Hyperspectral Imaging for Enhanced Skin Cancer Classification Using Machine Learning
Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and SK. These conditions are generally not easily detectable due to their comparable clinical presentations. Method: This paper presen...
Saved in:
Published in | Bioengineering (Basel) Vol. 12; no. 7; p. 755 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
11.07.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and SK. These conditions are generally not easily detectable due to their comparable clinical presentations. Method: This paper presents a new approach to hyperspectral imaging for enhancing the visualization of skin lesions called the Spectrum-Aided Vision Enhancer (SAVE), which has the ability to convert any RGB image into a narrow-band image (NBI) by combining hyperspectral imaging (HSI) to increase the contrast of the area of the cancerous lesions when compared with the normal tissue, thereby increasing the accuracy of classification. The current study investigates the use of ten different machine learning algorithms for the purpose of classification of AK, BCC, and SK, including convolutional neural network (CNN), random forest (RF), you only look once (YOLO) version 8, support vector machine (SVM), ResNet50, MobileNetV2, Logistic Regression, SVM with stochastic gradient descent (SGD) Classifier, SVM with logarithmic (LOG) Classifier and SVM- Polynomial Classifier, in assessing the capability of the system to differentiate AK from BCC and SK with heightened accuracy. Results: The results demonstrated that SAVE enhanced classification performance and increased its accuracy, sensitivity, and specificity compared to a traditional RGB imaging approach. Conclusions: This advanced method offers dermatologists a tool for early and accurate diagnosis, reducing the likelihood of misclassification and improving patient outcomes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2306-5354 2306-5354 |
DOI: | 10.3390/bioengineering12070755 |