An increase in surface hydrophobicity mediates chaperone activity in N-chlorinated RidA
Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli...
Saved in:
Published in | Redox biology Vol. 53; p. 102332 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2213-2317 2213-2317 |
DOI | 10.1016/j.redox.2022.102332 |
Cover
Loading…
Abstract | Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidAHOCl, we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO2H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidAHOCl's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidAHOCl and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones. |
---|---|
AbstractList | Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidAHOCl, we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO2H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidAHOCl's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidAHOCl and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones.Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidAHOCl, we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO2H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidAHOCl's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidAHOCl and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones. Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidA , we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidA 's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidA and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones. Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidAHOCl, we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO2H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidAHOCl's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidAHOCl and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones. Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli 's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidA HOCl , we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO 2 H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidA HOCl 's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidA HOCl and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones. |
ArticleNumber | 102332 |
Author | Jacob, Timo Müller, Alexandra Fasel, Julia Bandow, Julia E. Carroll, Kate S. Lupilov, Natalie Fuchs, Kristin Leichert, Lars I. Sitek, Barbara Varatnitskaya, Marharyta Jung, Christoph Shi, Yunlong Krewing, Marco Hofmann, Eckhard |
Author_xml | – sequence: 1 givenname: Marharyta surname: Varatnitskaya fullname: Varatnitskaya, Marharyta organization: Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany – sequence: 2 givenname: Julia surname: Fasel fullname: Fasel, Julia organization: Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany – sequence: 3 givenname: Alexandra surname: Müller fullname: Müller, Alexandra organization: Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany – sequence: 4 givenname: Natalie surname: Lupilov fullname: Lupilov, Natalie organization: Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany – sequence: 5 givenname: Yunlong surname: Shi fullname: Shi, Yunlong organization: UF Scripps Biomedical Research, Department of Chemistry, 130 Scripps Way, Jupiter, FL, 33458, USA – sequence: 6 givenname: Kristin surname: Fuchs fullname: Fuchs, Kristin organization: Ruhr University Bochum, Medical Proteome Center, Bochum, Germany – sequence: 7 givenname: Marco surname: Krewing fullname: Krewing, Marco organization: Ruhr University Bochum, Applied Microbiology, Faculty of Biology and Biotechnology, Bochum, Germany – sequence: 8 givenname: Christoph surname: Jung fullname: Jung, Christoph organization: Helmholtz Institute Ulm – Electrochemical Energy Storage, Basics of Electrochemistry, Ulm, Germany – sequence: 9 givenname: Timo surname: Jacob fullname: Jacob, Timo organization: Helmholtz Institute Ulm – Electrochemical Energy Storage, Basics of Electrochemistry, Ulm, Germany – sequence: 10 givenname: Barbara surname: Sitek fullname: Sitek, Barbara organization: Ruhr University Bochum, Medical Proteome Center, Bochum, Germany – sequence: 11 givenname: Julia E. surname: Bandow fullname: Bandow, Julia E. organization: Ruhr University Bochum, Applied Microbiology, Faculty of Biology and Biotechnology, Bochum, Germany – sequence: 12 givenname: Kate S. surname: Carroll fullname: Carroll, Kate S. organization: UF Scripps Biomedical Research, Department of Chemistry, 130 Scripps Way, Jupiter, FL, 33458, USA – sequence: 13 givenname: Eckhard surname: Hofmann fullname: Hofmann, Eckhard organization: Ruhr University Bochum, Protein Crystallography, Bochum, Germany – sequence: 14 givenname: Lars I. orcidid: 0000-0002-5666-9681 surname: Leichert fullname: Leichert, Lars I. email: lars.leichert@ruhr-uni-bochum.de organization: Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35598378$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAQtVARLaW_AAnlyCVLbMeJfQBpVfFRqQIJgThazmTc9SobL3Z2xf57ZptStRzAF49m3nvz-ZydjHFExl7yasEr3rxZLxL28ddCVEKQR0gpnrAzIbgsheTtyQP7lF3kvK7oaV0LXj1jp1Ipo2Wrz9iP5ViEERK6jGQUeZe8AyxWhz7F7Sp2AcJ0KDbYBzdhLmDltpiolsLBFPbHGLE-l7AaYgojYfria-iXL9hT74aMF3f_Ofv-4f23y0_l9ZePV5fL6xKUUFOJDULtK94a7xtnWo3KmBY0Vtpo6BrdubarOqhrkN40rQaCKq9k3_dYd508Z1ezbh_d2m5T2Lh0sNEFe-uI6ca6NAUY0BrT64YG1Ro0tfTaeS29VDVQw6qWhrTezVrbXUcNA45TcsMj0ceRMazsTdxbw0VjlCaB13cCKf7cYZ7sJmTAYXAjxl22omm04JraIOirh7nuk_zZDAHkDIAUc07o7yG8sscTsGt7ewL2eAJ2PgFimb9YtD43hXgsOAz_4b6duUj72gdMNkPAEWj1CWGigYZ_8n8DgwrOjQ |
CitedBy_id | crossref_primary_10_1088_1361_6528_acd258 crossref_primary_10_1128_jb_00064_23 crossref_primary_10_1016_j_arres_2025_100119 crossref_primary_10_1016_j_freeradbiomed_2024_09_014 crossref_primary_10_1016_j_tibs_2024_07_001 |
Cites_doi | 10.1016/j.redox.2018.09.005 10.1016/j.watres.2007.07.025 10.1042/bj3400539 10.1038/ncomms6804 10.1007/s00726-003-0016-x 10.1021/j100785a001 10.1093/nar/gkaa1100 10.1021/bi00333a036 10.1021/es00080a013 10.1007/s00018-004-4464-6 10.1002/pro.3280 10.1021/pr700739d 10.1074/jbc.M111.304477 10.1016/S0022-2836(05)80360-2 10.1016/j.redox.2021.101981 10.3389/fimmu.2018.02171 10.1063/1.555605 10.1016/S0891-5849(00)00204-5 10.1016/j.cell.2008.09.024 10.2174/092986706778773095 10.1021/bi0474665 10.1126/science.279.5357.1718 10.1016/j.freeradbiomed.2020.07.033 10.1074/jbc.M500405200 10.1515/hsz-2020-0264 10.1016/S0076-6879(67)11014-8 10.1074/jbc.M401764200 10.1016/j.freeradbiomed.2004.11.006 10.1007/s00018-020-03591-y 10.1073/pnas.78.1.210 10.7554/eLife.47395 10.1074/jbc.M700339200 10.1126/science.2183352 10.1146/annurev-biochem-060815-014442 10.1016/j.cell.2016.05.054 10.1006/abbi.1996.0322 10.1016/S0891-5849(00)00506-2 10.1289/ehp.8669259 10.1074/jbc.R117.796862 10.1110/ps.8.11.2428 10.1016/S0092-8674(00)80547-4 10.1203/01.PDR.0000050655.25689.CE 10.3109/10715762.2012.667566 10.1002/jssc.200700391 10.1021/es00128a012 10.1152/jappl.1989.66.1.400 10.1021/tx0155451 10.1038/nbt.1511 10.1016/j.watres.2016.11.065 10.1006/abbi.1996.0317 10.1016/0003-9861(92)90609-Z 10.1016/j.molcel.2018.04.002 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022. Published by Elsevier B.V. Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. 2022 The Authors 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022. Published by Elsevier B.V. – notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2022 The Authors 2022 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.redox.2022.102332 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-2317 |
ExternalDocumentID | oai_doaj_org_article_99d8623379e943f8af83f354cfac5439 PMC9126958 35598378 10_1016_j_redox_2022_102332 S2213231722001045 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABGSF ABMAC ACGFS ADBBV ADEZE ADRAZ ADUVX AENEX AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB M48 MO0 M~E NCXOZ O-L O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c525t-e6ec4f0179ff6a978e5997c8e0898cb68ba7b0bc44c3f9678c1795f53ddde4bb3 |
IEDL.DBID | M48 |
ISSN | 2213-2317 |
IngestDate | Wed Aug 27 01:31:56 EDT 2025 Thu Aug 21 18:10:26 EDT 2025 Thu Jul 10 23:20:31 EDT 2025 Mon Jul 21 06:02:38 EDT 2025 Tue Jul 01 00:47:08 EDT 2025 Thu Apr 24 23:03:15 EDT 2025 Tue Jul 25 20:58:36 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidative stress Oxidation N-Chlorination Chaperone E. coli |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2022. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-e6ec4f0179ff6a978e5997c8e0898cb68ba7b0bc44c3f9678c1795f53ddde4bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5666-9681 |
OpenAccessLink | https://doaj.org/article/99d8623379e943f8af83f354cfac5439 |
PMID | 35598378 |
PQID | 2668218678 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_99d8623379e943f8af83f354cfac5439 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9126958 proquest_miscellaneous_2668218678 pubmed_primary_35598378 crossref_primary_10_1016_j_redox_2022_102332 crossref_citationtrail_10_1016_j_redox_2022_102332 elsevier_sciencedirect_doi_10_1016_j_redox_2022_102332 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Redox biology |
PublicationTitleAlternate | Redox Biol |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Koldewey, Stull, Horowitz, Martin, Correspondence (bib43) 2016; 166 Nybo, Cai, Chuang, Gamon, Rogowska-Wrzesinska, Davies (bib47) 2018; 19 Pattison, Davies (bib40) 2001; 14 Volz (bib25) 2008; 8 Hawkins, Pattison, Davies (bib9) 2003; 25 Mortaz, Alipoor, Adcock, Mumby, Koenderman (bib1) 2018; 9 Scully, Mazina, Sonenshine, Kopfler (bib32) 1986; 69 Gray (bib35) 1967; 11 Peskin, Midwinter, Harwood, Winterbourn (bib33) 2004; 38 Cox, Mann (bib22) 2008; 26 Bondi (bib51) 1964; 68 Heeb, Kristiana, Trogolo, Arey, von Gunten (bib50) 2017; 110 Pattison, Davies (bib31) 2006; 13 Lambrecht, Flynn, Downs (bib36) 2012; 287 Kumar, Kapoor, Sinha, Reddy (bib45) 2005; 280 Ulfig, Bader, Varatnitskaya, Lupilov, Winklhofer, Leichert (bib53) 2021; 43 Winterbourn, Kettle (bib20) 2000; 29 Liu, Zeng, Chen, Xie (bib37) 2016; 6 Koldewey, Horowitz, Bardwell (bib44) 2017; 292 Hendrikje Buss, Senthilmohan, Darlow, Mogridge, Kettle, Winterbourn (bib19) 2003; 53 Graf, Martinez-Yamout, VanHaerents, Lilie, Dyson, Jakob (bib42) 2004; 279 Peskin, Winterbourn (bib26) 2001; 30 Harmony, Laurie, Kuczkowski, Schwendeman, Ramsay, Lovas, Lafferty, Maki (bib52) 1979; 8 Jersey, Choshen, Jensen, Johnson, Scully (bib34) 1990; 24 Pattison, Davies (bib27) 2005; 44 Ulfig, Schulz, Müller, Lupilov, Leichert (bib18) 2019; 8 Carr, Van Den Berg, Winterbourn (bib5) 1996; 332 Alpmann, Morlock (bib48) 2008; 31 Jurrus, Engel, Star, Monson, Brandi, Felberg, Brookes, Wilson, Chen, Liles, Chun, Li, Gohara, Dolinsky, Konecny, Koes, Nielsen, Head-Gordon, Geng, Krasny, Wei, Holst, McCammon, Baker (bib49) 2018; 27 Altschul, Gish, Miller, Myers, Lipman (bib38) 1990; 215 Hawkins, Davies (bib11) 1999; 340 Peskin, Low, Paton, Maghzal, Hampton, Winterbourn (bib41) 2007; 282 McGowan, Thompson (bib8) 1989; 66 Winterbourn, van den Berg, Roitman, Kuypers (bib7) 1992; 296 Käll, Storey, MacCoss, Noble (bib21) 2008; 7 Mayer, Bukau (bib46) 2005; 62 Storz, Tartaglia, Ames (bib14) 1990; 248 Müller, Langklotz, Lupilova, Kuhlmann, Bandow, Leichert (bib12) 2014; 5 Albrich, McCarthy, Hurst (bib3) 1981; 78 Scully, Yang, Mazlna, Bernard Daniel (bib24) 1984; 18 Prütz (bib4) 1996; 332 Ashby, Springer, Hampton, Kettle, Winterbourn (bib30) 2020; 159 Winterbourn, Kettle, Hampton (bib2) 2016; 85 Zheng, Åslund, Storz (bib15) 1998; 279 Varatnitskaya, Degrossoli, Leichert (bib29) 2020; 402 Hsieh, Matthews (bib23) 1985; 24 Pattison, Davies, Hawkins (bib10) 2012; 46 Ulfig, Leichert (bib28) 2021; 78 Deborde, von Gunten (bib6) 2008; 42 Winter, Ilbert, Graf, Özcelik, Jakob (bib13) 2008; 135 Jakob, Muse, Eser, Bardwell (bib16) 1999; 96 Bateman, Martin, Orchard, Magrane, Agivetova, Ahmad, Alpi, Bowler-Barnett, Britto, Bursteinas, Bye-A-Jee, Coetzee, Cukura, Silva, Denny, Dogan, Ebenezer, Fan, Castro, Garmiri, Georghiou, Gonzales, Hatton-Ellis, Hussein, Ignatchenko, Insana, Ishtiaq, Jokinen, Joshi, Jyothi, Lock, Lopez, Luciani, Luo, Lussi, MacDougall, Madeira, Mahmoudy, Menchi, Mishra, Moulang, Nightingale, Oliveira, Pundir, Qi, Raj, Rice, Lopez, Saidi, Sampson, Sawford, Speretta, Turner, Tyagi, Vasudev, Volynkin, Warner, Watkins, Zaru, Zellner, Bridge, Poux, Redaschi, Aimo, Argoud-Puy, Auchincloss, Axelsen, Bansal, Baratin, Blatter, Bolleman, Boutet, Breuza, Casals-Casas, de Castro, Echioukh, Coudert, Cuche, Doche, Dornevil, Estreicher, Famiglietti, Feuermann, Gasteiger, Gehant, Gerritsen, Gos, Gruaz-Gumowski, Hinz, Hulo, Hyka-Nouspikel, Jungo, Keller, Kerhornou, Lara, Le Mercier, Lieberherr, Lombardot (bib39) 2021; 49 Goemans, Vertommen, Agrebi, Collet (bib17) 2018; 70 Winterbourn (10.1016/j.redox.2022.102332_bib7) 1992; 296 Bondi (10.1016/j.redox.2022.102332_bib51) 1964; 68 Nybo (10.1016/j.redox.2022.102332_bib47) 2018; 19 Müller (10.1016/j.redox.2022.102332_bib12) 2014; 5 Peskin (10.1016/j.redox.2022.102332_bib33) 2004; 38 Graf (10.1016/j.redox.2022.102332_bib42) 2004; 279 Ulfig (10.1016/j.redox.2022.102332_bib53) 2021; 43 Peskin (10.1016/j.redox.2022.102332_bib26) 2001; 30 McGowan (10.1016/j.redox.2022.102332_bib8) 1989; 66 Zheng (10.1016/j.redox.2022.102332_bib15) 1998; 279 Pattison (10.1016/j.redox.2022.102332_bib40) 2001; 14 Goemans (10.1016/j.redox.2022.102332_bib17) 2018; 70 Liu (10.1016/j.redox.2022.102332_bib37) 2016; 6 Lambrecht (10.1016/j.redox.2022.102332_bib36) 2012; 287 Ulfig (10.1016/j.redox.2022.102332_bib18) 2019; 8 Koldewey (10.1016/j.redox.2022.102332_bib43) 2016; 166 Alpmann (10.1016/j.redox.2022.102332_bib48) 2008; 31 Varatnitskaya (10.1016/j.redox.2022.102332_bib29) 2020; 402 Pattison (10.1016/j.redox.2022.102332_bib31) 2006; 13 Koldewey (10.1016/j.redox.2022.102332_bib44) 2017; 292 Winter (10.1016/j.redox.2022.102332_bib13) 2008; 135 Hawkins (10.1016/j.redox.2022.102332_bib11) 1999; 340 Cox (10.1016/j.redox.2022.102332_bib22) 2008; 26 Altschul (10.1016/j.redox.2022.102332_bib38) 1990; 215 Jurrus (10.1016/j.redox.2022.102332_bib49) 2018; 27 Hawkins (10.1016/j.redox.2022.102332_bib9) 2003; 25 Hendrikje Buss (10.1016/j.redox.2022.102332_bib19) 2003; 53 Harmony (10.1016/j.redox.2022.102332_bib52) 1979; 8 Winterbourn (10.1016/j.redox.2022.102332_bib2) 2016; 85 Ashby (10.1016/j.redox.2022.102332_bib30) 2020; 159 Pattison (10.1016/j.redox.2022.102332_bib27) 2005; 44 Bateman (10.1016/j.redox.2022.102332_bib39) 2021; 49 Peskin (10.1016/j.redox.2022.102332_bib41) 2007; 282 Winterbourn (10.1016/j.redox.2022.102332_bib20) 2000; 29 Jakob (10.1016/j.redox.2022.102332_bib16) 1999; 96 Hsieh (10.1016/j.redox.2022.102332_bib23) 1985; 24 Scully (10.1016/j.redox.2022.102332_bib24) 1984; 18 Storz (10.1016/j.redox.2022.102332_bib14) 1990; 248 Jersey (10.1016/j.redox.2022.102332_bib34) 1990; 24 Volz (10.1016/j.redox.2022.102332_bib25) 2008; 8 Ulfig (10.1016/j.redox.2022.102332_bib28) 2021; 78 Käll (10.1016/j.redox.2022.102332_bib21) 2008; 7 Carr (10.1016/j.redox.2022.102332_bib5) 1996; 332 Heeb (10.1016/j.redox.2022.102332_bib50) 2017; 110 Prütz (10.1016/j.redox.2022.102332_bib4) 1996; 332 Scully (10.1016/j.redox.2022.102332_bib32) 1986; 69 Gray (10.1016/j.redox.2022.102332_bib35) 1967; 11 Deborde (10.1016/j.redox.2022.102332_bib6) 2008; 42 Kumar (10.1016/j.redox.2022.102332_bib45) 2005; 280 Mortaz (10.1016/j.redox.2022.102332_bib1) 2018; 9 Mayer (10.1016/j.redox.2022.102332_bib46) 2005; 62 Pattison (10.1016/j.redox.2022.102332_bib10) 2012; 46 Albrich (10.1016/j.redox.2022.102332_bib3) 1981; 78 |
References_xml | – volume: 85 start-page: 765 year: 2016 end-page: 792 ident: bib2 article-title: Reactive oxygen species and neutrophil function publication-title: Annu. Rev. Biochem. – volume: 25 start-page: 259 year: 2003 end-page: 274 ident: bib9 article-title: Hypochlorite-induced oxidation of amino acids, peptides and proteins publication-title: Amino Acids – volume: 18 start-page: 787 year: 1984 end-page: 792 ident: bib24 article-title: Derivatization of organic and inorganic N-chloramines for high-performance liquid chromatographic analysis of chlorinated water publication-title: Environ. Sci. Technol. – volume: 69 start-page: 259 year: 1986 end-page: 265 ident: bib32 article-title: Quantitation and identification of organic N-chloramines formed in stomach fluid on ingestion of aqueous hypochlorite publication-title: Environ. Health Perspect. – volume: 70 start-page: 614 year: 2018 end-page: 627 ident: bib17 article-title: CnoX is a chaperedoxin: a holdase that protects its substrates from irreversible oxidation publication-title: Mol. Cell – volume: 78 start-page: 385 year: 2021 end-page: 414 ident: bib28 article-title: The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens publication-title: Cell. Mol. Life Sci. – volume: 332 start-page: 110 year: 1996 end-page: 120 ident: bib4 article-title: Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates publication-title: Arch. Biochem. Biophys. – volume: 68 start-page: 441 year: 1964 end-page: 451 ident: bib51 article-title: Van der waals volumes and radii publication-title: J. Phys. Chem. – volume: 8 start-page: 2428 year: 2008 end-page: 2437 ident: bib25 article-title: A test case for structure-based functional assignment: the 1.2 Å crystal structure of the yjgF gene product from Escherichia coli publication-title: Protein Sci. – volume: 159 start-page: 119 year: 2020 end-page: 124 ident: bib30 article-title: Evaluating the bactericidal action of hypochlorous acid in culture media publication-title: Free Radic. Biol. Med. – volume: 135 start-page: 691 year: 2008 end-page: 701 ident: bib13 article-title: Bleach activates a redox-regulated chaperone by oxidative protein unfolding publication-title: Cell – volume: 6 year: 2016 ident: bib37 article-title: Crystal structures of RidA, an important enzyme for the prevention of toxic side products publication-title: Sci. Rep. – volume: 43 start-page: 101981 year: 2021 ident: bib53 article-title: Hypochlorous acid-modified human serum albumin suppresses MHC class II - dependent antigen presentation in pro-inflammatory macrophages publication-title: Redox Biol. – volume: 29 start-page: 403 year: 2000 end-page: 409 ident: bib20 article-title: Biomarkers of myeloperoxidase-derived hypochlorous acid publication-title: Free Radic. Biol. Med. – volume: 46 start-page: 975 year: 2012 end-page: 995 ident: bib10 article-title: Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids publication-title: Free Radic. Res. – volume: 5 start-page: 5804 year: 2014 ident: bib12 article-title: Activation of RidA chaperone function by N-chlorination publication-title: Nat. Commun. – volume: 279 start-page: 1718 year: 1998 end-page: 1721 ident: bib15 article-title: Activation of the OxyR transcription factor by reversible disulfide bond formation publication-title: Science – volume: 166 start-page: 369 year: 2016 end-page: 379 ident: bib43 article-title: Forces driving chaperone action in brief publication-title: Cell – volume: 248 start-page: 189 year: 1990 end-page: 194 ident: bib14 article-title: Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation publication-title: Science – volume: 282 start-page: 11885 year: 2007 end-page: 11892 ident: bib41 article-title: The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents publication-title: J. Biol. Chem. – volume: 292 start-page: 12010 year: 2017 end-page: 12017 ident: bib44 article-title: Chaperone-client interactions: non-specificity engenders multifunctionality publication-title: J. Biol. Chem. – volume: 24 start-page: 3043 year: 1985 end-page: 3049 ident: bib23 article-title: Lactose repressor protein modified with dansyl chloride: activity effects and fluorescence properties publication-title: Biochemistry – volume: 402 start-page: 299 year: 2020 end-page: 316 ident: bib29 article-title: Redox regulation in host-pathogen interactions: thiol switches and beyond publication-title: Biol. Chem. – volume: 7 start-page: 40 year: 2008 end-page: 44 ident: bib21 article-title: Posterior error probabilities and false discovery rates: two sides of the same coin publication-title: J. Proteome Res. – volume: 24 start-page: 1536 year: 1990 end-page: 1541 ident: bib34 article-title: N-chloramine derivatization mechanism with dansyisulfinic acid: yields and routes of reaction publication-title: Environ. Sci. Technol. – volume: 19 start-page: 388 year: 2018 end-page: 400 ident: bib47 article-title: Chlorination and oxidation of human plasma fibronectin by myeloperoxidase-derived oxidants, and its consequences for smooth muscle cell function publication-title: Redox Biol. – volume: 287 start-page: 3454 year: 2012 end-page: 3461 ident: bib36 article-title: Conserved Yjgf protein family deaminates reactive enamine/imine intermediates of pyridoxal 5′-phosphate (PLP)-dependent enzyme reactions publication-title: J. Biol. Chem. – volume: 279 start-page: 20529 year: 2004 end-page: 20538 ident: bib42 article-title: Activation of the redox-regulated chaperone Hsp33 by domain unfolding publication-title: J. Biol. Chem. – volume: 38 start-page: 397 year: 2004 end-page: 405 ident: bib33 article-title: Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity publication-title: Free Radic. Biol. Med. – volume: 11 start-page: 139 year: 1967 end-page: 151 ident: bib35 article-title: [12] Dansyl chloride procedure publication-title: Methods Enzymol. – volume: 332 start-page: 63 year: 1996 end-page: 69 ident: bib5 article-title: Chlorination of cholesterol in cell membranes by hypochlorous acid publication-title: Arch. Biochem. Biophys. – volume: 31 start-page: 71 year: 2008 end-page: 77 ident: bib48 article-title: Rapid and sensitive determination of acrylamide in drinking water by planar chromatography and fluorescence detection after derivatization with dansulfinic acid publication-title: J. Separ. Sci. – volume: 44 start-page: 7378 year: 2005 end-page: 7387 ident: bib27 article-title: Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation publication-title: Biochemistry – volume: 26 start-page: 1367 year: 2008 end-page: 1372 ident: bib22 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification publication-title: Nat. Biotechnol. – volume: 66 start-page: 400 year: 1989 end-page: 409 ident: bib8 article-title: Extracellular matrix proteoglycan degradation by human alveolar macrophages and neutrophils publication-title: J. Appl. Physiol. – volume: 30 start-page: 572 year: 2001 end-page: 579 ident: bib26 article-title: Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate publication-title: Free Radic. Biol. Med. – volume: 42 start-page: 13 year: 2008 end-page: 51 ident: bib6 article-title: Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review publication-title: Water Res. – volume: 53 start-page: 455 year: 2003 end-page: 462 ident: bib19 article-title: 3-Chlorotyrosine as a marker of protein damage by myeloperoxidase in tracheal aspirates from preterm infants: association with adverse respiratory outcome publication-title: Pediatr. Res. – volume: 215 start-page: 403 year: 1990 end-page: 410 ident: bib38 article-title: Basic local alignment search tool publication-title: J. Mol. Biol. – volume: 78 start-page: 210 year: 1981 end-page: 214 ident: bib3 article-title: Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 62 start-page: 670 year: 2005 end-page: 684 ident: bib46 article-title: Hsp 70 chaperones: cellular functions and molecular mechanism publication-title: Cell. Mol. Life Sci. – volume: 14 start-page: 1453 year: 2001 end-page: 1464 ident: bib40 article-title: Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds publication-title: Chem. Res. Toxicol. – volume: 8 start-page: 619 year: 1979 end-page: 722 ident: bib52 article-title: Molecular structures of gas phase polyatomic molecules determined by spectroscopic methods publication-title: J. Phys. Chem. Ref. Data – volume: 9 start-page: 2171 year: 2018 ident: bib1 article-title: Update on neutrophil function in severe inflammation publication-title: Front. Immunol. – volume: 13 start-page: 3271 year: 2006 end-page: 3290 ident: bib31 article-title: Reactions of myeloperoxidase-derived oxidants with biological substrates:gaining chemical insight into human inflammatory diseases publication-title: Curr. Med. Chem. – volume: 340 start-page: 539 year: 1999 end-page: 548 ident: bib11 article-title: Hygochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation publication-title: Biochem. J. – volume: 110 start-page: 91 year: 2017 end-page: 101 ident: bib50 article-title: Formation and reactivity of inorganic and organic chloramines and bromamines during oxidative water treatment publication-title: Water Res. – volume: 8 year: 2019 ident: bib18 article-title: N-chlorination mediates protective and immunomodulatory effects of oxidized human plasma proteins publication-title: Elife – volume: 27 start-page: 112 year: 2018 end-page: 128 ident: bib49 article-title: Improvements to the APBS biomolecular solvation software suite publication-title: Protein Sci. – volume: 49 start-page: D480 year: 2021 end-page: D489 ident: bib39 article-title: UniProt: the universal protein knowledgebase in 2021 publication-title: Nucleic Acids Res. – volume: 280 start-page: 21726 year: 2005 end-page: 21730 ident: bib45 article-title: Insights into hydrophobicity and the chaperone-like function of αA- and αB-crystallins: an isothermal titration calorimetric study publication-title: J. Biol. Chem. – volume: 96 start-page: 341 year: 1999 end-page: 352 ident: bib16 article-title: Chaperone activity with a redox switch publication-title: Cell – volume: 296 start-page: 547 year: 1992 end-page: 555 ident: bib7 article-title: Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid publication-title: Arch. Biochem. Biophys. – volume: 19 start-page: 388 year: 2018 ident: 10.1016/j.redox.2022.102332_bib47 article-title: Chlorination and oxidation of human plasma fibronectin by myeloperoxidase-derived oxidants, and its consequences for smooth muscle cell function publication-title: Redox Biol. doi: 10.1016/j.redox.2018.09.005 – volume: 42 start-page: 13 year: 2008 ident: 10.1016/j.redox.2022.102332_bib6 article-title: Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review publication-title: Water Res. doi: 10.1016/j.watres.2007.07.025 – volume: 340 start-page: 539 year: 1999 ident: 10.1016/j.redox.2022.102332_bib11 article-title: Hygochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation publication-title: Biochem. J. doi: 10.1042/bj3400539 – volume: 5 start-page: 5804 year: 2014 ident: 10.1016/j.redox.2022.102332_bib12 article-title: Activation of RidA chaperone function by N-chlorination publication-title: Nat. Commun. doi: 10.1038/ncomms6804 – volume: 6 year: 2016 ident: 10.1016/j.redox.2022.102332_bib37 article-title: Crystal structures of RidA, an important enzyme for the prevention of toxic side products publication-title: Sci. Rep. – volume: 25 start-page: 259 year: 2003 ident: 10.1016/j.redox.2022.102332_bib9 article-title: Hypochlorite-induced oxidation of amino acids, peptides and proteins publication-title: Amino Acids doi: 10.1007/s00726-003-0016-x – volume: 68 start-page: 441 year: 1964 ident: 10.1016/j.redox.2022.102332_bib51 article-title: Van der waals volumes and radii publication-title: J. Phys. Chem. doi: 10.1021/j100785a001 – volume: 49 start-page: D480 year: 2021 ident: 10.1016/j.redox.2022.102332_bib39 article-title: UniProt: the universal protein knowledgebase in 2021 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1100 – volume: 24 start-page: 3043 year: 1985 ident: 10.1016/j.redox.2022.102332_bib23 article-title: Lactose repressor protein modified with dansyl chloride: activity effects and fluorescence properties publication-title: Biochemistry doi: 10.1021/bi00333a036 – volume: 24 start-page: 1536 year: 1990 ident: 10.1016/j.redox.2022.102332_bib34 article-title: N-chloramine derivatization mechanism with dansyisulfinic acid: yields and routes of reaction publication-title: Environ. Sci. Technol. doi: 10.1021/es00080a013 – volume: 62 start-page: 670 year: 2005 ident: 10.1016/j.redox.2022.102332_bib46 article-title: Hsp 70 chaperones: cellular functions and molecular mechanism publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-004-4464-6 – volume: 27 start-page: 112 year: 2018 ident: 10.1016/j.redox.2022.102332_bib49 article-title: Improvements to the APBS biomolecular solvation software suite publication-title: Protein Sci. doi: 10.1002/pro.3280 – volume: 7 start-page: 40 year: 2008 ident: 10.1016/j.redox.2022.102332_bib21 article-title: Posterior error probabilities and false discovery rates: two sides of the same coin publication-title: J. Proteome Res. doi: 10.1021/pr700739d – volume: 287 start-page: 3454 year: 2012 ident: 10.1016/j.redox.2022.102332_bib36 article-title: Conserved Yjgf protein family deaminates reactive enamine/imine intermediates of pyridoxal 5′-phosphate (PLP)-dependent enzyme reactions publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.304477 – volume: 215 start-page: 403 year: 1990 ident: 10.1016/j.redox.2022.102332_bib38 article-title: Basic local alignment search tool publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(05)80360-2 – volume: 43 start-page: 101981 year: 2021 ident: 10.1016/j.redox.2022.102332_bib53 article-title: Hypochlorous acid-modified human serum albumin suppresses MHC class II - dependent antigen presentation in pro-inflammatory macrophages publication-title: Redox Biol. doi: 10.1016/j.redox.2021.101981 – volume: 9 start-page: 2171 year: 2018 ident: 10.1016/j.redox.2022.102332_bib1 article-title: Update on neutrophil function in severe inflammation publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02171 – volume: 8 start-page: 619 year: 1979 ident: 10.1016/j.redox.2022.102332_bib52 article-title: Molecular structures of gas phase polyatomic molecules determined by spectroscopic methods publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555605 – volume: 29 start-page: 403 year: 2000 ident: 10.1016/j.redox.2022.102332_bib20 article-title: Biomarkers of myeloperoxidase-derived hypochlorous acid publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(00)00204-5 – volume: 135 start-page: 691 year: 2008 ident: 10.1016/j.redox.2022.102332_bib13 article-title: Bleach activates a redox-regulated chaperone by oxidative protein unfolding publication-title: Cell doi: 10.1016/j.cell.2008.09.024 – volume: 13 start-page: 3271 year: 2006 ident: 10.1016/j.redox.2022.102332_bib31 article-title: Reactions of myeloperoxidase-derived oxidants with biological substrates:gaining chemical insight into human inflammatory diseases publication-title: Curr. Med. Chem. doi: 10.2174/092986706778773095 – volume: 44 start-page: 7378 year: 2005 ident: 10.1016/j.redox.2022.102332_bib27 article-title: Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation publication-title: Biochemistry doi: 10.1021/bi0474665 – volume: 279 start-page: 1718 year: 1998 ident: 10.1016/j.redox.2022.102332_bib15 article-title: Activation of the OxyR transcription factor by reversible disulfide bond formation publication-title: Science doi: 10.1126/science.279.5357.1718 – volume: 159 start-page: 119 year: 2020 ident: 10.1016/j.redox.2022.102332_bib30 article-title: Evaluating the bactericidal action of hypochlorous acid in culture media publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2020.07.033 – volume: 280 start-page: 21726 year: 2005 ident: 10.1016/j.redox.2022.102332_bib45 article-title: Insights into hydrophobicity and the chaperone-like function of αA- and αB-crystallins: an isothermal titration calorimetric study publication-title: J. Biol. Chem. doi: 10.1074/jbc.M500405200 – volume: 402 start-page: 299 issue: 3 year: 2020 ident: 10.1016/j.redox.2022.102332_bib29 article-title: Redox regulation in host-pathogen interactions: thiol switches and beyond publication-title: Biol. Chem. doi: 10.1515/hsz-2020-0264 – volume: 11 start-page: 139 year: 1967 ident: 10.1016/j.redox.2022.102332_bib35 article-title: [12] Dansyl chloride procedure publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(67)11014-8 – volume: 279 start-page: 20529 year: 2004 ident: 10.1016/j.redox.2022.102332_bib42 article-title: Activation of the redox-regulated chaperone Hsp33 by domain unfolding publication-title: J. Biol. Chem. doi: 10.1074/jbc.M401764200 – volume: 38 start-page: 397 issue: 3 year: 2004 ident: 10.1016/j.redox.2022.102332_bib33 article-title: Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2004.11.006 – volume: 78 start-page: 385 issue: 2 year: 2021 ident: 10.1016/j.redox.2022.102332_bib28 article-title: The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-020-03591-y – volume: 78 start-page: 210 year: 1981 ident: 10.1016/j.redox.2022.102332_bib3 article-title: Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.78.1.210 – volume: 8 year: 2019 ident: 10.1016/j.redox.2022.102332_bib18 article-title: N-chlorination mediates protective and immunomodulatory effects of oxidized human plasma proteins publication-title: Elife doi: 10.7554/eLife.47395 – volume: 282 start-page: 11885 year: 2007 ident: 10.1016/j.redox.2022.102332_bib41 article-title: The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents publication-title: J. Biol. Chem. doi: 10.1074/jbc.M700339200 – volume: 248 start-page: 189 year: 1990 ident: 10.1016/j.redox.2022.102332_bib14 article-title: Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation publication-title: Science doi: 10.1126/science.2183352 – volume: 85 start-page: 765 year: 2016 ident: 10.1016/j.redox.2022.102332_bib2 article-title: Reactive oxygen species and neutrophil function publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060815-014442 – volume: 166 start-page: 369 year: 2016 ident: 10.1016/j.redox.2022.102332_bib43 article-title: Forces driving chaperone action in brief publication-title: Cell doi: 10.1016/j.cell.2016.05.054 – volume: 332 start-page: 110 year: 1996 ident: 10.1016/j.redox.2022.102332_bib4 article-title: Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1996.0322 – volume: 30 start-page: 572 year: 2001 ident: 10.1016/j.redox.2022.102332_bib26 article-title: Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(00)00506-2 – volume: 69 start-page: 259 year: 1986 ident: 10.1016/j.redox.2022.102332_bib32 article-title: Quantitation and identification of organic N-chloramines formed in stomach fluid on ingestion of aqueous hypochlorite publication-title: Environ. Health Perspect. doi: 10.1289/ehp.8669259 – volume: 292 start-page: 12010 year: 2017 ident: 10.1016/j.redox.2022.102332_bib44 article-title: Chaperone-client interactions: non-specificity engenders multifunctionality publication-title: J. Biol. Chem. doi: 10.1074/jbc.R117.796862 – volume: 8 start-page: 2428 year: 2008 ident: 10.1016/j.redox.2022.102332_bib25 article-title: A test case for structure-based functional assignment: the 1.2 Å crystal structure of the yjgF gene product from Escherichia coli publication-title: Protein Sci. doi: 10.1110/ps.8.11.2428 – volume: 96 start-page: 341 year: 1999 ident: 10.1016/j.redox.2022.102332_bib16 article-title: Chaperone activity with a redox switch publication-title: Cell doi: 10.1016/S0092-8674(00)80547-4 – volume: 53 start-page: 455 year: 2003 ident: 10.1016/j.redox.2022.102332_bib19 article-title: 3-Chlorotyrosine as a marker of protein damage by myeloperoxidase in tracheal aspirates from preterm infants: association with adverse respiratory outcome publication-title: Pediatr. Res. doi: 10.1203/01.PDR.0000050655.25689.CE – volume: 46 start-page: 975 year: 2012 ident: 10.1016/j.redox.2022.102332_bib10 article-title: Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids publication-title: Free Radic. Res. doi: 10.3109/10715762.2012.667566 – volume: 31 start-page: 71 year: 2008 ident: 10.1016/j.redox.2022.102332_bib48 article-title: Rapid and sensitive determination of acrylamide in drinking water by planar chromatography and fluorescence detection after derivatization with dansulfinic acid publication-title: J. Separ. Sci. doi: 10.1002/jssc.200700391 – volume: 18 start-page: 787 year: 1984 ident: 10.1016/j.redox.2022.102332_bib24 article-title: Derivatization of organic and inorganic N-chloramines for high-performance liquid chromatographic analysis of chlorinated water publication-title: Environ. Sci. Technol. doi: 10.1021/es00128a012 – volume: 66 start-page: 400 year: 1989 ident: 10.1016/j.redox.2022.102332_bib8 article-title: Extracellular matrix proteoglycan degradation by human alveolar macrophages and neutrophils publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1989.66.1.400 – volume: 14 start-page: 1453 year: 2001 ident: 10.1016/j.redox.2022.102332_bib40 article-title: Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds publication-title: Chem. Res. Toxicol. doi: 10.1021/tx0155451 – volume: 26 start-page: 1367 year: 2008 ident: 10.1016/j.redox.2022.102332_bib22 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1511 – volume: 110 start-page: 91 year: 2017 ident: 10.1016/j.redox.2022.102332_bib50 article-title: Formation and reactivity of inorganic and organic chloramines and bromamines during oxidative water treatment publication-title: Water Res. doi: 10.1016/j.watres.2016.11.065 – volume: 332 start-page: 63 year: 1996 ident: 10.1016/j.redox.2022.102332_bib5 article-title: Chlorination of cholesterol in cell membranes by hypochlorous acid publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1996.0317 – volume: 296 start-page: 547 year: 1992 ident: 10.1016/j.redox.2022.102332_bib7 article-title: Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(92)90609-Z – volume: 70 start-page: 614 year: 2018 ident: 10.1016/j.redox.2022.102332_bib17 article-title: CnoX is a chaperedoxin: a holdase that protects its substrates from irreversible oxidation publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.04.002 |
SSID | ssj0000884210 |
Score | 2.3054087 |
Snippet | Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine... Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102332 |
SubjectTerms | Chaperone E. coli N-Chlorination Oxidation Oxidative stress Research Paper |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEA6yIPgi3j2rKxF8tLjNpUkej4vLIrgP4uK-heZGK9KznAu4_96ZpD2cKqwvvpUmaTuTSeYbOvmGkHeOs1SrFCsAG6YSrXGVUUZVjTBgT8JHleunfLlsLq7E52t5fVDqC3PCCj1wUdwHYwKAbs6ViUbwpNukeeJS-NR6Cd4Ud1_weQfBVN6DtRYsUxEwVvMKQIyaKIdycheScf6C6JCxzF3A2cwtZfb-mXf6G33-mUR54JXOH5GHI5ykyyLGY3IvDk_I_VJg8vYp-b4caD8gMNxEuKCb3RoEirS7DevVTbdyvQcUTvPxEcCc1HctEocPkeJ5BywrgaMuK9_lRD3oE-jXPiyfkavzT9_OLqqxlELlJZPbKjbRi4SrL6WmhcgxSmOU1_FUG-1do12r3KnzQnieDDgwD11lkjzA9iec48_J0QBvf0koF6GpUwwu1EkEDGfqVNdcSBMSwCO_IGzSpPUjzziWu_hpp4SyHzar36L6bVH_grzfD7opNBt3d_-IU7TvihzZ-QZYjh0tx_7LchakmSbYjnCjwAh4VH_3299O5mBhMeIflnaIq93GAtrRWORL6QV5Ucxj_40cqfA5tqiZ4cyEmLcMfZcJv03NGiP18f-Q-hV5gKKUjOPX5Gi73sUTwFVb9yYvod9Ich7V priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9N1Nk6JCjxUb62FLx01oCIXm0DZ0b8J61S7Fu-wDmn_fGdle6hZy6G1tj9byeKT5ZnfmG0LeOcFTUaXIAGwYJmvjmKlMxUppwJ6kj1Xun_Lppry-lR-XanlELsdaGEyrHPb-fk_Pu_VwZj5oc75u2_kXziGSAvfHeSaZwUJzIXUu4lteHH5ngVUkeSYlQHmGA0byoZzmhbScvyBO5DyzGAg-cVCZx3_ip_7FoX-nU_7hn64ek0cDsKSLfu5PyFHsnpIHfavJu2fk26KjbYcQcRvhA93uN6n2kTZ3YbNaNyvXesDjNBeSAPqkvqmRQryLFCsfsMEEjrphvskpeyAT6Oc2LJ6T26sPXy-v2dBUgXnF1Y7FMnqZcB2mVNYQQ0ZlTOV1PNdGe1dqV1fu3HkpvUgGXJkHUZWUCLARSufEC3Lcwd1fESpkKIsUgwtFkgEDmyIVhZDKhARAyc8IHzVp_cA4jo0vftoxteyHzeq3qH7bq39G3h8GrXvCjfvFL_AVHUSRLTufWG2-28FcrDEBAjchKhONFEnXSYsklPSgaAXznpFyfMF2YnzwVe39d387moOFZYn_tdRdXO23FnCPxnZflZ6Rl715HOYokBRf4JVqYjiTh5he6domU3-bgpdG6ZP_nfBr8hCP-nzjU3K82-zjGaCqnXuTl81v744fzQ priority: 102 providerName: Elsevier |
Title | An increase in surface hydrophobicity mediates chaperone activity in N-chlorinated RidA |
URI | https://dx.doi.org/10.1016/j.redox.2022.102332 https://www.ncbi.nlm.nih.gov/pubmed/35598378 https://www.proquest.com/docview/2668218678 https://pubmed.ncbi.nlm.nih.gov/PMC9126958 https://doaj.org/article/99d8623379e943f8af83f354cfac5439 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBYhodBL6bvbNMGFHusSW5IlHUrZhIa0kBxKl-5NWK_aJXhT7y5k_31mZHsbtyH0YowlW_J4RvONPf6GkHeG5iETwacANlTKSmVSJZRIC6ZAn5j1ItZPOb8ozmbs65zPd8hQFbUX4PLO0A7rSc3ayw_XvzefwOA__snVQm7Nawj28jxSEVBYk_fANQm01PMe78elWUqWR4aCPM9oCthGDExEd19n5K0iqf_Iaf0LSv_OrbzlrE4fk0c9ykymnVo8ITu-eUoedHUnN8_Ij2mT1A3ixaWHnWS5bkNpfVJtXLu4qhamtgDOk_hXCUDRxFYl8ok3PsHfILDaBJ51kdoq5u9BH5d8q930OZmdfv5-cpb2FRZSy3O-Sn3hLQtolCEUJQSUnislrPRHUklrCmlKYY6MZczSoMCvWejKA6cOVkVmDH1BdhsY_RVJKHNFFrwzLgvMYZSThSyjjCsXADXZCckHSWrb049jFYxLPeSZ_dJR_BrFrzvxT8j77UlXHfvG_d2P8RFtuyJ1djywaH_q3hK1Ug6iOEqF8orRIMsgaaCcWRA0h3lPSDE8YN2jkA5dwKXq-0d_O6iDBhvFDy9l4xfrpQYQJLH2l5AT8rJTj-0cKTLkU2wRI8UZ3cS4pamryAOusrxQXL7-j3H3yUOcaZdn_Ibsrtq1PwA0tTKH8S0EbL_Mjw-jtdwApTgfKg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4s0ChSBxJNrGjzg-biuqLbR7gFbszYpfJFWVXe1Dov-eGSdZESr1wC3yI3HGY883yfgbQj4ZRkMmg08BbKiUl8qkSiqZ5lyBPnHrZcyfcj7Lp5f861zM98hxfxYGwyq7vb_d0-Nu3ZWMO2mOl3U9_kEpeFJg_iiNJDPiHrkPaEBi_obT-dHuQwssI04jKwF2SLFHzz4U47yQl_M3OIqURhoDRgcWKhL5DwzVbSD6bzzlXwbq5Al53CHLZNIO_inZ880z8qDNNXnznPycNEndIEZce7hI1ttVKK1Pqhu3WiyrhaktAPIkniQB-JnYqkQO8cYnePQBM0xgr1lqqxizB21c8r12kxfk8uTLxfE07bIqpFZQsUl97i0PuBBDyEtwIr1QStrCHxaqsCYvTCnNobGcWxYU2DILTUUQzMFOyI1hL8l-A09_TRLGXZ4F74zLAnfo2WQhyxgXygVASnZEaC9JbTvKccx8ca372LIrHcWvUfy6Ff-IfN51WraMG3c3P8Ip2jVFuuxYsFj90p2-aKUceG6MSeUVZ6EoQ8ECE9yCoAWMe0TyfoL1QPvgVvXdT__Yq4OGdYk_W8rGL7ZrDcCnwHxfshiRV6167MbIkBWfYY0cKM7gJYY1TV1F7m-V0VyJ4s3_DvgDeTi9OD_TZ6ezb2_JI6xpg4_fkf3NausPAGJtzPu4hP4AX4oi7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+increase+in+surface+hydrophobicity+mediates+chaperone+activity+in+N-chlorinated+RidA&rft.jtitle=Redox+biology&rft.au=Varatnitskaya%2C+Marharyta&rft.au=Fasel%2C+Julia&rft.au=M%C3%BCller%2C+Alexandra&rft.au=Lupilov%2C+Natalie&rft.date=2022-07-01&rft.issn=2213-2317&rft.eissn=2213-2317&rft.volume=53&rft.spage=102332&rft_id=info:doi/10.1016%2Fj.redox.2022.102332&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon |