Effects of compositional heterogeneity and spatial autocorrelation on richness and diversity in simulated landscapes

Landscape structure plays a key role in mediating a variety of ecological processes affecting biodiversity patterns; however, its precise effects and the mechanisms underpinning them remain unclear. While the effects of landscape structure have been extensively investigated both empirically and theo...

Full description

Saved in:
Bibliographic Details
Published inEcology and evolution Vol. 13; no. 12; pp. e10810 - n/a
Main Authors Tardanico, Joseph, Hovestadt, Thomas
Format Journal Article
LanguageEnglish
Published England John Wiley and Sons Inc 01.12.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Landscape structure plays a key role in mediating a variety of ecological processes affecting biodiversity patterns; however, its precise effects and the mechanisms underpinning them remain unclear. While the effects of landscape structure have been extensively investigated both empirically and theoretically from a metapopulation perspective, the effects of spatial structure at the landscape scale remain poorly explored from a metacommunity perspective. Here, we attempt to address this gap using a spatially explicit, individual‐based metacommunity model to explore the effects of landscape compositional heterogeneity and per se spatial configuration on diversity at the landscape and patch levels via their influence on long‐term community assembly processes. Our model simulates communities composed of species of annual, asexual organisms living, reproducing, dispersing, and competing within grid‐based, fractal landscapes that vary in their magnitude of spatial environmental heterogeneity and in their degree of spatial environmental autocorrelation. Communities are additionally subject to temporal environmental fluctuations and external immigration, allowing for turnover in community composition. We found that compositional heterogeneity and spatial autocorrelation had differing effects on richness, diversity, and the landscape and patch scales. Landscape‐level diversity was driven by community dissimilarity at the patch level and increased with greater heterogeneity, while landscape richness was largely the result of the short‐term accumulation of immigrants and decreased with greater compositional heterogeneity. Both richness and diversity decreased in variance with greater compositional heterogeneity, indicating a reduction in community turnover over time. Patch‐level richness and diversity patterns appeared to be driven by overall landscape richness and local mass effects, resulting in maximum patch‐level richness and diversity at moderate levels of compositional heterogeneity and high spatial autocorrelation. The role of landscape spatial structure in shaping biodiversity patterns remains poorly explored from a metacommunity perspective. We used an individual‐based metacommunity model to investigate the effects of compositional heterogeneity and spatial configuration on biodiversity via their effects on community assembly. We show that different degrees of compositional heterogeneity and spatial autocorrelation result in different assembly processes predominating and that richness and diversity are shaped by different processes at the landscape and patch scales, resulting in differing responses to compositional heterogeneity and spatial autocorrelation at different scales.
AbstractList Landscape structure plays a key role in mediating a variety of ecological processes affecting biodiversity patterns; however, its precise effects and the mechanisms underpinning them remain unclear. While the effects of landscape structure have been extensively investigated both empirically and theoretically from a metapopulation perspective, the effects of spatial structure at the landscape scale remain poorly explored from a metacommunity perspective. Here, we attempt to address this gap using a spatially explicit, individual‐based metacommunity model to explore the effects of landscape compositional heterogeneity and per se spatial configuration on diversity at the landscape and patch levels via their influence on long‐term community assembly processes. Our model simulates communities composed of species of annual, asexual organisms living, reproducing, dispersing, and competing within grid‐based, fractal landscapes that vary in their magnitude of spatial environmental heterogeneity and in their degree of spatial environmental autocorrelation. Communities are additionally subject to temporal environmental fluctuations and external immigration, allowing for turnover in community composition. We found that compositional heterogeneity and spatial autocorrelation had differing effects on richness, diversity, and the landscape and patch scales. Landscape‐level diversity was driven by community dissimilarity at the patch level and increased with greater heterogeneity, while landscape richness was largely the result of the short‐term accumulation of immigrants and decreased with greater compositional heterogeneity. Both richness and diversity decreased in variance with greater compositional heterogeneity, indicating a reduction in community turnover over time. Patch‐level richness and diversity patterns appeared to be driven by overall landscape richness and local mass effects, resulting in maximum patch‐level richness and diversity at moderate levels of compositional heterogeneity and high spatial autocorrelation. The role of landscape spatial structure in shaping biodiversity patterns remains poorly explored from a metacommunity perspective. We used an individual‐based metacommunity model to investigate the effects of compositional heterogeneity and spatial configuration on biodiversity via their effects on community assembly. We show that different degrees of compositional heterogeneity and spatial autocorrelation result in different assembly processes predominating and that richness and diversity are shaped by different processes at the landscape and patch scales, resulting in differing responses to compositional heterogeneity and spatial autocorrelation at different scales.
Abstract Landscape structure plays a key role in mediating a variety of ecological processes affecting biodiversity patterns; however, its precise effects and the mechanisms underpinning them remain unclear. While the effects of landscape structure have been extensively investigated both empirically and theoretically from a metapopulation perspective, the effects of spatial structure at the landscape scale remain poorly explored from a metacommunity perspective. Here, we attempt to address this gap using a spatially explicit, individual‐based metacommunity model to explore the effects of landscape compositional heterogeneity and per se spatial configuration on diversity at the landscape and patch levels via their influence on long‐term community assembly processes. Our model simulates communities composed of species of annual, asexual organisms living, reproducing, dispersing, and competing within grid‐based, fractal landscapes that vary in their magnitude of spatial environmental heterogeneity and in their degree of spatial environmental autocorrelation. Communities are additionally subject to temporal environmental fluctuations and external immigration, allowing for turnover in community composition. We found that compositional heterogeneity and spatial autocorrelation had differing effects on richness, diversity, and the landscape and patch scales. Landscape‐level diversity was driven by community dissimilarity at the patch level and increased with greater heterogeneity, while landscape richness was largely the result of the short‐term accumulation of immigrants and decreased with greater compositional heterogeneity. Both richness and diversity decreased in variance with greater compositional heterogeneity, indicating a reduction in community turnover over time. Patch‐level richness and diversity patterns appeared to be driven by overall landscape richness and local mass effects, resulting in maximum patch‐level richness and diversity at moderate levels of compositional heterogeneity and high spatial autocorrelation.
Landscape structure plays a key role in mediating a variety of ecological processes affecting biodiversity patterns; however, its precise effects and the mechanisms underpinning them remain unclear. While the effects of landscape structure have been extensively investigated both empirically and theoretically from a metapopulation perspective, the effects of spatial structure at the landscape scale remain poorly explored from a metacommunity perspective. Here, we attempt to address this gap using a spatially explicit, individual‐based metacommunity model to explore the effects of landscape compositional heterogeneity and per se spatial configuration on diversity at the landscape and patch levels via their influence on long‐term community assembly processes. Our model simulates communities composed of species of annual, asexual organisms living, reproducing, dispersing, and competing within grid‐based, fractal landscapes that vary in their magnitude of spatial environmental heterogeneity and in their degree of spatial environmental autocorrelation. Communities are additionally subject to temporal environmental fluctuations and external immigration, allowing for turnover in community composition. We found that compositional heterogeneity and spatial autocorrelation had differing effects on richness, diversity, and the landscape and patch scales. Landscape‐level diversity was driven by community dissimilarity at the patch level and increased with greater heterogeneity, while landscape richness was largely the result of the short‐term accumulation of immigrants and decreased with greater compositional heterogeneity. Both richness and diversity decreased in variance with greater compositional heterogeneity, indicating a reduction in community turnover over time. Patch‐level richness and diversity patterns appeared to be driven by overall landscape richness and local mass effects, resulting in maximum patch‐level richness and diversity at moderate levels of compositional heterogeneity and high spatial autocorrelation.
Landscape structure plays a key role in mediating a variety of ecological processes affecting biodiversity patterns; however, its precise effects and the mechanisms underpinning them remain unclear. While the effects of landscape structure have been extensively investigated both empirically and theoretically from a metapopulation perspective, the effects of spatial structure at the landscape scale remain poorly explored from a metacommunity perspective. Here, we attempt to address this gap using a spatially explicit, individual-based metacommunity model to explore the effects of landscape compositional heterogeneity and per se spatial configuration on diversity at the landscape and patch levels via their influence on long-term community assembly processes. Our model simulates communities composed of species of annual, asexual organisms living, reproducing, dispersing, and competing within grid-based, fractal landscapes that vary in their magnitude of spatial environmental heterogeneity and in their degree of spatial environmental autocorrelation. Communities are additionally subject to temporal environmental fluctuations and external immigration, allowing for turnover in community composition. We found that compositional heterogeneity and spatial autocorrelation had differing effects on richness, diversity, and the landscape and patch scales. Landscape-level diversity was driven by community dissimilarity at the patch level and increased with greater heterogeneity, while landscape richness was largely the result of the short-term accumulation of immigrants and decreased with greater compositional heterogeneity. Both richness and diversity decreased in variance with greater compositional heterogeneity, indicating a reduction in community turnover over time. Patch-level richness and diversity patterns appeared to be driven by overall landscape richness and local mass effects, resulting in maximum patch-level richness and diversity at moderate levels of compositional heterogeneity and high spatial autocorrelation.Landscape structure plays a key role in mediating a variety of ecological processes affecting biodiversity patterns; however, its precise effects and the mechanisms underpinning them remain unclear. While the effects of landscape structure have been extensively investigated both empirically and theoretically from a metapopulation perspective, the effects of spatial structure at the landscape scale remain poorly explored from a metacommunity perspective. Here, we attempt to address this gap using a spatially explicit, individual-based metacommunity model to explore the effects of landscape compositional heterogeneity and per se spatial configuration on diversity at the landscape and patch levels via their influence on long-term community assembly processes. Our model simulates communities composed of species of annual, asexual organisms living, reproducing, dispersing, and competing within grid-based, fractal landscapes that vary in their magnitude of spatial environmental heterogeneity and in their degree of spatial environmental autocorrelation. Communities are additionally subject to temporal environmental fluctuations and external immigration, allowing for turnover in community composition. We found that compositional heterogeneity and spatial autocorrelation had differing effects on richness, diversity, and the landscape and patch scales. Landscape-level diversity was driven by community dissimilarity at the patch level and increased with greater heterogeneity, while landscape richness was largely the result of the short-term accumulation of immigrants and decreased with greater compositional heterogeneity. Both richness and diversity decreased in variance with greater compositional heterogeneity, indicating a reduction in community turnover over time. Patch-level richness and diversity patterns appeared to be driven by overall landscape richness and local mass effects, resulting in maximum patch-level richness and diversity at moderate levels of compositional heterogeneity and high spatial autocorrelation.
Author Tardanico, Joseph
Hovestadt, Thomas
AuthorAffiliation 1 Department of Animal Ecology and Tropical Biology Julius‐Maximilians Universität Würzburg Germany
AuthorAffiliation_xml – name: 1 Department of Animal Ecology and Tropical Biology Julius‐Maximilians Universität Würzburg Germany
Author_xml – sequence: 1
  givenname: Joseph
  orcidid: 0009-0003-9660-5759
  surname: Tardanico
  fullname: Tardanico, Joseph
  email: joseph.tardanico@uni‐wuerzburg.de
  organization: Julius‐Maximilians Universität
– sequence: 2
  givenname: Thomas
  surname: Hovestadt
  fullname: Hovestadt, Thomas
  organization: Julius‐Maximilians Universität
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38094150$$D View this record in MEDLINE/PubMed
BookMark eNp9kl9rFDEUxYNUbK198QPIPIqwmmTyb55EllULBV_0OWSSm92UmcmaZCr77c3utNKKGAK55P7OOZDcl-hsihMg9Jrg9wRj-gEstLVSBD9DFxQzvpKSq7NH9Tm6yvkW1yUwZVi-QOetwh0jHF-gsvEebMlN9I2N4z7mUEKczNDsoECKW5gglENjJtfkvSmhdsxcoo0pwWCObFN3CnY3Qc4nzoU7SPmoClOTwzhXDlwz1F62Zg_5FXruzZDh6v68RD8-b76vv65uvn25Xn-6WVlOBV7JVlBBHeO0N9JA18sOHFGdpU4KwS0mlAngFHjbGi_7zjqhRCdEbxk4jttLdL34umhu9T6F0aSDjibo00VMW21SCXYArXrqWqZayZRkhIGijDtvKbXKey9k9fq4eO3nfgRnYSrJDE9Mn3amsNPbeKcJlkRUg-rw9t4hxZ8z5KLHkC0M9V0gzlnTDtOOU9rRir55HPYn5eHfKoAXwKaYcwKvbSin36jZYaih-jgd-jgd-jQdVfLuL8mD6z9hssC_wgCH_5B6s960i-Y3mgHLYg
CitedBy_id crossref_primary_10_3390_d16110658
crossref_primary_10_3390_w16091273
crossref_primary_10_1002_ece3_70017
Cites_doi 10.1111/ele.12241
10.1007/s40823-016-0004-y
10.1098/rspb.2020.2466
10.1111/j.2006.0030-1299.14909.x
10.1086/661784
10.1016/S0169-2046(01)00231-6
10.1111/j.1600-0706.2013.00706.x
10.1111/oik.03018
10.1146/annurev.ento.44.1.535
10.1038/nature14324
10.1007/s10531-009-9750-z
10.1186/s13717-021-00343-z
10.1111/mec.13476
10.1111/j.1600-0587.2012.00062.x
10.1007/s10113-019-01534-3
10.1007/s10980-014-0010-6
10.1111/j.1420-9101.2012.02620.x
10.1002/eap.2608
10.1111/ecog.01321
10.1111/jbi.12029
10.1111/nph.12478
10.1111/ecog.02558
10.1111/ele.13450
10.1111/jbi.12794
10.1007/s40823-017-0021-5
10.1890/08-1074.1
10.1007/s42832-020-0071-1
10.1111/oik.07567
10.1098/rspb.1999.0876
10.1111/j.1365-2664.2006.01270.x
10.1007/BF00378826
10.1111/ele.12277
10.1111/ecog.02480
10.1890/10-0645.1
10.1111/gcb.15846
10.1111/ecog.02535
10.1111/j.1365-2664.2007.01294.x
10.1046/j.1365-2311.2003.00531.x
10.1111/ele.13471
10.1111/ele.12733
10.1111/j.1600-0587.2011.07259.x
10.1111/ecog.04444
10.1111/j.0030-1299.2006.14148.x
10.1086/285580
10.1046/j.1461-0248.1999.22061.x
10.1111/geb.12855
10.1073/pnas.1813051115
10.1111/j.1654-1103.2003.tb02172.x
10.1086/714482
10.1111/j.1461-0248.2006.00931.x
10.1016/0040-5809(83)90027-8
10.1146/annurev-environ-012220-010822
10.1371/journal.pone.0128672
10.1046/j.0305-0270.2003.00994.x
10.1016/j.ecolmodel.2022.110151
10.1007/978-1-4612-3784-6_2
10.1007/s10980-012-9732-5
10.1890/1051-0761(2002)012[0354:COSHFT]2.0.CO;2
10.1111/j.1461-0248.2004.00608.x
10.1016/j.biocon.2018.12.026
10.1111/jbi.12478
10.1371/journal.pone.0121458
10.2307/5781
10.1111/1365-2664.12190
10.1111/j.1600-0706.2013.01073.x
10.1038/416427a
10.1038/23876
10.1146/annurev-ecolsys-110316-022612
10.1016/j.ecoinf.2006.12.001
10.1890/1051-0761(2002)012[0335:CEOEAT]2.0.CO;2
10.1007/978-3-319-24277-4
10.1086/706258
10.1073/pnas.0812016105
10.1016/j.biocon.2019.108368
10.1098/rspb.1999.0696
10.1111/ele.12275
10.1111/j.1469-185X.2011.00216.x
10.1146/annurev.ecolsys.34.011802.132419
10.1016/j.biocon.2018.07.022
10.1111/jbi.12130
10.1002/ecm.1484
10.1111/geb.13059
10.1016/j.tree.2013.01.010
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
DBID 24P
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1002/ece3.10810
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
DocumentTitleAlternate Tardanico and Hovestadt
EISSN 2045-7758
EndPage n/a
ExternalDocumentID oai_doaj_org_article_8b2d34837487414e8245dfc22c8fff67
PMC10716673
38094150
10_1002_ece3_10810
ECE310810
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Bayerisches Staatsministerium für Wissenschaft und Kunst
GroupedDBID 0R~
1OC
24P
53G
5VS
7X2
8-0
8-1
8FE
8FH
AAFWJ
AAHBH
AAMMB
AAZKR
ACCMX
ACGFO
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEFGJ
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AGXDD
AIAGR
AIDQK
AIDYY
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
ATCPS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
D-8
D-9
DIK
EBS
ECGQY
EJD
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEP
ITC
KQ8
LK8
M0K
M48
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
ROL
RPM
SUPJJ
WIN
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5260-736262d452ba7ae9b79ed189c2d7665c01246e52e533af7b9cd686966bc4ed503
IEDL.DBID DOA
ISSN 2045-7758
IngestDate Wed Aug 27 01:31:03 EDT 2025
Thu Aug 21 18:37:24 EDT 2025
Fri Jul 11 05:10:37 EDT 2025
Thu Apr 03 07:00:26 EDT 2025
Thu Apr 24 23:06:19 EDT 2025
Tue Jul 01 03:04:47 EDT 2025
Wed Aug 20 07:27:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords diversity
richness
individual based model
metacommunity model
community assembly
landscape structure
Language English
License Attribution
2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5260-736262d452ba7ae9b79ed189c2d7665c01246e52e533af7b9cd686966bc4ed503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0003-9660-5759
OpenAccessLink https://doaj.org/article/8b2d34837487414e8245dfc22c8fff67
PMID 38094150
PQID 2902952292
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_8b2d34837487414e8245dfc22c8fff67
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10716673
proquest_miscellaneous_2902952292
pubmed_primary_38094150
crossref_citationtrail_10_1002_ece3_10810
crossref_primary_10_1002_ece3_10810
wiley_primary_10_1002_ece3_10810_ECE310810
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle Ecology and evolution
PublicationTitleAlternate Ecol Evol
PublicationYear 2023
Publisher John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley and Sons Inc
– name: Wiley
References 2017; 40
2021; 27
2002; 58
2017; 2
2013; 28
2017; 48
2010; 19
2021; 288
2020; 241
2002; 12
2004; 7
2003; 14
1999; 44
2019; 19
2020; 129
2014; 29
1988; 75
1998; 396
2016; 39
2004; 31
2015; 42
2019; 28
2016; 43
2019; 116
2011; 21
2012; 27
2007; 2
2022; 32
2014; 17
2012; 25
2009; 19
2014; 51
1996; 65
1983; 24
2019; 230
2014; 123
2014; 201
1988
2022; 474
2021; 46
2017; 20
2021; 3
2012
2022; 92
2018; 226
2015; 520
2013; 40
2006; 9
2015; 10
2012; 39
2002; 416
1999; 2
1999; 266
2016; 125
2012; 35
2021; 96
2006; 112
2011; 178
1957
1993; 142
2006; 114
2003; 34
2021; 10
2013; 36
2016; 1
2020; 195
2019; 42
2020
2003; 28
2016
2020; 23
2007; 44
2016; 25
2012; 87
1967
2020; 29
2009; 106
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Beverton R. J. H. (e_1_2_10_5_1) 1957
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_88_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
R Core Team (e_1_2_10_65_1) 2020
e_1_2_10_71_1
e_1_2_10_73_1
Arroyo‐Rodríguez V. (e_1_2_10_3_1) 2017; 2
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
MacArthur R. H. (e_1_2_10_52_1) 1967
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
e_1_2_10_89_1
References_xml – volume: 241
  year: 2020
  article-title: Indirect effects of habitat loss via habitat fragmentation: A cross‐taxa analysis of forest‐dependent species
  publication-title: Biological Conservation
– volume: 35
  start-page: 468
  issue: 5
  year: 2012
  end-page: 480
  article-title: From diversity indices to community assembly processes: A test with simulated data
  publication-title: Ecography
– volume: 28
  start-page: 341
  issue: 6
  year: 2013
  end-page: 346
  article-title: The mechanisms causing extinction debts
  publication-title: Trends in Ecology & Evolution
– volume: 123
  start-page: 385
  issue: 4
  year: 2014
  end-page: 388
  article-title: Ecologists should not use statistical significance tests to interpret simulation model results
  publication-title: Oikos
– volume: 24
  start-page: 244
  issue: 3
  year: 1983
  end-page: 251
  article-title: Can spatial variation alone lead to selection for dispersal?
  publication-title: Theoretical Population Biology
– volume: 9
  start-page: 870
  issue: 7
  year: 2006
  end-page: 886
  article-title: The influence of biotic interactions on soil biodiversity
  publication-title: Ecology Letters
– volume: 51
  start-page: 309
  issue: 2
  year: 2014
  end-page: 318
  article-title: Beyond the fragmentation debate: A conceptual model to predict when habitat configuration really matters
  publication-title: Journal of Applied Ecology
– volume: 123
  start-page: 5
  issue: 1
  year: 2014
  end-page: 22
  article-title: Where am i and why? Synthesizing range biology and the eco‐evolutionary dynamics of dispersal
  publication-title: Oikos
– volume: 416
  start-page: 427
  issue: 6879
  year: 2002
  end-page: 430
  article-title: Spatial scale dictates the productivity–biodiversity relationship
  publication-title: Nature
– volume: 12
  start-page: 354
  issue: 2
  year: 2002
  end-page: 363
  article-title: Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes
  publication-title: Ecological Applications
– volume: 39
  start-page: 2091
  issue: 12
  year: 2012
  end-page: 2095
  article-title: A niche for biology in species distribution models
  publication-title: Journal of Biogeography
– volume: 46
  start-page: 1
  year: 2021
  end-page: 33
  article-title: Land use and ecological change: A 12,000‐year history
  publication-title: Annual Review of Environment and Resources
– volume: 474
  year: 2022
  article-title: A spatially implicit model fails to predict the structure of spatially explicit metacommunities under high dispersal
  publication-title: Ecological Modelling
– start-page: 533
  year: 1957
– volume: 106
  start-page: 349
  issue: 2
  year: 2009
  end-page: 350
  article-title: Importance of matrix habitats in maintaining biological diversity
  publication-title: Proceedings of the National Academy of Sciences
– volume: 92
  issue: 1
  year: 2022
  article-title: Multi‐trophic metacommunity interactions mediate asynchrony and stability in fluctuating environments
  publication-title: Ecological Monographs
– volume: 23
  start-page: 506
  issue: 3
  year: 2020
  end-page: 517
  article-title: Habitat fragmentation and species diversity in competitive communities
  publication-title: Ecology Letters
– volume: 129
  start-page: 1611
  issue: 11
  year: 2020
  end-page: 1622
  article-title: The degree of spatial variation relative to temporal variation influences evolution of dispersal
  publication-title: Oikos
– volume: 29
  start-page: 593
  year: 2014
  end-page: 604
  article-title: Habitat structure mediates spatial segregation and therefore coexistence
  publication-title: Landscape Ecology
– volume: 19
  start-page: 1205
  year: 2010
  end-page: 1223
  article-title: Does the type of matrix matter? A quantitative review of the evidence
  publication-title: Biodiversity and Conservation
– volume: 25
  start-page: 2511
  issue: 12
  year: 2012
  end-page: 2525
  article-title: Evolution of dispersal in metacommunities of interacting species
  publication-title: Journal of Evolutionary Biology
– volume: 28
  start-page: 6
  issue: 1
  year: 2019
  end-page: 17
  article-title: The what, how and why of doing macroecology
  publication-title: Global Ecology and Biogeography
– volume: 17
  start-page: 866
  issue: 7
  year: 2014
  end-page: 880
  article-title: Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales
  publication-title: Ecology Letters
– volume: 27
  start-page: 5414
  issue: 21
  year: 2021
  end-page: 5429
  article-title: Land‐use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature
  publication-title: Global Change Biology
– volume: 12
  start-page: 335
  issue: 2
  year: 2002
  end-page: 345
  article-title: Comparative evaluation of experimental approaches to the study of habitat fragmentation effects
  publication-title: Ecological Applications
– volume: 44
  start-page: 535
  issue: 1
  year: 1999
  end-page: 560
  article-title: Risk‐spreading and bet‐hedging in insect population biology
  publication-title: Annual Review of Entomology
– volume: 114
  start-page: 544
  issue: 3
  year: 2006
  end-page: 552
  article-title: Evolution of local adaptations in dispersal strategies
  publication-title: Oikos
– volume: 2
  start-page: 12
  year: 2017
  end-page: 29
  article-title: The interplay between landscape structure and biotic interactions
  publication-title: Current Landscape Ecology Reports
– volume: 7
  start-page: 601
  issue: 7
  year: 2004
  end-page: 613
  article-title: The metacommunity concept: A framework for multi‐scale community ecology
  publication-title: Ecology Letters
– volume: 65
  start-page: 465
  year: 1996
  end-page: 473
  article-title: Habitat fragmentation and extinction thresholds in spatially explicit models
  publication-title: Journal of Animal Ecology
– volume: 226
  start-page: 9
  year: 2018
  end-page: 15
  article-title: Is habitat fragmentation good for biodiversity?
  publication-title: Biological Conservation
– volume: 195
  start-page: 1
  issue: 1
  year: 2020
  end-page: 15
  article-title: The evolution of immigration strategies facilitates niche expansion by divergent adaptation in a structured metapopulation model
  publication-title: The American Naturalist
– volume: 14
  start-page: 459
  issue: 3
  year: 2003
  end-page: 464
  article-title: A broader ecological context to habitat fragmentation: Why matrix habitat is more important than we thought
  publication-title: Journal of Vegetation Science
– volume: 230
  start-page: 179
  year: 2019
  end-page: 186
  article-title: Is habitat fragmentation bad for biodiversity?
  publication-title: Biological Conservation
– volume: 288
  issue: 1942
  year: 2021
  article-title: How do habitat amount and habitat fragmentation drive time‐delayed responses of biodiversity to land‐use change?
  publication-title: Proceedings of the Royal Society B
– volume: 31
  start-page: 79
  issue: 1
  year: 2004
  end-page: 92
  article-title: Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures
  publication-title: Journal of Biogeography
– volume: 17
  start-page: 756
  issue: 6
  year: 2014
  end-page: 767
  article-title: Life‐history syndromes: Integrating dispersal through space and time
  publication-title: Ecology Letters
– volume: 1
  start-page: 30
  year: 2016
  end-page: 39
  article-title: Direct and indirect interactions between landscape structure and invasive or overabundant species
  publication-title: Current Landscape Ecology Reports
– volume: 3
  start-page: 103
  year: 2021
  end-page: 114
  article-title: Contrasting beta diversity of spiders, carabids, and ants at local and regional scales in a black soil region, Northeast China
  publication-title: Soil Ecology Letters
– volume: 23
  start-page: 674
  issue: 4
  year: 2020
  end-page: 681
  article-title: Support for the habitat amount hypothesis from a global synthesis of species density studies
  publication-title: Ecology Letters
– volume: 20
  start-page: 347
  issue: 3
  year: 2017
  end-page: 356
  article-title: Dispersal and neutral sampling mediate contingent effects of disturbance on plant beta‐diversity: A meta‐analysis
  publication-title: Ecology Letters
– volume: 201
  start-page: 403
  issue: 2
  year: 2014
  end-page: 416
  article-title: Facilitation as a ubiquitous driver of biodiversity
  publication-title: New Phytologist
– volume: 36
  start-page: 873
  issue: 8
  year: 2013
  end-page: 882
  article-title: Predicting range shifts under global change: The balance between local adaptation and dispersal
  publication-title: Ecography
– volume: 75
  start-page: 132
  year: 1988
  end-page: 140
  article-title: Effects of habitat fragmentation and isolation on species richness: Evidence from biogeographic patterns
  publication-title: Oecologia
– volume: 48
  start-page: 1
  year: 2017
  end-page: 23
  article-title: Ecological responses to habitat fragmentation per se
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 40
  start-page: 48
  issue: 1
  year: 2017
  end-page: 55
  article-title: Experimental evidence does not support the habitat amount hypothesis
  publication-title: Ecography
– volume: 17
  start-page: 380
  issue: 3
  year: 2014
  end-page: 387
  article-title: Bet hedging in desert winter annual plants: Optimal germination strategies in a variable environment
  publication-title: Ecology Letters
– volume: 112
  start-page: 473
  issue: 2
  year: 2006
  end-page: 480
  article-title: Beyond fragmentation: The continuum model for fauna research and conservation in human‐modified landscapes
  publication-title: Oikos
– volume: 87
  start-page: 661
  issue: 3
  year: 2012
  end-page: 685
  article-title: Landscape moderation of biodiversity patterns and processes‐eight hypotheses
  publication-title: Biological Reviews
– year: 2016
– volume: 266
  start-page: 1985
  issue: 1432
  year: 1999
  end-page: 1994
  article-title: Emergence dynamics and bet hedging in a desert bee, perdita portalis
  publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences
– volume: 42
  start-page: 989
  issue: 5
  year: 2015
  end-page: 993
  article-title: Habitat fragmentation and species richness
  publication-title: Journal of Biogeography
– volume: 58
  start-page: 41
  issue: 1
  year: 2002
  end-page: 56
  article-title: A conceptual model for conservation planning based on landscape species requirements
  publication-title: Landscape and Urban Planning
– volume: 2
  year: 2017
  article-title: Habitat fragmentation
  publication-title: The International Encyclopedia of Primatology
– volume: 34
  start-page: 487
  issue: 1
  year: 2003
  end-page: 515
  article-title: Effects of habitat fragmentation on biodiversity
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– year: 2012
– volume: 44
  start-page: 340
  issue: 2
  year: 2007
  end-page: 351
  article-title: How landscape structure, land‐use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes
  publication-title: Journal of Applied Ecology
– volume: 266
  start-page: 723
  issue: 1420
  year: 1999
  end-page: 728
  article-title: Habitat persistence, habitat availability and the evolution of dispersal
  publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences
– volume: 40
  start-page: 98
  issue: 1
  year: 2017
  end-page: 108
  article-title: Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks
  publication-title: Ecography
– volume: 27
  start-page: 621
  year: 2012
  end-page: 631
  article-title: Landscape contrast: A solution to hidden assumptions in the metacommunity concept?
  publication-title: Landscape Ecology
– volume: 40
  start-page: 1649
  issue: 9
  year: 2013
  end-page: 1663
  article-title: Rethinking patch size and isolation effects: The habitat amount hypothesis
  publication-title: Journal of Biogeography
– volume: 125
  start-page: 1213
  issue: 9
  year: 2016
  end-page: 1223
  article-title: Dispersal and diversity in experimental metacommunities: Linking theory and practice
  publication-title: Oikos
– volume: 28
  start-page: 432
  issue: 4
  year: 2003
  end-page: 438
  article-title: Movement patterns of the bush cricket Platycleis albopunctata in different types of habitat: Matrix is not always matrix
  publication-title: Ecological Entomology
– volume: 29
  start-page: 615
  issue: 4
  year: 2020
  end-page: 628
  article-title: Why do several small patches hold more species than few large patches?
  publication-title: Global Ecology and Biogeography
– year: 1967
– volume: 19
  start-page: 2142
  issue: 8
  year: 2009
  end-page: 2156
  article-title: Alpha and beta diversity of plants and animals along a tropical land‐use gradient
  publication-title: Ecological Applications
– volume: 32
  issue: 6
  year: 2022
  article-title: Extinction of biotic interactions due to habitat loss could accelerate the current biodiversity crisis
  publication-title: Ecological Applications
– volume: 2
  start-page: 121
  issue: 2
  year: 1999
  end-page: 127
  article-title: Habitat fragmentation and extinction thresholds on fractal landscapes
  publication-title: Ecology Letters
– year: 1988
– volume: 39
  start-page: 932
  issue: 10
  year: 2016
  end-page: 941
  article-title: Landscape composition, not connectivity, determines metacommunity structure across multiple scales
  publication-title: Ecography
– volume: 10
  issue: 3
  year: 2015
  article-title: Elevational gradients in ‐diversity reflect variation in the strength of local community assembly mechanisms across spatial scales
  publication-title: PLoS One
– year: 2020
– volume: 42
  start-page: 1877
  issue: 11
  year: 2019
  end-page: 1886
  article-title: What can observational data reveal about metacommunity processes?
  publication-title: Ecography
– volume: 40
  start-page: 267
  issue: 2
  year: 2017
  end-page: 280
  article-title: Mechanistic simulation models in macroecology and biogeography: State‐of‐art and prospects
  publication-title: Ecography
– volume: 19
  start-page: 1999
  year: 2019
  end-page: 2011
  article-title: Environmental change and variability influence niche evolution of isolated natural populations
  publication-title: Regional Environmental Change
– volume: 96
  start-page: 73
  issue: 2
  year: 2021
  end-page: 104
  article-title: On the biogeography of habitat islands: The importance of matrix effects, noncore species, and source‐sink dynamics
  publication-title: The Quarterly Review of Biology
– volume: 43
  start-page: 2412
  issue: 12
  year: 2016
  end-page: 2423
  article-title: Impact of biotic interactions on biodiversity varies across a landscape
  publication-title: Journal of Biogeography
– volume: 44
  start-page: 804
  issue: 4
  year: 2007
  end-page: 812
  article-title: Alpha and beta diversity of arthropods and plants in organically and conventionally managed wheat fields
  publication-title: Journal of Applied Ecology
– volume: 25
  start-page: 104
  issue: 1
  year: 2016
  end-page: 120
  article-title: Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes
  publication-title: Molecular Ecology
– volume: 178
  start-page: S6
  issue: S1
  year: 2011
  end-page: S25
  article-title: Theoretical perspectives on the statics and dynamics of species' borders in patchy environments
  publication-title: The American Naturalist
– volume: 396
  start-page: 41
  issue: 6706
  year: 1998
  end-page: 49
  article-title: Metapopulation dynamics
  publication-title: Nature
– volume: 2
  start-page: 1
  issue: 1
  year: 2007
  end-page: 8
  article-title: Range shifting on a fragmented landscape
  publication-title: Ecological Informatics
– volume: 116
  start-page: 909
  issue: 3
  year: 2019
  end-page: 914
  article-title: Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity
  publication-title: Proceedings of the National Academy of Sciences
– volume: 10
  issue: 7
  year: 2015
  article-title: Dispersal timing: Emigration of insects living in patchy environments
  publication-title: PLoS One
– volume: 21
  start-page: 1772
  issue: 5
  year: 2011
  end-page: 1781
  article-title: Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds
  publication-title: Ecological Applications
– volume: 10
  start-page: 1
  year: 2021
  end-page: 13
  article-title: The effect of landscape structure on the evolution of two alternative dispersal strategies
  publication-title: Ecological Processes
– volume: 142
  start-page: 911
  issue: 6
  year: 1993
  end-page: 927
  article-title: Risks of population extinction from demographic and environmental stochasticity and random catastrophes
  publication-title: The American Naturalist
– volume: 520
  issue: 7545
  year: 2015
  article-title: Global effects of land use on local terrestrial biodiversity
  publication-title: Nature
– ident: e_1_2_10_31_1
  doi: 10.1111/ele.12241
– ident: e_1_2_10_66_1
  doi: 10.1007/s40823-016-0004-y
– ident: e_1_2_10_72_1
  doi: 10.1098/rspb.2020.2466
– ident: e_1_2_10_32_1
  doi: 10.1111/j.2006.0030-1299.14909.x
– ident: e_1_2_10_41_1
  doi: 10.1086/661784
– ident: e_1_2_10_69_1
  doi: 10.1016/S0169-2046(01)00231-6
– ident: e_1_2_10_48_1
  doi: 10.1111/j.1600-0706.2013.00706.x
– ident: e_1_2_10_30_1
  doi: 10.1111/oik.03018
– ident: e_1_2_10_42_1
  doi: 10.1146/annurev.ento.44.1.535
– ident: e_1_2_10_60_1
  doi: 10.1038/nature14324
– ident: e_1_2_10_62_1
  doi: 10.1007/s10531-009-9750-z
– ident: e_1_2_10_75_1
  doi: 10.1186/s13717-021-00343-z
– ident: e_1_2_10_27_1
  doi: 10.1111/mec.13476
– ident: e_1_2_10_47_1
  doi: 10.1111/j.1600-0587.2012.00062.x
– ident: e_1_2_10_73_1
  doi: 10.1007/s10113-019-01534-3
– ident: e_1_2_10_8_1
  doi: 10.1007/s10980-014-0010-6
– ident: e_1_2_10_12_1
  doi: 10.1111/j.1420-9101.2012.02620.x
– start-page: 533
  volume-title: On the Dynamics of Exploited Fish Populations
  year: 1957
  ident: e_1_2_10_5_1
– volume-title: R: A language and environment for statistical computing
  year: 2020
  ident: e_1_2_10_65_1
– ident: e_1_2_10_70_1
  doi: 10.1002/eap.2608
– ident: e_1_2_10_67_1
  doi: 10.1111/ecog.01321
– ident: e_1_2_10_39_1
  doi: 10.1111/jbi.12029
– ident: e_1_2_10_57_1
  doi: 10.1111/nph.12478
– ident: e_1_2_10_79_1
  doi: 10.1111/ecog.02558
– volume: 2
  year: 2017
  ident: e_1_2_10_3_1
  article-title: Habitat fragmentation
  publication-title: The International Encyclopedia of Primatology
– ident: e_1_2_10_68_1
  doi: 10.1111/ele.13450
– ident: e_1_2_10_58_1
  doi: 10.1111/jbi.12794
– ident: e_1_2_10_89_1
  doi: 10.1007/s40823-017-0021-5
– ident: e_1_2_10_45_1
  doi: 10.1890/08-1074.1
– ident: e_1_2_10_29_1
  doi: 10.1007/s42832-020-0071-1
– ident: e_1_2_10_74_1
  doi: 10.1111/oik.07567
– ident: e_1_2_10_15_1
  doi: 10.1098/rspb.1999.0876
– ident: e_1_2_10_38_1
  doi: 10.1111/j.1365-2664.2006.01270.x
– ident: e_1_2_10_64_1
  doi: 10.1007/BF00378826
– ident: e_1_2_10_76_1
  doi: 10.1111/ele.12277
– ident: e_1_2_10_10_1
  doi: 10.1111/ecog.02480
– ident: e_1_2_10_26_1
  doi: 10.1890/10-0645.1
– ident: e_1_2_10_16_1
  doi: 10.1111/gcb.15846
– ident: e_1_2_10_33_1
  doi: 10.1111/ecog.02535
– ident: e_1_2_10_14_1
  doi: 10.1111/j.1365-2664.2007.01294.x
– ident: e_1_2_10_37_1
  doi: 10.1046/j.1365-2311.2003.00531.x
– ident: e_1_2_10_85_1
  doi: 10.1111/ele.13471
– ident: e_1_2_10_11_1
  doi: 10.1111/ele.12733
– ident: e_1_2_10_59_1
  doi: 10.1111/j.1600-0587.2011.07259.x
– ident: e_1_2_10_61_1
  doi: 10.1111/ecog.04444
– ident: e_1_2_10_24_1
  doi: 10.1111/j.0030-1299.2006.14148.x
– ident: e_1_2_10_50_1
  doi: 10.1086/285580
– ident: e_1_2_10_40_1
  doi: 10.1046/j.1461-0248.1999.22061.x
– ident: e_1_2_10_55_1
  doi: 10.1111/geb.12855
– ident: e_1_2_10_88_1
  doi: 10.1073/pnas.1813051115
– ident: e_1_2_10_44_1
  doi: 10.1111/j.1654-1103.2003.tb02172.x
– ident: e_1_2_10_53_1
  doi: 10.1086/714482
– ident: e_1_2_10_84_1
  doi: 10.1111/j.1461-0248.2006.00931.x
– ident: e_1_2_10_36_1
  doi: 10.1016/0040-5809(83)90027-8
– ident: e_1_2_10_17_1
  doi: 10.1146/annurev-environ-012220-010822
– ident: e_1_2_10_49_1
  doi: 10.1371/journal.pone.0128672
– ident: e_1_2_10_78_1
  doi: 10.1046/j.0305-0270.2003.00994.x
– ident: e_1_2_10_2_1
  doi: 10.1016/j.ecolmodel.2022.110151
– ident: e_1_2_10_71_1
  doi: 10.1007/978-1-4612-3784-6_2
– ident: e_1_2_10_7_1
  doi: 10.1007/s10980-012-9732-5
– ident: e_1_2_10_81_1
  doi: 10.1890/1051-0761(2002)012[0354:COSHFT]2.0.CO;2
– start-page: 10
  volume-title: Monographs in population biology
  year: 1967
  ident: e_1_2_10_52_1
– ident: e_1_2_10_51_1
  doi: 10.1111/j.1461-0248.2004.00608.x
– ident: e_1_2_10_22_1
  doi: 10.1016/j.biocon.2018.12.026
– ident: e_1_2_10_35_1
  doi: 10.1111/jbi.12478
– ident: e_1_2_10_77_1
  doi: 10.1371/journal.pone.0121458
– ident: e_1_2_10_4_1
  doi: 10.2307/5781
– ident: e_1_2_10_83_1
  doi: 10.1111/1365-2664.12190
– ident: e_1_2_10_86_1
  doi: 10.1111/j.1600-0706.2013.01073.x
– ident: e_1_2_10_13_1
  doi: 10.1038/416427a
– ident: e_1_2_10_34_1
  doi: 10.1038/23876
– ident: e_1_2_10_20_1
  doi: 10.1146/annurev-ecolsys-110316-022612
– ident: e_1_2_10_56_1
  doi: 10.1016/j.ecoinf.2006.12.001
– ident: e_1_2_10_54_1
  doi: 10.1890/1051-0761(2002)012[0335:CEOEAT]2.0.CO;2
– ident: e_1_2_10_87_1
  doi: 10.1007/978-3-319-24277-4
– ident: e_1_2_10_46_1
  doi: 10.1086/706258
– ident: e_1_2_10_28_1
  doi: 10.1073/pnas.0812016105
– ident: e_1_2_10_63_1
  doi: 10.1016/j.biocon.2019.108368
– ident: e_1_2_10_80_1
  doi: 10.1098/rspb.1999.0696
– ident: e_1_2_10_9_1
  doi: 10.1111/ele.12275
– ident: e_1_2_10_6_1
– ident: e_1_2_10_82_1
  doi: 10.1111/j.1469-185X.2011.00216.x
– ident: e_1_2_10_18_1
  doi: 10.1146/annurev.ecolsys.34.011802.132419
– ident: e_1_2_10_25_1
  doi: 10.1016/j.biocon.2018.07.022
– ident: e_1_2_10_19_1
  doi: 10.1111/jbi.12130
– ident: e_1_2_10_23_1
  doi: 10.1002/ecm.1484
– ident: e_1_2_10_21_1
  doi: 10.1111/geb.13059
– ident: e_1_2_10_43_1
  doi: 10.1016/j.tree.2013.01.010
SSID ssj0000602407
Score 2.3472648
Snippet Landscape structure plays a key role in mediating a variety of ecological processes affecting biodiversity patterns; however, its precise effects and the...
Abstract Landscape structure plays a key role in mediating a variety of ecological processes affecting biodiversity patterns; however, its precise effects and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e10810
SubjectTerms community assembly
diversity
individual based model
Landscape Ecology
landscape structure
metacommunity model
richness
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9RAFL2UFsEXqd-xKiP6ohBtJvOVhyJathShPrnQtzBfcRdqoptdaP99751kly4uPgl5CMmEbHLnzj2HPTkX4J0tZeHIAYAsJpGgKJc7rES5D8jEfFPGIrV7u_iuzqfi26W83IN1_87xBfY7qR31k5ourj5e_7n5jAl_MhqIfoo-lqSVoy-tDrAiaUrQixHmDysyOXnpjTvp3Uu26lGy7d-FNf-WTN6FsqkWnR3CgxFEsi9D1B_CXmwfwb1JMqC-eQzLwZK4Z13DSDI-6rLwihmJXzqcMxHBN7NtYD0pqvGMXS07T506Bm0cww1XyBkthGlcWOs32Lxl_fwXdf2KgaUvhUlD1T-B6dnkx-l5PnZXyL1EEpNrMqLhQUjurLaxcrqKoTCV50ErJT1WLqGi5BEBoW20q3xQRiE7cl7EII_Lp7Dfdm18DqyIQovobSMQEHjrTZQG4xwsshVXWZXB-_U7rv1oPU4dMK7qwTSZ1xSPOsUjg7ebsb8Hw42do75SqDYjyCQ7HegWP-sx52rjeCjJMR9JmShENFzI0HjOvWmaRukM3qwDXWNS0T8lto3dqq95dcwrRKYVz-DZEPjNrUqDjBhhdAZma0ps_ZbtM-18loy7kWoX1GY1gw9p9vzjAevJ6aRMey_-x6MewX2O6GzQ4byE_eViFV8hmlq61ylVbgEBDR-n
  priority: 102
  providerName: Scholars Portal
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEC6WFcGLrO_4okUvCmEnne5OB7zoMssiKB5c2FvoR8UZ0EQ2M4f991Z1MlkHF0HIISQVMkl1dX-V-eorgDeu1IVnBQCWmKQExfjc00qUh0iZWGhLLFK7t89fzNm5-nShLw7g_a4WZtSHmD-4cWSk-ZoD3Pnh-Fo0FAOWzJDj-qpbXFvLyvlSfZ2_sCwM63dxvTRLrhOM1HbWJ5XH15fvrUhJuP8mtPk3afJPMJtWo9MjuDvBSPFh9Ps9OMDuPtxeJgnqqwewGUWJB9G3gknjEzOLrlgx_aWnUYMEv4XrohiYU01n3HbTB-7VMbLjBG00R654Kkx2ccfgEOtODOuf3PcLo0i1wsyiGh7C-eny28lZPvVXyIOmNCavWIpGRqWld5XD2lc1xsLWQcbKGB1o7VIGtUSChK6tfB2isYbyIx8URr0oH8Fh13f4BESBqlIYXKsIEgQXLGpLno6O8hVfO5PB2907bsIkPs49MH40o2yybNgfTfJHBq9n21-j5MaNVh_ZVbMFy2SnA_3l92aKusZ6GUvWzKe0TBUKrVQ6tkHKYNu2NVUGr3aObiis-L8S12G_HRpZL2RN2LSWGTweHT_fqrSUExOQzsDuDYm937J_pluvknQ3JdsFN1rN4F0aPf94wGZ5sizT3tP_MX4GdyThsJFx8xwON5dbfEG4aeNfpvD4DbxAE0c
  priority: 102
  providerName: Wiley-Blackwell
Title Effects of compositional heterogeneity and spatial autocorrelation on richness and diversity in simulated landscapes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.10810
https://www.ncbi.nlm.nih.gov/pubmed/38094150
https://www.proquest.com/docview/2902952292
https://pubmed.ncbi.nlm.nih.gov/PMC10716673
https://doaj.org/article/8b2d34837487414e8245dfc22c8fff67
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEB60IvgirT9j7bGiLwqhzWY32TzaklKEliIW-rbsr3AHNRFz9-B_78xu7rjDoi9CCCG7IcnOZOcb8u03AB9MKQtLCgAkMYkJSmVzi5Eodx4zMdeVoYjl3i6vqosb8eVW3m6V-iJOWJIHTgN3rCz3JcmeI7IWhQiKC-k7x7lTXddVcR05xrytZCrNwaTdVW_0SPlxcKEkQh0tld2KQFGo_z50-SdJchu8xuhzvg9PJ9jIPqfHPYAHoX8Gj9soOf3rOSyTCPHIho4RSXxiYuEVc6K7DOglAeE2M71nI3GoscWsloOj2hyJDcdwwzlxTlNf7OfXjA226Nm4-E51voJncW0wsabGF3Bz3n47u8inegq5k5i25DVJz3AvJLemNqGxdRN8oRrHfV1V0mGsElWQPCAENF1tG-crVWE-ZJ0IXp6UL2GvH_rwGlgRRC2CM51ACOCMU0EqtKw3mJ_YxlQZfFyPsXaT2DjVvLjTSSaZa7KHjvbI4P2m748ksXFvr1My1aYHyWLHE-gsenIW_S9nyeDd2tAaPyP6N2L6MKxGzZsT3iAWbXgGr5LhN7cqFebACJwzUDsusfMsuy39Yh6lujG5Lqiwagafovf85QV1e9aW8ejN_3jVQ3jCEY8l5s1b2Fv-XIUjxE9LO4OHXFzP4NFpe3X9dRY_HNxfCvUbQGgcXA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hIgQXxJvwNIILSFE3ju04R6i2WqCtOLRSb5Zf6a4ECWp2D_x7ZpxsyooKCSmHKJkoj_HY3zifvwF4Z0tZOFIAIIlJTFCUyx2ORLkPmIn5poxFKvd2fKIWZ-LLuTwfuTm0FmbQh5gm3CgyUn9NAU4T0vtXqqHRx5IocrTA6qZQvKK45OLbNMUyUyTgRQumSXMdcaTUk0Ap37-6fGdISsr918HNv1mTf6LZNBwd3oO7I45kHwfH34cbsX0At-ZJg_rXQ1gPqsQ96xpGrPGRmoVXLIn_0mGziYi_mW0D64lUjWfsZt15KtYx0OMYbthJLqkvTHZhS-Fgq5b1qx9U-CsGlhYLE42qfwRnh_PTg0U-FljIvcQ8Jq9Ii4YHIbmzlY21q-oYCl17HiqlpMfBS6goeURMaJvK1T4orTBBcl7EIGflY9hruzY-BVZEUYnobSMQE3jrdZQaXR0sJiyutiqD99tvbPyoPk5FML6bQTeZG_KHSf7I4O1k-3PQ3LjW6hO5arIgnex0oLu8MGPYGe14KEk0H_MyUYiouZCh8Zx73TSNqjJ4s3W0wbiinyW2jd2mN7ye8RrBac0zeDI4frpVqTEpRiSdgd5pEjvPsnumXS2Tdjdm2wVVWs3gQ2o9_3hBMz-Yl2nv2f8Yv4bbi9PjI3P0-eTrc7jDEZQN9JsXsLe-3MSXCKLW7lUKld-Poxaz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB1VrUBcEOXTQGERXECyWq937bXEpS2JylfFgaCKy2q_TCKBXdXJgX_PzNpxG1EhIeUQ2ZM4yezsvue8fQPwyuQys-QAQBaTSFAKm1pciVLnkYm5Og9ZbPf2-bQ4mYkPZ_JsC96u98L0_hDjDTeqjDhfU4Gf-3r_0jQ0uJCTQo72V-2QTR6O6Z3Db7Pvs_EeCx4kwkL95RC5IJCUanQo5fuXb7CxJkXr_uvw5t-yyatwNq5H0ztwewCS7LDP_C5sheYu3JhEE-rf92DZ2xJ3rK0ZycYHbRa-Yk4CmBbHTUAAzkzjWUeqajxjVsvWUbeOXh_H8IGz5Jwmwxjn1xoOtmhYt_hFnb-CZ3G3MOmouvswm06-Hp-kQ4eF1EkkMmlJZjTcC8mtKU2obFkFn6nKcV8WhXS4eokiSB4QFJq6tJXzhSqQIVkngpcH-QPYbtomPAKWBVGK4EwtEBQ441SQCnPtDTIWW5kigdfr31i7wX6cumD81L1xMteUDx3zkcDLMfa8N924NuqIUjVGkFF2PNBe_NBD3Wlluc_JNR-JmchEUFxIXzvOnarruigTeLFOtMbCon9LTBPaVad5dcArRKcVT-Bhn_jxUrlCVoxQOgG1MSQ2PsvmmWYxj-bdSLczarWawJs4ev7xBfXkeJLHZ4__J_g53Pzybqo_vT_9-ARucQRlvfzmKWwvL1ZhD0HU0j4bauUPFC8Xqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+compositional+heterogeneity+and+spatial+autocorrelation+on+richness+and+diversity+in+simulated+landscapes&rft.jtitle=Ecology+and+evolution&rft.au=Joseph+Tardanico&rft.au=Thomas+Hovestadt&rft.date=2023-12-01&rft.pub=Wiley&rft.eissn=2045-7758&rft.volume=13&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fece3.10810&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8b2d34837487414e8245dfc22c8fff67
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7758&client=summon