The Terrestrial Biosphere Model Farm

Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored...

Full description

Saved in:
Bibliographic Details
Published inJournal of advances in modeling earth systems Vol. 14; no. 2; pp. e2021MS002676 - n/a
Main Authors Fisher, Joshua B., Sikka, Munish, Block, Gary L., Schwalm, Christopher R., Parazoo, Nicholas C., Kolus, Hannah R., Sok, Malen, Wang, Audrey, Gagne‐Landmann, Anna, Lawal, Shakirudeen, Guillaume, Alexandre, Poletti, Alyssa, Schaefer, Kevin M., Masri, Bassil, Levy, Peter E., Wei, Yaxing, Dietze, Michael C., Huntzinger, Deborah N.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.02.2022
American Geophysical Union (AGU)
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system. We ran nine offline terrestrial biosphere models through the Terrestrial Biosphere Model Farm: CABLE, CENTURY, HyLand, ISAM, JULES, LPJ‐GUESS, ORCHIDEE, SiB‐3, and SiB‐CASA. All models were wrapped in a software framework driven with common forcing data, spin‐up, and run protocols specified by the Multi‐scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) for years 1901–2100. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) processing multiple models through a MIP is relatively straightforward, (b) MIP protocols are run consistently across models, which may reduce some model output variability, and (c) unique multimodel experiments can provide novel output for analysis. The challenges are: (a) technological demand is large, particularly for data and output storage and transfer; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. A merger with the open‐source, cloud‐based Predictive Ecosystem Analyzer (PEcAn) ecoinformatics system may be a path forward to overcoming these challenges. Plain Language Summary Comparing models is fundamental to our understanding of how the land surface responds to changes in climate. However, these comparisons are challenging to conduct, requiring the organization of multiple, decentralized teams throughout the world. We explored centralizing these models on a single supercomputing system. The models were all run the same way. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) the centralized system takes a lot of burden off individual teams; (b) running models the same way helps to identify differences in how the world is represented in the models; and (c) the system allows us to run many model experiments relatively quickly. The challenges are: (a) lots of models require lots of data storage and transfer needs; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. Another system, called PEcAn, which has a lot of tools that can help overcome these challenges, can potentially be used in future work. Key Points We ran nine terrestrial biosphere models centralized on a common computing framework The Farm allows multiple MIP experiments to be run relatively quickly and uniformly Challenges included technological demand, model versioning, and interpretation of results
AbstractList Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system. We ran nine offline terrestrial biosphere models through the Terrestrial Biosphere Model Farm: CABLE, CENTURY, HyLand, ISAM, JULES, LPJ‐GUESS, ORCHIDEE, SiB‐3, and SiB‐CASA. All models were wrapped in a software framework driven with common forcing data, spin‐up, and run protocols specified by the Multi‐scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) for years 1901–2100. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) processing multiple models through a MIP is relatively straightforward, (b) MIP protocols are run consistently across models, which may reduce some model output variability, and (c) unique multimodel experiments can provide novel output for analysis. The challenges are: (a) technological demand is large, particularly for data and output storage and transfer; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. A merger with the open‐source, cloud‐based Predictive Ecosystem Analyzer (PEcAn) ecoinformatics system may be a path forward to overcoming these challenges. Comparing models is fundamental to our understanding of how the land surface responds to changes in climate. However, these comparisons are challenging to conduct, requiring the organization of multiple, decentralized teams throughout the world. We explored centralizing these models on a single supercomputing system. The models were all run the same way. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) the centralized system takes a lot of burden off individual teams; (b) running models the same way helps to identify differences in how the world is represented in the models; and (c) the system allows us to run many model experiments relatively quickly. The challenges are: (a) lots of models require lots of data storage and transfer needs; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. Another system, called PEcAn, which has a lot of tools that can help overcome these challenges, can potentially be used in future work. We ran nine terrestrial biosphere models centralized on a common computing framework The Farm allows multiple MIP experiments to be run relatively quickly and uniformly Challenges included technological demand, model versioning, and interpretation of results
Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system. We ran nine offline terrestrial biosphere models through the Terrestrial Biosphere Model Farm: CABLE, CENTURY, HyLand, ISAM, JULES, LPJ-GUESS, ORCHIDEE, SiB-3, and SiB-CASA. All models were wrapped in a software framework driven with common forcing data, spin-up, and run protocols specified by the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) for years 1901-2100. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) processing multiple models through a MIP is relatively straightforward, (b) MIP protocols are run consistently across models, which may reduce some model output variability, and (c) unique multimodel experiments can provide novel output for analysis. The challenges are: (a) technological demand is large, particularly for data and output storage and transfer; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. A merger with the open-source, cloud-based Predictive Ecosystem Analyzer (PEcAn) ecoinformatics system may be a path forward to overcoming these challenges.Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system. We ran nine offline terrestrial biosphere models through the Terrestrial Biosphere Model Farm: CABLE, CENTURY, HyLand, ISAM, JULES, LPJ-GUESS, ORCHIDEE, SiB-3, and SiB-CASA. All models were wrapped in a software framework driven with common forcing data, spin-up, and run protocols specified by the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) for years 1901-2100. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) processing multiple models through a MIP is relatively straightforward, (b) MIP protocols are run consistently across models, which may reduce some model output variability, and (c) unique multimodel experiments can provide novel output for analysis. The challenges are: (a) technological demand is large, particularly for data and output storage and transfer; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. A merger with the open-source, cloud-based Predictive Ecosystem Analyzer (PEcAn) ecoinformatics system may be a path forward to overcoming these challenges.
Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system. We ran nine offline terrestrial biosphere models through the Terrestrial Biosphere Model Farm: CABLE, CENTURY, HyLand, ISAM, JULES, LPJ‐GUESS, ORCHIDEE, SiB‐3, and SiB‐CASA. All models were wrapped in a software framework driven with common forcing data, spin‐up, and run protocols specified by the Multi‐scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) for years 1901–2100. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) processing multiple models through a MIP is relatively straightforward, (b) MIP protocols are run consistently across models, which may reduce some model output variability, and (c) unique multimodel experiments can provide novel output for analysis. The challenges are: (a) technological demand is large, particularly for data and output storage and transfer; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. A merger with the open‐source, cloud‐based Predictive Ecosystem Analyzer (PEcAn) ecoinformatics system may be a path forward to overcoming these challenges. We ran nine terrestrial biosphere models centralized on a common computing framework The Farm allows multiple MIP experiments to be run relatively quickly and uniformly Challenges included technological demand, model versioning, and interpretation of results
Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system. We ran nine offline terrestrial biosphere models through the Terrestrial Biosphere Model Farm: CABLE, CENTURY, HyLand, ISAM, JULES, LPJ‐GUESS, ORCHIDEE, SiB‐3, and SiB‐CASA. All models were wrapped in a software framework driven with common forcing data, spin‐up, and run protocols specified by the Multi‐scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) for years 1901–2100. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) processing multiple models through a MIP is relatively straightforward, (b) MIP protocols are run consistently across models, which may reduce some model output variability, and (c) unique multimodel experiments can provide novel output for analysis. The challenges are: (a) technological demand is large, particularly for data and output storage and transfer; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. A merger with the open‐source, cloud‐based Predictive Ecosystem Analyzer (PEcAn) ecoinformatics system may be a path forward to overcoming these challenges.
Abstract Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system. We ran nine offline terrestrial biosphere models through the Terrestrial Biosphere Model Farm: CABLE, CENTURY, HyLand, ISAM, JULES, LPJ‐GUESS, ORCHIDEE, SiB‐3, and SiB‐CASA. All models were wrapped in a software framework driven with common forcing data, spin‐up, and run protocols specified by the Multi‐scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) for years 1901–2100. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) processing multiple models through a MIP is relatively straightforward, (b) MIP protocols are run consistently across models, which may reduce some model output variability, and (c) unique multimodel experiments can provide novel output for analysis. The challenges are: (a) technological demand is large, particularly for data and output storage and transfer; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. A merger with the open‐source, cloud‐based Predictive Ecosystem Analyzer (PEcAn) ecoinformatics system may be a path forward to overcoming these challenges.
Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system. We ran nine offline terrestrial biosphere models through the Terrestrial Biosphere Model Farm: CABLE, CENTURY, HyLand, ISAM, JULES, LPJ‐GUESS, ORCHIDEE, SiB‐3, and SiB‐CASA. All models were wrapped in a software framework driven with common forcing data, spin‐up, and run protocols specified by the Multi‐scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) for years 1901–2100. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) processing multiple models through a MIP is relatively straightforward, (b) MIP protocols are run consistently across models, which may reduce some model output variability, and (c) unique multimodel experiments can provide novel output for analysis. The challenges are: (a) technological demand is large, particularly for data and output storage and transfer; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. A merger with the open‐source, cloud‐based Predictive Ecosystem Analyzer (PEcAn) ecoinformatics system may be a path forward to overcoming these challenges. Plain Language Summary Comparing models is fundamental to our understanding of how the land surface responds to changes in climate. However, these comparisons are challenging to conduct, requiring the organization of multiple, decentralized teams throughout the world. We explored centralizing these models on a single supercomputing system. The models were all run the same way. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) the centralized system takes a lot of burden off individual teams; (b) running models the same way helps to identify differences in how the world is represented in the models; and (c) the system allows us to run many model experiments relatively quickly. The challenges are: (a) lots of models require lots of data storage and transfer needs; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. Another system, called PEcAn, which has a lot of tools that can help overcome these challenges, can potentially be used in future work. Key Points We ran nine terrestrial biosphere models centralized on a common computing framework The Farm allows multiple MIP experiments to be run relatively quickly and uniformly Challenges included technological demand, model versioning, and interpretation of results
Author Schwalm, Christopher R.
Sikka, Munish
Parazoo, Nicholas C.
Dietze, Michael C.
Block, Gary L.
Wang, Audrey
Fisher, Joshua B.
Huntzinger, Deborah N.
Wei, Yaxing
Masri, Bassil
Sok, Malen
Lawal, Shakirudeen
Gagne‐Landmann, Anna
Kolus, Hannah R.
Levy, Peter E.
Guillaume, Alexandre
Poletti, Alyssa
Schaefer, Kevin M.
AuthorAffiliation 9 School of Earth and Sustainability Northern Arizona University Flagstaff AZ USA
6 Centre for Ecology and Hydrology Penicuik UK
8 Department of Earth and Environment Boston University Boston MA USA
3 Woodwell Climate Research Center Falmouth MA USA
7 Environmental Sciences Division Oak Ridge National Laboratory Climate Change Science Institute Oak Ridge TN USA
4 National Snow and Ice Data Center Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder CO USA
1 Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
2 Schmid College of Science and Technology Chapman University Orange CA USA
5 Department of Earth and Environmental Sciences Murray State University Murray KY USA
AuthorAffiliation_xml – name: 7 Environmental Sciences Division Oak Ridge National Laboratory Climate Change Science Institute Oak Ridge TN USA
– name: 8 Department of Earth and Environment Boston University Boston MA USA
– name: 5 Department of Earth and Environmental Sciences Murray State University Murray KY USA
– name: 9 School of Earth and Sustainability Northern Arizona University Flagstaff AZ USA
– name: 2 Schmid College of Science and Technology Chapman University Orange CA USA
– name: 6 Centre for Ecology and Hydrology Penicuik UK
– name: 3 Woodwell Climate Research Center Falmouth MA USA
– name: 1 Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
– name: 4 National Snow and Ice Data Center Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder CO USA
Author_xml – sequence: 1
  givenname: Joshua B.
  orcidid: 0000-0003-4734-9085
  surname: Fisher
  fullname: Fisher, Joshua B.
  email: joshbfisher@gmail.com
  organization: Chapman University
– sequence: 2
  givenname: Munish
  surname: Sikka
  fullname: Sikka, Munish
  organization: California Institute of Technology
– sequence: 3
  givenname: Gary L.
  surname: Block
  fullname: Block, Gary L.
  organization: California Institute of Technology
– sequence: 4
  givenname: Christopher R.
  surname: Schwalm
  fullname: Schwalm, Christopher R.
  organization: Woodwell Climate Research Center
– sequence: 5
  givenname: Nicholas C.
  orcidid: 0000-0002-4424-7780
  surname: Parazoo
  fullname: Parazoo, Nicholas C.
  organization: California Institute of Technology
– sequence: 6
  givenname: Hannah R.
  orcidid: 0000-0001-9300-4585
  surname: Kolus
  fullname: Kolus, Hannah R.
  organization: California Institute of Technology
– sequence: 7
  givenname: Malen
  surname: Sok
  fullname: Sok, Malen
  organization: California Institute of Technology
– sequence: 8
  givenname: Audrey
  surname: Wang
  fullname: Wang, Audrey
  organization: California Institute of Technology
– sequence: 9
  givenname: Anna
  surname: Gagne‐Landmann
  fullname: Gagne‐Landmann, Anna
  organization: California Institute of Technology
– sequence: 10
  givenname: Shakirudeen
  surname: Lawal
  fullname: Lawal, Shakirudeen
  organization: California Institute of Technology
– sequence: 11
  givenname: Alexandre
  surname: Guillaume
  fullname: Guillaume, Alexandre
  organization: California Institute of Technology
– sequence: 12
  givenname: Alyssa
  orcidid: 0000-0003-2599-9060
  surname: Poletti
  fullname: Poletti, Alyssa
  organization: California Institute of Technology
– sequence: 13
  givenname: Kevin M.
  orcidid: 0000-0002-5444-9917
  surname: Schaefer
  fullname: Schaefer, Kevin M.
  organization: University of Colorado
– sequence: 14
  givenname: Bassil
  orcidid: 0000-0002-1017-5467
  surname: Masri
  fullname: Masri, Bassil
  organization: Murray State University
– sequence: 15
  givenname: Peter E.
  orcidid: 0000-0002-8505-1901
  surname: Levy
  fullname: Levy, Peter E.
  organization: Centre for Ecology and Hydrology
– sequence: 16
  givenname: Yaxing
  orcidid: 0000-0001-6924-0078
  surname: Wei
  fullname: Wei, Yaxing
  organization: Climate Change Science Institute
– sequence: 17
  givenname: Michael C.
  surname: Dietze
  fullname: Dietze, Michael C.
  organization: Boston University
– sequence: 18
  givenname: Deborah N.
  orcidid: 0000-0003-2998-099X
  surname: Huntzinger
  fullname: Huntzinger, Deborah N.
  organization: Northern Arizona University
BackLink https://www.osti.gov/servlets/purl/1847509$$D View this record in Osti.gov
BookMark eNp9kUtvEzEQgFeoiD7gxg-IgEMPBMbjx9oXpFK1UNSIA-Fs-bWNo806tTdU_fe4bJHaSnDyyP7mG8_MYbM3pCE0zWsCHwig-oiAZPEDAEUrnjUHRDGcIxNi70G83xyWsgYQQiB_0exTLgUIhIPm3XIVZsuQcyhjjqaffY6pbFchh9ki-dDPzk3evGyed6Yv4dX9edT8PD9bnn6dX37_cnF6cjl3HAXMLRrPGRDaSW4Nlzx0TBphgXjwwbdetdZzazGoTlglpSKMOQGemdYDtfSouZi8Ppm13ua4MflWJxP1n4uUr7TJY3R90AiCIkplmemYQa6E7SR2lLay5VRidX2aXNud3QTvwjBm0z-SPn4Z4kpfpV9aoeQC2ip4MwlSGaMuLo7BrVwahuBGTSRrOagKHd9Xyel6V2eoN7G40PdmCGlXNAqFLedUQUXfPkHXaZeHOs9KUSRIJLBK4US5nErJodO1sBljuvtk7DUBfbd1_XDrNen9k6S_bf4DpxN-E_tw-19WfztZnCHhCPQ3_yS4qQ
CitedBy_id crossref_primary_10_5194_bg_20_5087_2023
crossref_primary_10_1016_j_jhydrol_2023_129515
crossref_primary_10_1016_j_jhydrol_2023_129696
crossref_primary_10_3390_s24103024
crossref_primary_10_1016_j_scitotenv_2022_158062
Cites_doi 10.1046/j.1365-2486.2003.00569.x
10.1007/s10584-011-0153-2
10.1007/bf01094014
10.1111/nph.12210
10.1046/j.1365-2486.1999.00009.x
10.1038/s41561-019-0436-1
10.1029/2018gb005909
10.1175/jcli-d-14-00362.1
10.1175/1520-0477(1993)074<1335:tpfiol>2.0.co;2
10.1016/j.rse.2006.01.020
10.1016/j.agrformet.2013.03.011
10.1111/pce.12043
10.1029/2005GB002672
10.1111/j.1365-2486.2009.01912.x
10.1088/1748-9326/aa6e8e
10.1098/rsta.2014.0164
10.1038/nclimate2621
10.1109/SC.2012.28
10.1029/2003gb002199
10.1007/s10584-011-0148-z
10.1038/nature25450
10.5194/gmd-4-255-2011
10.1016/j.ecolmodel.2012.02.004
10.1038/s41598-019-50808-7
10.1175/bams-d-15-00135.1
10.1016/j.ecolmodel.2011.09.008
10.5194/gmd-4-993-2011
10.1029/2010jg001400
10.1002/2013ms000252
10.5194/bg-7-2261-2010
10.1002/2015jg003062
10.1111/nph.14283
10.1175/bams-87-12-1739
10.5194/bg-10-753-2013
10.1038/s41558-018-0355-y
10.1073/pnas.1312330110
10.1046/j.1365-2486.2001.00383.x
10.5194/gmd-4-723-2011
10.1038/s41558-019-0436-6
10.1890/12-0137.1
10.5194/bgd-10-20113-2013
10.1175/jcli-d-17-0631.1
10.1111/j.1600-0870.2006.00211.x
10.5194/bg-9-3857-2012
10.1111/gcb.14816
10.1029/2007jg000644
10.1038/s41559-018-0714-0
10.1029/2007jg000603
10.1002/2013jg002392
10.1038/nature23021
10.1111/gcb.15409
10.1034/j.1600-0889.1999.00017.x
10.1002/eap.2064
10.1175/jcli-d-19-0911.1
10.5194/gmd-5-819-2012
10.1038/s41598-017-03818-2
10.1175/bams-d-18-0146.1
10.1016/j.ecolmodel.2013.04.008
10.1088/1748-9326/abf06d
10.5194/bg-15-5801-2018
10.3402/tellusb.v68.28968
10.1175/1520-0442(2002)015<3123:tlscot>2.0.co;2
10.1016/j.agrformet.2013.04.030
10.1088/1748-9326/10/9/094008
10.1029/2018ms001583
10.5194/essd-12-3269-2020
10.1088/1748-9326/ab6784
10.1007/s10265-009-0305-x
10.1088/1748-9326/aa9d9e
10.1186/s13021-016-0060-y
10.5194/gmd-4-701-2011
10.1088/2515-7620/ab4a8a
10.5194/bg-13-4271-2016
10.5194/bg-12-653-2015
10.1175/1520-0442(1998)011<1307:tlscot>2.0.co;2
10.1111/nph.16866
10.1175/2011jcli3964.1
10.1016/j.gloenvcha.2003.10.005
10.1002/2017gb005733
10.1175/jcli3741.1
10.5194/gmd-6-2121-2013
10.1002/2015gl064002
10.1146/annurev-environ-012913-093456
10.1175/jhm-d-14-0040.1
10.1175/jcli3800.1
10.1007/bf02180320
10.1175/jcli-d-12-00572.1
10.1029/2009jg001229
10.1126/science.aam8328
10.1002/2016gl070710
10.1126/sciadv.aaz9549
10.1038/s41598-019-39373-1
10.1029/2011ms00045
10.1007/s00382-012-1636-1
10.1175/bams-87-10-1381
10.1073/pnas.1407302112
10.1002/joc.3711
10.1007/s10021-012-9539-x
10.1175/jcli-d-17-0357.1
10.1029/2010gb003813
10.1029/2004gb002349
10.1016/j.omega.2014.09.009
10.1007/s00376-019-9140-8
10.1002/jame.20038
10.1029/2010jd015139
10.1038/s41598-020-66103-9
10.1109/IGARSS.2002.1026555
10.5194/esd-12-899-2021
10.5194/gmd-7-2875-2014
10.1002/2017ms000947
10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
10.1016/j.envsoft.2005.07.004
10.1046/j.1466-822x.2001.t01-1-00256.x
10.1029/2005gl024607
10.1029/95GB02746
10.1111/ele.13667
10.5194/bg-17-4173-2020
10.5194/bg-10-3313-2013
ContentType Journal Article
Copyright 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
DBID 24P
AAYXX
CITATION
7TG
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1029/2021MS002676
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (New)
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Environmental Sciences
DocumentTitleAlternate Fisher et al
EISSN 1942-2466
EndPage n/a
ExternalDocumentID oai_doaj_org_article_20632289b4af4a2596bf82f337875382
PMC9285607
1847509
10_1029_2021MS002676
JAME21520
Genre article
GeographicLocations Australia
United States--US
Japan
GeographicLocations_xml – name: United States--US
– name: Australia
– name: Japan
GrantInformation_xml – fundername: National Aeronautics and Space Administration
  funderid: NNX10AG01A; NNX14AI54G; NNH10AN681
– fundername: JPL SRTD
– fundername: JPL RTD
– fundername: ;
  grantid: NNX10AG01A; NNX14AI54G; NNH10AN681
GroupedDBID 0R~
1OC
24P
29J
31~
5VS
8-1
8FE
8FH
AAHHS
AAZKR
ABDBF
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZFZN
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
D1K
EAD
EAP
EAS
EBS
EJD
EPL
ESX
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IGS
IPNFZ
ITC
K6-
KQ8
LK5
M7R
M~E
O9-
OK1
P2P
PCBAR
PIMPY
PROAC
RIG
RNS
TUS
WIN
~OA
AAYXX
CITATION
PHGZM
PHGZT
7TG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
7X8
ABPTK
AEUQT
OIOZB
OTOTI
5PM
HZ~
PUEGO
ID FETCH-LOGICAL-c5260-b2ad54013f85ba585ef48a6b01d0ded7d97bd5bb2e9f6b9889144c60d4a7d03b3
IEDL.DBID BENPR
ISSN 1942-2466
IngestDate Wed Aug 27 01:19:19 EDT 2025
Thu Aug 21 18:35:32 EDT 2025
Thu May 18 22:40:32 EDT 2023
Fri Jul 11 11:55:33 EDT 2025
Fri Jul 25 22:52:40 EDT 2025
Thu Apr 24 22:59:30 EDT 2025
Tue Jul 01 00:58:24 EDT 2025
Wed Jan 22 16:27:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5260-b2ad54013f85ba585ef48a6b01d0ded7d97bd5bb2e9f6b9889144c60d4a7d03b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
National Aeronautics and Space Administration (NASA)
AC05-00OR22725; 80NM0018D0004; NNX10AG01A; NNX14AI54G; NNH10AN681
USDOE
ORCID 0000-0002-1017-5467
0000-0003-2998-099X
0000-0002-4424-7780
0000-0001-6924-0078
0000-0002-5444-9917
0000-0002-8505-1901
0000-0003-4734-9085
0000-0003-2599-9060
0000-0001-9300-4585
000000032998099X
0000000325999060
0000000193004585
0000000244247780
0000000210175467
0000000169240078
0000000254449917
0000000285051901
0000000347349085
OpenAccessLink https://www.proquest.com/docview/2632121804?pq-origsite=%requestingapplication%
PMID 35860620
PQID 2632121804
PQPubID 616667
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_20632289b4af4a2596bf82f337875382
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9285607
osti_scitechconnect_1847509
proquest_miscellaneous_2692755390
proquest_journals_2632121804
crossref_citationtrail_10_1029_2021MS002676
crossref_primary_10_1029_2021MS002676
wiley_primary_10_1029_2021MS002676_JAME21520
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
– name: United States
– name: Hoboken
PublicationTitle Journal of advances in modeling earth systems
PublicationYear 2022
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
– name: John Wiley and Sons Inc
References 2011; 116
2002; 15
2019; 11
2019; 12
2020; 17
2020; 15
2020; 12
2020; 10
2012; 15
2013; 5
2013; 6
1996; 77
1977
2006; 20
2018; 2
2006; 21
2010; 115
2015; 373
2016; 43
1999; 51
2013; 198
2008; 113
1995; 29
2018; 31
2010; 7
1998; 11
2009; 15
1995; 9
2019; 9
2019; 33
2015; 51
2019; 1
2013; 83
2020; 37
2020; 33
2011; 4
2011; 3
2013; 182
2019; 100
2016; 13
2016; 11
2017; 548
2005; 19
2012; 232
2020; 2020
2018; 359
2020; 30
2015; 112
2020; 26
2014; 39
2018; 10
2014; 34
2006; 101
2018; 15
2018; 13
2021; 24
2021; 27
2017; 7
2013; 26
2020; 6
2017; 31
2013; 10
2015; 42
1993; 74
2003; 9
2013; 182–183
2005; 32
2011; 24
2011; 25
2014; 7
2014; 6
2001; 10
2014; 119
2015; 12
2015; 16
2015; 5
2012
2011
2013; 40
2010; 123
2021; 229
2015; 10
2009
2006; 19
2016; 121
2002
2013; 263
2014; 111
1999; 5
2017; 213
2007; 59
2021; 16
2011; 109
2015; 28
2013; 36
2021; 12
2001; 7
2006; 87
2018; 553
2004; 14
2017; 98
1988; 5
2017; 12
2016
2014
2012; 5
2011; 222
2016; 68
1966
2012; 9
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_33_1
e_1_2_9_90_1
Collier N. (e_1_2_9_18_1) 2016
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_118_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
IPCC (e_1_2_9_56_1) 2014
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
Berger P. L. (e_1_2_9_7_1) 1966
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
Nietzsche F. (e_1_2_9_82_1) 1977
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
Denning S. (e_1_2_9_24_1) 2009
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
Nijsse F. (e_1_2_9_83_1) 2020; 2020
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 15
  issue: 2
  year: 2020
  article-title: Evaluation of simulated soil carbon dynamics in Arctic‐Boreal ecosystems
  publication-title: Environmental Research Letters
– year: 1966
– volume: 3
  issue: 1
  year: 2011
  article-title: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model
  publication-title: Journal of Advances in Modeling Earth Systems
– start-page: 116
  issue: G1
  year: 2011
  article-title: Parameter and prediction uncertainty in an optimized terrestrial carbon cycle model: Effects of constraining variables and data record length
  publication-title: Journal of Geophysical Research: Biogeosciences
– start-page: 1132
  year: 2014
  article-title: Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects
– volume: 548
  start-page: 202
  issue: 7666
  year: 2017
  end-page: 205
  article-title: Global patterns of drought recovery
  publication-title: Nature
– volume: 7
  start-page: 2875
  issue: 6
  year: 2014
  end-page: 2893
  article-title: The North American Carbon Program multi‐scale synthesis and Terrestrial Model Intercomparison Project–Part 2: Environmental driver data
  publication-title: Geoscientific Model Development
– volume: 9
  start-page: 161
  year: 2003
  end-page: 185
  article-title: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model
  publication-title: Global Change Biology
– volume: 15
  start-page: 5801
  issue: 19
  year: 2018
  end-page: 5830
  article-title: Linking big models to big data: Efficient ecosystem model calibration through Bayesian model emulation
  publication-title: Biogeosciences
– volume: 229
  start-page: 2413
  issue: 5
  year: 2021
  end-page: 2445
  article-title: Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO
  publication-title: New Phytologist
– volume: 10
  start-page: 621
  year: 2001
  end-page: 637
  article-title: Representation of vegetation dynamics in modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space
  publication-title: Global Ecology and Biogeography
– volume: 83
  start-page: 133
  issue: 2
  year: 2013
  end-page: 154
  article-title: Facilitating feedbacks between field measurements and ecosystem models
  publication-title: Ecological Monographs
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 10
  article-title: Land carbon models underestimate the severity and duration of drought’s impact on plant productivity
  publication-title: Scientific Reports
– volume: 553
  start-page: 319
  issue: 7688
  year: 2018
  end-page: 322
  article-title: Emergent constraint on equilibrium climate sensitivity from global temperature variability
  publication-title: Nature
– volume: 16
  issue: 5
  year: 2021
  article-title: Beyond biomass to carbon fluxes: Application and evaluation of a comprehensive forest carbon monitoring system
  publication-title: Environmental Research Letters
– volume: 115
  issue: G3
  year: 2010
  article-title: A model‐data intercomparison of CO exchange across North America: Results from the North American Carbon Program site synthesis
  publication-title: Journal of Geophysical Research
– volume: 12
  start-page: 899
  issue: 3
  year: 2021
  end-page: 918
  article-title: The potential for structural errors in emergent constraints
  publication-title: Earth System Dynamics
– volume: 9
  start-page: 3857
  issue: 10
  year: 2012
  end-page: 3874
  article-title: A framework for benchmarking land models
  publication-title: Biogeosciences
– volume: 20
  issue: 4
  year: 2006
  article-title: Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation
  publication-title: Global Biogeochemical Cycles
– volume: 232
  start-page: 144
  year: 2012
  end-page: 157
  article-title: North American Carbon Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison
  publication-title: Ecological Modelling
– volume: 11
  start-page: 1307
  issue: 6
  year: 1998
  end-page: 1326
  article-title: The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model
  publication-title: Journal of Climate
– volume: 26
  start-page: 6287
  issue: 17
  year: 2013
  end-page: 6308
  article-title: Climate change projections in CESM1 (CAM5) compared to CCSM4
  publication-title: Journal of Climate
– volume: 13
  issue: 2
  year: 2018
  article-title: An empirical, integrated forest biomass monitoring system
  publication-title: Environmental Research Letters
– volume: 11
  start-page: 4245
  issue: 12
  year: 2019
  end-page: 4287
  article-title: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 1
  issue: 11
  year: 2019
  article-title: Divergence in land surface modeling: Linking spread to structure
  publication-title: Environmental Research Communications
– volume: 32
  issue: 22
  year: 2005
  article-title: Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle
  publication-title: Geophysical Research Letters
– volume: 5
  start-page: 528
  issue: 6
  year: 2015
  end-page: 534
  article-title: Using ecosystem experiments to improve vegetation models
  publication-title: Nature Climate Change
– volume: 9
  start-page: 407
  year: 1995
  end-page: 437
  article-title: Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental‐scale study of terrestrial ecosystem responses to climate change and CO doubling
  publication-title: Global Biogeochemical Cycles
– volume: 182
  start-page: 156
  year: 2013
  end-page: 167
  article-title: Carbon dynamics in the Amazonian Basin: Integration of eddy covariance and ecophysiological data with a land surface model
  publication-title: Agricultural and Forest Meteorology
– volume: 25
  issue: 3
  year: 2011
  article-title: Is the northern high‐latitude land‐based CO sink weakening?
  publication-title: Global Biogeochemical Cycles
– volume: 29
  start-page: 145
  issue: 2
  year: 1995
  end-page: 167
  article-title: Boreal forest and tundra ecosystems as components of the climate system
  publication-title: Climatic Change
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 9
  article-title: Carbon and water use efficiencies: A comparative analysis of ten terrestrial ecosystem models under changing climate
  publication-title: Scientific Reports
– volume: 68
  issue: 1
  year: 2016
  article-title: Decadal trends in the seasonal‐cycle amplitude of terrestrial CO exchange resulting from the ensemble of terrestrial biosphere models
  publication-title: Tellus B: Chemical and Physical Meteorology
– volume: 222
  start-page: 3743
  issue: 20–22
  year: 2011
  end-page: 3760
  article-title: Analysis of nitrogen controls on carbon and water exchanges in a conifer forest using the CLASS‐CTEMN+ model
  publication-title: Ecological Modelling
– year: 2016
– volume: 10
  start-page: 3313
  issue: 5
  year: 2013
  end-page: 3340
  article-title: A comprehensive benchmarking system for evaluating global vegetation models
  publication-title: Biogeosciences
– volume: 19
  start-page: 3337
  issue: 14
  year: 2006
  end-page: 3353
  article-title: Climate‐carbon cycle feedback analysis: Results from the C4MIP model intercomparison
  publication-title: Journal of Climate
– volume: 7
  start-page: 357
  issue: 4
  year: 2001
  end-page: 373
  article-title: Global response of terrestrial ecosystem structure and function to CO and climate change: Results from six dynamic global vegetation models
  publication-title: Global Change Biology
– volume: 373
  issue: 2052
  year: 2015
  article-title: How well must climate models agree with observations?
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 12
  start-page: 653
  issue: 3
  year: 2015
  end-page: 679
  article-title: Recent trends and drivers of regional sources and sinks of carbon dioxide
  publication-title: Biogeosciences
– volume: 10
  start-page: 78
  issue: 1
  year: 2018
  end-page: 97
  article-title: A caveat note on tuning in the development of coupled climate models
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 113
  start-page: G00B01
  issue: G1
  year: 2008
  article-title: Seasonal drought stress in the Amazon: Reconciling models and observations
  publication-title: Journal of Geophysical Research
– volume: 119
  start-page: 286
  issue: 3
  year: 2014
  end-page: 300
  article-title: A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 14
  article-title: An emergent constraint on Transient Climate Response from simulated historical warming in CMIP6 models
  publication-title: Earth System Dynamics Discussions
– year: 2002
– volume: 5
  start-page: 819
  issue: 3
  year: 2012
  end-page: 827
  article-title: Towards a public, standardized, diagnostic benchmarking system for land surface models
  publication-title: Geoscientific Model Development
– volume: 19
  start-page: 2290
  issue: 11
  year: 2006
  end-page: 2301
  article-title: Evaluating aspects of the community land and atmosphere models (CLM3 and CAM3) using a dynamic global vegetation model
  publication-title: Journal of Climate
– volume: 51
  start-page: 128
  year: 2015
  end-page: 135
  article-title: Technological forecasting of supercomputer development: The March to Exascale computing
  publication-title: Omega
– volume: 10
  start-page: 20113
  issue: 12
  year: 2013
  end-page: 20177
  article-title: Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades
  publication-title: Biogeosciences Discussions
– volume: 14
  start-page: 21
  year: 2004
  end-page: 30
  article-title: Modelling the impact of future changes in climate, CO concentration and land use on natural ecosystems and the terrestrial carbon sink
  publication-title: Global Environmental Change
– volume: 100
  start-page: 2327
  issue: 11
  year: 2019
  end-page: 2341
  article-title: Designing drought indicators
  publication-title: Bulletin of the American Meteorological Society
– volume: 39
  start-page: 91
  year: 2014
  end-page: 123
  article-title: Modeling the terrestrial biosphere
  publication-title: Annual Review of Environment and Resources
– volume: 43
  start-page: 11339
  issue: 21
  year: 2016
  end-page: 11349
  article-title: Increased light‐use efficiency in northern terrestrial ecosystems indicated by CO and greening observations
  publication-title: Geophysical Research Letters
– volume: 51
  start-page: 343
  issue: 2
  year: 1999
  end-page: 366
  article-title: A first‐order analysis of the potential role of CO fertilization to affect the global carbon budget: A comparison of four terrestrial biosphere models
  publication-title: Tellus B: Chemical and Physical Meteorology
– volume: 4
  start-page: 993
  issue: 4
  year: 2011
  end-page: 1010
  article-title: Plant functional type mapping for Earth system models
  publication-title: Geoscientific Model Development
– volume: 74
  start-page: 1335
  issue: 7
  year: 1993
  end-page: 1349
  article-title: The project for intercomparison of land‐surface parameterization schemes
  publication-title: Bulletin of the American Meteorological Society
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  article-title: Modeling suggests fossil fuel emissions have been driving increased land carbon uptake since the turn of the 20th Century
  publication-title: Scientific Reports
– volume: 15
  start-page: 674
  issue: 4
  year: 2012
  end-page: 694
  article-title: Century‐scale responses of ecosystem carbon storage and flux to multiple environmental changes in the southern United States
  publication-title: Ecosystems
– volume: 121
  start-page: 1372
  issue: 5
  year: 2016
  end-page: 1393
  article-title: Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901–2005
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 30
  issue: 3
  year: 2020
  article-title: Does the leaf economic spectrum hold within plant functional types? A Bayesian multivariate trait meta‐analysis
  publication-title: Ecological Applications
– volume: 109
  start-page: 5
  issue: 1
  year: 2011
  end-page: 31
  article-title: The representative concentration pathways: An overview
  publication-title: Climatic Change
– volume: 7
  start-page: 2261
  year: 2010
  end-page: 2282
  article-title: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere
  publication-title: Biogeosciences
– volume: 10
  issue: 9
  year: 2015
  article-title: Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends
  publication-title: Environmental Research Letters
– volume: 24
  start-page: 3520
  issue: 13
  year: 2011
  end-page: 3544
  article-title: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations
  publication-title: Journal of Climate
– volume: 213
  start-page: 22
  issue: 1
  year: 2017
  end-page: 42
  article-title: A roadmap for improving the representation of photosynthesis in Earth system models
  publication-title: New Phytologist
– volume: 15
  start-page: 3123
  issue: 22
  year: 2002
  end-page: 3149
  article-title: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model
  publication-title: Journal of Climate
– volume: 101
  start-page: 534
  issue: 4
  year: 2006
  end-page: 553
  article-title: Exploiting synergies of global land cover products for carbon cycle modeling
  publication-title: Remote Sensing of Environment
– volume: 11
  start-page: 1
  issue: 1
  year: 2016
  end-page: 20
  article-title: Comparison of national level biomass maps for conterminous US: Understanding pattern and causes of differences
  publication-title: Carbon Balance and Management
– volume: 2
  start-page: 1897
  issue: 12
  year: 2018
  end-page: 1905
  article-title: Enhanced peak growth of global vegetation and its key mechanisms
  publication-title: Nature Ecology & Evolution
– volume: 42
  start-page: 4418
  issue: 11
  year: 2015
  end-page: 4428
  article-title: Toward “optimal” integration of terrestrial biosphere models
  publication-title: Geophysical Research Letters
– volume: 359
  issue: 6375
  year: 2018
  article-title: Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models
  publication-title: Science
– volume: 263
  start-page: 308
  year: 2013
  end-page: 325
  article-title: Spin‐up processes in the Community Land Model version 4 with explicit carbon and nitrogen components
  publication-title: Ecological Modelling
– volume: 10
  start-page: 753
  issue: 2
  year: 2013
  end-page: 788
  article-title: Present state of global wetland extent and wetland methane modelling: Conclusions from a model inter‐comparison project (WETCHIMP)
  publication-title: Biogeosciences
– volume: 4
  start-page: 255
  issue: 2
  year: 2011
  end-page: 269
  article-title: A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale
  publication-title: Geoscientific Model Development
– volume: 98
  start-page: 589
  issue: 3
  year: 2017
  end-page: 602
  article-title: The art and science of climate model tuning
  publication-title: Bulletin of the American Meteorological Society
– volume: 33
  start-page: 7413
  issue: 17
  year: 2020
  end-page: 7430
  article-title: Combining emergent constraints for climate sensitivity
  publication-title: Journal of Climate
– volume: 6
  start-page: 2121
  year: 2013
  end-page: 2133
  article-title: The North American Carbon Program multi‐scale synthesis and Terrestrial Model Intercomparison Project–Part 1: Overview and experimental design
  publication-title: Geoscientific Model Development
– volume: 12
  start-page: 3269
  issue: 4
  year: 2020
  end-page: 3340
  article-title: Global carbon budget 2020
  publication-title: Earth System Science Data
– volume: 17
  start-page: 4173
  issue: 16
  year: 2020
  end-page: 4222
  article-title: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models
  publication-title: Biogeosciences
– volume: 77
  start-page: 437
  issue: 3
  year: 1996
  end-page: 471
  article-title: The NCEP/NCAR 40‐year reanalysis project
  publication-title: Bulletin of the American Meteorological Society
– volume: 4
  start-page: 701
  issue: 3
  year: 2011
  end-page: 722
  article-title: The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics
  publication-title: Geoscientific Model Development
– volume: 4
  start-page: 723
  issue: 3
  year: 2011
  end-page: 757
  article-title: The HadGEM2 family of met office unified model climate configurations
  publication-title: Geoscientific Model Development
– volume: 12
  issue: 6
  year: 2017
  article-title: Global land carbon sink response to temperature and precipitation varies with ENSO phase
  publication-title: Environmental Research Letters
– volume: 9
  start-page: 269
  issue: 4
  year: 2019
  end-page: 278
  article-title: Progressing emergent constraints on future climate change
  publication-title: Nature Climate Change
– volume: 111
  start-page: 3228
  issue: 9
  year: 2014
  end-page: 3232
  article-title: The Inter‐Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework
  publication-title: Proceedings of the National Academy of Sciences
– volume: 116
  issue: D12
  year: 2011
  article-title: The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements
  publication-title: Journal of Geophysical Research
– volume: 36
  start-page: 1575
  issue: 9
  year: 2013
  end-page: 1585
  article-title: On improving the communication between models and data
  publication-title: Plant, Cell & Environment
– volume: 123
  start-page: 577
  issue: 4
  year: 2010
  end-page: 588
  article-title: Changing ecophysiological processes and carbon budget in East Asian ecosystems under near‐future changes in climate: Implications for long‐term monitoring from a process‐based model
  publication-title: Journal of Plant Research
– start-page: 1
  year: 2009
  end-page: 7
– volume: 37
  start-page: 1
  issue: 1
  year: 2020
  end-page: 15
  article-title: Reducing uncertainties in climate projections with emergent constraints: Concepts, examples and prospects
  publication-title: Advances in Atmospheric Sciences
– volume: 27
  start-page: 13
  issue: 1
  year: 2021
  end-page: 26
  article-title: Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological data‐model integration
  publication-title: Global Change Biology
– volume: 26
  start-page: 1474
  issue: 3
  year: 2020
  end-page: 1484
  article-title: Global vegetation biomass production efficiency constrained by models and observations
  publication-title: Global Change Biology
– volume: 5
  start-page: 572
  issue: 3
  year: 2013
  end-page: 597
  article-title: Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 87
  start-page: 1381
  issue: 10
  year: 2006
  end-page: 1398
  article-title: GSWP‐2: Multimodel analysis and implications for our perception of the land surface
  publication-title: Bulletin of the American Meteorological Society
– volume: 59
  start-page: 2
  issue: 1
  year: 2007
  end-page: 29
  article-title: How reliable are climate models?
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
– volume: 19
  start-page: GB1015
  issue: 1
  year: 2005
  article-title: A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system
  publication-title: Global Biogeochemical Cycles
– volume: 5
  start-page: 1
  issue: S1
  year: 1999
  end-page: 15
  article-title: Comparing global models of terrestrial net primary productivity (NPP): Overview and key results
  publication-title: Global Change Biology
– volume: 19
  start-page: GB2015
  issue: 2
  year: 2005
  article-title: Modeling the effects of two different land cover change data sets on the carbon stocks of plants and soils in concert with CO and climate change
  publication-title: Global Biogeochemical Cycles
– volume: 12
  start-page: 809
  issue: 10
  year: 2019
  end-page: 814
  article-title: Field‐experiment constraints on the enhancement of the terrestrial carbon sink by CO fertilization
  publication-title: Nature Geoscience
– volume: 5
  start-page: 109
  year: 1988
  end-page: 131
  article-title: Dynamics of C, N, P, and S in grassland soils: A model
  publication-title: Biogeochemistry
– year: 1977
– volume: 31
  start-page: 2833
  issue: 7
  year: 2018
  end-page: 2851
  article-title: Sources of uncertainty in modeled land carbon storage within and across three MIPs: Diagnosis with three new techniques
  publication-title: Journal of Climate
– volume: 24
  start-page: 498
  issue: 3
  year: 2021
  end-page: 508
  article-title: Forest responses to last‐millennium hydroclimate variability are governed by spatial variations in ecosystem sensitivity
  publication-title: Ecology Letters
– volume: 182–183
  start-page: 111
  year: 2013
  end-page: 127
  article-title: Overview of the large‐scale biosphere–atmosphere experiment in Amazonia Data Model Intercomparison Project (LBA‐DMIP)
  publication-title: Agricultural and Forest Meteorology
– year: 2012
– volume: 31
  start-page: 1639
  issue: 11
  year: 2017
  end-page: 1655
  article-title: Response of water use efficiency to global environmental change based on output from terrestrial biosphere models
  publication-title: Global Biogeochemical Cycles
– volume: 21
  start-page: 1402
  issue: 10
  year: 2006
  end-page: 1415
  article-title: Land information system: An interoperable framework for high resolution land surface modeling
  publication-title: Environmental Modelling & Software
– volume: 109
  start-page: 117
  issue: 1
  year: 2011
  end-page: 161
  article-title: Harmonization of land‐use scenarios for the period 1500–2100: 600 years of global gridded annual land‐use transitions, wood harvest, and resulting secondary lands
  publication-title: Climatic Change
– volume: 6
  start-page: 658
  issue: 3
  year: 2014
  end-page: 679
  article-title: Sensitivity of global terrestrial gross primary production to hydrologic states simulated by the Community Land Model using two runoff parameterizations
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 9
  start-page: 102
  issue: 2
  year: 2019
  end-page: 110
  article-title: Taking climate model evaluation to the next level
  publication-title: Nature Climate Change
– volume: 7
  start-page: 1
  issue: 4765
  year: 2017
  end-page: 8
  article-title: Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon‐climate feedback predictions
  publication-title: Scientific Reports
– volume: 28
  start-page: 5171
  issue: 13
  year: 2015
  end-page: 5194
  article-title: A representative democracy to reduce interdependency in a multimodel ensemble
  publication-title: Journal of Climate
– volume: 31
  start-page: 3921
  issue: 10
  year: 2018
  end-page: 3942
  article-title: Evaluating emergent constraints on equilibrium climate sensitivity
  publication-title: Journal of Climate
– volume: 6
  issue: 12
  year: 2020
  article-title: Past warming trend constrains future warming in CMIP6 models
  publication-title: Science Advances
– volume: 13
  start-page: 4271
  issue: 14
  year: 2016
  end-page: 4277
  article-title: Technical note: 3‐hourly temporal downscaling of monthly global terrestrial biosphere model net ecosystem exchange
  publication-title: Biogeosciences
– volume: 198
  start-page: 957
  issue: 3
  year: 2013
  end-page: 969
  article-title: Next‐generation dynamic global vegetation models: Learning from community ecology
  publication-title: New Phytologist
– volume: 87
  start-page: 1739
  issue: 12
  year: 2006
  end-page: 1746
  article-title: African Monsoon Multidisciplinary Analysis: An international research project and field campaign
  publication-title: Bulletin of the American Meteorological Society
– volume: 33
  start-page: 668
  issue: 6
  year: 2019
  end-page: 689
  article-title: Vegetation functional properties determine uncertainty of simulated ecosystem productivity: A traceability analysis in the East Asian monsoon region
  publication-title: Global Biogeochemical Cycles
– volume: 40
  start-page: 2123
  issue: 9
  year: 2013
  end-page: 2165
  article-title: Climate change projections using the IPSL‐CM5 Earth System Model: From CMIP3 to CMIP5
  publication-title: Climate Dynamics
– volume: 34
  start-page: 623
  issue: 3
  year: 2014
  end-page: 642
  article-title: Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset
  publication-title: International Journal of Climatology
– volume: 112
  start-page: 436
  issue: 2
  year: 2015
  end-page: 441
  article-title: Effect of increasing CO on the terrestrial carbon cycle
  publication-title: Proceedings of the National Academy of Sciences
– volume: 113
  issue: G3
  year: 2008
  article-title: Combined simple biosphere/Carnegie‐Ames‐Stanford approach terrestrial carbon cycle model
  publication-title: Journal of Geophysical Research
– volume: 16
  start-page: 1449
  issue: 4
  year: 2015
  end-page: 1455
  article-title: On uncertainty in global evapotranspiration estimates from choice of input forcing datasets
  publication-title: Journal of Hydrometeorology
– volume: 15
  start-page: 2462
  year: 2009
  end-page: 2484
  article-title: Systematic assessment of terrestrial biogeochemistry in coupled climate‐carbon models
  publication-title: Global Change Biology
– ident: e_1_2_9_110_1
  doi: 10.1046/j.1365-2486.2003.00569.x
– ident: e_1_2_9_55_1
  doi: 10.1007/s10584-011-0153-2
– ident: e_1_2_9_10_1
  doi: 10.1007/bf01094014
– ident: e_1_2_9_98_1
  doi: 10.1111/nph.12210
– ident: e_1_2_9_21_1
  doi: 10.1046/j.1365-2486.1999.00009.x
– ident: e_1_2_9_74_1
  doi: 10.1038/s41561-019-0436-1
– ident: e_1_2_9_22_1
  doi: 10.1029/2018gb005909
– ident: e_1_2_9_95_1
  doi: 10.1175/jcli-d-14-00362.1
– ident: e_1_2_9_47_1
  doi: 10.1175/1520-0477(1993)074<1335:tpfiol>2.0.co;2
– ident: e_1_2_9_60_1
  doi: 10.1016/j.rse.2006.01.020
– ident: e_1_2_9_31_1
  doi: 10.1016/j.agrformet.2013.03.011
– ident: e_1_2_9_26_1
  doi: 10.1111/pce.12043
– ident: e_1_2_9_25_1
  doi: 10.1029/2005GB002672
– ident: e_1_2_9_90_1
  doi: 10.1111/j.1365-2486.2009.01912.x
– ident: e_1_2_9_34_1
  doi: 10.1088/1748-9326/aa6e8e
– ident: e_1_2_9_85_1
  doi: 10.1098/rsta.2014.0164
– ident: e_1_2_9_77_1
  doi: 10.1038/nclimate2621
– ident: e_1_2_9_121_1
  doi: 10.1109/SC.2012.28
– ident: e_1_2_9_66_1
  doi: 10.1029/2003gb002199
– ident: e_1_2_9_115_1
  doi: 10.1007/s10584-011-0148-z
– ident: e_1_2_9_19_1
  doi: 10.1038/nature25450
– ident: e_1_2_9_8_1
  doi: 10.5194/gmd-4-255-2011
– ident: e_1_2_9_52_1
  doi: 10.1016/j.ecolmodel.2012.02.004
– ident: e_1_2_9_32_1
  doi: 10.1038/s41598-019-50808-7
– ident: e_1_2_9_48_1
  doi: 10.1175/bams-d-15-00135.1
– ident: e_1_2_9_50_1
  doi: 10.1016/j.ecolmodel.2011.09.008
– ident: e_1_2_9_87_1
  doi: 10.5194/gmd-4-993-2011
– ident: e_1_2_9_92_1
  doi: 10.1029/2010jg001400
– ident: e_1_2_9_71_1
  doi: 10.1002/2013ms000252
– ident: e_1_2_9_118_1
  doi: 10.5194/bg-7-2261-2010
– volume-title: The social construction of reality: A treatise in the sociology of knowledge
  year: 1966
  ident: e_1_2_9_7_1
– ident: e_1_2_9_105_1
  doi: 10.1002/2015jg003062
– ident: e_1_2_9_93_1
  doi: 10.1111/nph.14283
– ident: e_1_2_9_91_1
  doi: 10.1175/bams-87-12-1739
– ident: e_1_2_9_79_1
  doi: 10.5194/bg-10-753-2013
– ident: e_1_2_9_33_1
  doi: 10.1038/s41558-018-0355-y
– ident: e_1_2_9_119_1
  doi: 10.1073/pnas.1312330110
– ident: e_1_2_9_20_1
  doi: 10.1046/j.1365-2486.2001.00383.x
– ident: e_1_2_9_6_1
  doi: 10.5194/gmd-4-723-2011
– volume-title: International Land Model Benchmarking (ILAMB) Package v002. 00
  year: 2016
  ident: e_1_2_9_18_1
– ident: e_1_2_9_43_1
  doi: 10.1038/s41558-019-0436-6
– ident: e_1_2_9_70_1
  doi: 10.1890/12-0137.1
– ident: e_1_2_9_108_1
  doi: 10.5194/bgd-10-20113-2013
– ident: e_1_2_9_16_1
  doi: 10.1175/jcli-d-17-0631.1
– ident: e_1_2_9_89_1
  doi: 10.1111/j.1600-0870.2006.00211.x
– ident: e_1_2_9_75_1
  doi: 10.5194/bg-9-3857-2012
– ident: e_1_2_9_46_1
  doi: 10.1111/gcb.14816
– ident: e_1_2_9_5_1
  doi: 10.1029/2007jg000644
– ident: e_1_2_9_49_1
  doi: 10.1038/s41559-018-0714-0
– ident: e_1_2_9_97_1
  doi: 10.1029/2007jg000603
– ident: e_1_2_9_27_1
  doi: 10.1002/2013jg002392
– ident: e_1_2_9_100_1
  doi: 10.1038/nature23021
– ident: e_1_2_9_35_1
  doi: 10.1111/gcb.15409
– ident: e_1_2_9_64_1
  doi: 10.1034/j.1600-0889.1999.00017.x
– ident: e_1_2_9_107_1
  doi: 10.1002/eap.2064
– ident: e_1_2_9_14_1
  doi: 10.1175/jcli-d-19-0911.1
– ident: e_1_2_9_2_1
  doi: 10.5194/gmd-5-819-2012
– ident: e_1_2_9_51_1
  doi: 10.1038/s41598-017-03818-2
– ident: e_1_2_9_88_1
  doi: 10.1175/bams-d-18-0146.1
– ident: e_1_2_9_106_1
  doi: 10.1016/j.ecolmodel.2013.04.008
– ident: e_1_2_9_125_1
  doi: 10.1088/1748-9326/abf06d
– ident: e_1_2_9_36_1
  doi: 10.5194/bg-15-5801-2018
– ident: e_1_2_9_58_1
  doi: 10.3402/tellusb.v68.28968
– ident: e_1_2_9_13_1
  doi: 10.1175/1520-0442(2002)015<3123:tlscot>2.0.co;2
– ident: e_1_2_9_23_1
  doi: 10.1016/j.agrformet.2013.04.030
– ident: e_1_2_9_76_1
  doi: 10.1088/1748-9326/10/9/094008
– ident: e_1_2_9_68_1
  doi: 10.1029/2018ms001583
– ident: e_1_2_9_40_1
  doi: 10.5194/essd-12-3269-2020
– ident: e_1_2_9_53_1
  doi: 10.1088/1748-9326/ab6784
– ident: e_1_2_9_57_1
  doi: 10.1007/s10265-009-0305-x
– ident: e_1_2_9_63_1
  doi: 10.1088/1748-9326/aa9d9e
– ident: e_1_2_9_80_1
  doi: 10.1186/s13021-016-0060-y
– ident: e_1_2_9_17_1
  doi: 10.5194/gmd-4-701-2011
– ident: e_1_2_9_103_1
  doi: 10.1088/2515-7620/ab4a8a
– start-page: 1
  volume-title: A global, 1‐km vegetation modeling system for NEWS
  year: 2009
  ident: e_1_2_9_24_1
– ident: e_1_2_9_38_1
  doi: 10.5194/bg-13-4271-2016
– ident: e_1_2_9_109_1
  doi: 10.5194/bg-12-653-2015
– ident: e_1_2_9_9_1
  doi: 10.1175/1520-0442(1998)011<1307:tlscot>2.0.co;2
– start-page: 1132
  volume-title: Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: e_1_2_9_56_1
– ident: e_1_2_9_117_1
  doi: 10.1111/nph.16866
– ident: e_1_2_9_42_1
  doi: 10.1175/2011jcli3964.1
– ident: e_1_2_9_72_1
  doi: 10.1016/j.gloenvcha.2003.10.005
– ident: e_1_2_9_124_1
  doi: 10.1002/2017gb005733
– ident: e_1_2_9_12_1
  doi: 10.1175/jcli3741.1
– ident: e_1_2_9_54_1
  doi: 10.5194/gmd-6-2121-2013
– ident: e_1_2_9_101_1
  doi: 10.1002/2015gl064002
– ident: e_1_2_9_37_1
  doi: 10.1146/annurev-environ-012913-093456
– ident: e_1_2_9_4_1
  doi: 10.1175/jhm-d-14-0040.1
– ident: e_1_2_9_39_1
  doi: 10.1175/jcli3800.1
– ident: e_1_2_9_86_1
  doi: 10.1007/bf02180320
– ident: e_1_2_9_78_1
  doi: 10.1175/jcli-d-12-00572.1
– ident: e_1_2_9_104_1
  doi: 10.1029/2009jg001229
– ident: e_1_2_9_11_1
  doi: 10.1126/science.aam8328
– ident: e_1_2_9_112_1
  doi: 10.1002/2016gl070710
– ident: e_1_2_9_114_1
  doi: 10.1126/sciadv.aaz9549
– ident: e_1_2_9_65_1
  doi: 10.1038/s41598-019-39373-1
– ident: e_1_2_9_69_1
  doi: 10.1029/2011ms00045
– ident: e_1_2_9_30_1
  doi: 10.1007/s00382-012-1636-1
– volume: 2020
  start-page: 1
  year: 2020
  ident: e_1_2_9_83_1
  article-title: An emergent constraint on Transient Climate Response from simulated historical warming in CMIP6 models
  publication-title: Earth System Dynamics Discussions
– ident: e_1_2_9_28_1
  doi: 10.1175/bams-87-10-1381
– ident: e_1_2_9_99_1
  doi: 10.1073/pnas.1407302112
– ident: e_1_2_9_44_1
  doi: 10.1002/joc.3711
– ident: e_1_2_9_113_1
  doi: 10.1007/s10021-012-9539-x
– ident: e_1_2_9_123_1
  doi: 10.1175/jcli-d-17-0357.1
– ident: e_1_2_9_45_1
  doi: 10.1029/2010gb003813
– ident: e_1_2_9_59_1
  doi: 10.1029/2004gb002349
– ident: e_1_2_9_73_1
  doi: 10.1016/j.omega.2014.09.009
– ident: e_1_2_9_15_1
  doi: 10.1007/s00376-019-9140-8
– ident: e_1_2_9_41_1
  doi: 10.1002/jame.20038
– ident: e_1_2_9_84_1
  doi: 10.1029/2010jd015139
– ident: e_1_2_9_102_1
  doi: 10.1038/s41598-020-66103-9
– ident: e_1_2_9_81_1
  doi: 10.1109/IGARSS.2002.1026555
– ident: e_1_2_9_96_1
  doi: 10.5194/esd-12-899-2021
– ident: e_1_2_9_120_1
  doi: 10.5194/gmd-7-2875-2014
– ident: e_1_2_9_29_1
  doi: 10.1002/2017ms000947
– ident: e_1_2_9_61_1
  doi: 10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
– ident: e_1_2_9_67_1
  doi: 10.1016/j.envsoft.2005.07.004
– ident: e_1_2_9_111_1
  doi: 10.1046/j.1466-822x.2001.t01-1-00256.x
– volume-title: The portable Nietzsche
  year: 1977
  ident: e_1_2_9_82_1
– ident: e_1_2_9_122_1
  doi: 10.1029/2005gl024607
– ident: e_1_2_9_116_1
  doi: 10.1029/95GB02746
– ident: e_1_2_9_94_1
  doi: 10.1111/ele.13667
– ident: e_1_2_9_3_1
  doi: 10.5194/bg-17-4173-2020
– ident: e_1_2_9_62_1
  doi: 10.5194/bg-10-3313-2013
SSID ssj0066625
Score 2.2684822
Snippet Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are...
Abstract Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are...
SourceID doaj
pubmedcentral
osti
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2021MS002676
SubjectTerms Abrupt/Rapid Climate Change
Air/Sea Constituent Fluxes
Air/Sea Interactions
Atmospheric
Atmospheric Composition and Structure
Atmospheric Effects
Atmospheric Processes
Avalanches
Benefit‐cost Analysis
Biogeochemical Cycles, Processes, and Modeling
Biogeochemical Kinetics and Reaction Modeling
Biogeochemistry
Biogeosciences
Biosphere
Biosphere models
Carbon
Climate and Interannual Variability
Climate change
Climate Change and Variability
Climate Dynamics
Climate Impact
Climate Impacts
Climate Variability
Climatology
Computational Geophysics
Cryosphere
Decadal Ocean Variability
Disaster Risk Analysis and Assessment
Earth System Model
Earth System Modeling
Earthquake Ground Motions and Engineering Seismology
ecoinformatic
ecosystem model
Effusive Volcanism
ENVIRONMENTAL SCIENCES
Explosive Volcanism
General Circulation
Geodesy and Gravity
Geological
Global Change
Global Change from Geodesy
Gravity and Isostasy
Hydrological Cycles and Budgets
Hydrology
Impacts of Global Change
Informatics
Intercomparison
Laboratories
Land information systems
land surface model
Land use
Land/Atmosphere Interactions
Marine Geology and Geophysics
Mass Balance
model intercomparison project
Modeling
Modelling
Mud Volcanism
Natural Hazards
Numerical Modeling
Numerical Solutions
Ocean influence of Earth rotation
Ocean Monitoring with Geodetic Techniques
Ocean/Atmosphere Interactions
Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions
Oceanic
Oceanography: Biological and Chemical
Oceanography: General
Oceanography: Physical
Oceans
Paleoceanography
PEcAn
Physical Modeling
Policy Sciences
Radio Oceanography
Radio Science
Regional Climate Change
Regional Modeling
Risk
Sea Level Change
Sea Level: Variations and Mean
Seismology
Software
Solid Earth
Storage
Surface Waves and Tides
terrestrial biosphere model
Terrestrial ecosystems
Terrestrial environments
Theoretical Modeling
Tsunamis and Storm Surges
Vegetation
vegetation model
Volcanic Effects
Volcanic Hazards and Risks
Volcano Monitoring
Volcano Seismology
Volcano/Climate Interactions
Volcanology
Water Cycles
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KTrmUtkmpm7Q4kPaSGGTZ-jo2IUsIbE8J5CYkS6ILW7tsNv-_M7J32S20veRkbA3GzGikN57RG4DzTrDQhITRiRRd1XLvKu1qV_lGqqBEdCzRaeT5d3n70N49isedVl9UEzbSA4-Kw-Bc4pzTxrcutQ7BuvRJ89Q0ipC2zqsv7nmbYGpcgxGTczGVuTNuKMKv55SXlMQtsrMBZZ5-vAzoT3sY888KyV3kmree2Rt4PWHG8tv4rW_hVezfQTFHuDus8l_x8mt5vVwg9sx3R3COxi_vY-67QROsvFoMT8QfEEvqfbYsZ2718xgeZjf317fV1A6h6gRGHZXnLggKh5IW3iHMj6nVTnpWBxZiUMEoH4T3PJokvdHaYLDUSRZapwJrfPMeDvqhjx-gDJJF3cY6upzYrPFtTjlFx4kaUetUwMVGR7abuMKpZcXS5pw1N3ZXowV82Ur_Gjky_iJ3RereyhCzdX6A9raTve3_7F3ACRnLIkAgltuOyoG6tcVAlbBPAacbG9rJGZ8sUdLXCGVYW8DZdhjdiHIjro_DM8kYroRoDCtA7dl-73P3R_rFj0zIbbhG4KgKuMyz5J9KsLiZ3lAzYfbxJdRxAoecDmTkOvJTOFivnuMnhElr_zl7xG8t3glX
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB1BuXBBlA-xtKBFKlxghdfrz2NbNaqQgji0Um-WvfZCpLCLkvT_M-NsoiwSSJyiZMfRyvbY79kzbwDOWsliEztkJ0q2leDBV8bXvgqN0lHL5FlH2cjzr-r6Vny5k3fjgRvlwmz1IfYHbuQZeb0mB_dhPYoNkEYmsvZ6TneNSquH8Iiyaymkj4tvu5UYkXkuuoo8nVdcKDUGvmP7z4etJ1tSVu7HjwE9bII6_4yZPMSyeTOaPYUnI4osz7fDfgwPUv8MijkC4GGVz8nLD-XlcoFoNH97Dmc4HcqblCtx0JQrLxbDmhQFUknV0JblzK9-voDb2dXN5XU1FkioWok8pArcR0kEqTMyeAT-qRPGq8DqyGKKOlodogyBJ9upYI2xSJ9axaLwOrImNC_hqB_69ArKqFgyItXJ56vOGv_Na68pwaiRtekK-LjrI9eO6uFUxGLp8i02t-6wRwt4v7f-tVXN-IvdBXX33oa0rvMPw-q7G10HGyhcdYwNwnfCI11ToTO8axpNXMvwAk5osBxCBtK9bSlAqN04pK6Ehgo43Y2hG91z7UikvkZww0QB7_aP0bHotsT3abgnG8u1lI1lBejJ2E9ed_qkX_zIEt2WG4SSuoBPeZb8sxMcbq9XVF6Yvf4_8xN4zCkZI8eQn8LRZnWf3iBE2oS32Q9-A0f8BOQ
  priority: 102
  providerName: Wiley-Blackwell
Title The Terrestrial Biosphere Model Farm
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021MS002676
https://www.proquest.com/docview/2632121804
https://www.proquest.com/docview/2692755390
https://www.osti.gov/servlets/purl/1847509
https://pubmed.ncbi.nlm.nih.gov/PMC9285607
https://doaj.org/article/20632289b4af4a2596bf82f337875382
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9swED7W9GUvY2s35rUNLnR72cxk2bKkp7GUhFJIKaOFvhnJkrdAZndJ-v97pypZMlifgiMlGN1J-j7d6TuAs0YwV7gW2Uklmqzk1mTK5CazRSWdFN6wlm4jT6-qi9vy8k7cxQO3ZUyrXK-JYaF2fUNn5F9JVzzH_YiV3-7_ZFQ1iqKrsYTGHuxjo1ID2B-Nr65_rNdixOZcxHR3xjUx_XxK8cmKNEa2NqKg148fPc6rHaz5b6bkNoINW9DkNbyK2DH9_mTsN_DCdweQTBH29otwOp5-Ss_nM8Sg4ekQztAJ0hsf6m-Qo6WjWb8kHQGfUg20eToxi99v4XYyvjm_yGJZhKwRyD4yy40TRItaJaxBuO_bUpnKstwx5510WlonrOVet5XVSmkkTU3FXGmkY4Ut3sGg6zv_HlJXMa9Kn3sTApw5_puRRtK1okLkqk3g83qM6iZqhlPpinkdYtdc19sjmsDHTe_7J62M__Qb0XBv-pDCdfiiX_ys44TBH6DBkQ3a0rSlQZJW2VbxtigkMSzFEzgiY9UIFEjttqG0oGZVI2ElDJTA8dqGdZyUy_qvCyVwumnG6UQxEtP5_oH6aC6FKDRLQO7Yfud1d1u62a8gzK25QgApE_gSvOTZQahxUx1TUWH24fl3PYKXnK5chEzxYxisFg_-BIHQyg5hj5fXw-jzw3Cc8AhewAWf
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7gFeED9F2IAgbbxAhOPEsfOAEB2tOrZWCHXS3oIdO6NSaUbbCfFP8Tdy5yalRWJve4oSO5Z1Ptvf5zvfARyUgtnEVshOMlFGKTc6UjrWkUkyaaVwmlV0G3k4ygZn6adzcb4Dv9u7MORW2a6JfqG2dUln5G8prniM-xFL31_-iChrFFlX2xQaK7U4cb9-ImVbvDv-iON7yHm_Nz4aRE1WgagUCN4jw7UVxCoqJYxGtOyqVOnMsNgy66y0uTRWGMNdXmUmVypHzlFmzKZaWpaYBNu9BbtpkjHegd1ub_T5S7v2IxfgonGvZzynk4V4SPbQjGKabGx8Pj8APmqcx1vY9l_PzE3E7Le8_j2422DV8MNKue7Djps9gGCIMLue-9P48FV4NJ0g5vVvD-EAlS4cO5_vgxQ77E7qBcUtcCHlXJuGfT3__gjObkRgj6Ezq2fuCYQ2Y06lLnbaG1RjbE1LLekaUyJiVQXwupVRUTYxyilVxrTwtnKeF5sSDeBwXftyFZvjP_W6JO51HYqo7T_U84uimaD4AyoYsk-T6irVSAozUyleJYkkRqd4AHs0WAUCE4quW5IbUrkskCAT5gpgvx3DolkEFsVflQ3g5boYpy_ZZPTM1VdUJ-dSiCRnAcitsd_q7nbJbPLNBwLPuULAKgN447XkWiEUuIn3KIkxe3p9X1_A7cF4eFqcHo9O9uAOp-se3kt9HzrL-ZV7hiBsaZ43mh_C15uebH8Ah3dBEA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkK8oPFLhA0I0sYLRHOcOE4eEKJbq43RakKbtLdgx_aoVJqt7YT41_jruHOT0iKxtz1FTdwoOt_5vs93vgPYrQQziXHITjJRRSnXKspVrCKdZNJIYRVzdBp5MMyOztPPF-JiA363Z2EorbJdE_1CbeqK9sj3qa54jP6IpfuuSYs4Pex_vLqOqIMURVrbdhoLFTmxv34ifZt9OD7Eud7jvN87OziKmg4DUSUQyEeaKyOIYbhcaIXI2bo0V5lmsWHGGmkKqY3QmtvCZbrI8wL5R5UxkyppWKITfO892JTEijqw2e0NT7-2fgB5ARdNqj3jBe0yxAOKjWZU32TFCfpeAXip0abXcO6_WZqr6Nm7v_4WPGxwa_hpoWiPYMNOHkMwQMhdT_3OfPg2PBiPEP_6X09gFxUwPLO-9wcpedgd1TOqYWBD6r82Dvtq-uMpnN-JwJ5BZ1JP7HMITcZsntrYKh9cjfFtSipJR5oSEecugHetjMqqqVdObTPGpY-b86JclWgAe8vRV4s6Hf8Z1yVxL8dQdW1_o55elo2x4h9Q2ZCJ6lS5VCFBzLTLuUsSSewu5wFs02SVCFKo0m5FKUnVvESyTPgrgJ12DstmQZiVf9U3gDfLx2jKFJ9RE1vf0JiCSyGSggUg1-Z-7XPXn0xG331R8ILnCF5lAO-9ltwqhBIdeo8aGrMXt3_ra7iPRlZ-OR6ebMMDTic_fML6DnTm0xv7EvHYXL9qFD-Eb3dta38AoDhFRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Terrestrial+Biosphere+Model+Farm&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Fisher%2C+Joshua+B.&rft.au=Sikka%2C+Munish&rft.au=Block%2C+Gary+L.&rft.au=Schwalm%2C+Christopher+R.&rft.date=2022-02-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.issn=1942-2466&rft.eissn=1942-2466&rft.volume=14&rft.issue=2&rft_id=info:doi/10.1029%2F2021MS002676&rft.externalDocID=1847509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon