MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants
Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitud...
Saved in:
Published in | Frontiers in plant science Vol. 9; p. 634 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
23.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org. |
---|---|
AbstractList | Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org.Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org. Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org. Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org . |
Author | Salvato, Fernanda Thelen, Jay J. Rao, R. S. P. Xu, Dong Havelund, Jesper F. Møller, Ian M. Zhang, Ning |
AuthorAffiliation | 3 Department of Biochemistry, University of Missouri , Columbia, MO , United States 2 Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, MO , United States 5 Department of Electrical Engineering and Computer Science, University of Missouri , Columbia, MO , United States 1 Informatics Institute, University of Missouri , Columbia, MO , United States 4 Department of Molecular Biology and Genetics, Aarhus University , Aarhus , Denmark |
AuthorAffiliation_xml | – name: 2 Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, MO , United States – name: 4 Department of Molecular Biology and Genetics, Aarhus University , Aarhus , Denmark – name: 1 Informatics Institute, University of Missouri , Columbia, MO , United States – name: 3 Department of Biochemistry, University of Missouri , Columbia, MO , United States – name: 5 Department of Electrical Engineering and Computer Science, University of Missouri , Columbia, MO , United States |
Author_xml | – sequence: 1 givenname: Ning surname: Zhang fullname: Zhang, Ning – sequence: 2 givenname: R. S. P. surname: Rao fullname: Rao, R. S. P. – sequence: 3 givenname: Fernanda surname: Salvato fullname: Salvato, Fernanda – sequence: 4 givenname: Jesper F. surname: Havelund fullname: Havelund, Jesper F. – sequence: 5 givenname: Ian M. surname: Møller fullname: Møller, Ian M. – sequence: 6 givenname: Jay J. surname: Thelen fullname: Thelen, Jay J. – sequence: 7 givenname: Dong surname: Xu fullname: Xu, Dong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29875778$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktrGzEUhUVJaR7Nursyy27s6DGa0XRRCKZNAzbNooFuitBIV7aCLLmSHEh_fWU7KUmh2khcnfsddHVO0VGIARB6R_CUMTFc2I3PU4qJmGLcsfYVOiFd107ajv44enY-Ruc53-G6OMbD0L9Bx3QQPe97cYJ-Lm4n82-zj81ls1B65QJM5qBScGHZLKCsomlsTM1NAuN02VddiXoVg0lOef_QzKNW3v0GU0WxgAu5caG58SqU_Ba9tspnOH_cz9Dtl8_fZ1-r5dX17HI-0ZzyMtFCKwEjVwR6PowURiuMAKbwMHJDQHRagGV2YFhoOtYXc7C4FYIRM_bMsjN0feCaqO7kJrm1Sg8yKif3hZiWUqXitAcpLCPMtv3YU2hxr0ZVx0KGOj9FjKK4sj4dWJvtuAajIZSk_Avoy5vgVnIZ7yUf-pa0XQV8eASk-GsLuci1yxp8nQjEbZYU8_o3FAtWpe-fe_01efqfKuAHgU4x5wRWaldUcXFn7bwkWO6iIHdRkLsoyH0Uat_FP31P6P91_AEZp7dK |
CitedBy_id | crossref_primary_10_1111_tpj_15495 crossref_primary_10_3389_fpls_2023_1194866 crossref_primary_10_1016_j_eja_2024_127366 crossref_primary_10_1016_j_plantsci_2019_03_020 crossref_primary_10_1186_s12985_022_01767_5 crossref_primary_10_3389_fpls_2021_616689 crossref_primary_10_1016_j_csbj_2021_10_023 crossref_primary_10_3390_plants11212877 crossref_primary_10_1038_s41438_021_00470_w crossref_primary_10_1016_j_cbpa_2018_10_026 crossref_primary_10_1016_j_earscirev_2020_103187 crossref_primary_10_1007_s12539_021_00456_1 crossref_primary_10_1016_j_fcr_2022_108452 crossref_primary_10_1515_jib_2019_0091 crossref_primary_10_1080_07038992_2020_1833186 crossref_primary_10_1038_s41598_020_80441_8 crossref_primary_10_3390_biom14040409 crossref_primary_10_1002_bies_202100258 crossref_primary_10_1016_j_csbj_2021_08_027 crossref_primary_10_3390_agronomy12050981 crossref_primary_10_3390_biom10081190 crossref_primary_10_3390_rs12081232 crossref_primary_10_1093_plphys_kiab322 crossref_primary_10_3389_fpls_2019_00227 crossref_primary_10_12688_f1000research_125425_1 crossref_primary_10_7717_peerj_7558 |
Cites_doi | 10.1016/j.mito.2016.07.002 10.3389/fpls.2013.00551 10.1093/nar/gkn654 10.1016/S0167-4889(01)00146-X 10.15252/msb.20156651 10.1093/nar/gkq477 10.1093/pcp/pcv165 10.1038/srep44598 10.1002/pmic.200300776 10.1093/nar/gkr1090 10.1093/nar/gku1179 10.1016/j.cell.2009.08.005 10.1074/jbc.M706851200 10.1111/ppl.12456 10.1074/mcp.M110.001388 10.1093/bioinformatics/btl158 10.1002/(SICI)1097-0134(19980101)30:1<49::AID-PROT5>3.0.CO;2-F 10.1146/annurev-arplant-042110-103857 10.1093/nar/gks1151 10.1093/bioinformatics/bti623 10.1104/pp.111.183160 10.1504/IJDMB.2010.034194 10.1016/j.pbi.2006.09.002 10.1111/j.1742-4658.2009.06876.x 10.1006/jmbi.2000.3903 10.1186/1471-2105-12-77 10.1021/pr3003535 10.1093/nar/gkw1041 10.1093/bioinformatics/btx431 10.1093/pcp/pcv170 10.1093/bioinformatics/btq003 10.1016/S0022-2836(05)80360-2 10.1093/nar/gkm259 10.1111/j.1432-1033.1996.00779.x 10.1038/nrm2959 10.1093/nar/gks1193 10.1093/nar/gku989 10.1093/nar/gkt1056 10.1016/j.bbamcr.2012.05.029 10.1016/j.bbadis.2011.12.001 10.1371/journal.pone.0016022 10.1074/mcp.M114.043083 10.1093/bioinformatics/btu550 10.1016/j.tplants.2004.12.002 10.1105/tpc.016055 10.1104/pp.113.229054 10.1002/j.1460-2075.1986.tb04364.x 10.1016/j.cels.2016.01.009 10.1146/annurev-genom-082509-141720 10.1038/nprot.2007.131 10.1104/pp.108.131300 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Zhang, Rao, Salvato, Havelund, Møller, Thelen and Xu. 2018 Zhang, Rao, Salvato, Havelund, Møller, Thelen and Xu |
Copyright_xml | – notice: Copyright © 2018 Zhang, Rao, Salvato, Havelund, Møller, Thelen and Xu. 2018 Zhang, Rao, Salvato, Havelund, Møller, Thelen and Xu |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2018.00634 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_8f313f47b72e407aba05019634a1da20 PMC5974146 29875778 10_3389_fpls_2018_00634 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM100701 – fundername: Foundation for the National Institutes of Health grantid: R01-GM100701 |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c525t-c8ca8eb5a1e759b2ebf8d8e3a09b5d1e86c8ef3f9308c2b0185ef048831db73f3 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:27:27 EDT 2025 Thu Aug 21 18:21:07 EDT 2025 Fri Jul 11 11:38:56 EDT 2025 Wed Feb 19 02:43:12 EST 2025 Thu Apr 24 23:10:49 EDT 2025 Tue Jul 01 00:52:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | position weight matrix gene co-expression support vector machine machine learning deep neural network mitochondrial targeting |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-c8ca8eb5a1e759b2ebf8d8e3a09b5d1e86c8ef3f9308c2b0185ef048831db73f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Chuang Ma, Northwest A&F University, China Present address: R. S. P. Rao, Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangalore, India Fernanda Salvato, Institute of Biology, University of Campinas, Campinas, Brazil This article was submitted to Plant Systems and Synthetic Biology, a section of the journal Frontiers in Plant Science Reviewed by: Shihua Zhang, Academy of Mathematics and Systems Science (CAS), China; Fengfeng Zhou, Jilin University, China |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2018.00634 |
PMID | 29875778 |
PQID | 2051662083 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8f313f47b72e407aba05019634a1da20 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5974146 proquest_miscellaneous_2051662083 pubmed_primary_29875778 crossref_citationtrail_10_3389_fpls_2018_00634 crossref_primary_10_3389_fpls_2018_00634 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-23 |
PublicationDateYYYYMMDD | 2018-05-23 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Heazlewood (B22) 2004; 16 Badugu (B5) 2008; 283 Millar (B31) 2005; 10 Robin (B39) 2011; 12 Huang (B27) 2009; 149 Rampasek (B36) 2016; 2 Almagro Armenteros (B1) 2017; 33 Srivastava (B46) 2010; 4 Millar (B33) 2011; 62 Claros (B12) 1996; 241 Carrie (B10) 2013; 1833 Gao (B19) 2010; 9 Sing (B43) 2005; 21 Carrie (B9) 2009; 276 (B51) 2015; 43 Briesemeister (B7) 2010; 38 Small (B44) 2004; 4 Sperschneider (B45) 2017; 7 Chacinska (B11) 2009; 138 Ramsak (B37) 2014; 42 Horton (B26) 2007; 35 Emanuelsson (B15) 2007; 2 Cui (B13) 2011; 6 Calvo (B8) 2010; 11 Barrett (B6) 2013; 41 Aoki (B4) 2016; 57 Srivastava (B47) 2014; 15 (B20) 2015; 43 Schneider (B42) 1998; 30 Schmidt (B41) 2010; 11 Tan (B49) 2012; 11 Angermueller (B3) 2016; 12 Huang (B28) 2010; 26 Salvato (B40) 2014; 164 Hooper (B25) 2014; 30 Millar (B32) 2006; 9 von Heijne (B52) 1986; 5 Moller (B34) 2016; 157 Lamesch (B29) 2012; 40 Hooper (B23) 2016; 57 Goodfellow (B21) 2013; 28 Tanz (B50) 2013; 41 Peeters (B35) 2001; 1541 Sun (B48) 2009; 37 Li (B30) 2006; 22 Altschul (B2) 1990; 215 Duncan (B14) 2011; 157 Emanuelsson (B16) 2000; 300 Rao (B38) 2016; 33 Fransen (B17) 2012; 1822 Fukasawa (B18) 2015; 14 Welchen (B53) 2014; 4 Hooper (B24) 2017; 45 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 17446895 - Nat Protoc. 2007;2(4):953-71 25670805 - Mol Cell Proteomics. 2015 Apr;14(4):1113-26 24351685 - Plant Physiol. 2014 Feb;164(2):637-53 21332361 - Annu Rev Plant Biol. 2011;62:79-104 20507917 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W497-502 26546318 - Plant Cell Physiol. 2016 Jan;57(1):e5 20690818 - Annu Rev Genomics Hum Genet. 2010;11:25-44 23193258 - Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 18832363 - Nucleic Acids Res. 2009 Jan;37(Database issue):D969-74 22178243 - Biochim Biophys Acta. 2012 Sep;1822(9):1363-73 25150248 - Bioinformatics. 2014 Dec 1;30(23):3356-64 18070881 - J Biol Chem. 2008 Feb 8;283(6):3409-17 27136685 - Cell Syst. 2016 Jan 27;2(1):12-4 20815137 - Int J Data Min Bioinform. 2010;4(4):357-76 25348405 - Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12 22140109 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10 16096348 - Bioinformatics. 2005 Oct 15;21(20):3940-1 22683762 - Biochim Biophys Acta. 2013 Feb;1833(2):253-9 21896887 - Plant Physiol. 2011 Nov;157(3):1093-113 17517783 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7 19010998 - Plant Physiol. 2009 Feb;149(2):719-34 23180787 - Nucleic Acids Res. 2013 Jan;41(Database issue):D1185-91 27899614 - Nucleic Acids Res. 2017 Jan 4;45(D1):D1064-D1074 17008120 - Curr Opin Plant Biol. 2006 Dec;9(6):610-5 27094909 - Physiol Plant. 2016 Jul;157(3):256-63 15642522 - Trends Plant Sci. 2005 Jan;10(1):36-43 9443340 - Proteins. 1998 Jan;30(1):49-60 22574745 - J Proteome Res. 2012 Jul 6;11(7):3860-79 19187233 - FEBS J. 2009 Mar;276(5):1187-95 27405097 - Mitochondrion. 2017 Mar;33:22-37 20702892 - Mol Cell Proteomics. 2010 Dec;9(12):2586-600 11750662 - Biochim Biophys Acta. 2001 Dec 12;1541(1-2):54-63 15174128 - Proteomics. 2004 Jun;4(6):1581-90 16731699 - Bioinformatics. 2006 Jul 1;22(13):1658-9 19703392 - Cell. 2009 Aug 21;138(4):628-44 25428369 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56 14671022 - Plant Cell. 2004 Jan;16(1):241-56 21297957 - PLoS One. 2011 Jan 31;6(1):e16022 20053844 - Bioinformatics. 2010 Mar 1;26(5):680-2 24194592 - Nucleic Acids Res. 2014 Jan;42(Database issue):D1167-75 26556651 - Plant Cell Physiol. 2016 Jan;57(1):e9 21414208 - BMC Bioinformatics. 2011 Mar 17;12:77 27474269 - Mol Syst Biol. 2016 Jul 29;12 (7):878 24409193 - Front Plant Sci. 2014 Jan 08;4:551 8944766 - Eur J Biochem. 1996 Nov 1;241(3):779-86 10891285 - J Mol Biol. 2000 Jul 21;300(4):1005-16 28300209 - Sci Rep. 2017 Mar 16;7:44598 3015599 - EMBO J. 1986 Jun;5(6):1335-42 20729931 - Nat Rev Mol Cell Biol. 2010 Sep;11(9):655-67 29036616 - Bioinformatics. 2017 Nov 1;33(21):3387-3395 |
References_xml | – volume: 33 start-page: 22 year: 2016 ident: B38 article-title: The proteome of higher plant mitochondria. publication-title: Mitochondrion doi: 10.1016/j.mito.2016.07.002 – volume: 4 year: 2014 ident: B53 article-title: Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00551 – volume: 37 start-page: D969 year: 2009 ident: B48 article-title: PPDB, the plant proteomics database at cornell. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn654 – volume: 1541 start-page: 54 year: 2001 ident: B35 article-title: Dual targeting to mitochondria and chloroplasts. publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4889(01)00146-X – volume: 12 year: 2016 ident: B3 article-title: Deep learning for computational biology. publication-title: Mol Syst Biol doi: 10.15252/msb.20156651 – volume: 38 start-page: W497 year: 2010 ident: B7 article-title: YLoc–an interpretable web server for predicting subcellular localization. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq477 – volume: 57 year: 2016 ident: B4 article-title: ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcv165 – volume: 7 year: 2017 ident: B45 article-title: LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. publication-title: Sci. Rep. doi: 10.1038/srep44598 – volume: 4 start-page: 1581 year: 2004 ident: B44 article-title: Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. publication-title: Proteomics doi: 10.1002/pmic.200300776 – volume: 28 start-page: 1319 year: 2013 ident: B21 article-title: Maxout Networks. publication-title: ICML – volume: 40 start-page: D1202 year: 2012 ident: B29 article-title: The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1090 – volume: 43 start-page: D1049 year: 2015 ident: B20 article-title: Gene ontology consortium: going forward. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1179 – volume: 138 start-page: 628 year: 2009 ident: B11 article-title: Importing mitochondrial proteins: machineries and mechanisms. publication-title: Cell doi: 10.1016/j.cell.2009.08.005 – volume: 283 start-page: 3409 year: 2008 ident: B5 article-title: N terminus of calpain 1 is a mitochondrial targeting sequence. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M706851200 – volume: 157 start-page: 256 year: 2016 ident: B34 article-title: What is hot in plant mitochondria? publication-title: Physiol. Plant. doi: 10.1111/ppl.12456 – volume: 9 start-page: 2586 year: 2010 ident: B19 article-title: Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M110.001388 – volume: 22 start-page: 1658 year: 2006 ident: B30 article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl158 – volume: 30 start-page: 49 year: 1998 ident: B42 article-title: Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides. publication-title: Proteins doi: 10.1002/(SICI)1097-0134(19980101)30:1<49::AID-PROT5>3.0.CO;2-F – volume: 62 start-page: 79 year: 2011 ident: B33 article-title: Organization and regulation of mitochondrial respiration in plants. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042110-103857 – volume: 41 start-page: D1185 year: 2013 ident: B50 article-title: SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1151 – volume: 21 start-page: 3940 year: 2005 ident: B43 article-title: ROCR: visualizing classifier performance in R. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti623 – volume: 157 start-page: 1093 year: 2011 ident: B14 article-title: Multiple lines of evidence localize signaling, morphology, and lipid biosynthesis machinery to the mitochondrial outer membrane of Arabidopsis. publication-title: Plant Physiol. doi: 10.1104/pp.111.183160 – volume: 4 start-page: 357 year: 2010 ident: B46 article-title: Genome-wide functional annotation by integrating multiple microarray datasets using meta-analysis. publication-title: Int. J. Data Min. Bioinform. doi: 10.1504/IJDMB.2010.034194 – volume: 9 start-page: 610 year: 2006 ident: B32 article-title: Recent surprises in protein targeting to mitochondria and plastids. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2006.09.002 – volume: 276 start-page: 1187 year: 2009 ident: B9 article-title: Protein transport in organelles: dual targeting of proteins to mitochondria and chloroplasts. publication-title: FEBS J. doi: 10.1111/j.1742-4658.2009.06876.x – volume: 300 start-page: 1005 year: 2000 ident: B16 article-title: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.3903 – volume: 12 year: 2011 ident: B39 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-77 – volume: 11 start-page: 3860 year: 2012 ident: B49 article-title: Components of mitochondrial oxidative phosphorylation vary in abundance following exposure to cold and chemical stresses. publication-title: J. Proteome Res. doi: 10.1021/pr3003535 – volume: 45 start-page: D1064 year: 2017 ident: B24 article-title: SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1041 – volume: 33 start-page: 3387 year: 2017 ident: B1 article-title: DeepLoc: prediction of protein subcellular localization using deep learning. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx431 – volume: 15 start-page: 1929 year: 2014 ident: B47 article-title: Dropout: a simple way to prevent neural networks from overfitting. publication-title: J. Mach. Learn. Res. – volume: 57 year: 2016 ident: B23 article-title: Finding the subcellular location of barley, wheat, rice and maize proteins: the compendium of crop proteins with annotated locations (cropPAL). publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcv170 – volume: 26 start-page: 680 year: 2010 ident: B28 article-title: CD-HIT Suite: a web server for clustering and comparing biological sequences. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq003 – volume: 215 start-page: 403 year: 1990 ident: B2 article-title: Basic local alignment search tool. publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(05)80360-2 – volume: 35 start-page: W585 year: 2007 ident: B26 article-title: WoLF PSORT: protein localization predictor. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm259 – volume: 241 start-page: 779 year: 1996 ident: B12 article-title: Computational method to predict mitochondrially imported proteins and their targeting sequences. publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1996.00779.x – volume: 11 start-page: 655 year: 2010 ident: B41 article-title: Mitochondrial protein import: from proteomics to functional mechanisms. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2959 – volume: 41 start-page: D991 year: 2013 ident: B6 article-title: NCBI GEO: archive for functional genomics data sets–update. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1193 – volume: 43 start-page: D204 year: 2015 ident: B51 article-title: UniProt: a hub for protein information. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku989 – volume: 42 start-page: D1167 year: 2014 ident: B37 article-title: GoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontology. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1056 – volume: 1833 start-page: 253 year: 2013 ident: B10 article-title: A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2012.05.029 – volume: 1822 start-page: 1363 year: 2012 ident: B17 article-title: Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2011.12.001 – volume: 6 year: 2011 ident: B13 article-title: Integrative identification of Arabidopsis mitochondrial proteome and its function exploitation through protein interaction network. publication-title: PLoS One doi: 10.1371/journal.pone.0016022 – volume: 14 start-page: 1113 year: 2015 ident: B18 article-title: MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M114.043083 – volume: 30 start-page: 3356 year: 2014 ident: B25 article-title: SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu550 – volume: 10 start-page: 36 year: 2005 ident: B31 article-title: The plant mitochondrial proteome. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2004.12.002 – volume: 16 start-page: 241 year: 2004 ident: B22 article-title: Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. publication-title: Plant Cell doi: 10.1105/tpc.016055 – volume: 164 start-page: 637 year: 2014 ident: B40 article-title: The potato tuber mitochondrial proteome. publication-title: Plant Physiol. doi: 10.1104/pp.113.229054 – volume: 5 start-page: 1335 year: 1986 ident: B52 article-title: Mitochondrial targeting sequences may form amphiphilic helices. publication-title: EMBO J. doi: 10.1002/j.1460-2075.1986.tb04364.x – volume: 2 start-page: 12 year: 2016 ident: B36 article-title: TensorFlow: biology’s gateway to deep learning? publication-title: Cell Syst. doi: 10.1016/j.cels.2016.01.009 – volume: 11 start-page: 25 year: 2010 ident: B8 article-title: The mitochondrial proteome and human disease. publication-title: Annu. Rev. Genomics Hum. Genet. doi: 10.1146/annurev-genom-082509-141720 – volume: 2 start-page: 953 year: 2007 ident: B15 article-title: Locating proteins in the cell using TargetP, SignalP and related tools. publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.131 – volume: 149 start-page: 719 year: 2009 ident: B27 article-title: Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity. publication-title: Plant Physiol. doi: 10.1104/pp.108.131300 – reference: 18832363 - Nucleic Acids Res. 2009 Jan;37(Database issue):D969-74 – reference: 27094909 - Physiol Plant. 2016 Jul;157(3):256-63 – reference: 24409193 - Front Plant Sci. 2014 Jan 08;4:551 – reference: 22574745 - J Proteome Res. 2012 Jul 6;11(7):3860-79 – reference: 20815137 - Int J Data Min Bioinform. 2010;4(4):357-76 – reference: 3015599 - EMBO J. 1986 Jun;5(6):1335-42 – reference: 19703392 - Cell. 2009 Aug 21;138(4):628-44 – reference: 27899614 - Nucleic Acids Res. 2017 Jan 4;45(D1):D1064-D1074 – reference: 16096348 - Bioinformatics. 2005 Oct 15;21(20):3940-1 – reference: 24194592 - Nucleic Acids Res. 2014 Jan;42(Database issue):D1167-75 – reference: 22178243 - Biochim Biophys Acta. 2012 Sep;1822(9):1363-73 – reference: 25428369 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56 – reference: 19187233 - FEBS J. 2009 Mar;276(5):1187-95 – reference: 17517783 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7 – reference: 20729931 - Nat Rev Mol Cell Biol. 2010 Sep;11(9):655-67 – reference: 21297957 - PLoS One. 2011 Jan 31;6(1):e16022 – reference: 19010998 - Plant Physiol. 2009 Feb;149(2):719-34 – reference: 24351685 - Plant Physiol. 2014 Feb;164(2):637-53 – reference: 10891285 - J Mol Biol. 2000 Jul 21;300(4):1005-16 – reference: 21332361 - Annu Rev Plant Biol. 2011;62:79-104 – reference: 26556651 - Plant Cell Physiol. 2016 Jan;57(1):e9 – reference: 26546318 - Plant Cell Physiol. 2016 Jan;57(1):e5 – reference: 27405097 - Mitochondrion. 2017 Mar;33:22-37 – reference: 28300209 - Sci Rep. 2017 Mar 16;7:44598 – reference: 25348405 - Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12 – reference: 20507917 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W497-502 – reference: 16731699 - Bioinformatics. 2006 Jul 1;22(13):1658-9 – reference: 18070881 - J Biol Chem. 2008 Feb 8;283(6):3409-17 – reference: 15174128 - Proteomics. 2004 Jun;4(6):1581-90 – reference: 27474269 - Mol Syst Biol. 2016 Jul 29;12 (7):878 – reference: 22140109 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10 – reference: 14671022 - Plant Cell. 2004 Jan;16(1):241-56 – reference: 22683762 - Biochim Biophys Acta. 2013 Feb;1833(2):253-9 – reference: 23193258 - Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 – reference: 15642522 - Trends Plant Sci. 2005 Jan;10(1):36-43 – reference: 9443340 - Proteins. 1998 Jan;30(1):49-60 – reference: 20053844 - Bioinformatics. 2010 Mar 1;26(5):680-2 – reference: 25670805 - Mol Cell Proteomics. 2015 Apr;14(4):1113-26 – reference: 20702892 - Mol Cell Proteomics. 2010 Dec;9(12):2586-600 – reference: 27136685 - Cell Syst. 2016 Jan 27;2(1):12-4 – reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 – reference: 11750662 - Biochim Biophys Acta. 2001 Dec 12;1541(1-2):54-63 – reference: 17446895 - Nat Protoc. 2007;2(4):953-71 – reference: 8944766 - Eur J Biochem. 1996 Nov 1;241(3):779-86 – reference: 29036616 - Bioinformatics. 2017 Nov 1;33(21):3387-3395 – reference: 21896887 - Plant Physiol. 2011 Nov;157(3):1093-113 – reference: 25150248 - Bioinformatics. 2014 Dec 1;30(23):3356-64 – reference: 17008120 - Curr Opin Plant Biol. 2006 Dec;9(6):610-5 – reference: 21414208 - BMC Bioinformatics. 2011 Mar 17;12:77 – reference: 23180787 - Nucleic Acids Res. 2013 Jan;41(Database issue):D1185-91 – reference: 20690818 - Annu Rev Genomics Hum Genet. 2010;11:25-44 |
SSID | ssj0000500997 |
Score | 2.3276007 |
Snippet | Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 634 |
SubjectTerms | deep neural network gene co-expression machine learning mitochondrial targeting Plant Science position weight matrix support vector machine |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUq1EMvCMpXWqhciUMvgY0dJw43QEWoYqEHVuKCIn-My0qrLIJwgF_PjBNWuwjUC1fHkZ0348wbZfKGsV3piwAeQhqEdWmO6ReeOaVTp6oc2avNM0M_Cg_Pi9NR_udKXc21-qKasE4euANuXweZyYB3lQIw-TDWDBRpusjcZN6ImK1jzJtLpjpVb6I-Zaflg1lYtR9uJ6TOnVHpZCHzhTAU1frfopivKyXnQs_JClvuOSM_7Pa6yj5B85V9Ppoir3tcY9fDUXp2cXzAD_kwVkZC2oum_uPD2B-aIzHlf-_ok0wbR_EU41uv8eR8k0d-RvFs_AQeJ02p--U9Hzec2hm19-tsdPL78vg07ZsmILxCtanTzmiwymRQqsoKsEF7DdIMKqt8BrpwGoIMlRxoJywCoiDQMZaZt6UMcoMtNdMGthgvRB4kgh6cRpYiKo22KJwASTJnzoeE7b1gWLteUZwaW0xqzCwI9JpArwn0OoKesF-zG247MY33px6RUWbTSAU7DqBv1L1v1P_zjYT9fDFpjaeGPoWYBqYPtJDKikIg_0zYZmfi2VL4oKUqS52wcsH4C3tZvNKMb6IyN2VnGHq-fcTmv7MvBAdVKgi5zZbauwfYQQLU2h_R158B74sDcQ priority: 102 providerName: Directory of Open Access Journals |
Title | MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29875778 https://www.proquest.com/docview/2051662083 https://pubmed.ncbi.nlm.nih.gov/PMC5974146 https://doaj.org/article/8f313f47b72e407aba05019634a1da20 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagcOCCeDeFVkbiwCVl40fiVEJVW1Eq1AAHVtoLivwsK62SdjeVWH59Z5x0YdEicckhcWLn80zmm8T5hpA33OXBOx_SwIxNBaRf4HNSpVaWAtirEZnGH4Wrz_nZWHyayMnvckADgIuNqR3WkxrPZ_s_r5aH4PDvMeOEePsuXM5QeDvDVZE5F3fJPQhLBXppNXD9Xugb2VAstpLnIhU5m_RSP5uusRalopj_Jgb690LKPyLT6SPycKCU9Ki3gcfkjm-ekPvHLdC-5VPyvRqn519ODugRreLCSZ8OmqoXtIrloynwVvp1jl9surgXnBxwaRza5mxJzzHcTX95B41aLI65oNOGYrWjbvGMjE8_fDs5S4eaCoA-k11qldXKG6kzX8jSMG-CcspzPSqNdJlXuVU-8FDykbLMACDSB_RynjlT8MCfk62mbfw2oTkTgXsxClYBiWGlUoHnlnmOKmjWhYTs32JY20FwHOtezGpIPBD0GkGvEfQ6gp6Qt6sTLnutjX83PcZJWTVDkey4o51f1IPP1TCejAcwuILBMAttNNgAPnGEzpxmo4S8vp3SGpwKv5ToxrfX2JEEI2FATxPyop_iVVdwo4UsCpWQYm3y18ayfqSZ_ojC3Zi8QWTa-Y9-X5IHeLe4ToHxV2Srm1_7XaA_ndmLrw1g-3GS7UUTvwHknQTy |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MU-LOC%3A+A+Machine-Learning+Method+for+Predicting+Mitochondrially+Localized+Proteins+in+Plants&rft.jtitle=Frontiers+in+plant+science&rft.au=Zhang%2C+Ning&rft.au=Rao%2C+R+S+P&rft.au=Salvato%2C+Fernanda&rft.au=Havelund%2C+Jesper+F&rft.date=2018-05-23&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=9&rft.spage=634&rft_id=info:doi/10.3389%2Ffpls.2018.00634&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |