2019GL084924 crossref_primary_10_1029_2020GL091790 crossref_primary_10_5194_gmd_11_4563_2018 crossref_primary_10_5194_tc_17_4705_2023 crossref_primary_10_5194_tc_12_3383_2018 crossref_primary_10_5194_tc_16_179_2022 crossref_primary_10_1016_j_epsl_2019_03_035 crossref_primary_10_5194_gmd_15_8269_2022 crossref_primary_10_1002_pamm_202400076 crossref_primary_10_1137_15M1040839 crossref_primary_10_5194_tc_14_599_2020 crossref_primary_10_3389_feart_2020_00105 crossref_primary_10_1017_jog_2022_12 crossref_primary_10_1061__ASCE_HE_1943_5584_0001585 crossref_primary_10_1016_j_jcp_2016_10_060 crossref_primary_10_1029_2024GL109168 crossref_primary_10_5194_se_5_569_2014 crossref_primary_10_5194_tc_6_589_2012 crossref_primary_10_1038_s41598_024_77486_4 crossref_primary_10_1002_2015RG000495 crossref_primary_10_1016_j_quascirev_2016_01_032 crossref_primary_10_1088_0034_4885_78_4_046801 crossref_primary_10_1126_sciadv_adi9014 crossref_primary_10_1002_2014JF003359 crossref_primary_10_5194_tc_14_2283_2020 crossref_primary_10_1016_j_quascirev_2020_106492 crossref_primary_10_5194_tc_8_2075_2014 crossref_primary_10_5194_gmd_16_5305_2023 crossref_primary_10_5194_gmd_9_3907_2016 crossref_primary_10_5194_tc_12_1433_2018 crossref_primary_10_1029_2021GL092450 crossref_primary_10_3189_2013JoG13J054 crossref_primary_10_1029_2017JF004561 crossref_primary_10_5194_tc_17_2851_2023 crossref_primary_10_1175_JCLI_D_12_00557_1 crossref_primary_10_1002_2017GL072648 crossref_primary_10_1073_pnas_2105080118 crossref_primary_10_3189_2013JoG12J129 crossref_primary_10_5194_gmd_9_1087_2016 crossref_primary_10_3189_2013JoG12J125 crossref_primary_10_1073_pnas_1512482112 crossref_primary_10_5194_tc_12_3511_2018 crossref_primary_10_1029_2019GL085672 crossref_primary_10_5194_gmd_12_387_2019 crossref_primary_10_1029_2022GL098009 crossref_primary_10_3189_2014AoG67A001 crossref_primary_10_1016_j_jcp_2013_06_032 crossref_primary_10_1016_j_epsl_2023_118077 crossref_primary_10_1016_j_quascirev_2016_01_013 crossref_primary_10_1017_jog_2016_100 crossref_primary_10_5194_tc_17_3667_2023 crossref_primary_10_1029_2024GL111386 crossref_primary_10_1029_2024EF004561 crossref_primary_10_5194_tc_16_2355_2022 crossref_primary_10_1017_jog_2021_38 crossref_primary_10_1016_j_jcp_2023_112428 crossref_primary_10_5194_esd_11_35_2020 crossref_primary_10_1126_science_1220530 crossref_primary_10_5194_tc_10_597_2016 crossref_primary_10_1002_2014JF003375 crossref_primary_10_1016_j_quascirev_2018_07_004 crossref_primary_10_1007_s40641_017_0073_y crossref_primary_10_5194_gmd_8_3199_2015 crossref_primary_10_1029_2022GL098910 crossref_primary_10_1002_jgrf_20125 crossref_primary_10_5194_gmd_15_3753_2022 crossref_primary_10_5194_tc_7_1931_2013 crossref_primary_10_1029_2023GL103538 crossref_primary_10_1029_2022JE007193 crossref_primary_10_1126_science_aav7908 crossref_primary_10_5194_tc_17_4889_2023 crossref_primary_10_1029_2024JF007758 crossref_primary_10_5194_tc_19_303_2025 crossref_primary_10_1029_2021JF006332 crossref_primary_10_5194_gmd_14_2443_2021 crossref_primary_10_5194_gmd_17_4943_2024 crossref_primary_10_5194_tc_7_19_2013 crossref_primary_10_1002_2015JF003580 crossref_primary_10_5194_tc_12_3861_2018 crossref_primary_10_1016_j_epsl_2019_115961 crossref_primary_10_5194_gmd_12_1067_2019 crossref_primary_10_5194_tc_14_3071_2020 crossref_primary_10_3390_rs16111854 crossref_primary_10_1029_2018GL079751 crossref_primary_10_5194_tc_18_4873_2024 crossref_primary_10_5194_gmd_7_1_2014 crossref_primary_10_3189_2012JoG11J195 crossref_primary_10_1002_2014JF003157 crossref_primary_10_1029_2022JF006744 crossref_primary_10_5194_tc_10_497_2016 crossref_primary_10_5194_tc_16_1675_2022 crossref_primary_10_5194_tc_17_4661_2023 crossref_primary_10_5194_gmd_6_1299_2013 crossref_primary_10_1080_10556788_2017_1396602 crossref_primary_10_1029_2023GL107571 crossref_primary_10_1029_2021JF006429 crossref_primary_10_5194_gmd_11_3747_2018 crossref_primary_10_1002_2016JF004187 crossref_primary_10_5194_npg_21_569_2014 crossref_primary_10_5194_tc_8_2335_2014 crossref_primary_10_1016_j_jcp_2017_08_055 crossref_primary_10_1126_sciadv_adm7813 crossref_primary_10_5670_oceanog_2018_216 crossref_primary_10_1016_j_jcp_2015_04_047 crossref_primary_10_5194_gmd_15_1195_2022 crossref_primary_10_1002_2015GL067365 crossref_primary_10_5194_tc_12_1511_2018 crossref_primary_10_4208_cicp_310813_010414a crossref_primary_10_1029_2021JF006439 crossref_primary_10_1029_2024JH000169 crossref_primary_10_5194_tc_8_1699_2014 crossref_primary_10_1016_j_epsl_2020_116718 crossref_primary_10_3389_feart_2018_00156 crossref_primary_10_5194_tc_16_761_2022 crossref_primary_10_5194_gmd_12_215_2019 crossref_primary_10_5194_tc_19_107_2025 crossref_primary_10_1002_2014JF003181 crossref_primary_10_3189_2013JoG12J182 crossref_primary_10_5194_tc_16_581_2022 crossref_primary_10_1029_2011JF002146 crossref_primary_10_5194_esd_8_283_2017 crossref_primary_10_1016_j_jcp_2015_12_025 crossref_primary_10_1016_j_quascirev_2024_108840 crossref_primary_10_1002_2016GL067695 crossref_primary_10_1016_j_jcp_2016_10_045 crossref_primary_10_3847_2041_8213_aab54f crossref_primary_10_5194_tc_9_217_2015 crossref_primary_10_5194_tc_10_1055_2016 crossref_primary_10_5194_tc_12_3931_2018 crossref_primary_10_1175_BAMS_D_12_00100_1 crossref_primary_10_5194_tc_14_3309_2020 crossref_primary_10_1029_2019GL085228 crossref_primary_10_1002_wcc_285 crossref_primary_10_5194_gmd_12_933_2019 crossref_primary_10_1029_2020JB019560 crossref_primary_10_1017_jog_2024_63 crossref_primary_10_1126_sciadv_1700537 crossref_primary_10_1002_2014JF003178 crossref_primary_10_1214_19_AOAS1305 crossref_primary_10_1002_2017GL075174 crossref_primary_10_5194_gmd_16_2277_2023 crossref_primary_10_1002_2015JF003499 crossref_primary_10_5194_tc_13_723_2019 crossref_primary_10_1109_TGRS_2023_3255219 crossref_primary_10_1002_2017GL073309 crossref_primary_10_5194_tc_18_1381_2024 crossref_primary_10_5194_tc_16_4107_2022 crossref_primary_10_1016_j_quascirev_2013_07_033 crossref_primary_10_5194_gmd_13_4491_2020 crossref_primary_10_1029_2019GL086821 crossref_primary_10_1017_jog_2023_2 crossref_primary_10_1017_jog_2024_50 crossref_primary_10_5194_gmd_17_6227_2024 crossref_primary_10_1017_jog_2018_107 crossref_primary_10_5194_gmd_11_2955_2018 crossref_primary_10_5194_tc_14_2819_2020 crossref_primary_10_5194_tc_16_2265_2022 crossref_primary_10_1016_j_envsoft_2016_05_003 crossref_primary_10_5194_tc_16_451_2022 crossref_primary_10_5194_tc_17_4549_2023 crossref_primary_10_1029_2024GL111092 crossref_primary_10_1002_2016RG000545 crossref_primary_10_1002_2017GL072910 crossref_primary_10_1017_aog_2016_19 crossref_primary_10_1088_1742_6596_788_1_012051 crossref_primary_10_5194_gmd_13_2805_2020 crossref_primary_10_5194_tc_12_3085_2018 crossref_primary_10_5194_tc_10_1259_2016 crossref_primary_10_5194_tc_14_841_2020 crossref_primary_10_1029_2023GL106286 crossref_primary_10_1029_2021JF006249 crossref_primary_10_1038_s43247_021_00289_2 crossref_primary_10_3189_2013AoG63A085 crossref_primary_10_5194_tc_12_3735_2018 crossref_primary_10_5194_tc_13_879_2019 crossref_primary_10_1017_jog_2017_51 crossref_primary_10_5194_tc_16_397_2022 crossref_primary_10_1017_jog_2021_134 crossref_primary_10_5194_gmd_13_4925_2020 crossref_primary_10_5194_tc_8_2119_2014 crossref_primary_10_5194_tc_14_811_2020 crossref_primary_10_1029_2021GL095440 crossref_primary_10_5194_tc_11_1851_2017 crossref_primary_10_5194_tc_19_283_2025 crossref_primary_10_5194_tc_13_373_2019 crossref_primary_10_1029_2018JF004775 crossref_primary_10_5194_tc_11_117_2017 crossref_primary_10_1029_2018JF004774 crossref_primary_10_1093_gji_ggab452 crossref_primary_10_5194_gmd_8_1197_2015 crossref_primary_10_1016_j_nonrwa_2024_104197 crossref_primary_10_1093_gji_ggaf015 crossref_primary_10_1029_2022GL098539 crossref_primary_10_3390_rs13122361 crossref_primary_10_5194_tc_16_3723_2022 crossref_primary_10_1029_2019GL083532 crossref_primary_10_1017_jog_2022_5 crossref_primary_10_5194_tc_15_2647_2021 crossref_primary_10_1016_j_icarus_2023_115717 crossref_primary_10_1017_jog_2022_77 crossref_primary_10_1093_gji_ggae060 crossref_primary_10_5194_gmd_8_1275_2015 crossref_primary_10_1002_2014GL060140 crossref_primary_10_1017_jog_2017_61 crossref_primary_10_5194_gmd_13_955_2020 crossref_primary_10_1029_2022JF006958 crossref_primary_10_5194_tc_14_3349_2020 crossref_primary_10_1016_j_polar_2018_12_003 crossref_primary_10_1002_2016JF003842 crossref_primary_10_5194_tc_10_1753_2016 crossref_primary_10_5194_gmd_11_5003_2018 crossref_primary_10_1029_2024GL110691 crossref_primary_10_1029_2023JF007513 crossref_primary_10_5194_tc_11_281_2017 crossref_primary_10_5194_tc_15_215_2021 |
Cites_doi | 10.1145/1250734.1250746 10.1029/2009GL038110 10.5194/tc-5-659-2011 10.5194/tc-2-95-2008 10.3189/172756409789624283 10.1145/1377596.1377598 10.1017/S0260305500013495 10.3189/172756407782282543 10.1142/S0218202504003866 10.1017/S0022143000029804 10.1137/0907058 10.1016/j.procs.2010.04.206 10.1017/S0022112006003570 10.1029/2010GL043334 10.3189/172756504781830088 10.1093/qjmam/hbp025 10.1137/1.9780898717570 10.3189/172756500781833412 10.1016/0167-8191(96)00024-5 10.1029/2002JB002329 10.2172/378911 10.3189/172756500781832891 10.1029/2008GL033365 10.5194/tc-5-315-2011 10.3189/002214309790152564 10.1038/nature07809 10.1016/0045-7825(81)90049-9 10.1029/2002JB002107 10.3189/172756494794587041 10.1098/rsta.2006.1800 10.1146/annurev.fl.14.010182.000511 10.3189/002214311795306745 10.1029/2010GL043201 10.3189/002214309790152537 10.1029/2004GL021693 10.1029/2003JF000065 10.1017/S0962492904000212 10.1007/978-94-009-3745-1_7 10.1017/S002214300001621X 10.1016/0045-7825(84)90158-0 10.1017/S0260305500011915 10.1017/S0022143000015744 10.1017/S0022143000024709 10.1016/j.gloplacha.2003.11.011 10.1016/j.epsl.2007.10.018 10.1029/2009JF001293 10.1016/j.parco.2005.07.004 10.1090/S0002-9904-1943-07818-4 10.1029/2011GL048659 10.5194/tc-2-67-2008 10.1029/2011GL047338 10.3189/172756400781820534 10.1029/2008JF001124 10.1126/science.1162543 10.3189/172756411799096312 10.1007/s003820050149 10.1017/S0260305500013288 10.1098/rspa.1955.0066 10.1007/978-1-4612-1986-6_8 10.1029/2001JD900054 10.1126/science.1208336 10.1029/96JC02775 10.3189/172756405781812510 10.1002/(SICI)1097-0363(20000330)32:6<725::AID-FLD935>3.0.CO;2-4 10.1007/BFb0014497 10.1029/91JB02454 10.1029/2008JF001170 10.1029/2006JF000664 10.1016/j.epsl.2004.04.011 10.1007/978-94-015-1167-4 10.1137/1.9780898719505 10.3189/002214310791968395 10.3189/S0260305500013197 10.1029/JB094iB04p04071 10.3189/002214310792447734 10.3189/002214389793701581 10.1029/2011JF001962 10.1137/S0895479899358194 10.1029/2007GL030980 10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2 10.1029/2010GL043853 |
ContentType | Journal Article |
Copyright | Copyright 2012 by the American Geophysical Union 2015 INIST-CNRS Copyright American Geophysical Union 2012 |
Copyright_xml | – notice: Copyright 2012 by the American Geophysical Union – notice: 2015 INIST-CNRS – notice: Copyright American Geophysical Union 2012 |
DBID | BSCLL AAYXX CITATION IQODW 3V. 7ST 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI |
DOI | 10.1029/2011JF002140 |
DatabaseName | Istex CrossRef Pascal-Francis ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library ProQuest Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep Meteorological & Geoastrophysical Abstracts - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9011 |
EndPage | n/a |
ExternalDocumentID | 2624904031 2612317471 3835781811 25974238 10_1029_2011JF002140 JGRF913 ark_67375_WNG_RX3RLD8Z_X |
Genre | article Feature |
GeographicLocations | polar regions Antarctica Greenland ice sheet Arctic region Greenland PN, Greenland, Greenland Ice Sheet |
GeographicLocations_xml | – name: PN, Greenland, Greenland Ice Sheet – name: Greenland – name: Antarctica |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION IQODW 05W 0R~ 33P 3V. 52M 702 7ST 7TG 7UA 7XB 8FD 8FG 8FK AAESR AASGY AAZKR ABJCF ACGOD ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AFRAH AIURR ALVPJ ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ C1K CCPQU DPXWK F1W FEDTE FR3 H8D H96 HGLYW HVGLF HZ~ KL. KR7 L.G L6V L7M LEEKS LK5 M7R M7S MBDVC MY~ O9- P2W P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS PYCSY Q9U R.K SOI SUPJJ WBKPD |
ID | FETCH-LOGICAL-c5263-836480aa2edad4af26b09edff616a31fb8d93b0120b5e8a94b65a5f2f7c49b1e3 |
IEDL.DBID | BENPR |
ISSN | 0148-0227 2169-9003 |
IngestDate | Fri Jul 11 16:53:45 EDT 2025 Fri Jul 25 10:57:02 EDT 2025 Fri Jul 25 11:08:36 EDT 2025 Fri Jul 25 11:15:28 EDT 2025 Mon Jul 21 09:16:06 EDT 2025 Tue Jul 01 02:42:23 EDT 2025 Thu Apr 24 22:57:46 EDT 2025 Wed Jan 22 16:55:06 EST 2025 Wed Oct 30 09:58:21 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | F1 |
Keywords | projects mass balance simulation ice Modeling dynamics ice shelves spatial resolution Hybrid model projection satellites Validation stress interfaces interferometry Satellite observation finite element analysis trajectory ice sheets Drag standard samples Radar observation Ice shelf radar methods Data assimilation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5263-836480aa2edad4af26b09edff616a31fb8d93b0120b5e8a94b65a5f2f7c49b1e3 |
Notes | ArticleID:2011JF002140 istex:258625D01261995B0BF64E504E0CBD777C31640E Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4. ark:/67375/WNG-RX3RLD8Z-X ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Feature-1 ObjectType-Article-2 content type line 23 |
PQID | 1721990342 |
PQPubID | 54727 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1024663964 proquest_journals_963702869 proquest_journals_928836135 proquest_journals_1721990342 pascalfrancis_primary_25974238 crossref_primary_10_1029_2011JF002140 crossref_citationtrail_10_1029_2011JF002140 wiley_primary_10_1029_2011JF002140_JGRF913 istex_primary_ark_67375_WNG_RX3RLD8Z_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2012 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: March 2012 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Washington |
PublicationTitle | Journal of Geophysical Research: Earth Surface |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Amestoy, P. R., I. S. Duff, J. Koster, and J.-Y. L'Excellent (2001), A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 15-41. Hutter, K. (1983), Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets, D. Reidel, Dordrecht, Netherlands. Khazendar, A., E. Rignot, and E. Larour (2009), Roles of marine ice, rheology, and fracture in the flow and stability of the Brunt/Stancomb-Wills Ice Shelf, J. Geophys. Res., 114, F04007, doi:10.1029/2008JF001124. Le Brocq, A., A. Payne, M. Siegert, and R. Alley (2009), A subglacial water-flow model for west Antarctica, J. Glaciol., 55(193), 879-888. Karypis, G., and V. Kumar (1998), A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Univ. of Minnesota, Minneapolis. De Smedt, B., F. Pattyn, and P. De Groen (2010), Using the unstable manifold correction in a Picard iteration to solve the velocity field in higher-order ice-flow models, J. Glaciol., 56, 257-261. Nowicki, S. M. J., and D. J. Wingham (2008), Conditions for a steady ice sheet-ice shelf junction, Earth Planet. Sci. Lett., 265, 246-255. Huybrechts, P., J. Gregory, I. Janssens, and M. Wild (2003), Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations, Global Planet. Change, 42, 83-105. Gresho, P. M., and R. L. Sani (2000b), Incompressible Flow and the Finite Element Method, Volume 2: Isothermal Laminar Flow, Wiley, New York. Utke, J., U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and C. Wunsch (2008), OpenAD/F: A modular open-source tool for automatic differentiation of Fortran codes, ACM Trans. Math. Softw., 34, 1-36, doi:10.1145/1377596.1377598. Payne, A., et al. (2000), Results from the EISMINT model intercomparison: The effects of thermomechanical coupling, J. Glaciol., 46, 227-238. Schoof, C. (2007b), Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res., 112, F03S28, doi:10.1029/2006JF000664. Alley, R., H. Horgan, I. Joughin, K. Cuffey, T. Dupont, B. Parizek, S. Anandakrishnan, and J. Bassis (2008), A simple law for ice-shelf calving, Science, 322, 1344, doi:10.1126/science.1162543. Pattyn, F., et al. (2008), Benchmark experiments for higher-order and full-stokes ice sheet models (ISMIP-HOM), Cryosphere, 2, 95-108. MacAyeal, D. (1989), Large-scale ice flow over a viscous basal sediment: Theory and application to Ice Stream-B, Antarctica, J. Geophys. Res., 94, 4071-4087. Gagliardini, O., and T. Zwinger (2008), The ISMIP-HOM benchmark experiments performed using the finite-element code Elmer, Cryosphere, 2, 67-76. Khazendar, A., E. Rignot, and E. Larour (2007), Larsen B Ice Shelf rheology preceding its disintegration inferred by a control method, Geophys. Res. Lett., 34, L19503, doi:10.1029/2007GL030980. Hutter, K. (1982), Dynamics of glaciers and large ice masses, Ann. Rev. Fluid Mech., 14, 87-130. Morlighem, M., E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry (2010), Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica, Geophys. Res. Lett., 37, L14502, doi:10.1029/2010GL043853. International Panel on Climate Change (IPCC) (2007), Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. K. Pachauri et al., Geneva, Switzerland. Gudmundsson, G. (2003), Transmission of basal variability to a glacier surface, J. Geophys. Res., 108(B5), 2253, doi:10.1029/2002JB002107. Shewchuk, J. R. (2001), Delaunay refinement algorithms for triangular mesh generation, Comput. Geometry, 22, 1-3. Pollard, D., and R. DeConto (2009), Modelling West Antarctica ice sheet growth and collapse through the past five million years, Nature, 458, 329-332. Gresho, P. M., and R. L. Sani (2000a), Incompressible Flow and the Finite Element Method, Volume 1: Advection-diffusion, Wiley, New York. Jay-Allemand, M., F. Gillet-Chaulet, O. Gagliardini, and M. Nodet (2011), Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982-1983 surge, Cryosphere, 5, 659-672. Brezzi, F., L. Marini, and E. Suli (2004), Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci., 14, 1893-1903. Huybrechts, P., A. Payne, and the EISMINT Intercomparison Group (1996), The EISMINT benchmarks for testing ice-sheet models, Ann. Glaciol., 23, 1-14. Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey (1997), A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753-5766. Rignot, E. (2008), Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data, Geophys. Res. Lett., 35, L12505, doi:10.1029/2008GL033365. MacAyeal, D. (1993), A tutorial on the use of control methods in ice-sheet modeling, J. Glaciol., 39, 91-98. Narayanan, S. H. K., B. Norris, and B. Winnicka (2010), ADIC2: Development of a component source transformation system for differentiating C and C++, Procedia Comp. Sci., 1, 1845-1853. Vieli, A., A. J. Payne, Z. Du, and A. Shepherd (2006), Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic peninsula, Philos. Trans R. Soc. A, 364, 1815-1839. Burgess, E. W., R. R. Forster, J. E. Box, E. Mosley-Thompson, D. H. Bromwich, R. C. Bales, and L. C. Smith (2010), A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958-2007), J. Geophys. Res., 115, F02004, doi:10.1029/2009JF001293. Gropp, W., and E. Lusk (1996), User's Guide for mpich, a Portable Implementation of MPI, Tech. Rep. aNL-96/6, Argonne Natl. Lab., Argonne, Ill. Hughes, T., W. Liu, and T. Zimmermann (1981), Lagrangian-Eulerian finite-element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Eng., 29, 329-349. Hindmarsh, R., and A. Payne (1996), Titne-step limits for stable solutions of the ice-sheet equation, Ann. Glaciol., 23, 74-85. Rignot, E., J. Mouginot, and B. Scheuchl (2011), Ice flow of the Antarctic Ice Sheet, Science, 333, 1427-1430. Weertman, J. (1957), On the sliding of glaciers, J. Glaciol., 3, 33-38. Box, J., and D. Decker (2010), Analysis of Greenland marine-terminating glacier area changes: 2000-2010, Ann. Glaciol., 52, 91-98. Durand, G., O. Gagliardini, T. Zwinger, E. Le Meur, and R. Hindmarsh (2009b), Full Stokes modeling of marine ice sheets: Influence of the grid size, Ann. Glaciol., 50, 109-114. Paterson, W. (1994), The Physics of Glaciers, 3rd ed., Pergamon Press, New York. Johnson, C., U. Navert, and J. Pitkaranta (1984), Finite-element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Eng., 45, 285-312. Bamber, J., R. Hardy, and I. Jougin (2000), An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry, J. Glaciol., 46, 67-74. MacAyeal, D. (1992), The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods, J. Geophys. Res., 97, 595-603. Schoof, C., and R. Hindmarsh (2010), Thin-film flows with wall slip: An asymptotic analysis of higher order glacier flow models, Q. J. Mech. Appl. Math., 63, 73-114. Rommelaere, V., and D. MacAyeal (1997), Large-scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method, Ann. Glaciol., 24, 43-48. Morlighem, M., E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry (2011), A mass conservation approach for mapping glacier ice thickness, Geophys. Res. Lett., 38, L19503, doi:10.1029/2011GL048659. Stroustrup, B. (1997), The C++ Programming Language, 3rd ed., Addison-Wesley, Reading, Mass. Amestoy, P. R., A. Guermouche, J.-Y. L'Excellent, and S. Pralet (2006), Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 136-156. Goldberg, D. N., and O. V. Sergienko (2011), Data assimilation using a hybrid ice flow model, Cryosphere, 5, 315-327. Seroussi, H., M. Morlighem, E. Rignot, E. Larour, D. Aubry, H. Ben Dhia, and S. S. Kristensen (2011), Ice flux divergence anomalies on 79north Glacier, Greenland, Geophys. Res. Lett., 38, L09501, doi:10.1029/2011GL047338. Blatter, H. (1995), Velocity and stress-fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333-344. Greve, R. (2005), Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet, Ann. Glaciol., 42, 424-432. Courant, R. (1943), Variational methods for the solution of problems of equilibrium and vibrations, Bull. Am. Math. Soc., 49, 1-23. Durand, G., O. Gagliardini, B. deFleurian, T. Zwinger, and E. Le Meur (2009a), Marine ice sheet dynamics: Hysteresis and neutral equilibrium, J. Geophys. Res., 114, F03009, doi:10.1029/2008JF001170. Schoof, C. (2007a), Marine ice-sheet dynamics. Part 1. The case of rapid sliding, J. Fluid Mech., 573, 27-55. Lestringant, R. (1994), A two-dimensional finite-element study of flow in the transition zone between an ice sheet and an ice shelf, Ann. Glaciol., 20, 67-72. Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869. Pattyn, F. (1996), Numerical modelling of a fast-flowing outlet glacier: Experiments with different basal conditions, Ann. Glaciol., 23, 237-246. Bassis, J. N. (2011), The statistical physics of iceberg calving and the emergence of universal calving laws, J. Glaciol., 57, 3-16. Leng, W., L. Ju, M. Gunzburger, T. Ringler, and S. Price (2010), A parallel high-order accurate finite element nonlinear Stokes ice-sheet model and benchmark experiments, J. Geophys. Res., 117, F01001, doi:10.1029/2011JF001962. Payne, A., and D. Baldwin (2000), Analysis of ice-flow instabilities identified in the EISMINT inter 2010; 56 1982; 14 2006; 32 2000; 46 2008; 34 2008; 35 2011; 57 1992; 97 2008; 2 2008; 265 2007; 34 2009; 114 2010; 63 2001; 106 1994; 20 1997; 102 2009; 55 1979; 23 1993; 39 2010; 1 2001 1986; 7 2000 2009; 50 2010; 117 2010; 115 2007; 573 1997; 13 1987 1943; 49 2005; 32 1983 1989; 35 2003; 42 2006; 364 1996; 23 1996; 22 1988 2011; 333 2010; 37 2004; 223 2010 1999; 29 1984; 45 1997; 24 2009 1998 1997 2008 2005; 42 1996 2007 2006 1981; 29 1994 2005 2004 2008; 322 2002 2004; 109 2001; 22 2001; 23 2011; 38 2011; 5 1957; 3 2009; 458 1995; 41 2009; 36 2007; 112 1989; 94 2003; 108 2004; 50 1996; 1148 2004; 14 2000; 32 1955; 228 2000; 30 2007; 45 2010; 52 2005; 14 e_1_2_10_44_1 e_1_2_10_40_1 Pilato C. M. (e_1_2_10_77_1) 2008 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_51_1 Gresho P. M. (e_1_2_10_31_1) 2000 Paterson W. (e_1_2_10_71_1) 1994 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 Vaughan G. V. (e_1_2_10_96_1) 2000 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 Donea J. (e_1_2_10_21_1) 2004 Kernighan B. W. (e_1_2_10_53_1) 1988 Gresho P. M. (e_1_2_10_32_1) 2000 e_1_2_10_60_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 Stroustrup B. (e_1_2_10_92_1) 1997 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_72_1 e_1_2_10_95_1 Cuffey K. (e_1_2_10_19_1) 2010 e_1_2_10_4_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 Shewchuk J. R. (e_1_2_10_91_1) 2001; 22 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 Karypis G. (e_1_2_10_52_1) 1998 e_1_2_10_73_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_81_1 International Panel on Climate Change (IPCC) (e_1_2_10_47_1) 2007 e_1_2_10_62_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_89_1 |
References_xml | – reference: Walter, F., S. O'Neel, D. McNamara, W. T. Pfeffer, J. N. Bassis, and H. A. Fricker (2010), Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska, Geophys. Res. Lett., 37, L15501, doi:10.1029/2010GL043201. – reference: De Smedt, B., F. Pattyn, and P. De Groen (2010), Using the unstable manifold correction in a Picard iteration to solve the velocity field in higher-order ice-flow models, J. Glaciol., 56, 257-261. – reference: Hindmarsh, R., and A. Payne (1996), Titne-step limits for stable solutions of the ice-sheet equation, Ann. Glaciol., 23, 74-85. – reference: Jay-Allemand, M., F. Gillet-Chaulet, O. Gagliardini, and M. Nodet (2011), Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982-1983 surge, Cryosphere, 5, 659-672. – reference: MacAyeal, D. (1989), Large-scale ice flow over a viscous basal sediment: Theory and application to Ice Stream-B, Antarctica, J. Geophys. Res., 94, 4071-4087. – reference: Schoof, C. (2007b), Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res., 112, F03S28, doi:10.1029/2006JF000664. – reference: Habashi, W., J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin, and M. Vallet (2000), Anisotropic mesh adaptation: Towards user-independent, mesh-independent, and solver-independent CFD. Part I: General principles, Int. J. Numer. Meth. Eng., 32, 725-744. – reference: Zwinger, T., R. Greve, O. Gagliardini, T. Shiraiwa, and M. Lyly (2007), A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka, Ann. Glaciol., 45, 29-37. – reference: Greve, R. (2005), Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet, Ann. Glaciol., 42, 424-432. – reference: Khazendar, A., E. Rignot, and E. Larour (2007), Larsen B Ice Shelf rheology preceding its disintegration inferred by a control method, Geophys. Res. Lett., 34, L19503, doi:10.1029/2007GL030980. – reference: Morlighem, M., E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry (2010), Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica, Geophys. Res. Lett., 37, L14502, doi:10.1029/2010GL043853. – reference: Schoof, C. (2007a), Marine ice-sheet dynamics. Part 1. The case of rapid sliding, J. Fluid Mech., 573, 27-55. – reference: Le Brocq, A., A. Payne, M. Siegert, and R. Alley (2009), A subglacial water-flow model for west Antarctica, J. Glaciol., 55(193), 879-888. – reference: Glen, J. (1955), The creep of polycrystalline ice, Proc. R. Soc. A, 228, 519-538. – reference: Rignot, E., J. Mouginot, and B. Scheuchl (2011), Ice flow of the Antarctic Ice Sheet, Science, 333, 1427-1430. – reference: Brezzi, F., L. Marini, and E. Suli (2004), Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci., 14, 1893-1903. – reference: Gudmundsson, G. (2003), Transmission of basal variability to a glacier surface, J. Geophys. Res., 108(B5), 2253, doi:10.1029/2002JB002107. – reference: Leng, W., L. Ju, M. Gunzburger, T. Ringler, and S. Price (2010), A parallel high-order accurate finite element nonlinear Stokes ice-sheet model and benchmark experiments, J. Geophys. Res., 117, F01001, doi:10.1029/2011JF001962. – reference: Burgess, E. W., R. R. Forster, J. E. Box, E. Mosley-Thompson, D. H. Bromwich, R. C. Bales, and L. C. Smith (2010), A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958-2007), J. Geophys. Res., 115, F02004, doi:10.1029/2009JF001293. – reference: Rommelaere, V., and D. MacAyeal (1997), Large-scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method, Ann. Glaciol., 24, 43-48. – reference: Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey (1997), A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753-5766. – reference: Utke, J., U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and C. Wunsch (2008), OpenAD/F: A modular open-source tool for automatic differentiation of Fortran codes, ACM Trans. Math. Softw., 34, 1-36, doi:10.1145/1377596.1377598. – reference: Hutter, K. (1983), Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets, D. Reidel, Dordrecht, Netherlands. – reference: Pattyn, F., et al. (2008), Benchmark experiments for higher-order and full-stokes ice sheet models (ISMIP-HOM), Cryosphere, 2, 95-108. – reference: Blatter, H. (1995), Velocity and stress-fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333-344. – reference: Joughin, I., B. Smith, I. Howat, T. Scambos, and T. Moon (2010), Greenland flow variability from ice-sheet-wide velocity mapping, J. Glaciol., 56, 416-430. – reference: Karypis, G., and V. Kumar (1998), A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Univ. of Minnesota, Minneapolis. – reference: Cuffey, K., and W. S. B. Paterson (2010), The Physics of Glaciers, 4th ed., Elsevier, Burlington, Mass. – reference: MacAyeal, D. (1992), The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods, J. Geophys. Res., 97, 595-603. – reference: Pattyn, F. (2003), A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes, J. Geophys. Res., 108(B8), 2382, doi:10.1029/2002JB002329. – reference: Huybrechts, P., J. Gregory, I. Janssens, and M. Wild (2003), Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations, Global Planet. Change, 42, 83-105. – reference: Huybrechts, P., A. Payne, and the EISMINT Intercomparison Group (1996), The EISMINT benchmarks for testing ice-sheet models, Ann. Glaciol., 23, 1-14. – reference: Gropp, W., and E. Lusk (1996), User's Guide for mpich, a Portable Implementation of MPI, Tech. Rep. aNL-96/6, Argonne Natl. Lab., Argonne, Ill. – reference: Vogel, C. R. (2002), Computational Methods for Inverse Problems, Soc. Ind. Appl. Math., Philadelphia, Pa. – reference: Budd, W. F., P. Keage, and N. Blundy (1979), Empirical studies of ice sliding, J. Glaciol., 23, 157-170. – reference: Bamber, J., R. Hardy, and I. Jougin (2000), An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry, J. Glaciol., 46, 67-74. – reference: Lestringant, R. (1994), A two-dimensional finite-element study of flow in the transition zone between an ice sheet and an ice shelf, Ann. Glaciol., 20, 67-72. – reference: Schoof, C., and R. Hindmarsh (2010), Thin-film flows with wall slip: An asymptotic analysis of higher order glacier flow models, Q. J. Mech. Appl. Math., 63, 73-114. – reference: Briggs, W., V. Henson, and S. McCormick (2000), A Multigrid Tutorial, 2nd ed., Soc. Ind. Appl. Math., Philadelphia, Pa. – reference: Durand, G., O. Gagliardini, T. Zwinger, E. Le Meur, and R. Hindmarsh (2009b), Full Stokes modeling of marine ice sheets: Influence of the grid size, Ann. Glaciol., 50, 109-114. – reference: Fausto, R., A. Ahlstrøm, D. vanAs, S. Johnsen, P. Langen, and S. Konrad (2009), Improving surface boundary conditions with focus on coupling snow densification and meltwater retention in large-scale ice-sheet models of Greenland, J. Glaciol., 55, 869-878. – reference: Larour, E., E. Rignot, I. Joughin, and D. Aubry (2005), Rheology of the Ronne Ice Shelf, Antarctica, inferred from satellite radar interferometry data using an inverse control method, Geophys. Res. Lett., 32, L05503, doi:10.1029/2004GL021693. – reference: Hutter, K. (1982), Dynamics of glaciers and large ice masses, Ann. Rev. Fluid Mech., 14, 87-130. – reference: Alley, R., H. Horgan, I. Joughin, K. Cuffey, T. Dupont, B. Parizek, S. Anandakrishnan, and J. Bassis (2008), A simple law for ice-shelf calving, Science, 322, 1344, doi:10.1126/science.1162543. – reference: Pollard, D., and R. DeConto (2009), Modelling West Antarctica ice sheet growth and collapse through the past five million years, Nature, 458, 329-332. – reference: Amestoy, P. R., I. S. Duff, J. Koster, and J.-Y. L'Excellent (2001), A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 15-41. – reference: Morlighem, M., E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry (2011), A mass conservation approach for mapping glacier ice thickness, Geophys. Res. Lett., 38, L19503, doi:10.1029/2011GL048659. – reference: International Panel on Climate Change (IPCC) (2007), Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. K. Pachauri et al., Geneva, Switzerland. – reference: Pattyn, F. (1996), Numerical modelling of a fast-flowing outlet glacier: Experiments with different basal conditions, Ann. Glaciol., 23, 237-246. – reference: Ritz, C., A. Fabre, and A. Letreguilly (1997), Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: Consequences for the evolution through the last climatic cycle, Clim. Dyn., 13, 11-24. – reference: Durand, G., O. Gagliardini, B. deFleurian, T. Zwinger, and E. Le Meur (2009a), Marine ice sheet dynamics: Hysteresis and neutral equilibrium, J. Geophys. Res., 114, F03009, doi:10.1029/2008JF001170. – reference: Gagliardini, O., G. Durand, T. Zwinger, R. C. A. Hindmarsh, and E. Le Meur (2010), Coupling of ice-shelf melting and buttressing is a key process in ice-sheets dynamics, Geophys. Res. Lett., 37, L14501, doi:10.1029/2010GL043334. – reference: Ettema, J., M. R. vanden Broeke, E. vanMeijgaard, W. J. van deBerg, J. L. Bamber, J. E. Box, and R. C. Bales (2009), Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling, Geophys. Res. Lett., 36, L12501, doi:10.1029/2009GL038110. – reference: Weertman, J. (1957), On the sliding of glaciers, J. Glaciol., 3, 33-38. – reference: Vaughan, G. V., B. Elliston, T. Tromey, and I. L. Taylor (2000), GNU Autoconf, Automake, and Libtool, New Riders, Indianapolis, Indiana. – reference: Goldberg, D. N., and O. V. Sergienko (2011), Data assimilation using a hybrid ice flow model, Cryosphere, 5, 315-327. – reference: Hughes, T., W. Liu, and T. Zimmermann (1981), Lagrangian-Eulerian finite-element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Eng., 29, 329-349. – reference: Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869. – reference: Amestoy, P. R., A. Guermouche, J.-Y. L'Excellent, and S. Pralet (2006), Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 136-156. – reference: Payne, A., et al. (2000), Results from the EISMINT model intercomparison: The effects of thermomechanical coupling, J. Glaciol., 46, 227-238. – reference: Gropp, W., E. Lusk, N. Doss, and A. Skjellum (1996), A high-performance, portable implementation of the MPI message passing interface standard, Parallel Comput., 22, 789-828. – reference: Truffer, M. (2004), The basal speed of valley glaciers: An inverse approach, J. Glaciol., 50, 236-242. – reference: Stroustrup, B. (1997), The C++ Programming Language, 3rd ed., Addison-Wesley, Reading, Mass. – reference: Box, J., and D. Decker (2010), Analysis of Greenland marine-terminating glacier area changes: 2000-2010, Ann. Glaciol., 52, 91-98. – reference: MacAyeal, D. (1993), A tutorial on the use of control methods in ice-sheet modeling, J. Glaciol., 39, 91-98. – reference: Johnson, C., U. Navert, and J. Pitkaranta (1984), Finite-element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Eng., 45, 285-312. – reference: Pilato, C. M., B. Collins-Sussman, and B. W. Fitzpatrick (2008), Version Control With Subversion, 2nd ed., O'Reilly Media, Sebastopol, Calif. – reference: Bamber, J., R. Layberry, and S. Gogineni (2001), A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors, J. Geophys. Res., 106, 33,773-33,780. – reference: Gresho, P. M., and R. L. Sani (2000b), Incompressible Flow and the Finite Element Method, Volume 2: Isothermal Laminar Flow, Wiley, New York. – reference: Shewchuk, J. R. (2001), Delaunay refinement algorithms for triangular mesh generation, Comput. Geometry, 22, 1-3. – reference: Seroussi, H., M. Morlighem, E. Rignot, E. Larour, D. Aubry, H. Ben Dhia, and S. S. Kristensen (2011), Ice flux divergence anomalies on 79north Glacier, Greenland, Geophys. Res. Lett., 38, L09501, doi:10.1029/2011GL047338. – reference: Narayanan, S. H. K., B. Norris, and B. Winnicka (2010), ADIC2: Development of a component source transformation system for differentiating C and C++, Procedia Comp. Sci., 1, 1845-1853. – reference: Paterson, W. (1994), The Physics of Glaciers, 3rd ed., Pergamon Press, New York. – reference: Rignot, E. (2008), Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data, Geophys. Res. Lett., 35, L12505, doi:10.1029/2008GL033365. – reference: Benzi, M., G. Golub, and J. Liesen (2005), Numerical solution of saddle point problems, Acta Numer., 14, 1-137. – reference: Vieli, A., A. J. Payne, Z. Du, and A. Shepherd (2006), Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic peninsula, Philos. Trans R. Soc. A, 364, 1815-1839. – reference: Courant, R. (1943), Variational methods for the solution of problems of equilibrium and vibrations, Bull. Am. Math. Soc., 49, 1-23. – reference: Hindmarsh, R. (2004), A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling, J. Geophys. Res., 109, F01012, doi:10.1029/2003JF000065. – reference: Shapiro, N., and M. Ritzwoller (2004), Inferring surface heat flux distributions guided by a global seismic model: Particular application to Antarctica, Earth Planet. Sci. Lett., 223, 213-224. – reference: van derVeen, C. J., and I. M. Whillans (1989), Force budget: I. Theory and numerical methods, J. Glaciol., 35, 53-60. – reference: Gagliardini, O., and T. Zwinger (2008), The ISMIP-HOM benchmark experiments performed using the finite-element code Elmer, Cryosphere, 2, 67-76. – reference: Holland, D., and A. Jenkins (1999), Modeling thermodynamic ice-ocean interactions at the base of an ice shelf, J. Phys. Oceanogr., 29, 1787-1800. – reference: Kernighan, B. W. (1988), The C Programming Language, 2nd ed., Prentice Hall, Englewood Cliffs, N. J. – reference: Bassis, J. N. (2011), The statistical physics of iceberg calving and the emergence of universal calving laws, J. Glaciol., 57, 3-16. – reference: Payne, A., and D. Baldwin (2000), Analysis of ice-flow instabilities identified in the EISMINT inter-comparison exercise, Ann. Glaciol., 30, 204-210. – reference: Gresho, P. M., and R. L. Sani (2000a), Incompressible Flow and the Finite Element Method, Volume 1: Advection-diffusion, Wiley, New York. – reference: Nowicki, S. M. J., and D. J. Wingham (2008), Conditions for a steady ice sheet-ice shelf junction, Earth Planet. Sci. Lett., 265, 246-255. – reference: Khazendar, A., E. Rignot, and E. Larour (2009), Roles of marine ice, rheology, and fracture in the flow and stability of the Brunt/Stancomb-Wills Ice Shelf, J. Geophys. Res., 114, F04007, doi:10.1029/2008JF001124. – year: 2009 – volume: 37 year: 2010 article-title: Coupling of ice‐shelf melting and buttressing is a key process in ice‐sheets dynamics publication-title: Geophys. Res. Lett. – start-page: 117 year: 1987 end-page: 140 – volume: 41 start-page: 333 year: 1995 end-page: 344 article-title: Velocity and stress‐fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients publication-title: J. Glaciol. – volume: 23 start-page: 74 year: 1996 end-page: 85 article-title: Titne‐step limits for stable solutions of the ice‐sheet equation publication-title: Ann. Glaciol. – year: 2005 – volume: 223 start-page: 213 year: 2004 end-page: 224 article-title: Inferring surface heat flux distributions guided by a global seismic model: Particular application to Antarctica publication-title: Earth Planet. Sci. Lett. – volume: 45 start-page: 29 year: 2007 end-page: 37 article-title: A full Stokes‐flow thermo‐mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka publication-title: Ann. Glaciol. – volume: 94 start-page: 4071 year: 1989 end-page: 4087 article-title: Large‐scale ice flow over a viscous basal sediment: Theory and application to Ice Stream‐B, Antarctica publication-title: J. Geophys. Res. – start-page: 163 year: 1997 end-page: 202 – year: 2001 – volume: 55 start-page: 869 year: 2009 end-page: 878 article-title: Improving surface boundary conditions with focus on coupling snow densification and meltwater retention in large‐scale ice‐sheet models of Greenland publication-title: J. Glaciol. – volume: 102 start-page: 5753 year: 1997 end-page: 5766 article-title: A finite‐volume, incompressible Navier Stokes model for studies of the ocean on parallel computers publication-title: J. Geophys. Res. – volume: 108 issue: B5 year: 2003 article-title: Transmission of basal variability to a glacier surface publication-title: J. Geophys. Res. – start-page: 89 year: 2007 end-page: 100 – volume: 50 start-page: 236 year: 2004 end-page: 242 article-title: The basal speed of valley glaciers: An inverse approach publication-title: J. Glaciol. – volume: 112 year: 2007 article-title: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis publication-title: J. Geophys. Res. – volume: 5 start-page: 315 year: 2011 end-page: 327 article-title: Data assimilation using a hybrid ice flow model publication-title: Cryosphere – volume: 38 year: 2011 article-title: Ice flux divergence anomalies on 79north Glacier, Greenland publication-title: Geophys. Res. Lett. – year: 1994 – volume: 333 start-page: 1427 year: 2011 end-page: 1430 article-title: Ice flow of the Antarctic Ice Sheet publication-title: Science – volume: 57 start-page: 3 year: 2011 end-page: 16 article-title: The statistical physics of iceberg calving and the emergence of universal calving laws publication-title: J. Glaciol. – year: 1998 – volume: 50 start-page: 109 year: 2009 end-page: 114 article-title: Full Stokes modeling of marine ice sheets: Influence of the grid size publication-title: Ann. Glaciol. – volume: 63 start-page: 73 year: 2010 end-page: 114 article-title: Thin‐film flows with wall slip: An asymptotic analysis of higher order glacier flow models publication-title: Q. J. Mech. Appl. Math. – volume: 228 start-page: 519 year: 1955 end-page: 538 article-title: The creep of polycrystalline ice publication-title: Proc. R. Soc. A – volume: 20 start-page: 67 year: 1994 end-page: 72 article-title: A two‐dimensional finite‐element study of flow in the transition zone between an ice sheet and an ice shelf publication-title: Ann. Glaciol. – volume: 22 start-page: 1 year: 2001 end-page: 3 article-title: Delaunay refinement algorithms for triangular mesh generation publication-title: Comput. Geometry – volume: 37 year: 2010 article-title: Spatial patterns of basal drag inferred using control methods from a full‐Stokes and simpler models for Pine Island Glacier, West Antarctica publication-title: Geophys. Res. Lett. – volume: 37 year: 2010 article-title: Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska publication-title: Geophys. Res. Lett. – volume: 29 start-page: 1787 year: 1999 end-page: 1800 article-title: Modeling thermodynamic ice‐ocean interactions at the base of an ice shelf publication-title: J. Phys. Oceanogr. – year: 2008 – volume: 106 start-page: 33,773 year: 2001 end-page: 33,780 article-title: A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors publication-title: J. Geophys. Res. – year: 1997 – volume: 52 start-page: 91 year: 2010 end-page: 98 article-title: Analysis of Greenland marine‐terminating glacier area changes: 2000–2010 publication-title: Ann. Glaciol. – volume: 114 year: 2009 article-title: Roles of marine ice, rheology, and fracture in the flow and stability of the Brunt/Stancomb‐Wills Ice Shelf publication-title: J. Geophys. Res. – volume: 2 start-page: 95 year: 2008 end-page: 108 article-title: Benchmark experiments for higher‐order and full‐stokes ice sheet models (ISMIP‐HOM) publication-title: Cryosphere – volume: 14 start-page: 1893 year: 2004 end-page: 1903 article-title: Discontinuous Galerkin methods for first‐order hyperbolic problems publication-title: Math. Models Methods Appl. Sci. – volume: 5 start-page: 659 year: 2011 end-page: 672 article-title: Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982–1983 surge publication-title: Cryosphere – volume: 45 start-page: 285 year: 1984 end-page: 312 article-title: Finite‐element methods for linear hyperbolic problems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 32 year: 2005 article-title: Rheology of the Ronne Ice Shelf, Antarctica, inferred from satellite radar interferometry data using an inverse control method publication-title: Geophys. Res. Lett. – volume: 35 year: 2008 article-title: Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data publication-title: Geophys. Res. Lett. – volume: 46 start-page: 67 year: 2000 end-page: 74 article-title: An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry publication-title: J. Glaciol. – volume: 115 year: 2010 article-title: A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958–2007) publication-title: J. Geophys. Res. – year: 1983 – volume: 56 start-page: 416 year: 2010 end-page: 430 article-title: Greenland flow variability from ice‐sheet‐wide velocity mapping publication-title: J. Glaciol. – volume: 30 start-page: 204 year: 2000 end-page: 210 article-title: Analysis of ice‐flow instabilities identified in the EISMINT inter‐comparison exercise publication-title: Ann. Glaciol. – volume: 34 year: 2007 article-title: Larsen B Ice Shelf rheology preceding its disintegration inferred by a control method publication-title: Geophys. Res. Lett. – volume: 117 year: 2010 article-title: A parallel high‐order accurate finite element nonlinear Stokes ice‐sheet model and benchmark experiments publication-title: J. Geophys. Res. – volume: 46 start-page: 227 year: 2000 end-page: 238 article-title: Results from the EISMINT model intercomparison: The effects of thermomechanical coupling publication-title: J. Glaciol. – volume: 458 start-page: 329 year: 2009 end-page: 332 article-title: Modelling West Antarctica ice sheet growth and collapse through the past five million years publication-title: Nature – volume: 364 start-page: 1815 year: 2006 end-page: 1839 article-title: Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic peninsula publication-title: Philos. Trans R. Soc. A – year: 2007 – volume: 13 start-page: 11 year: 1997 end-page: 24 article-title: Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: Consequences for the evolution through the last climatic cycle publication-title: Clim. Dyn. – volume: 32 start-page: 136 year: 2006 end-page: 156 article-title: Hybrid scheduling for the parallel solution of linear systems publication-title: Parallel Comput. – year: 2000 – year: 1996 – volume: 109 year: 2004 article-title: A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling publication-title: J. Geophys. Res. – volume: 35 start-page: 53 year: 1989 end-page: 60 article-title: Force budget: I. Theory and numerical methods publication-title: J. Glaciol. – volume: 56 start-page: 257 year: 2010 end-page: 261 article-title: Using the unstable manifold correction in a Picard iteration to solve the velocity field in higher‐order ice‐flow models publication-title: J. Glaciol. – volume: 322 year: 2008 article-title: A simple law for ice‐shelf calving publication-title: Science – volume: 2 start-page: 67 year: 2008 end-page: 76 article-title: The ISMIP‐HOM benchmark experiments performed using the finite‐element code Elmer publication-title: Cryosphere – volume: 39 start-page: 91 year: 1993 end-page: 98 article-title: A tutorial on the use of control methods in ice‐sheet modeling publication-title: J. Glaciol. – volume: 14 start-page: 1 year: 2005 end-page: 137 article-title: Numerical solution of saddle point problems publication-title: Acta Numer. – volume: 23 start-page: 157 year: 1979 end-page: 170 article-title: Empirical studies of ice sliding publication-title: J. Glaciol. – year: 2010 – volume: 49 start-page: 1 year: 1943 end-page: 23 article-title: Variational methods for the solution of problems of equilibrium and vibrations publication-title: Bull. Am. Math. Soc. – start-page: 413 year: 2004 end-page: 437 – volume: 24 start-page: 43 year: 1997 end-page: 48 article-title: Large‐scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method publication-title: Ann. Glaciol. – volume: 22 start-page: 789 year: 1996 end-page: 828 article-title: A high‐performance, portable implementation of the MPI message passing interface standard publication-title: Parallel Comput. – volume: 114 year: 2009 article-title: Marine ice sheet dynamics: Hysteresis and neutral equilibrium publication-title: J. Geophys. Res. – volume: 23 start-page: 237 year: 1996 end-page: 246 article-title: Numerical modelling of a fast‐flowing outlet glacier: Experiments with different basal conditions publication-title: Ann. Glaciol. – volume: 3 start-page: 33 year: 1957 end-page: 38 article-title: On the sliding of glaciers publication-title: J. Glaciol. – volume: 32 start-page: 725 year: 2000 end-page: 744 article-title: Anisotropic mesh adaptation: Towards user‐independent, mesh‐independent, and solver‐independent CFD. Part I: General principles publication-title: Int. J. Numer. Meth. Eng. – volume: 1 start-page: 1845 year: 2010 end-page: 1853 article-title: ADIC2: Development of a component source transformation system for differentiating C and C++ publication-title: Procedia Comp. Sci. – volume: 1148 start-page: 203 year: 1996 end-page: 222 – volume: 29 start-page: 329 year: 1981 end-page: 349 article-title: Lagrangian‐Eulerian finite‐element formulation for incompressible viscous flows publication-title: Comput. Methods Appl. Mech. Eng. – year: 2002 – volume: 573 start-page: 27 year: 2007 end-page: 55 article-title: Marine ice‐sheet dynamics. Part 1. The case of rapid sliding publication-title: J. Fluid Mech. – volume: 42 start-page: 424 year: 2005 end-page: 432 article-title: Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet publication-title: Ann. Glaciol. – year: 1988 – year: 2006 – volume: 14 start-page: 87 year: 1982 end-page: 130 article-title: Dynamics of glaciers and large ice masses publication-title: Ann. Rev. Fluid Mech. – volume: 97 start-page: 595 year: 1992 end-page: 603 article-title: The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods publication-title: J. Geophys. Res. – volume: 23 start-page: 1 year: 1996 end-page: 14 article-title: The EISMINT benchmarks for testing ice‐sheet models publication-title: Ann. Glaciol. – volume: 55 start-page: 879 issue: 193 year: 2009 end-page: 888 article-title: A subglacial water‐flow model for west Antarctica publication-title: J. Glaciol. – volume: 42 start-page: 83 year: 2003 end-page: 105 article-title: Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations publication-title: Global Planet. Change – volume: 265 start-page: 246 year: 2008 end-page: 255 article-title: Conditions for a steady ice sheet‐ice shelf junction publication-title: Earth Planet. Sci. Lett. – volume: 108 issue: B8 year: 2003 article-title: A new three‐dimensional higher‐order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes publication-title: J. Geophys. Res. – volume: 23 start-page: 15 year: 2001 end-page: 41 article-title: A fully asynchronous multifrontal solver using distributed dynamic scheduling publication-title: SIAM J. Matrix Anal. Appl. – volume: 38 year: 2011 article-title: A mass conservation approach for mapping glacier ice thickness publication-title: Geophys. Res. Lett. – volume: 34 start-page: 1 year: 2008 end-page: 36 article-title: OpenAD/F: A modular open‐source tool for automatic differentiation of Fortran codes publication-title: ACM Trans. Math. Softw. – volume: 36 year: 2009 article-title: Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling publication-title: Geophys. Res. Lett. – volume: 7 start-page: 856 year: 1986 end-page: 869 article-title: GMRES: A generalized minimal residual method for solving nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. – ident: e_1_2_10_68_1 doi: 10.1145/1250734.1250746 – ident: e_1_2_10_24_1 doi: 10.1029/2009GL038110 – volume-title: The Physics of Glaciers year: 1994 ident: e_1_2_10_71_1 – ident: e_1_2_10_48_1 doi: 10.5194/tc-5-659-2011 – ident: e_1_2_10_74_1 doi: 10.5194/tc-2-95-2008 – ident: e_1_2_10_23_1 doi: 10.3189/172756409789624283 – ident: e_1_2_10_94_1 doi: 10.1145/1377596.1377598 – ident: e_1_2_10_72_1 doi: 10.1017/S0260305500013495 – ident: e_1_2_10_101_1 doi: 10.3189/172756407782282543 – ident: e_1_2_10_14_1 doi: 10.1142/S0218202504003866 – ident: e_1_2_10_16_1 doi: 10.1017/S0022143000029804 – ident: e_1_2_10_26_1 – ident: e_1_2_10_84_1 doi: 10.1137/0907058 – ident: e_1_2_10_67_1 doi: 10.1016/j.procs.2010.04.206 – ident: e_1_2_10_85_1 doi: 10.1017/S0022112006003570 – ident: e_1_2_10_28_1 doi: 10.1029/2010GL043334 – ident: e_1_2_10_93_1 doi: 10.3189/172756504781830088 – ident: e_1_2_10_87_1 doi: 10.1093/qjmam/hbp025 – ident: e_1_2_10_7_1 – ident: e_1_2_10_98_1 doi: 10.1137/1.9780898717570 – ident: e_1_2_10_8_1 doi: 10.3189/172756500781833412 – ident: e_1_2_10_35_1 doi: 10.1016/0167-8191(96)00024-5 – ident: e_1_2_10_73_1 doi: 10.1029/2002JB002329 – ident: e_1_2_10_34_1 doi: 10.2172/378911 – ident: e_1_2_10_76_1 doi: 10.3189/172756500781832891 – ident: e_1_2_10_80_1 doi: 10.1029/2008GL033365 – ident: e_1_2_10_30_1 doi: 10.5194/tc-5-315-2011 – ident: e_1_2_10_57_1 doi: 10.3189/002214309790152564 – ident: e_1_2_10_78_1 doi: 10.1038/nature07809 – ident: e_1_2_10_42_1 doi: 10.1016/0045-7825(81)90049-9 – ident: e_1_2_10_36_1 doi: 10.1029/2002JB002107 – ident: e_1_2_10_59_1 doi: 10.3189/172756494794587041 – volume-title: Version Control With Subversion year: 2008 ident: e_1_2_10_77_1 – ident: e_1_2_10_97_1 doi: 10.1098/rsta.2006.1800 – ident: e_1_2_10_43_1 doi: 10.1146/annurev.fl.14.010182.000511 – ident: e_1_2_10_10_1 doi: 10.3189/002214311795306745 – ident: e_1_2_10_99_1 doi: 10.1029/2010GL043201 – start-page: 413 volume-title: Encyclopedia of Computational Mechanics year: 2004 ident: e_1_2_10_21_1 – ident: e_1_2_10_25_1 doi: 10.3189/002214309790152537 – ident: e_1_2_10_56_1 doi: 10.1029/2004GL021693 – ident: e_1_2_10_39_1 doi: 10.1029/2003JF000065 – ident: e_1_2_10_11_1 doi: 10.1017/S0962492904000212 – ident: e_1_2_10_64_1 doi: 10.1007/978-94-009-3745-1_7 – ident: e_1_2_10_12_1 doi: 10.1017/S002214300001621X – ident: e_1_2_10_49_1 doi: 10.1016/0045-7825(84)90158-0 – ident: e_1_2_10_83_1 doi: 10.1017/S0260305500011915 – ident: e_1_2_10_62_1 doi: 10.1017/S0022143000015744 – ident: e_1_2_10_100_1 doi: 10.1017/S0022143000024709 – volume-title: Incompressible Flow and the Finite Element Method, Volume 2: Isothermal Laminar Flow year: 2000 ident: e_1_2_10_32_1 – ident: e_1_2_10_46_1 doi: 10.1016/j.gloplacha.2003.11.011 – ident: e_1_2_10_70_1 doi: 10.1016/j.epsl.2007.10.018 – ident: e_1_2_10_17_1 doi: 10.1029/2009JF001293 – ident: e_1_2_10_5_1 doi: 10.1016/j.parco.2005.07.004 – ident: e_1_2_10_18_1 doi: 10.1090/S0002-9904-1943-07818-4 – ident: e_1_2_10_66_1 doi: 10.1029/2011GL048659 – volume-title: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill‐Reducing Orderings of Sparse Matrices year: 1998 ident: e_1_2_10_52_1 – ident: e_1_2_10_27_1 doi: 10.5194/tc-2-67-2008 – ident: e_1_2_10_88_1 doi: 10.1029/2011GL047338 – volume: 22 start-page: 1 year: 2001 ident: e_1_2_10_91_1 article-title: Delaunay refinement algorithms for triangular mesh generation publication-title: Comput. Geometry – ident: e_1_2_10_75_1 doi: 10.3189/172756400781820534 – ident: e_1_2_10_55_1 doi: 10.1029/2008JF001124 – volume-title: The Physics of Glaciers year: 2010 ident: e_1_2_10_19_1 – ident: e_1_2_10_3_1 doi: 10.1126/science.1162543 – ident: e_1_2_10_13_1 doi: 10.3189/172756411799096312 – ident: e_1_2_10_82_1 doi: 10.1007/s003820050149 – ident: e_1_2_10_40_1 doi: 10.1017/S0260305500013288 – ident: e_1_2_10_29_1 doi: 10.1098/rspa.1955.0066 – ident: e_1_2_10_6_1 doi: 10.1007/978-1-4612-1986-6_8 – ident: e_1_2_10_9_1 doi: 10.1029/2001JD900054 – ident: e_1_2_10_81_1 doi: 10.1126/science.1208336 – volume-title: GNU Autoconf, Automake, and Libtool year: 2000 ident: e_1_2_10_96_1 – volume-title: The C++ Programming Language year: 1997 ident: e_1_2_10_92_1 – ident: e_1_2_10_63_1 doi: 10.1029/96JC02775 – ident: e_1_2_10_33_1 doi: 10.3189/172756405781812510 – ident: e_1_2_10_37_1 doi: 10.1002/(SICI)1097-0363(20000330)32:6<725::AID-FLD935>3.0.CO;2-4 – ident: e_1_2_10_50_1 – ident: e_1_2_10_90_1 doi: 10.1007/BFb0014497 – ident: e_1_2_10_61_1 doi: 10.1029/91JB02454 – ident: e_1_2_10_22_1 doi: 10.1029/2008JF001170 – ident: e_1_2_10_86_1 doi: 10.1029/2006JF000664 – ident: e_1_2_10_2_1 – ident: e_1_2_10_89_1 doi: 10.1016/j.epsl.2004.04.011 – ident: e_1_2_10_44_1 doi: 10.1007/978-94-015-1167-4 – volume-title: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_2_10_47_1 – volume-title: The C Programming Language year: 1988 ident: e_1_2_10_53_1 – ident: e_1_2_10_38_1 – ident: e_1_2_10_15_1 doi: 10.1137/1.9780898719505 – ident: e_1_2_10_69_1 – ident: e_1_2_10_20_1 doi: 10.3189/002214310791968395 – ident: e_1_2_10_45_1 doi: 10.3189/S0260305500013197 – ident: e_1_2_10_60_1 doi: 10.1029/JB094iB04p04071 – ident: e_1_2_10_79_1 – ident: e_1_2_10_51_1 doi: 10.3189/002214310792447734 – ident: e_1_2_10_95_1 doi: 10.3189/002214389793701581 – ident: e_1_2_10_58_1 doi: 10.1029/2011JF001962 – ident: e_1_2_10_4_1 doi: 10.1137/S0895479899358194 – ident: e_1_2_10_54_1 doi: 10.1029/2007GL030980 – volume-title: Incompressible Flow and the Finite Element Method, Volume 1: Advection‐diffusion year: 2000 ident: e_1_2_10_31_1 – ident: e_1_2_10_41_1 doi: 10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2 – ident: e_1_2_10_65_1 doi: 10.1029/2010GL043853 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816912 |
Score | 2.5398302 |
Snippet | Ice flow models used to project the mass balance of ice sheets in Greenland and Antarctica usually rely on the Shallow Ice Approximation (SIA) and the... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | assimilation Atmospheric sciences Benchmarks Climate change Cryosphere Data collection Earth sciences Earth, ocean, space Exact sciences and technology Global warming Ice Ice shelves Interferometry Laminar flow modeling Sea level sheet shelf system Thermodynamics |
Title | Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM) |
URI | https://api.istex.fr/ark:/67375/WNG-RX3RLD8Z-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JF002140 https://www.proquest.com/docview/1721990342 https://www.proquest.com/docview/928836135 https://www.proquest.com/docview/963702869 https://www.proquest.com/docview/1024663964 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY-sILAgEibKuMBIiPRUv9FfsJ8bF0q6BCLRMVL5HT2EPa1I6mk_jzuXPcaBWwt0hnJ4rv7Luzf74fIc-zPPcqM3XqnM9SAQ4jtdL71FnPtdeZNy3aYqxOzsRoJmcRm9NEWOVmTQwLdb2c4x75ERhKDr5QmXdXv1IkjcLD1cigsUN6sAJryL16H47HXyfdJguySphw4sngIcVduwh-z5g5Qt83KkLVsGzLLfVwhH8jTNI2MFK-pbjYikFvRrLBFRX3yb0YQ9L3rdIfkDtu8ZCssM4UhIx4u5Hi-9whxVrENBTXjM8N4qdBDjl2NLlDCisFbX46t6aBFQdcGUUw_DmF0JCegnAahG1pc4rcaZf01el0-uX1I3JWHH_7eJJGQoV0LpniqeZK6Mxa5mpbC-uZqjLjau_VQFk-8JWuDa_wOm0lnbZGVEqC5pjP58JUA8cfk93FcuGeEOodk9zUVrMKZNAdEkNura4kvI7LOiFvN-NZzmO1cSS9uCzDqTcz5c3RT8iLrvVVW2XjP-1eBtV0jezqApFpuSy_j4flZMYnnz_pH-UsIf0t3XUdGCZQEKYkZH-jzDLO2qbEdBi8MxcsIXt_iw0yM4M1y39LNwaakGedFOYqHsDYhVteN_g_AiI8o0RC3gQDuvVvy9FwUpgBf3rr5_bIXejEWlzcPtldr67dAQRK66pPdnQx7MdJ8Qdcjw4x |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gAXBALE0lKMRBGPrrqx9-UDQoiyeTTNIWlFxMV4szZIVEnJpgJ-FP-RGe9DjYDeeltpvE7W8_rGHs8APAuSxMaBLHxjbOCH6DB8HVnrG21FatPAyirbYhT3TsPBNJpuwO_mLgylVTY20RnqYjGjPfIDFJQEfWEs355_96lpFB2uNh00Kqk4Mr9-YMRWvukfInv3OM8-nLzv-XVTAX8W8Vj4qYjDNNCam0IXobY8zgNpCmvjTqxFx-ZpIUVOV0rzyKRahnkc4b_nNpmFMu8YgfPegK1QCEkKlWbddkuHelhId77K8cGnPcI61T7g8oA87SBzNcqCNSe4Rfz8SUmZukS-2KqhxhrivYybnePL7sDtGrGyd5WI3YUNM78HS6pqhQCV7lIyms_sM6p8zFwpz_q5pGxtpGNEXwv4PkO7xMqvxqyY68GDjpNR6v0XhkCU9ZE4ccSqkDqjTm1n7EV_Mjl-eR9Or2WlH8DmfDE3D4FZwyMhC53yHGn4OoahQus0j3A6ERUevG7WU83q2ubUYuNMuTN2LtXl1fdgrx19XtX0-M-454417SC9_EZ5cEmkPo66ajwV4-Fh-klNPdhd4137AqdwDUGRBzsNM1VtI0pFwTdiARFyD7b_JkvqA426E_2b2qiDB09bKloGOu7Rc7O4KOl7QsSTMg49eOUE6MqvVYPuOJMd8ejKn3sCN3snx0M17I-OtuEWTsCrjLwd2FwtL8xjhGirfNcpBoPP162JfwCcREl9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DRaCfGCQIAIG8NIDPGxqKmdOPEDQkDXrd2oppaJihfjNDZITO1oOgE_jX_HXb60Ctjb3iKd7cj3ffb5DuBJEMdOBirzrXWBH6LB8E3knG-NE4lLAqfKbIuRPDgJh9NougG_67cwlFZZ68RCUWeLGZ2Rd5BRYrSFUnVclRVx3Ou_PvvuUwMpumitu2mUHHJof_3A6C1_NeghqXc47-99eHfgVw0G_FnEpfATIcMkMIbbzGShcVymgbKZc7Irjei6NMmUSOl5aRrZxKgwlRHuhLt4Fqq0awWuew3aMQZFQQvab_dGx-PmgIc6WqjitpXjh08nhlXifcBVh-zusF9ULAvWTGKbqPuTUjRNjlRyZXuNNf_3ohddmMH-LbhZ-a_sTclwt2HDzu_AkmpcobtKLysZrWd3GdVBZkVhz-o7p9xthGN8X7H7LkMtxfKv1q5Y0ZEHzSijRPwvDN1SNkDgpACWZdUZ9W07Zc8Gk8n753fh5EpwfQ9a88Xc3gfmLI-EykzCU4ThdMS_MCZJI1xORJkHL2t86llV6Zwabpzq4sadK30R-x7sNKPPygof_xn3tCBNM8gsv1FWXBzpj6N9PZ6K8VEv-aSnHmyv0a6ZwCl4QxfJg62amLrSGLmmUBw9AxFyDzb_BivqCo2SFP0bWguHB48bKOoJuvwxc7s4z2k_IXqXSoYevCgY6NLd6uH-uK-64sGlv3sE11EK9dFgdLgJN3A-L9PztqC1Wp7bh-ivrdLtSjIYfL5qYfwDvMFPDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continental+scale%2C+high+order%2C+high+spatial+resolution%2C+ice+sheet+modeling+using+the+Ice+Sheet+System+Model+%28ISSM%29&rft.jtitle=Journal+of+geophysical+research.+Earth+surface&rft.au=Larour%2C+E&rft.au=Seroussi%2C+H&rft.au=Morlighem%2C+M&rft.au=Rignot%2C+E&rft.date=2012-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9003&rft.eissn=2169-9011&rft.volume=117&rft.issue=1&rft_id=info:doi/10.1029%2F2011JF002140&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2624904031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |