MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants

Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitud...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 9; p. 634
Main Authors Zhang, Ning, Rao, R. S. P., Salvato, Fernanda, Havelund, Jesper F., Møller, Ian M., Thelen, Jay J., Xu, Dong
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 23.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org.
AbstractList Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org.Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org.
Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org.
Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org .
Author Salvato, Fernanda
Thelen, Jay J.
Rao, R. S. P.
Xu, Dong
Havelund, Jesper F.
Møller, Ian M.
Zhang, Ning
AuthorAffiliation 3 Department of Biochemistry, University of Missouri , Columbia, MO , United States
2 Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, MO , United States
5 Department of Electrical Engineering and Computer Science, University of Missouri , Columbia, MO , United States
1 Informatics Institute, University of Missouri , Columbia, MO , United States
4 Department of Molecular Biology and Genetics, Aarhus University , Aarhus , Denmark
AuthorAffiliation_xml – name: 2 Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, MO , United States
– name: 4 Department of Molecular Biology and Genetics, Aarhus University , Aarhus , Denmark
– name: 1 Informatics Institute, University of Missouri , Columbia, MO , United States
– name: 3 Department of Biochemistry, University of Missouri , Columbia, MO , United States
– name: 5 Department of Electrical Engineering and Computer Science, University of Missouri , Columbia, MO , United States
Author_xml – sequence: 1
  givenname: Ning
  surname: Zhang
  fullname: Zhang, Ning
– sequence: 2
  givenname: R. S. P.
  surname: Rao
  fullname: Rao, R. S. P.
– sequence: 3
  givenname: Fernanda
  surname: Salvato
  fullname: Salvato, Fernanda
– sequence: 4
  givenname: Jesper F.
  surname: Havelund
  fullname: Havelund, Jesper F.
– sequence: 5
  givenname: Ian M.
  surname: Møller
  fullname: Møller, Ian M.
– sequence: 6
  givenname: Jay J.
  surname: Thelen
  fullname: Thelen, Jay J.
– sequence: 7
  givenname: Dong
  surname: Xu
  fullname: Xu, Dong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29875778$$D View this record in MEDLINE/PubMed
BookMark eNp1kktrGzEUhUVJaR7Nursyy27s6DGa0XRRCKZNAzbNooFuitBIV7aCLLmSHEh_fWU7KUmh2khcnfsddHVO0VGIARB6R_CUMTFc2I3PU4qJmGLcsfYVOiFd107ajv44enY-Ruc53-G6OMbD0L9Bx3QQPe97cYJ-Lm4n82-zj81ls1B65QJM5qBScGHZLKCsomlsTM1NAuN02VddiXoVg0lOef_QzKNW3v0GU0WxgAu5caG58SqU_Ba9tspnOH_cz9Dtl8_fZ1-r5dX17HI-0ZzyMtFCKwEjVwR6PowURiuMAKbwMHJDQHRagGV2YFhoOtYXc7C4FYIRM_bMsjN0feCaqO7kJrm1Sg8yKif3hZiWUqXitAcpLCPMtv3YU2hxr0ZVx0KGOj9FjKK4sj4dWJvtuAajIZSk_Avoy5vgVnIZ7yUf-pa0XQV8eASk-GsLuci1yxp8nQjEbZYU8_o3FAtWpe-fe_01efqfKuAHgU4x5wRWaldUcXFn7bwkWO6iIHdRkLsoyH0Uat_FP31P6P91_AEZp7dK
CitedBy_id crossref_primary_10_1111_tpj_15495
crossref_primary_10_3389_fpls_2023_1194866
crossref_primary_10_1016_j_eja_2024_127366
crossref_primary_10_1016_j_plantsci_2019_03_020
crossref_primary_10_1186_s12985_022_01767_5
crossref_primary_10_3389_fpls_2021_616689
crossref_primary_10_1016_j_csbj_2021_10_023
crossref_primary_10_3390_plants11212877
crossref_primary_10_1038_s41438_021_00470_w
crossref_primary_10_1016_j_cbpa_2018_10_026
crossref_primary_10_1016_j_earscirev_2020_103187
crossref_primary_10_1007_s12539_021_00456_1
crossref_primary_10_1016_j_fcr_2022_108452
crossref_primary_10_1515_jib_2019_0091
crossref_primary_10_1080_07038992_2020_1833186
crossref_primary_10_1038_s41598_020_80441_8
crossref_primary_10_3390_biom14040409
crossref_primary_10_1002_bies_202100258
crossref_primary_10_1016_j_csbj_2021_08_027
crossref_primary_10_3390_agronomy12050981
crossref_primary_10_3390_biom10081190
crossref_primary_10_3390_rs12081232
crossref_primary_10_1093_plphys_kiab322
crossref_primary_10_3389_fpls_2019_00227
crossref_primary_10_12688_f1000research_125425_1
crossref_primary_10_7717_peerj_7558
Cites_doi 10.1016/j.mito.2016.07.002
10.3389/fpls.2013.00551
10.1093/nar/gkn654
10.1016/S0167-4889(01)00146-X
10.15252/msb.20156651
10.1093/nar/gkq477
10.1093/pcp/pcv165
10.1038/srep44598
10.1002/pmic.200300776
10.1093/nar/gkr1090
10.1093/nar/gku1179
10.1016/j.cell.2009.08.005
10.1074/jbc.M706851200
10.1111/ppl.12456
10.1074/mcp.M110.001388
10.1093/bioinformatics/btl158
10.1002/(SICI)1097-0134(19980101)30:1<49::AID-PROT5>3.0.CO;2-F
10.1146/annurev-arplant-042110-103857
10.1093/nar/gks1151
10.1093/bioinformatics/bti623
10.1104/pp.111.183160
10.1504/IJDMB.2010.034194
10.1016/j.pbi.2006.09.002
10.1111/j.1742-4658.2009.06876.x
10.1006/jmbi.2000.3903
10.1186/1471-2105-12-77
10.1021/pr3003535
10.1093/nar/gkw1041
10.1093/bioinformatics/btx431
10.1093/pcp/pcv170
10.1093/bioinformatics/btq003
10.1016/S0022-2836(05)80360-2
10.1093/nar/gkm259
10.1111/j.1432-1033.1996.00779.x
10.1038/nrm2959
10.1093/nar/gks1193
10.1093/nar/gku989
10.1093/nar/gkt1056
10.1016/j.bbamcr.2012.05.029
10.1016/j.bbadis.2011.12.001
10.1371/journal.pone.0016022
10.1074/mcp.M114.043083
10.1093/bioinformatics/btu550
10.1016/j.tplants.2004.12.002
10.1105/tpc.016055
10.1104/pp.113.229054
10.1002/j.1460-2075.1986.tb04364.x
10.1016/j.cels.2016.01.009
10.1146/annurev-genom-082509-141720
10.1038/nprot.2007.131
10.1104/pp.108.131300
ContentType Journal Article
Copyright Copyright © 2018 Zhang, Rao, Salvato, Havelund, Møller, Thelen and Xu. 2018 Zhang, Rao, Salvato, Havelund, Møller, Thelen and Xu
Copyright_xml – notice: Copyright © 2018 Zhang, Rao, Salvato, Havelund, Møller, Thelen and Xu. 2018 Zhang, Rao, Salvato, Havelund, Møller, Thelen and Xu
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2018.00634
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_8f313f47b72e407aba05019634a1da20
PMC5974146
29875778
10_3389_fpls_2018_00634
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM100701
– fundername: Foundation for the National Institutes of Health
  grantid: R01-GM100701
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c525t-c8ca8eb5a1e759b2ebf8d8e3a09b5d1e86c8ef3f9308c2b0185ef048831db73f3
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:27:27 EDT 2025
Thu Aug 21 18:21:07 EDT 2025
Fri Jul 11 11:38:56 EDT 2025
Wed Feb 19 02:43:12 EST 2025
Thu Apr 24 23:10:49 EDT 2025
Tue Jul 01 00:52:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords position weight matrix
gene co-expression
support vector machine
machine learning
deep neural network
mitochondrial targeting
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-c8ca8eb5a1e759b2ebf8d8e3a09b5d1e86c8ef3f9308c2b0185ef048831db73f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Chuang Ma, Northwest A&F University, China
Present address: R. S. P. Rao, Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangalore, India Fernanda Salvato, Institute of Biology, University of Campinas, Campinas, Brazil
This article was submitted to Plant Systems and Synthetic Biology, a section of the journal Frontiers in Plant Science
Reviewed by: Shihua Zhang, Academy of Mathematics and Systems Science (CAS), China; Fengfeng Zhou, Jilin University, China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2018.00634
PMID 29875778
PQID 2051662083
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_8f313f47b72e407aba05019634a1da20
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5974146
proquest_miscellaneous_2051662083
pubmed_primary_29875778
crossref_citationtrail_10_3389_fpls_2018_00634
crossref_primary_10_3389_fpls_2018_00634
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-23
PublicationDateYYYYMMDD 2018-05-23
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-23
  day: 23
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Heazlewood (B22) 2004; 16
Badugu (B5) 2008; 283
Millar (B31) 2005; 10
Robin (B39) 2011; 12
Huang (B27) 2009; 149
Rampasek (B36) 2016; 2
Almagro Armenteros (B1) 2017; 33
Srivastava (B46) 2010; 4
Millar (B33) 2011; 62
Claros (B12) 1996; 241
Carrie (B10) 2013; 1833
Gao (B19) 2010; 9
Sing (B43) 2005; 21
Carrie (B9) 2009; 276
(B51) 2015; 43
Briesemeister (B7) 2010; 38
Small (B44) 2004; 4
Sperschneider (B45) 2017; 7
Chacinska (B11) 2009; 138
Ramsak (B37) 2014; 42
Horton (B26) 2007; 35
Emanuelsson (B15) 2007; 2
Cui (B13) 2011; 6
Calvo (B8) 2010; 11
Barrett (B6) 2013; 41
Aoki (B4) 2016; 57
Srivastava (B47) 2014; 15
(B20) 2015; 43
Schneider (B42) 1998; 30
Schmidt (B41) 2010; 11
Tan (B49) 2012; 11
Angermueller (B3) 2016; 12
Huang (B28) 2010; 26
Salvato (B40) 2014; 164
Hooper (B25) 2014; 30
Millar (B32) 2006; 9
von Heijne (B52) 1986; 5
Moller (B34) 2016; 157
Lamesch (B29) 2012; 40
Hooper (B23) 2016; 57
Goodfellow (B21) 2013; 28
Tanz (B50) 2013; 41
Peeters (B35) 2001; 1541
Sun (B48) 2009; 37
Li (B30) 2006; 22
Altschul (B2) 1990; 215
Duncan (B14) 2011; 157
Emanuelsson (B16) 2000; 300
Rao (B38) 2016; 33
Fransen (B17) 2012; 1822
Fukasawa (B18) 2015; 14
Welchen (B53) 2014; 4
Hooper (B24) 2017; 45
2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
17446895 - Nat Protoc. 2007;2(4):953-71
25670805 - Mol Cell Proteomics. 2015 Apr;14(4):1113-26
24351685 - Plant Physiol. 2014 Feb;164(2):637-53
21332361 - Annu Rev Plant Biol. 2011;62:79-104
20507917 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W497-502
26546318 - Plant Cell Physiol. 2016 Jan;57(1):e5
20690818 - Annu Rev Genomics Hum Genet. 2010;11:25-44
23193258 - Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5
18832363 - Nucleic Acids Res. 2009 Jan;37(Database issue):D969-74
22178243 - Biochim Biophys Acta. 2012 Sep;1822(9):1363-73
25150248 - Bioinformatics. 2014 Dec 1;30(23):3356-64
18070881 - J Biol Chem. 2008 Feb 8;283(6):3409-17
27136685 - Cell Syst. 2016 Jan 27;2(1):12-4
20815137 - Int J Data Min Bioinform. 2010;4(4):357-76
25348405 - Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12
22140109 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10
16096348 - Bioinformatics. 2005 Oct 15;21(20):3940-1
22683762 - Biochim Biophys Acta. 2013 Feb;1833(2):253-9
21896887 - Plant Physiol. 2011 Nov;157(3):1093-113
17517783 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7
19010998 - Plant Physiol. 2009 Feb;149(2):719-34
23180787 - Nucleic Acids Res. 2013 Jan;41(Database issue):D1185-91
27899614 - Nucleic Acids Res. 2017 Jan 4;45(D1):D1064-D1074
17008120 - Curr Opin Plant Biol. 2006 Dec;9(6):610-5
27094909 - Physiol Plant. 2016 Jul;157(3):256-63
15642522 - Trends Plant Sci. 2005 Jan;10(1):36-43
9443340 - Proteins. 1998 Jan;30(1):49-60
22574745 - J Proteome Res. 2012 Jul 6;11(7):3860-79
19187233 - FEBS J. 2009 Mar;276(5):1187-95
27405097 - Mitochondrion. 2017 Mar;33:22-37
20702892 - Mol Cell Proteomics. 2010 Dec;9(12):2586-600
11750662 - Biochim Biophys Acta. 2001 Dec 12;1541(1-2):54-63
15174128 - Proteomics. 2004 Jun;4(6):1581-90
16731699 - Bioinformatics. 2006 Jul 1;22(13):1658-9
19703392 - Cell. 2009 Aug 21;138(4):628-44
25428369 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56
14671022 - Plant Cell. 2004 Jan;16(1):241-56
21297957 - PLoS One. 2011 Jan 31;6(1):e16022
20053844 - Bioinformatics. 2010 Mar 1;26(5):680-2
24194592 - Nucleic Acids Res. 2014 Jan;42(Database issue):D1167-75
26556651 - Plant Cell Physiol. 2016 Jan;57(1):e9
21414208 - BMC Bioinformatics. 2011 Mar 17;12:77
27474269 - Mol Syst Biol. 2016 Jul 29;12 (7):878
24409193 - Front Plant Sci. 2014 Jan 08;4:551
8944766 - Eur J Biochem. 1996 Nov 1;241(3):779-86
10891285 - J Mol Biol. 2000 Jul 21;300(4):1005-16
28300209 - Sci Rep. 2017 Mar 16;7:44598
3015599 - EMBO J. 1986 Jun;5(6):1335-42
20729931 - Nat Rev Mol Cell Biol. 2010 Sep;11(9):655-67
29036616 - Bioinformatics. 2017 Nov 1;33(21):3387-3395
References_xml – volume: 33
  start-page: 22
  year: 2016
  ident: B38
  article-title: The proteome of higher plant mitochondria.
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2016.07.002
– volume: 4
  year: 2014
  ident: B53
  article-title: Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00551
– volume: 37
  start-page: D969
  year: 2009
  ident: B48
  article-title: PPDB, the plant proteomics database at cornell.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn654
– volume: 1541
  start-page: 54
  year: 2001
  ident: B35
  article-title: Dual targeting to mitochondria and chloroplasts.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4889(01)00146-X
– volume: 12
  year: 2016
  ident: B3
  article-title: Deep learning for computational biology.
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20156651
– volume: 38
  start-page: W497
  year: 2010
  ident: B7
  article-title: YLoc–an interpretable web server for predicting subcellular localization.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq477
– volume: 57
  year: 2016
  ident: B4
  article-title: ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcv165
– volume: 7
  year: 2017
  ident: B45
  article-title: LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell.
  publication-title: Sci. Rep.
  doi: 10.1038/srep44598
– volume: 4
  start-page: 1581
  year: 2004
  ident: B44
  article-title: Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences.
  publication-title: Proteomics
  doi: 10.1002/pmic.200300776
– volume: 28
  start-page: 1319
  year: 2013
  ident: B21
  article-title: Maxout Networks.
  publication-title: ICML
– volume: 40
  start-page: D1202
  year: 2012
  ident: B29
  article-title: The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1090
– volume: 43
  start-page: D1049
  year: 2015
  ident: B20
  article-title: Gene ontology consortium: going forward.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1179
– volume: 138
  start-page: 628
  year: 2009
  ident: B11
  article-title: Importing mitochondrial proteins: machineries and mechanisms.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.08.005
– volume: 283
  start-page: 3409
  year: 2008
  ident: B5
  article-title: N terminus of calpain 1 is a mitochondrial targeting sequence.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M706851200
– volume: 157
  start-page: 256
  year: 2016
  ident: B34
  article-title: What is hot in plant mitochondria?
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12456
– volume: 9
  start-page: 2586
  year: 2010
  ident: B19
  article-title: Musite, a tool for global prediction of general and kinase-specific phosphorylation sites.
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M110.001388
– volume: 22
  start-page: 1658
  year: 2006
  ident: B30
  article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl158
– volume: 30
  start-page: 49
  year: 1998
  ident: B42
  article-title: Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides.
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(19980101)30:1<49::AID-PROT5>3.0.CO;2-F
– volume: 62
  start-page: 79
  year: 2011
  ident: B33
  article-title: Organization and regulation of mitochondrial respiration in plants.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042110-103857
– volume: 41
  start-page: D1185
  year: 2013
  ident: B50
  article-title: SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1151
– volume: 21
  start-page: 3940
  year: 2005
  ident: B43
  article-title: ROCR: visualizing classifier performance in R.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti623
– volume: 157
  start-page: 1093
  year: 2011
  ident: B14
  article-title: Multiple lines of evidence localize signaling, morphology, and lipid biosynthesis machinery to the mitochondrial outer membrane of Arabidopsis.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.183160
– volume: 4
  start-page: 357
  year: 2010
  ident: B46
  article-title: Genome-wide functional annotation by integrating multiple microarray datasets using meta-analysis.
  publication-title: Int. J. Data Min. Bioinform.
  doi: 10.1504/IJDMB.2010.034194
– volume: 9
  start-page: 610
  year: 2006
  ident: B32
  article-title: Recent surprises in protein targeting to mitochondria and plastids.
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2006.09.002
– volume: 276
  start-page: 1187
  year: 2009
  ident: B9
  article-title: Protein transport in organelles: dual targeting of proteins to mitochondria and chloroplasts.
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2009.06876.x
– volume: 300
  start-page: 1005
  year: 2000
  ident: B16
  article-title: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence.
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.3903
– volume: 12
  year: 2011
  ident: B39
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-77
– volume: 11
  start-page: 3860
  year: 2012
  ident: B49
  article-title: Components of mitochondrial oxidative phosphorylation vary in abundance following exposure to cold and chemical stresses.
  publication-title: J. Proteome Res.
  doi: 10.1021/pr3003535
– volume: 45
  start-page: D1064
  year: 2017
  ident: B24
  article-title: SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1041
– volume: 33
  start-page: 3387
  year: 2017
  ident: B1
  article-title: DeepLoc: prediction of protein subcellular localization using deep learning.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx431
– volume: 15
  start-page: 1929
  year: 2014
  ident: B47
  article-title: Dropout: a simple way to prevent neural networks from overfitting.
  publication-title: J. Mach. Learn. Res.
– volume: 57
  year: 2016
  ident: B23
  article-title: Finding the subcellular location of barley, wheat, rice and maize proteins: the compendium of crop proteins with annotated locations (cropPAL).
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcv170
– volume: 26
  start-page: 680
  year: 2010
  ident: B28
  article-title: CD-HIT Suite: a web server for clustering and comparing biological sequences.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq003
– volume: 215
  start-page: 403
  year: 1990
  ident: B2
  article-title: Basic local alignment search tool.
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 35
  start-page: W585
  year: 2007
  ident: B26
  article-title: WoLF PSORT: protein localization predictor.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm259
– volume: 241
  start-page: 779
  year: 1996
  ident: B12
  article-title: Computational method to predict mitochondrially imported proteins and their targeting sequences.
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1996.00779.x
– volume: 11
  start-page: 655
  year: 2010
  ident: B41
  article-title: Mitochondrial protein import: from proteomics to functional mechanisms.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2959
– volume: 41
  start-page: D991
  year: 2013
  ident: B6
  article-title: NCBI GEO: archive for functional genomics data sets–update.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1193
– volume: 43
  start-page: D204
  year: 2015
  ident: B51
  article-title: UniProt: a hub for protein information.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku989
– volume: 42
  start-page: D1167
  year: 2014
  ident: B37
  article-title: GoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontology.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1056
– volume: 1833
  start-page: 253
  year: 2013
  ident: B10
  article-title: A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2012.05.029
– volume: 1822
  start-page: 1363
  year: 2012
  ident: B17
  article-title: Role of peroxisomes in ROS/RNS-metabolism: implications for human disease.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2011.12.001
– volume: 6
  year: 2011
  ident: B13
  article-title: Integrative identification of Arabidopsis mitochondrial proteome and its function exploitation through protein interaction network.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016022
– volume: 14
  start-page: 1113
  year: 2015
  ident: B18
  article-title: MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites.
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M114.043083
– volume: 30
  start-page: 3356
  year: 2014
  ident: B25
  article-title: SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu550
– volume: 10
  start-page: 36
  year: 2005
  ident: B31
  article-title: The plant mitochondrial proteome.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2004.12.002
– volume: 16
  start-page: 241
  year: 2004
  ident: B22
  article-title: Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins.
  publication-title: Plant Cell
  doi: 10.1105/tpc.016055
– volume: 164
  start-page: 637
  year: 2014
  ident: B40
  article-title: The potato tuber mitochondrial proteome.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.229054
– volume: 5
  start-page: 1335
  year: 1986
  ident: B52
  article-title: Mitochondrial targeting sequences may form amphiphilic helices.
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1986.tb04364.x
– volume: 2
  start-page: 12
  year: 2016
  ident: B36
  article-title: TensorFlow: biology’s gateway to deep learning?
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.01.009
– volume: 11
  start-page: 25
  year: 2010
  ident: B8
  article-title: The mitochondrial proteome and human disease.
  publication-title: Annu. Rev. Genomics Hum. Genet.
  doi: 10.1146/annurev-genom-082509-141720
– volume: 2
  start-page: 953
  year: 2007
  ident: B15
  article-title: Locating proteins in the cell using TargetP, SignalP and related tools.
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.131
– volume: 149
  start-page: 719
  year: 2009
  ident: B27
  article-title: Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.131300
– reference: 18832363 - Nucleic Acids Res. 2009 Jan;37(Database issue):D969-74
– reference: 27094909 - Physiol Plant. 2016 Jul;157(3):256-63
– reference: 24409193 - Front Plant Sci. 2014 Jan 08;4:551
– reference: 22574745 - J Proteome Res. 2012 Jul 6;11(7):3860-79
– reference: 20815137 - Int J Data Min Bioinform. 2010;4(4):357-76
– reference: 3015599 - EMBO J. 1986 Jun;5(6):1335-42
– reference: 19703392 - Cell. 2009 Aug 21;138(4):628-44
– reference: 27899614 - Nucleic Acids Res. 2017 Jan 4;45(D1):D1064-D1074
– reference: 16096348 - Bioinformatics. 2005 Oct 15;21(20):3940-1
– reference: 24194592 - Nucleic Acids Res. 2014 Jan;42(Database issue):D1167-75
– reference: 22178243 - Biochim Biophys Acta. 2012 Sep;1822(9):1363-73
– reference: 25428369 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56
– reference: 19187233 - FEBS J. 2009 Mar;276(5):1187-95
– reference: 17517783 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7
– reference: 20729931 - Nat Rev Mol Cell Biol. 2010 Sep;11(9):655-67
– reference: 21297957 - PLoS One. 2011 Jan 31;6(1):e16022
– reference: 19010998 - Plant Physiol. 2009 Feb;149(2):719-34
– reference: 24351685 - Plant Physiol. 2014 Feb;164(2):637-53
– reference: 10891285 - J Mol Biol. 2000 Jul 21;300(4):1005-16
– reference: 21332361 - Annu Rev Plant Biol. 2011;62:79-104
– reference: 26556651 - Plant Cell Physiol. 2016 Jan;57(1):e9
– reference: 26546318 - Plant Cell Physiol. 2016 Jan;57(1):e5
– reference: 27405097 - Mitochondrion. 2017 Mar;33:22-37
– reference: 28300209 - Sci Rep. 2017 Mar 16;7:44598
– reference: 25348405 - Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12
– reference: 20507917 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W497-502
– reference: 16731699 - Bioinformatics. 2006 Jul 1;22(13):1658-9
– reference: 18070881 - J Biol Chem. 2008 Feb 8;283(6):3409-17
– reference: 15174128 - Proteomics. 2004 Jun;4(6):1581-90
– reference: 27474269 - Mol Syst Biol. 2016 Jul 29;12 (7):878
– reference: 22140109 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10
– reference: 14671022 - Plant Cell. 2004 Jan;16(1):241-56
– reference: 22683762 - Biochim Biophys Acta. 2013 Feb;1833(2):253-9
– reference: 23193258 - Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5
– reference: 15642522 - Trends Plant Sci. 2005 Jan;10(1):36-43
– reference: 9443340 - Proteins. 1998 Jan;30(1):49-60
– reference: 20053844 - Bioinformatics. 2010 Mar 1;26(5):680-2
– reference: 25670805 - Mol Cell Proteomics. 2015 Apr;14(4):1113-26
– reference: 20702892 - Mol Cell Proteomics. 2010 Dec;9(12):2586-600
– reference: 27136685 - Cell Syst. 2016 Jan 27;2(1):12-4
– reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
– reference: 11750662 - Biochim Biophys Acta. 2001 Dec 12;1541(1-2):54-63
– reference: 17446895 - Nat Protoc. 2007;2(4):953-71
– reference: 8944766 - Eur J Biochem. 1996 Nov 1;241(3):779-86
– reference: 29036616 - Bioinformatics. 2017 Nov 1;33(21):3387-3395
– reference: 21896887 - Plant Physiol. 2011 Nov;157(3):1093-113
– reference: 25150248 - Bioinformatics. 2014 Dec 1;30(23):3356-64
– reference: 17008120 - Curr Opin Plant Biol. 2006 Dec;9(6):610-5
– reference: 21414208 - BMC Bioinformatics. 2011 Mar 17;12:77
– reference: 23180787 - Nucleic Acids Res. 2013 Jan;41(Database issue):D1185-91
– reference: 20690818 - Annu Rev Genomics Hum Genet. 2010;11:25-44
SSID ssj0000500997
Score 2.3276007
Snippet Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 634
SubjectTerms deep neural network
gene co-expression
machine learning
mitochondrial targeting
Plant Science
position weight matrix
support vector machine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUq1EMvCMpXWqhciUMvgY0dJw43QEWoYqEHVuKCIn-My0qrLIJwgF_PjBNWuwjUC1fHkZ0348wbZfKGsV3piwAeQhqEdWmO6ReeOaVTp6oc2avNM0M_Cg_Pi9NR_udKXc21-qKasE4euANuXweZyYB3lQIw-TDWDBRpusjcZN6ImK1jzJtLpjpVb6I-Zaflg1lYtR9uJ6TOnVHpZCHzhTAU1frfopivKyXnQs_JClvuOSM_7Pa6yj5B85V9Ppoir3tcY9fDUXp2cXzAD_kwVkZC2oum_uPD2B-aIzHlf-_ok0wbR_EU41uv8eR8k0d-RvFs_AQeJ02p--U9Hzec2hm19-tsdPL78vg07ZsmILxCtanTzmiwymRQqsoKsEF7DdIMKqt8BrpwGoIMlRxoJywCoiDQMZaZt6UMcoMtNdMGthgvRB4kgh6cRpYiKo22KJwASTJnzoeE7b1gWLteUZwaW0xqzCwI9JpArwn0OoKesF-zG247MY33px6RUWbTSAU7DqBv1L1v1P_zjYT9fDFpjaeGPoWYBqYPtJDKikIg_0zYZmfi2VL4oKUqS52wcsH4C3tZvNKMb6IyN2VnGHq-fcTmv7MvBAdVKgi5zZbauwfYQQLU2h_R158B74sDcQ
  priority: 102
  providerName: Directory of Open Access Journals
Title MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants
URI https://www.ncbi.nlm.nih.gov/pubmed/29875778
https://www.proquest.com/docview/2051662083
https://pubmed.ncbi.nlm.nih.gov/PMC5974146
https://doaj.org/article/8f313f47b72e407aba05019634a1da20
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagcOCCeDeFVkbiwCVl40fiVEJVW1Eq1AAHVtoLivwsK62SdjeVWH59Z5x0YdEicckhcWLn80zmm8T5hpA33OXBOx_SwIxNBaRf4HNSpVaWAtirEZnGH4Wrz_nZWHyayMnvckADgIuNqR3WkxrPZ_s_r5aH4PDvMeOEePsuXM5QeDvDVZE5F3fJPQhLBXppNXD9Xugb2VAstpLnIhU5m_RSP5uusRalopj_Jgb690LKPyLT6SPycKCU9Ki3gcfkjm-ekPvHLdC-5VPyvRqn519ODugRreLCSZ8OmqoXtIrloynwVvp1jl9surgXnBxwaRza5mxJzzHcTX95B41aLI65oNOGYrWjbvGMjE8_fDs5S4eaCoA-k11qldXKG6kzX8jSMG-CcspzPSqNdJlXuVU-8FDykbLMACDSB_RynjlT8MCfk62mbfw2oTkTgXsxClYBiWGlUoHnlnmOKmjWhYTs32JY20FwHOtezGpIPBD0GkGvEfQ6gp6Qt6sTLnutjX83PcZJWTVDkey4o51f1IPP1TCejAcwuILBMAttNNgAPnGEzpxmo4S8vp3SGpwKv5ToxrfX2JEEI2FATxPyop_iVVdwo4UsCpWQYm3y18ayfqSZ_ojC3Zi8QWTa-Y9-X5IHeLe4ToHxV2Srm1_7XaA_ndmLrw1g-3GS7UUTvwHknQTy
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MU-LOC%3A+A+Machine-Learning+Method+for+Predicting+Mitochondrially+Localized+Proteins+in+Plants&rft.jtitle=Frontiers+in+plant+science&rft.au=Zhang%2C+Ning&rft.au=Rao%2C+R+S+P&rft.au=Salvato%2C+Fernanda&rft.au=Havelund%2C+Jesper+F&rft.date=2018-05-23&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=9&rft.spage=634&rft_id=info:doi/10.3389%2Ffpls.2018.00634&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon