An increase in surface hydrophobicity mediates chaperone activity in N-chlorinated RidA

Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli...

Full description

Saved in:
Bibliographic Details
Published inRedox biology Vol. 53; p. 102332
Main Authors Varatnitskaya, Marharyta, Fasel, Julia, Müller, Alexandra, Lupilov, Natalie, Shi, Yunlong, Fuchs, Kristin, Krewing, Marco, Jung, Christoph, Jacob, Timo, Sitek, Barbara, Bandow, Julia E., Carroll, Kate S., Hofmann, Eckhard, Leichert, Lars I.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2022
Elsevier
Subjects
Online AccessGet full text
ISSN2213-2317
2213-2317
DOI10.1016/j.redox.2022.102332

Cover

Loading…
Abstract Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidAHOCl, we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO2H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidAHOCl's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidAHOCl and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones.
AbstractList Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidAHOCl, we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO2H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidAHOCl's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidAHOCl and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones.Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidAHOCl, we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO2H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidAHOCl's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidAHOCl and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones.
Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidA , we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidA 's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidA and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones.
Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidAHOCl, we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO2H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidAHOCl's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidAHOCl and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones.
Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli 's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidA HOCl , we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO 2 H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidA HOCl 's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidA HOCl and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones.
ArticleNumber 102332
Author Jacob, Timo
Müller, Alexandra
Fasel, Julia
Bandow, Julia E.
Carroll, Kate S.
Lupilov, Natalie
Fuchs, Kristin
Leichert, Lars I.
Sitek, Barbara
Varatnitskaya, Marharyta
Jung, Christoph
Shi, Yunlong
Krewing, Marco
Hofmann, Eckhard
Author_xml – sequence: 1
  givenname: Marharyta
  surname: Varatnitskaya
  fullname: Varatnitskaya, Marharyta
  organization: Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
– sequence: 2
  givenname: Julia
  surname: Fasel
  fullname: Fasel, Julia
  organization: Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
– sequence: 3
  givenname: Alexandra
  surname: Müller
  fullname: Müller, Alexandra
  organization: Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
– sequence: 4
  givenname: Natalie
  surname: Lupilov
  fullname: Lupilov, Natalie
  organization: Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
– sequence: 5
  givenname: Yunlong
  surname: Shi
  fullname: Shi, Yunlong
  organization: UF Scripps Biomedical Research, Department of Chemistry, 130 Scripps Way, Jupiter, FL, 33458, USA
– sequence: 6
  givenname: Kristin
  surname: Fuchs
  fullname: Fuchs, Kristin
  organization: Ruhr University Bochum, Medical Proteome Center, Bochum, Germany
– sequence: 7
  givenname: Marco
  surname: Krewing
  fullname: Krewing, Marco
  organization: Ruhr University Bochum, Applied Microbiology, Faculty of Biology and Biotechnology, Bochum, Germany
– sequence: 8
  givenname: Christoph
  surname: Jung
  fullname: Jung, Christoph
  organization: Helmholtz Institute Ulm – Electrochemical Energy Storage, Basics of Electrochemistry, Ulm, Germany
– sequence: 9
  givenname: Timo
  surname: Jacob
  fullname: Jacob, Timo
  organization: Helmholtz Institute Ulm – Electrochemical Energy Storage, Basics of Electrochemistry, Ulm, Germany
– sequence: 10
  givenname: Barbara
  surname: Sitek
  fullname: Sitek, Barbara
  organization: Ruhr University Bochum, Medical Proteome Center, Bochum, Germany
– sequence: 11
  givenname: Julia E.
  surname: Bandow
  fullname: Bandow, Julia E.
  organization: Ruhr University Bochum, Applied Microbiology, Faculty of Biology and Biotechnology, Bochum, Germany
– sequence: 12
  givenname: Kate S.
  surname: Carroll
  fullname: Carroll, Kate S.
  organization: UF Scripps Biomedical Research, Department of Chemistry, 130 Scripps Way, Jupiter, FL, 33458, USA
– sequence: 13
  givenname: Eckhard
  surname: Hofmann
  fullname: Hofmann, Eckhard
  organization: Ruhr University Bochum, Protein Crystallography, Bochum, Germany
– sequence: 14
  givenname: Lars I.
  orcidid: 0000-0002-5666-9681
  surname: Leichert
  fullname: Leichert, Lars I.
  email: lars.leichert@ruhr-uni-bochum.de
  organization: Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35598378$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQtVARLaW_AAnlyCVLbMeJfQBpVfFRqQIJgThazmTc9SobL3Z2xf57ZptStRzAF49m3nvz-ZydjHFExl7yasEr3rxZLxL28ddCVEKQR0gpnrAzIbgsheTtyQP7lF3kvK7oaV0LXj1jp1Ipo2Wrz9iP5ViEERK6jGQUeZe8AyxWhz7F7Sp2AcJ0KDbYBzdhLmDltpiolsLBFPbHGLE-l7AaYgojYfria-iXL9hT74aMF3f_Ofv-4f23y0_l9ZePV5fL6xKUUFOJDULtK94a7xtnWo3KmBY0Vtpo6BrdubarOqhrkN40rQaCKq9k3_dYd508Z1ezbh_d2m5T2Lh0sNEFe-uI6ca6NAUY0BrT64YG1Ro0tfTaeS29VDVQw6qWhrTezVrbXUcNA45TcsMj0ceRMazsTdxbw0VjlCaB13cCKf7cYZ7sJmTAYXAjxl22omm04JraIOirh7nuk_zZDAHkDIAUc07o7yG8sscTsGt7ewL2eAJ2PgFimb9YtD43hXgsOAz_4b6duUj72gdMNkPAEWj1CWGigYZ_8n8DgwrOjQ
CitedBy_id crossref_primary_10_1088_1361_6528_acd258
crossref_primary_10_1128_jb_00064_23
crossref_primary_10_1016_j_arres_2025_100119
crossref_primary_10_1016_j_freeradbiomed_2024_09_014
crossref_primary_10_1016_j_tibs_2024_07_001
Cites_doi 10.1016/j.redox.2018.09.005
10.1016/j.watres.2007.07.025
10.1042/bj3400539
10.1038/ncomms6804
10.1007/s00726-003-0016-x
10.1021/j100785a001
10.1093/nar/gkaa1100
10.1021/bi00333a036
10.1021/es00080a013
10.1007/s00018-004-4464-6
10.1002/pro.3280
10.1021/pr700739d
10.1074/jbc.M111.304477
10.1016/S0022-2836(05)80360-2
10.1016/j.redox.2021.101981
10.3389/fimmu.2018.02171
10.1063/1.555605
10.1016/S0891-5849(00)00204-5
10.1016/j.cell.2008.09.024
10.2174/092986706778773095
10.1021/bi0474665
10.1126/science.279.5357.1718
10.1016/j.freeradbiomed.2020.07.033
10.1074/jbc.M500405200
10.1515/hsz-2020-0264
10.1016/S0076-6879(67)11014-8
10.1074/jbc.M401764200
10.1016/j.freeradbiomed.2004.11.006
10.1007/s00018-020-03591-y
10.1073/pnas.78.1.210
10.7554/eLife.47395
10.1074/jbc.M700339200
10.1126/science.2183352
10.1146/annurev-biochem-060815-014442
10.1016/j.cell.2016.05.054
10.1006/abbi.1996.0322
10.1016/S0891-5849(00)00506-2
10.1289/ehp.8669259
10.1074/jbc.R117.796862
10.1110/ps.8.11.2428
10.1016/S0092-8674(00)80547-4
10.1203/01.PDR.0000050655.25689.CE
10.3109/10715762.2012.667566
10.1002/jssc.200700391
10.1021/es00128a012
10.1152/jappl.1989.66.1.400
10.1021/tx0155451
10.1038/nbt.1511
10.1016/j.watres.2016.11.065
10.1006/abbi.1996.0317
10.1016/0003-9861(92)90609-Z
10.1016/j.molcel.2018.04.002
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022. Published by Elsevier B.V.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022. Published by Elsevier B.V.
– notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.redox.2022.102332
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2213-2317
ExternalDocumentID oai_doaj_org_article_99d8623379e943f8af83f354cfac5439
PMC9126958
35598378
10_1016_j_redox_2022_102332
S2213231722001045
Genre Journal Article
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABGSF
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADUVX
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
M48
MO0
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c525t-e6ec4f0179ff6a978e5997c8e0898cb68ba7b0bc44c3f9678c1795f53ddde4bb3
IEDL.DBID M48
ISSN 2213-2317
IngestDate Wed Aug 27 01:31:56 EDT 2025
Thu Aug 21 18:10:26 EDT 2025
Thu Jul 10 23:20:31 EDT 2025
Mon Jul 21 06:02:38 EDT 2025
Tue Jul 01 00:47:08 EDT 2025
Thu Apr 24 23:03:15 EDT 2025
Tue Jul 25 20:58:36 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Oxidative stress
Oxidation
N-Chlorination
Chaperone
E. coli
Language English
License This is an open access article under the CC BY license.
Copyright © 2022. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-e6ec4f0179ff6a978e5997c8e0898cb68ba7b0bc44c3f9678c1795f53ddde4bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5666-9681
OpenAccessLink https://doaj.org/article/99d8623379e943f8af83f354cfac5439
PMID 35598378
PQID 2668218678
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_99d8623379e943f8af83f354cfac5439
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9126958
proquest_miscellaneous_2668218678
pubmed_primary_35598378
crossref_primary_10_1016_j_redox_2022_102332
crossref_citationtrail_10_1016_j_redox_2022_102332
elsevier_sciencedirect_doi_10_1016_j_redox_2022_102332
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Redox biology
PublicationTitleAlternate Redox Biol
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Koldewey, Stull, Horowitz, Martin, Correspondence (bib43) 2016; 166
Nybo, Cai, Chuang, Gamon, Rogowska-Wrzesinska, Davies (bib47) 2018; 19
Pattison, Davies (bib40) 2001; 14
Volz (bib25) 2008; 8
Hawkins, Pattison, Davies (bib9) 2003; 25
Mortaz, Alipoor, Adcock, Mumby, Koenderman (bib1) 2018; 9
Scully, Mazina, Sonenshine, Kopfler (bib32) 1986; 69
Gray (bib35) 1967; 11
Peskin, Midwinter, Harwood, Winterbourn (bib33) 2004; 38
Cox, Mann (bib22) 2008; 26
Bondi (bib51) 1964; 68
Heeb, Kristiana, Trogolo, Arey, von Gunten (bib50) 2017; 110
Pattison, Davies (bib31) 2006; 13
Lambrecht, Flynn, Downs (bib36) 2012; 287
Kumar, Kapoor, Sinha, Reddy (bib45) 2005; 280
Ulfig, Bader, Varatnitskaya, Lupilov, Winklhofer, Leichert (bib53) 2021; 43
Winterbourn, Kettle (bib20) 2000; 29
Liu, Zeng, Chen, Xie (bib37) 2016; 6
Koldewey, Horowitz, Bardwell (bib44) 2017; 292
Hendrikje Buss, Senthilmohan, Darlow, Mogridge, Kettle, Winterbourn (bib19) 2003; 53
Graf, Martinez-Yamout, VanHaerents, Lilie, Dyson, Jakob (bib42) 2004; 279
Peskin, Winterbourn (bib26) 2001; 30
Harmony, Laurie, Kuczkowski, Schwendeman, Ramsay, Lovas, Lafferty, Maki (bib52) 1979; 8
Jersey, Choshen, Jensen, Johnson, Scully (bib34) 1990; 24
Pattison, Davies (bib27) 2005; 44
Ulfig, Schulz, Müller, Lupilov, Leichert (bib18) 2019; 8
Carr, Van Den Berg, Winterbourn (bib5) 1996; 332
Alpmann, Morlock (bib48) 2008; 31
Jurrus, Engel, Star, Monson, Brandi, Felberg, Brookes, Wilson, Chen, Liles, Chun, Li, Gohara, Dolinsky, Konecny, Koes, Nielsen, Head-Gordon, Geng, Krasny, Wei, Holst, McCammon, Baker (bib49) 2018; 27
Altschul, Gish, Miller, Myers, Lipman (bib38) 1990; 215
Hawkins, Davies (bib11) 1999; 340
Peskin, Low, Paton, Maghzal, Hampton, Winterbourn (bib41) 2007; 282
McGowan, Thompson (bib8) 1989; 66
Winterbourn, van den Berg, Roitman, Kuypers (bib7) 1992; 296
Käll, Storey, MacCoss, Noble (bib21) 2008; 7
Mayer, Bukau (bib46) 2005; 62
Storz, Tartaglia, Ames (bib14) 1990; 248
Müller, Langklotz, Lupilova, Kuhlmann, Bandow, Leichert (bib12) 2014; 5
Albrich, McCarthy, Hurst (bib3) 1981; 78
Scully, Yang, Mazlna, Bernard Daniel (bib24) 1984; 18
Prütz (bib4) 1996; 332
Ashby, Springer, Hampton, Kettle, Winterbourn (bib30) 2020; 159
Winterbourn, Kettle, Hampton (bib2) 2016; 85
Zheng, Åslund, Storz (bib15) 1998; 279
Varatnitskaya, Degrossoli, Leichert (bib29) 2020; 402
Hsieh, Matthews (bib23) 1985; 24
Pattison, Davies, Hawkins (bib10) 2012; 46
Ulfig, Leichert (bib28) 2021; 78
Deborde, von Gunten (bib6) 2008; 42
Winter, Ilbert, Graf, Özcelik, Jakob (bib13) 2008; 135
Jakob, Muse, Eser, Bardwell (bib16) 1999; 96
Bateman, Martin, Orchard, Magrane, Agivetova, Ahmad, Alpi, Bowler-Barnett, Britto, Bursteinas, Bye-A-Jee, Coetzee, Cukura, Silva, Denny, Dogan, Ebenezer, Fan, Castro, Garmiri, Georghiou, Gonzales, Hatton-Ellis, Hussein, Ignatchenko, Insana, Ishtiaq, Jokinen, Joshi, Jyothi, Lock, Lopez, Luciani, Luo, Lussi, MacDougall, Madeira, Mahmoudy, Menchi, Mishra, Moulang, Nightingale, Oliveira, Pundir, Qi, Raj, Rice, Lopez, Saidi, Sampson, Sawford, Speretta, Turner, Tyagi, Vasudev, Volynkin, Warner, Watkins, Zaru, Zellner, Bridge, Poux, Redaschi, Aimo, Argoud-Puy, Auchincloss, Axelsen, Bansal, Baratin, Blatter, Bolleman, Boutet, Breuza, Casals-Casas, de Castro, Echioukh, Coudert, Cuche, Doche, Dornevil, Estreicher, Famiglietti, Feuermann, Gasteiger, Gehant, Gerritsen, Gos, Gruaz-Gumowski, Hinz, Hulo, Hyka-Nouspikel, Jungo, Keller, Kerhornou, Lara, Le Mercier, Lieberherr, Lombardot (bib39) 2021; 49
Goemans, Vertommen, Agrebi, Collet (bib17) 2018; 70
Winterbourn (10.1016/j.redox.2022.102332_bib7) 1992; 296
Bondi (10.1016/j.redox.2022.102332_bib51) 1964; 68
Nybo (10.1016/j.redox.2022.102332_bib47) 2018; 19
Müller (10.1016/j.redox.2022.102332_bib12) 2014; 5
Peskin (10.1016/j.redox.2022.102332_bib33) 2004; 38
Graf (10.1016/j.redox.2022.102332_bib42) 2004; 279
Ulfig (10.1016/j.redox.2022.102332_bib53) 2021; 43
Peskin (10.1016/j.redox.2022.102332_bib26) 2001; 30
McGowan (10.1016/j.redox.2022.102332_bib8) 1989; 66
Zheng (10.1016/j.redox.2022.102332_bib15) 1998; 279
Pattison (10.1016/j.redox.2022.102332_bib40) 2001; 14
Goemans (10.1016/j.redox.2022.102332_bib17) 2018; 70
Liu (10.1016/j.redox.2022.102332_bib37) 2016; 6
Lambrecht (10.1016/j.redox.2022.102332_bib36) 2012; 287
Ulfig (10.1016/j.redox.2022.102332_bib18) 2019; 8
Koldewey (10.1016/j.redox.2022.102332_bib43) 2016; 166
Alpmann (10.1016/j.redox.2022.102332_bib48) 2008; 31
Varatnitskaya (10.1016/j.redox.2022.102332_bib29) 2020; 402
Pattison (10.1016/j.redox.2022.102332_bib31) 2006; 13
Koldewey (10.1016/j.redox.2022.102332_bib44) 2017; 292
Winter (10.1016/j.redox.2022.102332_bib13) 2008; 135
Hawkins (10.1016/j.redox.2022.102332_bib11) 1999; 340
Cox (10.1016/j.redox.2022.102332_bib22) 2008; 26
Altschul (10.1016/j.redox.2022.102332_bib38) 1990; 215
Jurrus (10.1016/j.redox.2022.102332_bib49) 2018; 27
Hawkins (10.1016/j.redox.2022.102332_bib9) 2003; 25
Hendrikje Buss (10.1016/j.redox.2022.102332_bib19) 2003; 53
Harmony (10.1016/j.redox.2022.102332_bib52) 1979; 8
Winterbourn (10.1016/j.redox.2022.102332_bib2) 2016; 85
Ashby (10.1016/j.redox.2022.102332_bib30) 2020; 159
Pattison (10.1016/j.redox.2022.102332_bib27) 2005; 44
Bateman (10.1016/j.redox.2022.102332_bib39) 2021; 49
Peskin (10.1016/j.redox.2022.102332_bib41) 2007; 282
Winterbourn (10.1016/j.redox.2022.102332_bib20) 2000; 29
Jakob (10.1016/j.redox.2022.102332_bib16) 1999; 96
Hsieh (10.1016/j.redox.2022.102332_bib23) 1985; 24
Scully (10.1016/j.redox.2022.102332_bib24) 1984; 18
Storz (10.1016/j.redox.2022.102332_bib14) 1990; 248
Jersey (10.1016/j.redox.2022.102332_bib34) 1990; 24
Volz (10.1016/j.redox.2022.102332_bib25) 2008; 8
Ulfig (10.1016/j.redox.2022.102332_bib28) 2021; 78
Käll (10.1016/j.redox.2022.102332_bib21) 2008; 7
Carr (10.1016/j.redox.2022.102332_bib5) 1996; 332
Heeb (10.1016/j.redox.2022.102332_bib50) 2017; 110
Prütz (10.1016/j.redox.2022.102332_bib4) 1996; 332
Scully (10.1016/j.redox.2022.102332_bib32) 1986; 69
Gray (10.1016/j.redox.2022.102332_bib35) 1967; 11
Deborde (10.1016/j.redox.2022.102332_bib6) 2008; 42
Kumar (10.1016/j.redox.2022.102332_bib45) 2005; 280
Mortaz (10.1016/j.redox.2022.102332_bib1) 2018; 9
Mayer (10.1016/j.redox.2022.102332_bib46) 2005; 62
Pattison (10.1016/j.redox.2022.102332_bib10) 2012; 46
Albrich (10.1016/j.redox.2022.102332_bib3) 1981; 78
References_xml – volume: 85
  start-page: 765
  year: 2016
  end-page: 792
  ident: bib2
  article-title: Reactive oxygen species and neutrophil function
  publication-title: Annu. Rev. Biochem.
– volume: 25
  start-page: 259
  year: 2003
  end-page: 274
  ident: bib9
  article-title: Hypochlorite-induced oxidation of amino acids, peptides and proteins
  publication-title: Amino Acids
– volume: 18
  start-page: 787
  year: 1984
  end-page: 792
  ident: bib24
  article-title: Derivatization of organic and inorganic N-chloramines for high-performance liquid chromatographic analysis of chlorinated water
  publication-title: Environ. Sci. Technol.
– volume: 69
  start-page: 259
  year: 1986
  end-page: 265
  ident: bib32
  article-title: Quantitation and identification of organic N-chloramines formed in stomach fluid on ingestion of aqueous hypochlorite
  publication-title: Environ. Health Perspect.
– volume: 70
  start-page: 614
  year: 2018
  end-page: 627
  ident: bib17
  article-title: CnoX is a chaperedoxin: a holdase that protects its substrates from irreversible oxidation
  publication-title: Mol. Cell
– volume: 78
  start-page: 385
  year: 2021
  end-page: 414
  ident: bib28
  article-title: The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens
  publication-title: Cell. Mol. Life Sci.
– volume: 332
  start-page: 110
  year: 1996
  end-page: 120
  ident: bib4
  article-title: Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates
  publication-title: Arch. Biochem. Biophys.
– volume: 68
  start-page: 441
  year: 1964
  end-page: 451
  ident: bib51
  article-title: Van der waals volumes and radii
  publication-title: J. Phys. Chem.
– volume: 8
  start-page: 2428
  year: 2008
  end-page: 2437
  ident: bib25
  article-title: A test case for structure-based functional assignment: the 1.2 Å crystal structure of the yjgF gene product from Escherichia coli
  publication-title: Protein Sci.
– volume: 159
  start-page: 119
  year: 2020
  end-page: 124
  ident: bib30
  article-title: Evaluating the bactericidal action of hypochlorous acid in culture media
  publication-title: Free Radic. Biol. Med.
– volume: 135
  start-page: 691
  year: 2008
  end-page: 701
  ident: bib13
  article-title: Bleach activates a redox-regulated chaperone by oxidative protein unfolding
  publication-title: Cell
– volume: 6
  year: 2016
  ident: bib37
  article-title: Crystal structures of RidA, an important enzyme for the prevention of toxic side products
  publication-title: Sci. Rep.
– volume: 43
  start-page: 101981
  year: 2021
  ident: bib53
  article-title: Hypochlorous acid-modified human serum albumin suppresses MHC class II - dependent antigen presentation in pro-inflammatory macrophages
  publication-title: Redox Biol.
– volume: 29
  start-page: 403
  year: 2000
  end-page: 409
  ident: bib20
  article-title: Biomarkers of myeloperoxidase-derived hypochlorous acid
  publication-title: Free Radic. Biol. Med.
– volume: 46
  start-page: 975
  year: 2012
  end-page: 995
  ident: bib10
  article-title: Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids
  publication-title: Free Radic. Res.
– volume: 5
  start-page: 5804
  year: 2014
  ident: bib12
  article-title: Activation of RidA chaperone function by N-chlorination
  publication-title: Nat. Commun.
– volume: 279
  start-page: 1718
  year: 1998
  end-page: 1721
  ident: bib15
  article-title: Activation of the OxyR transcription factor by reversible disulfide bond formation
  publication-title: Science
– volume: 166
  start-page: 369
  year: 2016
  end-page: 379
  ident: bib43
  article-title: Forces driving chaperone action in brief
  publication-title: Cell
– volume: 248
  start-page: 189
  year: 1990
  end-page: 194
  ident: bib14
  article-title: Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation
  publication-title: Science
– volume: 282
  start-page: 11885
  year: 2007
  end-page: 11892
  ident: bib41
  article-title: The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents
  publication-title: J. Biol. Chem.
– volume: 292
  start-page: 12010
  year: 2017
  end-page: 12017
  ident: bib44
  article-title: Chaperone-client interactions: non-specificity engenders multifunctionality
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 3043
  year: 1985
  end-page: 3049
  ident: bib23
  article-title: Lactose repressor protein modified with dansyl chloride: activity effects and fluorescence properties
  publication-title: Biochemistry
– volume: 402
  start-page: 299
  year: 2020
  end-page: 316
  ident: bib29
  article-title: Redox regulation in host-pathogen interactions: thiol switches and beyond
  publication-title: Biol. Chem.
– volume: 7
  start-page: 40
  year: 2008
  end-page: 44
  ident: bib21
  article-title: Posterior error probabilities and false discovery rates: two sides of the same coin
  publication-title: J. Proteome Res.
– volume: 24
  start-page: 1536
  year: 1990
  end-page: 1541
  ident: bib34
  article-title: N-chloramine derivatization mechanism with dansyisulfinic acid: yields and routes of reaction
  publication-title: Environ. Sci. Technol.
– volume: 19
  start-page: 388
  year: 2018
  end-page: 400
  ident: bib47
  article-title: Chlorination and oxidation of human plasma fibronectin by myeloperoxidase-derived oxidants, and its consequences for smooth muscle cell function
  publication-title: Redox Biol.
– volume: 287
  start-page: 3454
  year: 2012
  end-page: 3461
  ident: bib36
  article-title: Conserved Yjgf protein family deaminates reactive enamine/imine intermediates of pyridoxal 5′-phosphate (PLP)-dependent enzyme reactions
  publication-title: J. Biol. Chem.
– volume: 279
  start-page: 20529
  year: 2004
  end-page: 20538
  ident: bib42
  article-title: Activation of the redox-regulated chaperone Hsp33 by domain unfolding
  publication-title: J. Biol. Chem.
– volume: 38
  start-page: 397
  year: 2004
  end-page: 405
  ident: bib33
  article-title: Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity
  publication-title: Free Radic. Biol. Med.
– volume: 11
  start-page: 139
  year: 1967
  end-page: 151
  ident: bib35
  article-title: [12] Dansyl chloride procedure
  publication-title: Methods Enzymol.
– volume: 332
  start-page: 63
  year: 1996
  end-page: 69
  ident: bib5
  article-title: Chlorination of cholesterol in cell membranes by hypochlorous acid
  publication-title: Arch. Biochem. Biophys.
– volume: 31
  start-page: 71
  year: 2008
  end-page: 77
  ident: bib48
  article-title: Rapid and sensitive determination of acrylamide in drinking water by planar chromatography and fluorescence detection after derivatization with dansulfinic acid
  publication-title: J. Separ. Sci.
– volume: 44
  start-page: 7378
  year: 2005
  end-page: 7387
  ident: bib27
  article-title: Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation
  publication-title: Biochemistry
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  ident: bib22
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
  publication-title: Nat. Biotechnol.
– volume: 66
  start-page: 400
  year: 1989
  end-page: 409
  ident: bib8
  article-title: Extracellular matrix proteoglycan degradation by human alveolar macrophages and neutrophils
  publication-title: J. Appl. Physiol.
– volume: 30
  start-page: 572
  year: 2001
  end-page: 579
  ident: bib26
  article-title: Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate
  publication-title: Free Radic. Biol. Med.
– volume: 42
  start-page: 13
  year: 2008
  end-page: 51
  ident: bib6
  article-title: Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review
  publication-title: Water Res.
– volume: 53
  start-page: 455
  year: 2003
  end-page: 462
  ident: bib19
  article-title: 3-Chlorotyrosine as a marker of protein damage by myeloperoxidase in tracheal aspirates from preterm infants: association with adverse respiratory outcome
  publication-title: Pediatr. Res.
– volume: 215
  start-page: 403
  year: 1990
  end-page: 410
  ident: bib38
  article-title: Basic local alignment search tool
  publication-title: J. Mol. Biol.
– volume: 78
  start-page: 210
  year: 1981
  end-page: 214
  ident: bib3
  article-title: Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 62
  start-page: 670
  year: 2005
  end-page: 684
  ident: bib46
  article-title: Hsp 70 chaperones: cellular functions and molecular mechanism
  publication-title: Cell. Mol. Life Sci.
– volume: 14
  start-page: 1453
  year: 2001
  end-page: 1464
  ident: bib40
  article-title: Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds
  publication-title: Chem. Res. Toxicol.
– volume: 8
  start-page: 619
  year: 1979
  end-page: 722
  ident: bib52
  article-title: Molecular structures of gas phase polyatomic molecules determined by spectroscopic methods
  publication-title: J. Phys. Chem. Ref. Data
– volume: 9
  start-page: 2171
  year: 2018
  ident: bib1
  article-title: Update on neutrophil function in severe inflammation
  publication-title: Front. Immunol.
– volume: 13
  start-page: 3271
  year: 2006
  end-page: 3290
  ident: bib31
  article-title: Reactions of myeloperoxidase-derived oxidants with biological substrates:gaining chemical insight into human inflammatory diseases
  publication-title: Curr. Med. Chem.
– volume: 340
  start-page: 539
  year: 1999
  end-page: 548
  ident: bib11
  article-title: Hygochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation
  publication-title: Biochem. J.
– volume: 110
  start-page: 91
  year: 2017
  end-page: 101
  ident: bib50
  article-title: Formation and reactivity of inorganic and organic chloramines and bromamines during oxidative water treatment
  publication-title: Water Res.
– volume: 8
  year: 2019
  ident: bib18
  article-title: N-chlorination mediates protective and immunomodulatory effects of oxidized human plasma proteins
  publication-title: Elife
– volume: 27
  start-page: 112
  year: 2018
  end-page: 128
  ident: bib49
  article-title: Improvements to the APBS biomolecular solvation software suite
  publication-title: Protein Sci.
– volume: 49
  start-page: D480
  year: 2021
  end-page: D489
  ident: bib39
  article-title: UniProt: the universal protein knowledgebase in 2021
  publication-title: Nucleic Acids Res.
– volume: 280
  start-page: 21726
  year: 2005
  end-page: 21730
  ident: bib45
  article-title: Insights into hydrophobicity and the chaperone-like function of αA- and αB-crystallins: an isothermal titration calorimetric study
  publication-title: J. Biol. Chem.
– volume: 96
  start-page: 341
  year: 1999
  end-page: 352
  ident: bib16
  article-title: Chaperone activity with a redox switch
  publication-title: Cell
– volume: 296
  start-page: 547
  year: 1992
  end-page: 555
  ident: bib7
  article-title: Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid
  publication-title: Arch. Biochem. Biophys.
– volume: 19
  start-page: 388
  year: 2018
  ident: 10.1016/j.redox.2022.102332_bib47
  article-title: Chlorination and oxidation of human plasma fibronectin by myeloperoxidase-derived oxidants, and its consequences for smooth muscle cell function
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2018.09.005
– volume: 42
  start-page: 13
  year: 2008
  ident: 10.1016/j.redox.2022.102332_bib6
  article-title: Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.07.025
– volume: 340
  start-page: 539
  year: 1999
  ident: 10.1016/j.redox.2022.102332_bib11
  article-title: Hygochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation
  publication-title: Biochem. J.
  doi: 10.1042/bj3400539
– volume: 5
  start-page: 5804
  year: 2014
  ident: 10.1016/j.redox.2022.102332_bib12
  article-title: Activation of RidA chaperone function by N-chlorination
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6804
– volume: 6
  year: 2016
  ident: 10.1016/j.redox.2022.102332_bib37
  article-title: Crystal structures of RidA, an important enzyme for the prevention of toxic side products
  publication-title: Sci. Rep.
– volume: 25
  start-page: 259
  year: 2003
  ident: 10.1016/j.redox.2022.102332_bib9
  article-title: Hypochlorite-induced oxidation of amino acids, peptides and proteins
  publication-title: Amino Acids
  doi: 10.1007/s00726-003-0016-x
– volume: 68
  start-page: 441
  year: 1964
  ident: 10.1016/j.redox.2022.102332_bib51
  article-title: Van der waals volumes and radii
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100785a001
– volume: 49
  start-page: D480
  year: 2021
  ident: 10.1016/j.redox.2022.102332_bib39
  article-title: UniProt: the universal protein knowledgebase in 2021
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1100
– volume: 24
  start-page: 3043
  year: 1985
  ident: 10.1016/j.redox.2022.102332_bib23
  article-title: Lactose repressor protein modified with dansyl chloride: activity effects and fluorescence properties
  publication-title: Biochemistry
  doi: 10.1021/bi00333a036
– volume: 24
  start-page: 1536
  year: 1990
  ident: 10.1016/j.redox.2022.102332_bib34
  article-title: N-chloramine derivatization mechanism with dansyisulfinic acid: yields and routes of reaction
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00080a013
– volume: 62
  start-page: 670
  year: 2005
  ident: 10.1016/j.redox.2022.102332_bib46
  article-title: Hsp 70 chaperones: cellular functions and molecular mechanism
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-004-4464-6
– volume: 27
  start-page: 112
  year: 2018
  ident: 10.1016/j.redox.2022.102332_bib49
  article-title: Improvements to the APBS biomolecular solvation software suite
  publication-title: Protein Sci.
  doi: 10.1002/pro.3280
– volume: 7
  start-page: 40
  year: 2008
  ident: 10.1016/j.redox.2022.102332_bib21
  article-title: Posterior error probabilities and false discovery rates: two sides of the same coin
  publication-title: J. Proteome Res.
  doi: 10.1021/pr700739d
– volume: 287
  start-page: 3454
  year: 2012
  ident: 10.1016/j.redox.2022.102332_bib36
  article-title: Conserved Yjgf protein family deaminates reactive enamine/imine intermediates of pyridoxal 5′-phosphate (PLP)-dependent enzyme reactions
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.304477
– volume: 215
  start-page: 403
  year: 1990
  ident: 10.1016/j.redox.2022.102332_bib38
  article-title: Basic local alignment search tool
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 43
  start-page: 101981
  year: 2021
  ident: 10.1016/j.redox.2022.102332_bib53
  article-title: Hypochlorous acid-modified human serum albumin suppresses MHC class II - dependent antigen presentation in pro-inflammatory macrophages
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2021.101981
– volume: 9
  start-page: 2171
  year: 2018
  ident: 10.1016/j.redox.2022.102332_bib1
  article-title: Update on neutrophil function in severe inflammation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.02171
– volume: 8
  start-page: 619
  year: 1979
  ident: 10.1016/j.redox.2022.102332_bib52
  article-title: Molecular structures of gas phase polyatomic molecules determined by spectroscopic methods
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555605
– volume: 29
  start-page: 403
  year: 2000
  ident: 10.1016/j.redox.2022.102332_bib20
  article-title: Biomarkers of myeloperoxidase-derived hypochlorous acid
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(00)00204-5
– volume: 135
  start-page: 691
  year: 2008
  ident: 10.1016/j.redox.2022.102332_bib13
  article-title: Bleach activates a redox-regulated chaperone by oxidative protein unfolding
  publication-title: Cell
  doi: 10.1016/j.cell.2008.09.024
– volume: 13
  start-page: 3271
  year: 2006
  ident: 10.1016/j.redox.2022.102332_bib31
  article-title: Reactions of myeloperoxidase-derived oxidants with biological substrates:gaining chemical insight into human inflammatory diseases
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986706778773095
– volume: 44
  start-page: 7378
  year: 2005
  ident: 10.1016/j.redox.2022.102332_bib27
  article-title: Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation
  publication-title: Biochemistry
  doi: 10.1021/bi0474665
– volume: 279
  start-page: 1718
  year: 1998
  ident: 10.1016/j.redox.2022.102332_bib15
  article-title: Activation of the OxyR transcription factor by reversible disulfide bond formation
  publication-title: Science
  doi: 10.1126/science.279.5357.1718
– volume: 159
  start-page: 119
  year: 2020
  ident: 10.1016/j.redox.2022.102332_bib30
  article-title: Evaluating the bactericidal action of hypochlorous acid in culture media
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.07.033
– volume: 280
  start-page: 21726
  year: 2005
  ident: 10.1016/j.redox.2022.102332_bib45
  article-title: Insights into hydrophobicity and the chaperone-like function of αA- and αB-crystallins: an isothermal titration calorimetric study
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M500405200
– volume: 402
  start-page: 299
  issue: 3
  year: 2020
  ident: 10.1016/j.redox.2022.102332_bib29
  article-title: Redox regulation in host-pathogen interactions: thiol switches and beyond
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2020-0264
– volume: 11
  start-page: 139
  year: 1967
  ident: 10.1016/j.redox.2022.102332_bib35
  article-title: [12] Dansyl chloride procedure
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(67)11014-8
– volume: 279
  start-page: 20529
  year: 2004
  ident: 10.1016/j.redox.2022.102332_bib42
  article-title: Activation of the redox-regulated chaperone Hsp33 by domain unfolding
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M401764200
– volume: 38
  start-page: 397
  issue: 3
  year: 2004
  ident: 10.1016/j.redox.2022.102332_bib33
  article-title: Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2004.11.006
– volume: 78
  start-page: 385
  issue: 2
  year: 2021
  ident: 10.1016/j.redox.2022.102332_bib28
  article-title: The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-020-03591-y
– volume: 78
  start-page: 210
  year: 1981
  ident: 10.1016/j.redox.2022.102332_bib3
  article-title: Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.78.1.210
– volume: 8
  year: 2019
  ident: 10.1016/j.redox.2022.102332_bib18
  article-title: N-chlorination mediates protective and immunomodulatory effects of oxidized human plasma proteins
  publication-title: Elife
  doi: 10.7554/eLife.47395
– volume: 282
  start-page: 11885
  year: 2007
  ident: 10.1016/j.redox.2022.102332_bib41
  article-title: The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M700339200
– volume: 248
  start-page: 189
  year: 1990
  ident: 10.1016/j.redox.2022.102332_bib14
  article-title: Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation
  publication-title: Science
  doi: 10.1126/science.2183352
– volume: 85
  start-page: 765
  year: 2016
  ident: 10.1016/j.redox.2022.102332_bib2
  article-title: Reactive oxygen species and neutrophil function
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060815-014442
– volume: 166
  start-page: 369
  year: 2016
  ident: 10.1016/j.redox.2022.102332_bib43
  article-title: Forces driving chaperone action in brief
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.054
– volume: 332
  start-page: 110
  year: 1996
  ident: 10.1016/j.redox.2022.102332_bib4
  article-title: Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1996.0322
– volume: 30
  start-page: 572
  year: 2001
  ident: 10.1016/j.redox.2022.102332_bib26
  article-title: Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(00)00506-2
– volume: 69
  start-page: 259
  year: 1986
  ident: 10.1016/j.redox.2022.102332_bib32
  article-title: Quantitation and identification of organic N-chloramines formed in stomach fluid on ingestion of aqueous hypochlorite
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.8669259
– volume: 292
  start-page: 12010
  year: 2017
  ident: 10.1016/j.redox.2022.102332_bib44
  article-title: Chaperone-client interactions: non-specificity engenders multifunctionality
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R117.796862
– volume: 8
  start-page: 2428
  year: 2008
  ident: 10.1016/j.redox.2022.102332_bib25
  article-title: A test case for structure-based functional assignment: the 1.2 Å crystal structure of the yjgF gene product from Escherichia coli
  publication-title: Protein Sci.
  doi: 10.1110/ps.8.11.2428
– volume: 96
  start-page: 341
  year: 1999
  ident: 10.1016/j.redox.2022.102332_bib16
  article-title: Chaperone activity with a redox switch
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80547-4
– volume: 53
  start-page: 455
  year: 2003
  ident: 10.1016/j.redox.2022.102332_bib19
  article-title: 3-Chlorotyrosine as a marker of protein damage by myeloperoxidase in tracheal aspirates from preterm infants: association with adverse respiratory outcome
  publication-title: Pediatr. Res.
  doi: 10.1203/01.PDR.0000050655.25689.CE
– volume: 46
  start-page: 975
  year: 2012
  ident: 10.1016/j.redox.2022.102332_bib10
  article-title: Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids
  publication-title: Free Radic. Res.
  doi: 10.3109/10715762.2012.667566
– volume: 31
  start-page: 71
  year: 2008
  ident: 10.1016/j.redox.2022.102332_bib48
  article-title: Rapid and sensitive determination of acrylamide in drinking water by planar chromatography and fluorescence detection after derivatization with dansulfinic acid
  publication-title: J. Separ. Sci.
  doi: 10.1002/jssc.200700391
– volume: 18
  start-page: 787
  year: 1984
  ident: 10.1016/j.redox.2022.102332_bib24
  article-title: Derivatization of organic and inorganic N-chloramines for high-performance liquid chromatographic analysis of chlorinated water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00128a012
– volume: 66
  start-page: 400
  year: 1989
  ident: 10.1016/j.redox.2022.102332_bib8
  article-title: Extracellular matrix proteoglycan degradation by human alveolar macrophages and neutrophils
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1989.66.1.400
– volume: 14
  start-page: 1453
  year: 2001
  ident: 10.1016/j.redox.2022.102332_bib40
  article-title: Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx0155451
– volume: 26
  start-page: 1367
  year: 2008
  ident: 10.1016/j.redox.2022.102332_bib22
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1511
– volume: 110
  start-page: 91
  year: 2017
  ident: 10.1016/j.redox.2022.102332_bib50
  article-title: Formation and reactivity of inorganic and organic chloramines and bromamines during oxidative water treatment
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.11.065
– volume: 332
  start-page: 63
  year: 1996
  ident: 10.1016/j.redox.2022.102332_bib5
  article-title: Chlorination of cholesterol in cell membranes by hypochlorous acid
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1996.0317
– volume: 296
  start-page: 547
  year: 1992
  ident: 10.1016/j.redox.2022.102332_bib7
  article-title: Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(92)90609-Z
– volume: 70
  start-page: 614
  year: 2018
  ident: 10.1016/j.redox.2022.102332_bib17
  article-title: CnoX is a chaperedoxin: a holdase that protects its substrates from irreversible oxidation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.04.002
SSID ssj0000884210
Score 2.3054087
Snippet Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine...
Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102332
SubjectTerms Chaperone
E. coli
N-Chlorination
Oxidation
Oxidative stress
Research Paper
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEA6yIPgi3j2rKxF8tLjNpUkej4vLIrgP4uK-heZGK9KznAu4_96ZpD2cKqwvvpUmaTuTSeYbOvmGkHeOs1SrFCsAG6YSrXGVUUZVjTBgT8JHleunfLlsLq7E52t5fVDqC3PCCj1wUdwHYwKAbs6ViUbwpNukeeJS-NR6Cd4Ud1_weQfBVN6DtRYsUxEwVvMKQIyaKIdycheScf6C6JCxzF3A2cwtZfb-mXf6G33-mUR54JXOH5GHI5ykyyLGY3IvDk_I_VJg8vYp-b4caD8gMNxEuKCb3RoEirS7DevVTbdyvQcUTvPxEcCc1HctEocPkeJ5BywrgaMuK9_lRD3oE-jXPiyfkavzT9_OLqqxlELlJZPbKjbRi4SrL6WmhcgxSmOU1_FUG-1do12r3KnzQnieDDgwD11lkjzA9iec48_J0QBvf0koF6GpUwwu1EkEDGfqVNdcSBMSwCO_IGzSpPUjzziWu_hpp4SyHzar36L6bVH_grzfD7opNBt3d_-IU7TvihzZ-QZYjh0tx_7LchakmSbYjnCjwAh4VH_3299O5mBhMeIflnaIq93GAtrRWORL6QV5Ucxj_40cqfA5tqiZ4cyEmLcMfZcJv03NGiP18f-Q-hV5gKKUjOPX5Gi73sUTwFVb9yYvod9Ich7V
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9N1Nk6JCjxUb62FLx01oCIXm0DZ0b8J61S7Fu-wDmn_fGdle6hZy6G1tj9byeKT5ZnfmG0LeOcFTUaXIAGwYJmvjmKlMxUppwJ6kj1Xun_Lppry-lR-XanlELsdaGEyrHPb-fk_Pu_VwZj5oc75u2_kXziGSAvfHeSaZwUJzIXUu4lteHH5ngVUkeSYlQHmGA0byoZzmhbScvyBO5DyzGAg-cVCZx3_ip_7FoX-nU_7hn64ek0cDsKSLfu5PyFHsnpIHfavJu2fk26KjbYcQcRvhA93uN6n2kTZ3YbNaNyvXesDjNBeSAPqkvqmRQryLFCsfsMEEjrphvskpeyAT6Oc2LJ6T26sPXy-v2dBUgXnF1Y7FMnqZcB2mVNYQQ0ZlTOV1PNdGe1dqV1fu3HkpvUgGXJkHUZWUCLARSufEC3Lcwd1fESpkKIsUgwtFkgEDmyIVhZDKhARAyc8IHzVp_cA4jo0vftoxteyHzeq3qH7bq39G3h8GrXvCjfvFL_AVHUSRLTufWG2-28FcrDEBAjchKhONFEnXSYsklPSgaAXznpFyfMF2YnzwVe39d387moOFZYn_tdRdXO23FnCPxnZflZ6Rl715HOYokBRf4JVqYjiTh5he6domU3-bgpdG6ZP_nfBr8hCP-nzjU3K82-zjGaCqnXuTl81v744fzQ
  priority: 102
  providerName: Elsevier
Title An increase in surface hydrophobicity mediates chaperone activity in N-chlorinated RidA
URI https://dx.doi.org/10.1016/j.redox.2022.102332
https://www.ncbi.nlm.nih.gov/pubmed/35598378
https://www.proquest.com/docview/2668218678
https://pubmed.ncbi.nlm.nih.gov/PMC9126958
https://doaj.org/article/99d8623379e943f8af83f354cfac5439
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBYhodBL6bvbNMGFHusSW5IlHUrZhIa0kBxKl-5NWK_aJXhT7y5k_31mZHsbtyH0YowlW_J4RvONPf6GkHeG5iETwacANlTKSmVSJZRIC6ZAn5j1ItZPOb8ozmbs65zPd8hQFbUX4PLO0A7rSc3ayw_XvzefwOA__snVQm7Nawj28jxSEVBYk_fANQm01PMe78elWUqWR4aCPM9oCthGDExEd19n5K0iqf_Iaf0LSv_OrbzlrE4fk0c9ykymnVo8ITu-eUoedHUnN8_Ij2mT1A3ixaWHnWS5bkNpfVJtXLu4qhamtgDOk_hXCUDRxFYl8ok3PsHfILDaBJ51kdoq5u9BH5d8q930OZmdfv5-cpb2FRZSy3O-Sn3hLQtolCEUJQSUnislrPRHUklrCmlKYY6MZczSoMCvWejKA6cOVkVmDH1BdhsY_RVJKHNFFrwzLgvMYZSThSyjjCsXADXZCckHSWrb049jFYxLPeSZ_dJR_BrFrzvxT8j77UlXHfvG_d2P8RFtuyJ1djywaH_q3hK1Ug6iOEqF8orRIMsgaaCcWRA0h3lPSDE8YN2jkA5dwKXq-0d_O6iDBhvFDy9l4xfrpQYQJLH2l5AT8rJTj-0cKTLkU2wRI8UZ3cS4pamryAOusrxQXL7-j3H3yUOcaZdn_Ibsrtq1PwA0tTKH8S0EbL_Mjw-jtdwApTgfKg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4s0ChSBxJNrGjzg-biuqLbR7gFbszYpfJFWVXe1Dov-eGSdZESr1wC3yI3HGY883yfgbQj4ZRkMmg08BbKiUl8qkSiqZ5lyBPnHrZcyfcj7Lp5f861zM98hxfxYGwyq7vb_d0-Nu3ZWMO2mOl3U9_kEpeFJg_iiNJDPiHrkPaEBi_obT-dHuQwssI04jKwF2SLFHzz4U47yQl_M3OIqURhoDRgcWKhL5DwzVbSD6bzzlXwbq5Al53CHLZNIO_inZ880z8qDNNXnznPycNEndIEZce7hI1ttVKK1Pqhu3WiyrhaktAPIkniQB-JnYqkQO8cYnePQBM0xgr1lqqxizB21c8r12kxfk8uTLxfE07bIqpFZQsUl97i0PuBBDyEtwIr1QStrCHxaqsCYvTCnNobGcWxYU2DILTUUQzMFOyI1hL8l-A09_TRLGXZ4F74zLAnfo2WQhyxgXygVASnZEaC9JbTvKccx8ca372LIrHcWvUfy6Ff-IfN51WraMG3c3P8Ip2jVFuuxYsFj90p2-aKUceG6MSeUVZ6EoQ8ECE9yCoAWMe0TyfoL1QPvgVvXdT__Yq4OGdYk_W8rGL7ZrDcCnwHxfshiRV6167MbIkBWfYY0cKM7gJYY1TV1F7m-V0VyJ4s3_DvgDeTi9OD_TZ6ezb2_JI6xpg4_fkf3NausPAGJtzPu4hP4AX4oi7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+increase+in+surface+hydrophobicity+mediates+chaperone+activity+in+N-chlorinated+RidA&rft.jtitle=Redox+biology&rft.au=Varatnitskaya%2C+Marharyta&rft.au=Fasel%2C+Julia&rft.au=M%C3%BCller%2C+Alexandra&rft.au=Lupilov%2C+Natalie&rft.date=2022-07-01&rft.issn=2213-2317&rft.eissn=2213-2317&rft.volume=53&rft.spage=102332&rft_id=info:doi/10.1016%2Fj.redox.2022.102332&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon