Hyperspectral Imaging for Enhanced Skin Cancer Classification Using Machine Learning

Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and SK. These conditions are generally not easily detectable due to their comparable clinical presentations. Method: This paper presen...

Full description

Saved in:
Bibliographic Details
Published inBioengineering (Basel) Vol. 12; no. 7; p. 755
Main Authors Lin, Teng-Li, Mukundan, Arvind, Karmakar, Riya, Avala, Praveen, Chang, Wen-Yen, Wang, Hsiang-Chen
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.07.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and SK. These conditions are generally not easily detectable due to their comparable clinical presentations. Method: This paper presents a new approach to hyperspectral imaging for enhancing the visualization of skin lesions called the Spectrum-Aided Vision Enhancer (SAVE), which has the ability to convert any RGB image into a narrow-band image (NBI) by combining hyperspectral imaging (HSI) to increase the contrast of the area of the cancerous lesions when compared with the normal tissue, thereby increasing the accuracy of classification. The current study investigates the use of ten different machine learning algorithms for the purpose of classification of AK, BCC, and SK, including convolutional neural network (CNN), random forest (RF), you only look once (YOLO) version 8, support vector machine (SVM), ResNet50, MobileNetV2, Logistic Regression, SVM with stochastic gradient descent (SGD) Classifier, SVM with logarithmic (LOG) Classifier and SVM- Polynomial Classifier, in assessing the capability of the system to differentiate AK from BCC and SK with heightened accuracy. Results: The results demonstrated that SAVE enhanced classification performance and increased its accuracy, sensitivity, and specificity compared to a traditional RGB imaging approach. Conclusions: This advanced method offers dermatologists a tool for early and accurate diagnosis, reducing the likelihood of misclassification and improving patient outcomes.
AbstractList Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and SK. These conditions are generally not easily detectable due to their comparable clinical presentations. Method: This paper presents a new approach to hyperspectral imaging for enhancing the visualization of skin lesions called the Spectrum-Aided Vision Enhancer (SAVE), which has the ability to convert any RGB image into a narrow-band image (NBI) by combining hyperspectral imaging (HSI) to increase the contrast of the area of the cancerous lesions when compared with the normal tissue, thereby increasing the accuracy of classification. The current study investigates the use of ten different machine learning algorithms for the purpose of classification of AK, BCC, and SK, including convolutional neural network (CNN), random forest (RF), you only look once (YOLO) version 8, support vector machine (SVM), ResNet50, MobileNetV2, Logistic Regression, SVM with stochastic gradient descent (SGD) Classifier, SVM with logarithmic (LOG) Classifier and SVM- Polynomial Classifier, in assessing the capability of the system to differentiate AK from BCC and SK with heightened accuracy. Results: The results demonstrated that SAVE enhanced classification performance and increased its accuracy, sensitivity, and specificity compared to a traditional RGB imaging approach. Conclusions: This advanced method offers dermatologists a tool for early and accurate diagnosis, reducing the likelihood of misclassification and improving patient outcomes.
Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and SK. These conditions are generally not easily detectable due to their comparable clinical presentations. Method: This paper presents a new approach to hyperspectral imaging for enhancing the visualization of skin lesions called the Spectrum-Aided Vision Enhancer (SAVE), which has the ability to convert any RGB image into a narrow-band image (NBI) by combining hyperspectral imaging (HSI) to increase the contrast of the area of the cancerous lesions when compared with the normal tissue, thereby increasing the accuracy of classification. The current study investigates the use of ten different machine learning algorithms for the purpose of classification of AK, BCC, and SK, including convolutional neural network (CNN), random forest (RF), you only look once (YOLO) version 8, support vector machine (SVM), ResNet50, MobileNetV2, Logistic Regression, SVM with stochastic gradient descent (SGD) Classifier, SVM with logarithmic (LOG) Classifier and SVM- Polynomial Classifier, in assessing the capability of the system to differentiate AK from BCC and SK with heightened accuracy. Results: The results demonstrated that SAVE enhanced classification performance and increased its accuracy, sensitivity, and specificity compared to a traditional RGB imaging approach. Conclusions: This advanced method offers dermatologists a tool for early and accurate diagnosis, reducing the likelihood of misclassification and improving patient outcomes.
Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and SK. These conditions are generally not easily detectable due to their comparable clinical presentations. Method: This paper presents a new approach to hyperspectral imaging for enhancing the visualization of skin lesions called the Spectrum-Aided Vision Enhancer (SAVE), which has the ability to convert any RGB image into a narrow-band image (NBI) by combining hyperspectral imaging (HSI) to increase the contrast of the area of the cancerous lesions when compared with the normal tissue, thereby increasing the accuracy of classification. The current study investigates the use of ten different machine learning algorithms for the purpose of classification of AK, BCC, and SK, including convolutional neural network (CNN), random forest (RF), you only look once (YOLO) version 8, support vector machine (SVM), ResNet50, MobileNetV2, Logistic Regression, SVM with stochastic gradient descent (SGD) Classifier, SVM with logarithmic (LOG) Classifier and SVM- Polynomial Classifier, in assessing the capability of the system to differentiate AK from BCC and SK with heightened accuracy. Results: The results demonstrated that SAVE enhanced classification performance and increased its accuracy, sensitivity, and specificity compared to a traditional RGB imaging approach. Conclusions: This advanced method offers dermatologists a tool for early and accurate diagnosis, reducing the likelihood of misclassification and improving patient outcomes.Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and SK. These conditions are generally not easily detectable due to their comparable clinical presentations. Method: This paper presents a new approach to hyperspectral imaging for enhancing the visualization of skin lesions called the Spectrum-Aided Vision Enhancer (SAVE), which has the ability to convert any RGB image into a narrow-band image (NBI) by combining hyperspectral imaging (HSI) to increase the contrast of the area of the cancerous lesions when compared with the normal tissue, thereby increasing the accuracy of classification. The current study investigates the use of ten different machine learning algorithms for the purpose of classification of AK, BCC, and SK, including convolutional neural network (CNN), random forest (RF), you only look once (YOLO) version 8, support vector machine (SVM), ResNet50, MobileNetV2, Logistic Regression, SVM with stochastic gradient descent (SGD) Classifier, SVM with logarithmic (LOG) Classifier and SVM- Polynomial Classifier, in assessing the capability of the system to differentiate AK from BCC and SK with heightened accuracy. Results: The results demonstrated that SAVE enhanced classification performance and increased its accuracy, sensitivity, and specificity compared to a traditional RGB imaging approach. Conclusions: This advanced method offers dermatologists a tool for early and accurate diagnosis, reducing the likelihood of misclassification and improving patient outcomes.
The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and SK. These conditions are generally not easily detectable due to their comparable clinical presentations. This paper presents a new approach to hyperspectral imaging for enhancing the visualization of skin lesions called the Spectrum-Aided Vision Enhancer (SAVE), which has the ability to convert any RGB image into a narrow-band image (NBI) by combining hyperspectral imaging (HSI) to increase the contrast of the area of the cancerous lesions when compared with the normal tissue, thereby increasing the accuracy of classification. The current study investigates the use of ten different machine learning algorithms for the purpose of classification of AK, BCC, and SK, including convolutional neural network (CNN), random forest (RF), you only look once (YOLO) version 8, support vector machine (SVM), ResNet50, MobileNetV2, Logistic Regression, SVM with stochastic gradient descent (SGD) Classifier, SVM with logarithmic (LOG) Classifier and SVM- Polynomial Classifier, in assessing the capability of the system to differentiate AK from BCC and SK with heightened accuracy. The results demonstrated that SAVE enhanced classification performance and increased its accuracy, sensitivity, and specificity compared to a traditional RGB imaging approach. This advanced method offers dermatologists a tool for early and accurate diagnosis, reducing the likelihood of misclassification and improving patient outcomes.
Audience Academic
Author Wang, Hsiang-Chen
Mukundan, Arvind
Avala, Praveen
Chang, Wen-Yen
Lin, Teng-Li
Karmakar, Riya
AuthorAffiliation 5 Department of General Surgery, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Kaohsiung City 80284, Taiwan
6 Technology Development, Hitspectra Intelligent Technology Co., Ltd., 4F., No. 2, Fuxing 4th Rd., Qianzhen Dist., Kaohsiung City 80661, Taiwan
4 Department of Computer Science Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, No. 42, Avadi-Vel Tech Road Vel Nagar, Avadi, Chennai 600062, Tamil Nadu, India; vtu17283@veltech.edu.in
3 Department of Biomedical Imaging, Chennai Institute of Technology, Sarathy Nagar, Chennai 600069, Tamil Nadu, India
1 Department of Dermatology, Dalin Tzu Chi Hospital, No. 2, Min-Sheng Rd., Dalin Town, Chiayi 62247, Taiwan; tanglilin1121@hotmail.com
2 Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi 62102, Taiwan; d09420003@ccu.edu.tw (A.M.); karmakarriya345@gmail.com (R.K.)
AuthorAffiliation_xml – name: 5 Department of General Surgery, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Kaohsiung City 80284, Taiwan
– name: 1 Department of Dermatology, Dalin Tzu Chi Hospital, No. 2, Min-Sheng Rd., Dalin Town, Chiayi 62247, Taiwan; tanglilin1121@hotmail.com
– name: 2 Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi 62102, Taiwan; d09420003@ccu.edu.tw (A.M.); karmakarriya345@gmail.com (R.K.)
– name: 6 Technology Development, Hitspectra Intelligent Technology Co., Ltd., 4F., No. 2, Fuxing 4th Rd., Qianzhen Dist., Kaohsiung City 80661, Taiwan
– name: 3 Department of Biomedical Imaging, Chennai Institute of Technology, Sarathy Nagar, Chennai 600069, Tamil Nadu, India
– name: 4 Department of Computer Science Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, No. 42, Avadi-Vel Tech Road Vel Nagar, Avadi, Chennai 600062, Tamil Nadu, India; vtu17283@veltech.edu.in
Author_xml – sequence: 1
  givenname: Teng-Li
  surname: Lin
  fullname: Lin, Teng-Li
– sequence: 2
  givenname: Arvind
  orcidid: 0000-0002-7741-3722
  surname: Mukundan
  fullname: Mukundan, Arvind
– sequence: 3
  givenname: Riya
  surname: Karmakar
  fullname: Karmakar, Riya
– sequence: 4
  givenname: Praveen
  surname: Avala
  fullname: Avala, Praveen
– sequence: 5
  givenname: Wen-Yen
  surname: Chang
  fullname: Chang, Wen-Yen
– sequence: 6
  givenname: Hsiang-Chen
  orcidid: 0000-0003-4107-2062
  surname: Wang
  fullname: Wang, Hsiang-Chen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40722447$$D View this record in MEDLINE/PubMed
BookMark eNptks9vFCEUgImpsbX2X2gm8eJlKzx-DHMyzabaTdZ4sD0ThoFZ1hlYYdak_72MW2vXNBx4eXx88F7eW3QSYrAIXRJ8RWmDP7Y-2tD7YG3yoSeAa1xz_gqdAcViwSlnJ8_iU3SR8xZjTChwEOwNOmW4BmCsPkN3tw87m_LOminpoVqNunj7ysVU3YSNDsZ21fcfPlTLOU7VctA5e-eNnnwM1X2e6a_abMpvqrXVKZTEO_Ta6SHbi8f9HN1_vrlb3i7W376sltfrheHAp0VrJBCLDYGaAQiHsWg7IayAjvFGSkmhBeKcFNhRA1qTEhDBsJRaSgH0HK0O3i7qrdolP-r0oKL26k8ipl7pNHkzWMUwF63rakY7zVhDNSs-KxiVHGrXyeL6dHDt9u1oO2PD3JAj6fFJ8BvVx1-KADQAkhfDh0dDij_3Nk9q9NnYYdDBxn1WFCijhOKmLuj7_9Bt3KdQejVTFEvBG_KP6nWpwAcXy8NmlqpryTGWpBa0UFcvUGV1dvSmDI7zJX904fJ5pU8l_h2KAogDYFLMOVn3hBCs5gFULw8g_Q18Sc57
Cites_doi 10.1109/IBCAST51254.2021.9393198
10.1186/s12943-022-01708-4
10.1109/JSTARS.2020.3026724
10.1109/TNNLS.2021.3084827
10.3390/rs12162659
10.1016/j.micpro.2020.103727
10.1007/978-1-4842-4470-8
10.1117/1.JBO.17.7.076005
10.1109/ICAdTE.2013.6524743
10.3390/rs13224712
10.1111/j.1365-2133.2003.05554.x
10.1016/j.oraloncology.2021.105504
10.3390/cancers13174378
10.1109/ACCESS.2024.3393835
10.1016/S2589-7500(21)00252-1
10.1016/j.neunet.2021.07.010
10.3390/diagnostics14151672
10.1002/lary.29361
10.1109/IWSSIP48289.2020.9145130
10.3390/rs9111110
10.3390/s21072380
10.7717/peerj-cs.712
10.3390/diagnostics15030374
10.1007/s13206-021-00041-0
10.1109/JSTQE.2016.2514709
10.1007/978-3-030-46227-7_6
10.1016/j.procs.2021.12.132
10.3390/tomography8050200
10.1016/j.apacoust.2020.107528
10.1109/RAST.2013.6581194
10.1016/j.neucom.2022.06.111
10.3390/bdcc6010013
10.1109/ACCESS.2020.3014701
10.1007/978-3-031-78554-2_17
10.3390/s23042026
10.1109/ITCA52113.2020.00106
10.1001/jama.2021.6238
10.1109/ICDABI60145.2023.10629380
10.1109/EICT48899.2019.9068805
10.3390/drones7050304
10.1007/s10444-004-7206-2
10.3390/diagnostics14111129
10.1016/j.matpr.2020.07.366
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.3390/bioengineering12070755
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef



MEDLINE - Academic
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_4056bfd743da4493a42aae6438527fd8
PMC12292285
A850081763
40722447
10_3390_bioengineering12070755
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: NSTC 113-2221-E-194-011-MY3
– fundername: Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation–National Chung Cheng University Joint Research Program
  grantid: DTCRD113-C-01
– fundername: Kaohsiung Armed Forces General Hospital Research Program
  grantid: KAFGH_D_114014
– fundername: National Science and Technology Council
  grantid: 113-2221-E-194-011-MY3; 113-2634-F-194-001
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c525t-bc821e0c1274226f006bd66e62d45988832b21ff860f3c2aa160f164088a88623
IEDL.DBID BENPR
ISSN 2306-5354
IngestDate Wed Aug 27 01:24:07 EDT 2025
Thu Aug 21 18:34:12 EDT 2025
Tue Jul 29 19:05:26 EDT 2025
Fri Aug 01 05:20:51 EDT 2025
Wed Aug 06 19:50:57 EDT 2025
Tue Aug 05 03:50:35 EDT 2025
Sat Aug 02 01:41:01 EDT 2025
Wed Jul 16 16:37:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords skin cancer
yolo
convolutional neural network
narrow-band imaging
spectrum-aided vision enhancer
random forest
hyperspectral imaging
band selection
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-bc821e0c1274226f006bd66e62d45988832b21ff860f3c2aa160f164088a88623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4107-2062
0000-0002-7741-3722
OpenAccessLink https://www.proquest.com/docview/3233086591?pq-origsite=%requestingapplication%
PMID 40722447
PQID 3233086591
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_4056bfd743da4493a42aae6438527fd8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12292285
proquest_miscellaneous_3234313097
proquest_journals_3233086591
gale_infotracmisc_A850081763
gale_infotracacademiconefile_A850081763
pubmed_primary_40722447
crossref_primary_10_3390_bioengineering12070755
PublicationCentury 2000
PublicationDate 2025-07-11
PublicationDateYYYYMMDD 2025-07-11
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-11
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Zhou (ref_48) 2006; 25
Murugan (ref_10) 2021; 81
Soumaya (ref_42) 2021; 171
ref_11
Osho (ref_45) 2021; 10
ref_19
Gounella (ref_14) 2020; 27
ref_17
Sheykhmousa (ref_37) 2020; 13
Dubey (ref_29) 2022; 503
Monika (ref_8) 2020; 33
ref_25
ref_24
ref_23
ref_22
ref_21
Li (ref_27) 2021; 33
Zwakenberg (ref_16) 2021; 131
Yoon (ref_20) 2022; 16
ref_28
Gaye (ref_46) 2021; 7
ref_26
Leiter (ref_3) 2020; 1268
Indraswari (ref_35) 2022; 197
Islam (ref_32) 2022; 8
ref_36
ref_34
ref_33
ref_31
Katalinic (ref_5) 2003; 149
ref_30
Silva (ref_15) 2016; 22
Zeng (ref_2) 2023; 22
ref_38
Safaldin (ref_39) 2024; 12
Wen (ref_7) 2022; 4
Halmos (ref_12) 2021; 121
Li (ref_13) 2021; 1
Ozyildirim (ref_18) 2021; 143
ref_47
ref_44
ref_41
Davidson (ref_4) 2021; 325
ref_40
Feng (ref_43) 2014; 27
ref_49
ref_9
Ashraf (ref_1) 2020; 8
ref_6
References_xml – ident: ref_9
  doi: 10.1109/IBCAST51254.2021.9393198
– volume: 22
  start-page: 10
  year: 2023
  ident: ref_2
  article-title: Advancements in nanoparticle-based treatment approaches for skin cancer therapy
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-022-01708-4
– volume: 13
  start-page: 6308
  year: 2020
  ident: ref_37
  article-title: Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3026724
– volume: 33
  start-page: 6999
  year: 2021
  ident: ref_27
  article-title: A survey of convolutional neural networks: Analysis, applications, and prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3084827
– ident: ref_19
  doi: 10.3390/rs12162659
– volume: 81
  start-page: 103727
  year: 2021
  ident: ref_10
  article-title: Diagnosis of skin cancer using machine learning techniques
  publication-title: Microprocess Microsyst.
  doi: 10.1016/j.micpro.2020.103727
– ident: ref_44
  doi: 10.1007/978-1-4842-4470-8
– ident: ref_26
  doi: 10.1117/1.JBO.17.7.076005
– ident: ref_47
  doi: 10.1109/ICAdTE.2013.6524743
– ident: ref_28
  doi: 10.3390/rs13224712
– volume: 149
  start-page: 1200
  year: 2003
  ident: ref_5
  article-title: Epidemiology of cutaneous melanoma and non-melanoma skin cancer in Schleswig-Holstein, Germany: Incidence, clinical subtypes, tumour stages and localization (epidemiology of skin cancer)
  publication-title: Br. J. Dermatol.
  doi: 10.1111/j.1365-2133.2003.05554.x
– volume: 121
  start-page: 105504
  year: 2021
  ident: ref_12
  article-title: An overview of the current clinical status of optical imaging in head and neck cancer with a focus on Narrow Band imaging and fluorescence optical imaging
  publication-title: Oral Oncol.
  doi: 10.1016/j.oraloncology.2021.105504
– volume: 10
  start-page: 294
  year: 2021
  ident: ref_45
  article-title: An Overview: Stochastic Gradient Descent Classifier, Linear Discriminant Analysis, Deep Learning and Naive Bayes Classifier Approaches to Network Intrusion Detection
  publication-title: Int. J. Eng. Res.
– ident: ref_17
  doi: 10.3390/cancers13174378
– volume: 12
  start-page: 2169
  year: 2024
  ident: ref_39
  article-title: An Improved YOLOv8 to Detect Moving Objects
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3393835
– volume: 4
  start-page: e64
  year: 2022
  ident: ref_7
  article-title: Characteristics of publicly available skin cancer image datasets: A systematic review
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(21)00252-1
– volume: 143
  start-page: 564
  year: 2021
  ident: ref_18
  article-title: Levenberg–Marquardt multi-classification using hinge loss function
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.07.010
– ident: ref_41
– volume: 27
  start-page: 253
  year: 2014
  ident: ref_43
  article-title: Robust logistic regression and classification
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_25
  doi: 10.3390/diagnostics14151672
– volume: 131
  start-page: E2222
  year: 2021
  ident: ref_16
  article-title: Evaluating laryngopharyngeal tumor extension using narrow band imaging versus conventional white light imaging
  publication-title: Laryngoscope
  doi: 10.1002/lary.29361
– volume: 27
  start-page: 7200508
  year: 2020
  ident: ref_14
  article-title: Optical filters for narrow band light adaptation on imaging devices
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– ident: ref_30
– ident: ref_50
  doi: 10.1109/IWSSIP48289.2020.9145130
– ident: ref_22
  doi: 10.3390/rs9111110
– ident: ref_36
  doi: 10.3390/s21072380
– volume: 7
  start-page: e712
  year: 2021
  ident: ref_46
  article-title: Sentiment classification for employees reviews using regression vector-stochastic gradient descent classifier (RV-SGDC)
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.712
– ident: ref_11
  doi: 10.3390/diagnostics15030374
– volume: 16
  start-page: 1
  year: 2022
  ident: ref_20
  article-title: Hyperspectral imaging for clinical applications
  publication-title: BioChip J.
  doi: 10.1007/s13206-021-00041-0
– volume: 22
  start-page: 165
  year: 2016
  ident: ref_15
  article-title: NBI optical filters in minimally invasive medical devices
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2016.2514709
– volume: 1268
  start-page: 123
  year: 2020
  ident: ref_3
  article-title: Epidemiology of skin cancer: Update 2019
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-030-46227-7_6
– volume: 197
  start-page: 198
  year: 2022
  ident: ref_35
  article-title: Melanoma image classification based on MobileNetV2 network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.12.132
– volume: 8
  start-page: 2411
  year: 2022
  ident: ref_32
  article-title: Improving performance of breast lesion classification using a ResNet50 model optimized with a novel attention mechanism
  publication-title: Tomography
  doi: 10.3390/tomography8050200
– volume: 171
  start-page: 107528
  year: 2021
  ident: ref_42
  article-title: The detection of Parkinson disease using the genetic algorithm and SVM classifier
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107528
– ident: ref_21
  doi: 10.1109/RAST.2013.6581194
– volume: 503
  start-page: 92
  year: 2022
  ident: ref_29
  article-title: Activation functions in deep learning: A comprehensive survey and benchmark
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.111
– ident: ref_38
  doi: 10.3390/bdcc6010013
– volume: 8
  start-page: 147858
  year: 2020
  ident: ref_1
  article-title: Region-of-Interest based transfer learning assisted framework for skin cancer detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3014701
– ident: ref_6
  doi: 10.1007/978-3-031-78554-2_17
– ident: ref_33
– ident: ref_23
  doi: 10.3390/s23042026
– ident: ref_34
  doi: 10.1109/ITCA52113.2020.00106
– volume: 325
  start-page: 1965
  year: 2021
  ident: ref_4
  article-title: Screening for colorectal cancer: US Preventive Services Task Force recommendation statement
  publication-title: JAMA
  doi: 10.1001/jama.2021.6238
– volume: 1
  start-page: 111
  year: 2021
  ident: ref_13
  article-title: Narrow-band imaging. Endoscopy in Early Gastrointestinal Cancers
  publication-title: Diagnosis
– ident: ref_49
  doi: 10.1109/ICDABI60145.2023.10629380
– ident: ref_31
  doi: 10.1109/EICT48899.2019.9068805
– ident: ref_40
  doi: 10.3390/drones7050304
– volume: 25
  start-page: 323
  year: 2006
  ident: ref_48
  article-title: Approximation with polynomial kernels and SVM classifiers
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-004-7206-2
– ident: ref_24
  doi: 10.3390/diagnostics14111129
– volume: 33
  start-page: 4266
  year: 2020
  ident: ref_8
  article-title: Skin cancer detection and classification using machine learning
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.07.366
SSID ssj0001325264
Score 2.2970543
Snippet Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK...
The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and...
Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 755
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Cancer
Classification
Color
Comparative analysis
convolutional neural network
Data mining
Datasets
Diagnosis
Geospatial data
Hyperspectral imaging
Learning algorithms
Lesions
Machine learning
Medical imaging
Medical imaging equipment
Melanoma
Neural networks
Polynomials
random forest
Skin cancer
Skin diseases
Skin lesions
spectrum-aided vision enhancer
Support vector machines
yolo
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTvSA2vLRUIqMVIlTtPE4ziZHikALEj3tStysfNiFQ7PVsvv_eeOEJVErceEWxU6UzGQ88-KZN0L80A01AB4mVpVLAFDqJs6LqY-N895nrgYi4-Lku1_ZbJHe3pv7Qasvzgnr6IE7wU0QUGSVb-DomjJNC12mVJYOfjQ3NPVNKPOFzxuAqfB3RZOBq-9KgjVw_aR6XLpXhj9FTHPD9X0DbxRI-_9dmge-aZw3OXBE15_EXh9ByovuyT-LD679Ij4OeAX3xXwGdNkVUeIG8uZPaEUkEZ_Kq_Yh7PlL7rolL_l4JUNnTM4ZCmqSIY1A3oU0Syd7BtbfB2JxfTW_nMV9-4S4NmTWcVXnpFxSK96NpczDvqomy1xGTWoKIF9NFSnv8yzxuoZUFQ6AnrDulDmAjj4UO-2ydV-FJMW7p1yTC0WQoxKOHtfAoJWvknQaicmLGO3fjiXDAl2w4O3_BR-Jnyzt7WxmuQ4noHvb696-pftInLOuLNsi5FmXfUkBHppZrexFbjjkwRIaiZPRTNhQPR5-0bbtbfjJatIagM8UKhJn22G-kvPSWrfchDmIwHRSQARH3cexfSWmnkPwhJF89NmM3nk80j4-BIZvRVQQ5eb4PaT0TewSNy1mNlB1InbWq437jkhqXZ0Go3kGzzEbNA
  priority: 102
  providerName: Directory of Open Access Journals
Title Hyperspectral Imaging for Enhanced Skin Cancer Classification Using Machine Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/40722447
https://www.proquest.com/docview/3233086591
https://www.proquest.com/docview/3234313097
https://pubmed.ncbi.nlm.nih.gov/PMC12292285
https://doaj.org/article/4056bfd743da4493a42aae6438527fd8
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUeEN8ERmUkJJ6i1uc4dZ5QO1oK0iaENmlvUT7sbQ9LRtf9_9w57kcE4i2KncQ5-77su98BfFI11uR46FiWdkIOSlXHJpu6WFvnXGor8sg4Ofn0LF1dJD8u9WXYcLsPYZVbmegFdd1WvEc-Vkiet0l1Jr_c_Y65ahSfroYSGkcwJBFszACG88XZz1_7XRaFmlR-lxqsyL8flzet3SP9SWS4G87zO9BKHrz_bxF9oKP68ZMHCmn5DJ4GS1LMuql_Do9s8wKeHOALvoTzFXmZXTIlvUB8v_UliQTZqWLRXPuzf8HVt8QJX6-Fr5DJsUN-uoQPJxCnPtzSioDEevUKLpaL85NVHMooxJVGvYnLyqC0k0ryqSymjvisrNPUplgnOiMPWGGJ0jmTTpyqsCgkXZAXRfKnMOTwqNcwaNrGvgWBkk9ROTe3pndZLEjh0zPE2NKVk2QawXhLxvyuQ8vIyctgwuf_JnwEc6b2rjejXfsb7foqD8yTk1GZlo4-qeoiSTJVJDRKS7aU0Th1tYngM89VzjxJ9KyKkFpAg2Z0q3xmNJs-JEojOO71JF6q-s3b2c4DL9_n-5UXwcddMz_J8WmNbR98H7LE1CQjErzpFsfulxiCjowoajG9ZdP7535Lc3Ptkb4lYoZo9Lv_j-s9PEYuS8x4n_IYBpv1g_1AttKmHMGRWX4bwXA2_zpfjgJ7jPzOwx-nSxel
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiGcJFDASiFO08TjOOgeESumyS7s9baXeQh522wPZst0K8af4jcw4ye5GIG69RbHjOOOZ8TfxPADeqgorMjx0KAsbkYFSVqFJhy7U1jmX2JIsMg5Onh4n45P466k-3YLfXSwMu1V2OtEr6mpe8j_ygUKyvE2iU_nx8kfIVaP4dLUrodGwxaH99ZNMtqsPk8-0vu8QRwez_XHYVhUIS416GRalQWmjUvIhJSaO2K6oksQmWMU6JYNQYYHSOZNETpWY55IuyKggccwN4X9F496C27GinZwj00df1v90FGoCGE0gMrVHg-Jibtd5BSVych2OKtzYA32pgL83hI0dse-tubH9jR7A_Ra3ir2G0R7Clq0fwb2NbIaPYTYmm7YJ3aQBxOS7L4AkCBWLg_rcexoIrvUl9vl6IXw9TvZU8swhvPOCmHrnTivavK9nT-DkRsj7FLbreW2fgUDJZ7YcCVzRWBZzghf0DKkR6YooHgYw6MiYXTa5OTKyaZjw2b8JH8AnpvaqN-fW9jfmi7OsFdWMIGxSOHqlqvI4TlUe0ywtITejcegqE8B7XquMNQDRs8zbQAaaNOfSyvaMZqBFijuA3V5Pktyy39ytdtZqjqtszecBvFk185PsDVfb-bXvQ7hPRSmRYKdhjtUnccI7gmzUYnps0_vmfkt9ce7zikvEFNHo5_-f12u4M55Nj7KjyfHhC7iLXBCZM43KXdheLq7tS0Jpy-KVFw0B325aFv8A2f9NUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgUPEsKQWMBOIUbTyOs8kBoT52tUvpqkKt1FvIw257ICnbrRB_jV_HjJN9RCBuvUWx4zjjmfF88TwA3qkSSwIe2pe5CQigFKUfJwPra2OtjUxBiIyDk4-n0fgs_Hyuzzfg9yIWht0qFzrRKeqyLvgfeV8hIe840ons29Yt4uRw9On6h88VpPikdVFOo2GRI_PrJ8G3m4-TQ1rr94ij4enB2G8rDPiFRj338yJGaYJC8oElRpZYMC-jyERYhjohcKgwR2ltHAVWFZhlki4IYJBoZjFhAUXj3oPNAaOiHmzuD6cnX1d_eBRqMjeasGSlkqCfX9VmlWVQIqfa4RjDtR3RFQ74e3tY2x-7vptrm-HoEWy1VqzYa9juMWyY6gk8XMtt-BROx4Rwm0BOGkBMvrtySIJsZDGsLp3fgeDKX-KAr2fCVedkvyXHKsK5Mohj5-ppRJsF9uIZnN0JgZ9Dr6or8wIESj7B5bjgksYymJGxQc-QUpE2D8KBB_0FGdPrJlNHSgiHCZ_-m_Ae7DO1l70507a7Uc8u0lZwUzJoo9zSK1WZhWGispBmaciOizUObBl78IHXKmV9QPQssjasgSbNmbXSvViz2UVq3IPdTk-S46LbvFjttNUjN-mK6z14u2zmJ9k3rjL1retDVqAKEiLBdsMcy0_i9HdkwFFL3GGbzjd3W6qrS5dlXCImiLHe-f-83sB9ksP0y2R69BIeIFdH5rSjchd689mteUUm2zx_3cqGgG93LY5_AAwOUuI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Imaging+for+Enhanced+Skin+Cancer+Classification+Using+Machine+Learning&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Teng-Li%2C+Lin&rft.au=Mukundan+Arvind&rft.au=Karmakar+Riya&rft.au=Avala+Praveen&rft.date=2025-07-11&rft.pub=MDPI+AG&rft.eissn=2306-5354&rft.volume=12&rft.issue=7&rft.spage=755&rft_id=info:doi/10.3390%2Fbioengineering12070755&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon