Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land
Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are non-biodegradable, they persist in the environment, have potential to enter the food chain through crop plants, and eventually may accumulate in...
Saved in:
Published in | Frontiers in plant science Vol. 11; p. 359 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
30.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are non-biodegradable, they persist in the environment, have potential to enter the food chain through crop plants, and eventually may accumulate in the human body through biomagnification. Owing to their toxic nature, heavy metal contamination has posed a serious threat to human health and the ecosystem. Therefore, remediation of land contamination is of paramount importance. Phytoremediation is an eco-friendly approach that could be a successful mitigation measure to revegetate heavy metal-polluted soil in a cost-effective way. To improve the efficiency of phytoremediation, a better understanding of the mechanisms underlying heavy metal accumulation and tolerance in plant is indispensable. In this review, we describe the mechanisms of how heavy metals are taken up, translocated, and detoxified in plants. We focus on the strategies applied to improve the efficiency of phytostabilization and phytoextraction, including the application of genetic engineering, microbe-assisted and chelate-assisted approaches. |
---|---|
AbstractList | Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are non-biodegradable, they persist in the environment, have potential to enter the food chain through crop plants, and eventually may accumulate in the human body through biomagnification. Owing to their toxic nature, heavy metal contamination has posed a serious threat to human health and the ecosystem. Therefore, remediation of land contamination is of paramount importance. Phytoremediation is an eco-friendly approach that could be a successful mitigation measure to revegetate heavy metal-polluted soil in a cost-effective way. To improve the efficiency of phytoremediation, a better understanding of the mechanisms underlying heavy metal accumulation and tolerance in plant is indispensable. In this review, we describe the mechanisms of how heavy metals are taken up, translocated, and detoxified in plants. We focus on the strategies applied to improve the efficiency of phytostabilization and phytoextraction, including the application of genetic engineering, microbe-assisted and chelate-assisted approaches. Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are non-biodegradable, they persist in the environment, have potential to enter the food chain through crop plants, and eventually may accumulate in the human body through biomagnification. Owing to their toxic nature, heavy metal contamination has posed a serious threat to human health and the ecosystem. Therefore, remediation of land contamination is of paramount importance. Phytoremediation is an eco-friendly approach that could be a successful mitigation measure to revegetate heavy metal-polluted soil in a cost-effective way. To improve the efficiency of phytoremediation, a better understanding of the mechanisms underlying heavy metal accumulation and tolerance in plant is indispensable. In this review, we describe the mechanisms of how heavy metals are taken up, translocated, and detoxified in plants. We focus on the strategies applied to improve the efficiency of phytostabilization and phytoextraction, including the application of genetic engineering, microbe-assisted and chelate-assisted approaches.Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are non-biodegradable, they persist in the environment, have potential to enter the food chain through crop plants, and eventually may accumulate in the human body through biomagnification. Owing to their toxic nature, heavy metal contamination has posed a serious threat to human health and the ecosystem. Therefore, remediation of land contamination is of paramount importance. Phytoremediation is an eco-friendly approach that could be a successful mitigation measure to revegetate heavy metal-polluted soil in a cost-effective way. To improve the efficiency of phytoremediation, a better understanding of the mechanisms underlying heavy metal accumulation and tolerance in plant is indispensable. In this review, we describe the mechanisms of how heavy metals are taken up, translocated, and detoxified in plants. We focus on the strategies applied to improve the efficiency of phytostabilization and phytoextraction, including the application of genetic engineering, microbe-assisted and chelate-assisted approaches. |
Author | Yan, An Chen, Zhong Tan, Swee Ngin Wang, Yamin Ghosh, Subhadip Mohd Yusof, Mohamed Lokman |
AuthorAffiliation | 4 M Grass International Institute of Smart Urban Greenology , Singapore , Singapore 3 School of Environmental and Rural Science, University of New England , Armidale, NSW , Australia 1 Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University , Singapore , Singapore 2 Centre for Urban Greenery and Ecology, National Parks Board , Singapore , Singapore |
AuthorAffiliation_xml | – name: 1 Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University , Singapore , Singapore – name: 4 M Grass International Institute of Smart Urban Greenology , Singapore , Singapore – name: 2 Centre for Urban Greenery and Ecology, National Parks Board , Singapore , Singapore – name: 3 School of Environmental and Rural Science, University of New England , Armidale, NSW , Australia |
Author_xml | – sequence: 1 givenname: An surname: Yan fullname: Yan, An – sequence: 2 givenname: Yamin surname: Wang fullname: Wang, Yamin – sequence: 3 givenname: Swee Ngin surname: Tan fullname: Tan, Swee Ngin – sequence: 4 givenname: Mohamed Lokman surname: Mohd Yusof fullname: Mohd Yusof, Mohamed Lokman – sequence: 5 givenname: Subhadip surname: Ghosh fullname: Ghosh, Subhadip – sequence: 6 givenname: Zhong surname: Chen fullname: Chen, Zhong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32425957$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1rGzEQhkVJaT6ac29Fx17W0fdaPRRMSJOAS01JoTehlWZtBXm11a4N_veV7aQkheqiYfTOM8zoPUcnXeoAoQ-UTDif6qu2j8OEEUYmhHCp36AzqpSohGK_Tl7Ep-hyGB5JOZIQret36JQzwaSW9Rl6WKx2Y8qwBh_sGFL3Gc_wIqd1GEK3xLO-z8m6FW5Txj9gC0sYDzKcWnwHdrvD30omVosU42YEj-e28-_R29bGAS6f7gv08-vNw_VdNf9-e389m1dOMjlWzZQTabnyyqpGOe7A-sZRLrlijfbUNc5NfWPLENTzxpegqa0AKR0VhDJ-ge6PXJ_so-lzWNu8M8kGc0ikvDQ2j8FFMKLWXusWBFAruKJaSV_XmlPXtsq1srC-HFn9pinLcNCN2cZX0NcvXViZZdqamhEuaF0An54AOf3ewDCaskMHMdoO0mYwTBChilDQIv34stffJs_fUgTyKHA5DUOG1rhw3HtpHaKhxOwdYPYOMHsHmIMDSt3VP3XP6P9V_AGqwrTr |
CitedBy_id | crossref_primary_10_1016_j_eti_2021_101833 crossref_primary_10_1016_j_jenvman_2023_118005 crossref_primary_10_1007_s11368_022_03401_x crossref_primary_10_1038_s41467_024_49869_8 crossref_primary_10_1007_s13762_024_05690_w crossref_primary_10_3390_microorganisms11040864 crossref_primary_10_1016_j_envpol_2023_122112 crossref_primary_10_1016_j_stress_2024_100439 crossref_primary_10_21285_2227_2925_2021_11_2_228_235 crossref_primary_10_1007_s10661_022_10859_2 crossref_primary_10_1080_23312025_2020_1802814 crossref_primary_10_3390_min12040409 crossref_primary_10_3390_plants11091216 crossref_primary_10_1007_s10661_024_13414_3 crossref_primary_10_1016_j_chemosphere_2022_134055 crossref_primary_10_1080_02757540_2023_2203142 crossref_primary_10_1016_j_jhazmat_2021_127710 crossref_primary_10_1007_s10123_024_00546_2 crossref_primary_10_3389_fenvs_2022_949581 crossref_primary_10_1007_s13762_021_03696_2 crossref_primary_10_1016_j_agee_2022_108090 crossref_primary_10_3389_fenvs_2022_830087 crossref_primary_10_1080_15226514_2023_2170322 crossref_primary_10_1088_1755_1315_847_1_012012 crossref_primary_10_3390_microorganisms11061587 crossref_primary_10_1186_s40168_024_01959_x crossref_primary_10_1007_s11356_023_29031_5 crossref_primary_10_1016_j_indic_2024_100396 crossref_primary_10_3390_ijerph19063583 crossref_primary_10_1007_s11356_024_35519_5 crossref_primary_10_1016_j_chemosphere_2022_137547 crossref_primary_10_1007_s11104_023_06338_3 crossref_primary_10_1515_opag_2022_0368 crossref_primary_10_3390_toxics10090499 crossref_primary_10_1007_s42729_024_01639_7 crossref_primary_10_1016_j_chemosphere_2022_137301 crossref_primary_10_1007_s41748_023_00349_x crossref_primary_10_3390_jof10120844 crossref_primary_10_1007_s11270_021_05124_0 crossref_primary_10_1007_s11157_023_09653_4 crossref_primary_10_1007_s11270_023_06112_2 crossref_primary_10_1088_1755_1315_1109_1_012050 crossref_primary_10_15243_jdmlm_2024_114_6307 crossref_primary_10_1007_s11248_024_00393_x crossref_primary_10_1016_j_matpr_2022_11_261 crossref_primary_10_1016_j_envadv_2022_100313 crossref_primary_10_3390_app13074223 crossref_primary_10_1007_s13762_022_04669_9 crossref_primary_10_1016_j_jhazmat_2021_125990 crossref_primary_10_1016_j_chemosphere_2022_134045 crossref_primary_10_1016_j_chemosphere_2022_137551 crossref_primary_10_3390_plants12071484 crossref_primary_10_1016_j_jhazmat_2021_127920 crossref_primary_10_1007_s11356_023_27566_1 crossref_primary_10_3390_su152014933 crossref_primary_10_1007_s10653_022_01378_7 crossref_primary_10_1080_15226514_2021_2023461 crossref_primary_10_1016_j_envpol_2024_123767 crossref_primary_10_1016_j_chemosphere_2024_142273 crossref_primary_10_3390_soilsystems8010008 crossref_primary_10_51847_evfEMeqisK crossref_primary_10_1016_j_scitotenv_2022_156373 crossref_primary_10_3390_plants11091255 crossref_primary_10_1007_s11738_023_03644_2 crossref_primary_10_3390_soilsystems8010001 crossref_primary_10_3390_jox13020019 crossref_primary_10_1002_slct_202401426 crossref_primary_10_1002_ldr_4210 crossref_primary_10_1007_s11104_023_06095_3 crossref_primary_10_1007_s11356_024_34706_8 crossref_primary_10_1016_j_envpol_2020_115193 crossref_primary_10_1016_j_chemosphere_2022_135196 crossref_primary_10_1016_j_jhazmat_2023_132855 crossref_primary_10_1016_j_cscee_2023_100307 crossref_primary_10_1007_s10098_024_03116_2 crossref_primary_10_3390_agronomy12102587 crossref_primary_10_1080_10934529_2023_2236535 crossref_primary_10_1016_j_chemosphere_2022_137106 crossref_primary_10_1007_s11356_025_36097_w crossref_primary_10_1080_15226514_2024_2321597 crossref_primary_10_3390_agronomy13061521 crossref_primary_10_1007_s11270_024_07445_2 crossref_primary_10_1016_j_jenvman_2023_119148 crossref_primary_10_1080_10408398_2021_1979931 crossref_primary_10_33002_nr2581_6853_040309 crossref_primary_10_1007_s12517_021_07521_5 crossref_primary_10_1007_s11157_023_09675_y crossref_primary_10_1016_j_jtemin_2023_100057 crossref_primary_10_3389_fmicb_2022_853407 crossref_primary_10_1016_j_chemosphere_2023_139833 crossref_primary_10_1016_j_ecofro_2024_06_001 crossref_primary_10_3390_plants12163003 crossref_primary_10_3389_fpls_2024_1389207 crossref_primary_10_3390_plants12040725 crossref_primary_10_1016_j_chemosphere_2023_140819 crossref_primary_10_1093_inteam_vjaf024 crossref_primary_10_3389_fpls_2024_1423625 crossref_primary_10_3389_fmicb_2021_731723 crossref_primary_10_1016_j_jenvman_2023_119971 crossref_primary_10_1007_s11356_024_33698_9 crossref_primary_10_3390_metabo12111049 crossref_primary_10_1016_j_envpol_2022_120964 crossref_primary_10_3390_su151813375 crossref_primary_10_21285_2500_1582_2022_4_322_333 crossref_primary_10_1007_s10653_022_01387_6 crossref_primary_10_1016_j_jfp_2023_100166 crossref_primary_10_1016_j_indcrop_2022_114942 crossref_primary_10_1007_s11356_023_29002_w crossref_primary_10_1007_s10661_023_12073_0 crossref_primary_10_1002_jobm_202100372 crossref_primary_10_1007_s11356_023_29279_x crossref_primary_10_1007_s11356_024_34585_z crossref_primary_10_1007_s11270_023_06423_4 crossref_primary_10_1080_15226514_2023_2185450 crossref_primary_10_1080_10889868_2022_2049682 crossref_primary_10_1007_s13762_023_05313_w crossref_primary_10_1007_s41748_024_00386_0 crossref_primary_10_1016_j_jenvman_2024_123035 crossref_primary_10_1016_j_chemosphere_2022_136881 crossref_primary_10_1021_acsestwater_2c00535 crossref_primary_10_1016_j_radphyschem_2023_110851 crossref_primary_10_1016_j_envint_2022_107546 crossref_primary_10_1016_j_ijhydene_2024_01_081 crossref_primary_10_1038_s41598_023_32990_x crossref_primary_10_1016_j_biteb_2021_100834 crossref_primary_10_1080_02757540_2024_2306839 crossref_primary_10_1080_10643389_2024_2315009 crossref_primary_10_3390_plants10102176 crossref_primary_10_3390_molecules27154671 crossref_primary_10_1007_s11356_022_23966_x crossref_primary_10_1007_s00299_024_03351_3 crossref_primary_10_1007_s10653_022_01260_6 crossref_primary_10_1016_j_envres_2022_115055 crossref_primary_10_1007_s40726_023_00248_9 crossref_primary_10_1016_j_envpol_2023_123050 crossref_primary_10_1016_j_scitotenv_2024_171276 crossref_primary_10_1016_j_cej_2023_142006 crossref_primary_10_1590_1519_6984_271684 crossref_primary_10_1016_j_scitotenv_2021_149788 crossref_primary_10_1071_CP21583 crossref_primary_10_1016_j_jece_2024_113038 crossref_primary_10_1016_j_matpr_2022_11_418 crossref_primary_10_3390_pr12122733 crossref_primary_10_1016_j_chemosphere_2022_135531 crossref_primary_10_3390_su132413538 crossref_primary_10_3390_jmse11091826 crossref_primary_10_3390_pr10101954 crossref_primary_10_1007_s12665_024_11631_0 crossref_primary_10_3390_plants12223833 crossref_primary_10_1007_s11356_024_34911_5 crossref_primary_10_1007_s11270_024_07382_0 crossref_primary_10_1016_j_scitotenv_2024_173029 crossref_primary_10_1099_mgen_0_001223 crossref_primary_10_1021_acsabm_3c00669 crossref_primary_10_3390_toxics11050422 crossref_primary_10_3390_ma15207243 crossref_primary_10_1007_s11270_024_07251_w crossref_primary_10_1016_j_chemosphere_2022_135581 crossref_primary_10_1080_21655979_2021_1996748 crossref_primary_10_1051_e3sconf_202340501001 crossref_primary_10_32604_jrm_2022_022393 crossref_primary_10_1080_17429145_2022_2096266 crossref_primary_10_1007_s44169_024_00074_0 crossref_primary_10_3390_plants12081653 crossref_primary_10_1155_2022_7425085 crossref_primary_10_1016_j_jece_2024_112125 crossref_primary_10_3390_plants12112084 crossref_primary_10_3390_app12199598 crossref_primary_10_3389_fenrg_2022_1032404 crossref_primary_10_1016_j_crmicr_2022_100166 crossref_primary_10_1016_j_envadv_2023_100430 crossref_primary_10_1016_j_envpol_2022_119559 crossref_primary_10_1016_j_jenvman_2021_113657 crossref_primary_10_4491_eer_2022_560 crossref_primary_10_1002_slct_202202970 crossref_primary_10_1007_s11356_022_22210_w crossref_primary_10_1016_j_chemosphere_2024_142694 crossref_primary_10_1007_s11356_021_16084_7 crossref_primary_10_1016_j_plaphy_2024_109388 crossref_primary_10_1007_s11104_024_07107_6 crossref_primary_10_1016_j_chemosphere_2024_141369 crossref_primary_10_1016_j_ecoenv_2024_116731 crossref_primary_10_1016_j_heliyon_2024_e25942 crossref_primary_10_3390_agriculture14122110 crossref_primary_10_1080_15226514_2022_2161466 crossref_primary_10_1016_j_jhazmat_2023_133078 crossref_primary_10_3390_plants11233210 crossref_primary_10_46909_alse_574158 crossref_primary_10_1007_s11356_024_35018_7 crossref_primary_10_1080_14786419_2022_2097227 crossref_primary_10_3390_w15081566 crossref_primary_10_1007_s42773_023_00270_6 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000731 crossref_primary_10_1080_15226514_2020_1859986 crossref_primary_10_3390_w16060870 crossref_primary_10_3390_min13111354 crossref_primary_10_1007_s42729_024_02174_1 crossref_primary_10_1080_15226514_2024_2427928 crossref_primary_10_7831_ras_11_0_20 crossref_primary_10_3390_plants13172460 crossref_primary_10_1039_D3SU00440F crossref_primary_10_1016_j_aquatox_2023_106496 crossref_primary_10_1016_j_envpol_2022_119779 crossref_primary_10_1016_j_envres_2025_121353 crossref_primary_10_1016_j_ecoenv_2024_116113 crossref_primary_10_3389_fpls_2023_1337700 crossref_primary_10_1016_j_jenvman_2024_120167 crossref_primary_10_3390_plants11050595 crossref_primary_10_1016_j_envdev_2024_100992 crossref_primary_10_3390_ijms24087383 crossref_primary_10_1080_15226514_2023_2187224 crossref_primary_10_3390_stresses1040018 crossref_primary_10_1080_01490451_2023_2286492 crossref_primary_10_3389_fenvs_2021_661423 crossref_primary_10_1007_s11356_023_25553_0 crossref_primary_10_1016_j_envres_2022_114955 crossref_primary_10_3390_ijerph192316309 crossref_primary_10_1002_wene_489 crossref_primary_10_1016_j_soh_2023_100013 crossref_primary_10_1007_s40626_024_00327_2 crossref_primary_10_1016_j_envres_2023_117270 crossref_primary_10_3390_ma15155233 crossref_primary_10_1007_s10661_021_09504_1 crossref_primary_10_3390_plants13010079 crossref_primary_10_2298_ABS220309016H crossref_primary_10_1111_ppl_13285 crossref_primary_10_3390_su151813426 crossref_primary_10_1007_s10904_024_03114_3 crossref_primary_10_1016_j_seh_2024_100061 crossref_primary_10_1016_j_wasman_2024_03_010 crossref_primary_10_1007_s11356_024_35600_z crossref_primary_10_1186_s12870_024_05906_8 crossref_primary_10_35118_apjmbb_2022_030_3_07 crossref_primary_10_3390_su15032518 crossref_primary_10_1007_s11356_023_27732_5 crossref_primary_10_3390_su16083315 crossref_primary_10_1080_09593330_2022_2113918 crossref_primary_10_3390_pr12040833 crossref_primary_10_1007_s42729_023_01275_7 crossref_primary_10_3390_su15032761 crossref_primary_10_1016_j_chnaes_2022_05_008 crossref_primary_10_15243_jdmlm_2025_122_7009 crossref_primary_10_3390_stresses4040062 crossref_primary_10_1007_s11356_024_35217_2 crossref_primary_10_1016_j_scitotenv_2023_163634 crossref_primary_10_2478_johr_2024_0003 crossref_primary_10_1016_j_heliyon_2023_e12921 crossref_primary_10_1016_j_chemosphere_2022_134842 crossref_primary_10_1016_j_envadv_2024_100598 crossref_primary_10_1016_j_jhazmat_2024_135643 crossref_primary_10_1186_s12863_025_01300_x crossref_primary_10_1007_s44274_024_00170_x crossref_primary_10_1007_s13762_024_05673_x crossref_primary_10_1016_j_molstruc_2021_130277 crossref_primary_10_1016_j_wmb_2024_02_004 crossref_primary_10_1111_brv_13172 crossref_primary_10_2166_aqua_2024_427 crossref_primary_10_2174_0115734110286256240116061511 crossref_primary_10_1007_s13762_022_04128_5 crossref_primary_10_3390_nano11113082 crossref_primary_10_3390_agriculture13030735 crossref_primary_10_1016_j_envpol_2023_121733 crossref_primary_10_1016_j_envres_2022_113821 crossref_primary_10_1016_j_bcab_2024_103108 crossref_primary_10_3390_microorganisms9122545 crossref_primary_10_1016_j_biteb_2023_101678 crossref_primary_10_1016_j_psep_2022_12_035 crossref_primary_10_1016_j_envres_2023_117479 crossref_primary_10_1007_s12010_023_04545_3 crossref_primary_10_1016_j_chemosphere_2022_133577 crossref_primary_10_1016_j_hazadv_2024_100481 crossref_primary_10_1007_s44290_024_00103_w crossref_primary_10_1007_s10661_024_13236_3 crossref_primary_10_1007_s11356_020_12271_0 crossref_primary_10_1016_j_ecoenv_2025_117750 crossref_primary_10_1007_s13201_023_01898_2 crossref_primary_10_1016_j_jenvman_2022_117211 crossref_primary_10_1016_j_jenvman_2022_116123 crossref_primary_10_3389_fmars_2021_697269 crossref_primary_10_3390_ijerph17134841 crossref_primary_10_1016_j_enmm_2024_100969 crossref_primary_10_1016_j_envpol_2022_119128 crossref_primary_10_3390_biology14010023 crossref_primary_10_1016_j_sajb_2023_08_053 crossref_primary_10_3390_soilsystems7030069 crossref_primary_10_3390_su162310587 crossref_primary_10_47430_ujmr_2491_010 crossref_primary_10_2174_2211550111666220428113114 crossref_primary_10_1007_s11738_024_03700_5 crossref_primary_10_17350_HJSE19030000290 crossref_primary_10_1016_j_enmm_2024_100975 crossref_primary_10_1016_j_jhazmat_2023_131181 crossref_primary_10_22159_ijpps_2024v16i5_50724 crossref_primary_10_3390_plants13010098 crossref_primary_10_1016_j_envpol_2022_119375 crossref_primary_10_1016_j_envres_2022_112709 crossref_primary_10_3390_app13084978 crossref_primary_10_3390_land12081533 crossref_primary_10_51847_NgvVoWUMKC crossref_primary_10_1007_s13762_023_05120_3 crossref_primary_10_1016_j_seh_2024_100080 crossref_primary_10_1016_j_chemosphere_2024_142199 crossref_primary_10_1007_s12010_023_04465_2 crossref_primary_10_1016_j_heliyon_2023_e16692 crossref_primary_10_3390_f14030654 crossref_primary_10_3390_plants11192554 crossref_primary_10_1080_15592324_2021_1995647 crossref_primary_10_1016_j_chemosphere_2023_138411 crossref_primary_10_3390_microorganisms11071653 crossref_primary_10_1590_1678_4324_2024230161 crossref_primary_10_3390_plants13192733 crossref_primary_10_1007_s11356_024_35659_8 crossref_primary_10_1007_s00128_023_03704_w crossref_primary_10_1002_jeq2_20503 crossref_primary_10_1016_j_jenvman_2024_120553 crossref_primary_10_1007_s11270_022_05620_x crossref_primary_10_1016_j_jenvman_2024_121409 crossref_primary_10_3390_su142416415 crossref_primary_10_1002_tqem_22131 crossref_primary_10_3389_fpls_2022_1074383 crossref_primary_10_1007_s13762_024_05657_x crossref_primary_10_1007_s11270_022_05775_7 crossref_primary_10_1007_s11356_022_19756_0 crossref_primary_10_1016_j_plaphy_2024_108652 crossref_primary_10_1021_acs_est_4c00977 crossref_primary_10_3390_cells13080686 crossref_primary_10_1016_j_eti_2023_103043 crossref_primary_10_3390_toxics12090625 crossref_primary_10_3390_su142315879 crossref_primary_10_1007_s00449_022_02745_5 crossref_primary_10_1007_s10098_024_03085_6 crossref_primary_10_3390_su152115646 crossref_primary_10_3390_agriculture12060749 crossref_primary_10_1016_j_exis_2023_101318 crossref_primary_10_1080_15226514_2023_2288906 crossref_primary_10_1007_s11356_023_31669_0 crossref_primary_10_3389_fpls_2023_1076876 crossref_primary_10_1109_LGRS_2023_3291019 crossref_primary_10_1111_1440_1703_12466 crossref_primary_10_1590_1413_7054202347011322 crossref_primary_10_1016_j_scitotenv_2024_173941 crossref_primary_10_1016_j_envexpbot_2022_105116 crossref_primary_10_1007_s00128_023_03694_9 crossref_primary_10_3390_biom12010043 crossref_primary_10_3390_ijerph192416482 crossref_primary_10_3390_plants13111534 crossref_primary_10_1007_s42729_021_00645_3 crossref_primary_10_1016_j_sajb_2023_09_033 crossref_primary_10_1016_j_scitotenv_2021_151474 crossref_primary_10_3390_app11072982 crossref_primary_10_4236_msce_2021_103001 crossref_primary_10_1007_s40415_022_00830_3 crossref_primary_10_3390_agriculture14111916 crossref_primary_10_1007_s42729_021_00743_2 crossref_primary_10_1016_j_pedsph_2024_09_003 crossref_primary_10_1007_s10971_023_06215_6 crossref_primary_10_1016_j_envpol_2020_116314 crossref_primary_10_36953_ECJ_12102318 crossref_primary_10_1016_j_jhazmat_2024_133813 crossref_primary_10_1016_j_envc_2021_100197 crossref_primary_10_1007_s11356_024_33910_w crossref_primary_10_1071_FP23021 crossref_primary_10_4028_www_scientific_net_MSF_1025_273 crossref_primary_10_1080_15226514_2020_1813075 crossref_primary_10_1016_j_eti_2023_103488 crossref_primary_10_1016_j_ecoleng_2022_106669 crossref_primary_10_1016_j_scitotenv_2024_173707 crossref_primary_10_1016_j_plaphy_2024_108846 crossref_primary_10_1016_j_wsee_2024_10_001 crossref_primary_10_1016_j_indcrop_2024_119487 crossref_primary_10_1016_j_ecoenv_2024_117011 crossref_primary_10_1007_s42250_022_00326_3 crossref_primary_10_1007_s11356_024_35790_6 crossref_primary_10_1016_j_plaphy_2023_108330 crossref_primary_10_1016_j_taap_2023_116449 crossref_primary_10_1016_j_jsames_2023_104317 crossref_primary_10_1016_j_gexplo_2024_107426 crossref_primary_10_1016_j_eti_2024_103757 crossref_primary_10_1071_FP23236 crossref_primary_10_1002_tqem_22139 crossref_primary_10_3389_fpls_2023_1145012 crossref_primary_10_1016_j_jclepro_2021_129468 crossref_primary_10_1007_s44169_023_00039_9 crossref_primary_10_1007_s10534_022_00431_3 crossref_primary_10_3389_fpls_2024_1510482 crossref_primary_10_1080_15226514_2024_2327611 crossref_primary_10_1007_s10725_024_01130_4 crossref_primary_10_1007_s13530_023_00195_4 crossref_primary_10_1007_s11356_022_22874_4 crossref_primary_10_3390_mining3040044 crossref_primary_10_1016_j_scitotenv_2024_178147 crossref_primary_10_1016_j_envpol_2023_121599 crossref_primary_10_1016_j_jhazmat_2023_131580 crossref_primary_10_1016_j_sajb_2024_02_032 crossref_primary_10_1016_j_sajb_2024_02_034 crossref_primary_10_3389_ffunb_2024_1363460 crossref_primary_10_1016_j_indcrop_2024_119029 crossref_primary_10_1007_s00128_021_03401_6 crossref_primary_10_3390_f15010180 crossref_primary_10_1016_j_envpol_2023_121141 crossref_primary_10_1080_01490451_2024_2318227 crossref_primary_10_1007_s11270_023_06838_z crossref_primary_10_3390_plants12040877 crossref_primary_10_1038_s41598_023_37430_4 crossref_primary_10_3390_app13031617 crossref_primary_10_1007_s11356_024_33054_x crossref_primary_10_3390_w14233972 crossref_primary_10_1016_j_rhisph_2023_100836 crossref_primary_10_3389_fpls_2022_881242 crossref_primary_10_1186_s12934_024_02508_9 crossref_primary_10_7717_peerj_14015 crossref_primary_10_1007_s11356_022_24904_7 crossref_primary_10_3389_fpls_2024_1332426 crossref_primary_10_3390_su142013637 crossref_primary_10_36320_ajb_v16_i3_17108 crossref_primary_10_1016_j_jafr_2022_100374 crossref_primary_10_1007_s44154_024_00153_1 crossref_primary_10_1016_j_jafr_2022_100373 crossref_primary_10_1016_j_envpol_2023_121130 crossref_primary_10_3390_biology11050676 crossref_primary_10_3389_fpls_2022_999866 crossref_primary_10_1016_j_envexpbot_2023_105292 crossref_primary_10_1134_S0003683823602676 crossref_primary_10_1016_j_bcab_2023_102845 crossref_primary_10_1016_j_chemosphere_2024_143208 crossref_primary_10_3390_su14042148 crossref_primary_10_1016_j_ecoenv_2022_114065 crossref_primary_10_3390_app12188941 crossref_primary_10_3390_horticulturae9070738 crossref_primary_10_1088_2515_7620_ad61c5 crossref_primary_10_3390_agriculture13091676 crossref_primary_10_3390_plants11111497 crossref_primary_10_3390_plants10091945 crossref_primary_10_3389_fpls_2022_874723 crossref_primary_10_1016_j_chemosphere_2022_135488 crossref_primary_10_3390_plants11070855 crossref_primary_10_1016_j_jclepro_2022_133922 crossref_primary_10_1016_j_scenv_2023_100018 crossref_primary_10_1016_j_plaphy_2024_108811 crossref_primary_10_3390_plants13060913 crossref_primary_10_1016_j_chemosphere_2022_136332 crossref_primary_10_1016_j_jenvman_2024_121821 crossref_primary_10_3390_agriculture13091684 crossref_primary_10_1007_s00344_024_11284_0 crossref_primary_10_1007_s13562_022_00776_3 crossref_primary_10_1007_s11356_023_28374_3 crossref_primary_10_1016_j_jece_2024_112221 crossref_primary_10_1007_s11356_025_35997_1 crossref_primary_10_3390_app131810239 crossref_primary_10_1016_j_ecoenv_2023_115439 crossref_primary_10_3389_fpls_2021_806949 crossref_primary_10_3390_su15118963 crossref_primary_10_1080_10406026_2024_2396492 crossref_primary_10_1007_s41742_023_00544_8 crossref_primary_10_3390_ijms24010052 crossref_primary_10_1016_j_envres_2022_114248 crossref_primary_10_3390_agriculture13101983 crossref_primary_10_3390_plants10091969 crossref_primary_10_1007_s10661_024_12940_4 crossref_primary_10_18393_ejss_1522127 crossref_primary_10_1021_acs_iecr_4c04523 crossref_primary_10_1007_s12298_023_01346_0 crossref_primary_10_31857_S0002188124100094 crossref_primary_10_1038_s41598_023_31986_x crossref_primary_10_1016_j_afres_2023_100347 crossref_primary_10_1016_j_scenv_2024_100112 crossref_primary_10_1080_10409238_2024_2405476 crossref_primary_10_1016_j_marenvres_2024_106935 crossref_primary_10_3390_molecules28031474 crossref_primary_10_1016_j_rser_2024_114877 crossref_primary_10_1007_s42832_022_0149_z crossref_primary_10_1016_j_scitotenv_2024_177350 crossref_primary_10_1016_j_chemosphere_2022_137258 crossref_primary_10_5937_topola2413055K crossref_primary_10_1016_j_envpol_2021_118681 crossref_primary_10_1016_j_jhazmat_2024_135028 crossref_primary_10_1016_j_jhazmat_2023_131404 crossref_primary_10_1007_s12517_022_09522_4 crossref_primary_10_3390_su151813901 crossref_primary_10_1080_01490451_2024_2388118 crossref_primary_10_1080_21683565_2022_2127044 crossref_primary_10_1016_j_plaphy_2023_01_045 crossref_primary_10_3390_stresses2040031 crossref_primary_10_1080_17518253_2024_2404235 crossref_primary_10_1016_j_envres_2022_114451 crossref_primary_10_1080_15226514_2022_2090500 crossref_primary_10_1016_j_scitotenv_2022_160523 crossref_primary_10_3390_molecules28093921 crossref_primary_10_3390_ani12233374 crossref_primary_10_3390_ijms25063080 crossref_primary_10_1134_S1021443722040185 crossref_primary_10_1021_acs_est_4c08749 crossref_primary_10_1007_s10661_024_13054_7 crossref_primary_10_3390_soilsystems6010003 crossref_primary_10_1016_j_stress_2024_100578 crossref_primary_10_2174_18743315_v16_e2201240 crossref_primary_10_1016_j_bbr_2024_115212 crossref_primary_10_1021_acsagscitech_2c00057 crossref_primary_10_3390_su14105856 crossref_primary_10_15446_dyna_v91n232_110906 crossref_primary_10_3390_toxics11040323 crossref_primary_10_1007_s13762_024_05978_x crossref_primary_10_1016_j_scitotenv_2021_149222 crossref_primary_10_3390_resources13070098 crossref_primary_10_1080_15226514_2024_2357635 crossref_primary_10_1016_j_earscirev_2024_104854 crossref_primary_10_1016_j_prp_2024_155260 crossref_primary_10_1016_j_stress_2023_100283 crossref_primary_10_1002_ldr_4551 crossref_primary_10_3389_fmicb_2022_1106254 crossref_primary_10_1007_s00271_022_00809_8 crossref_primary_10_48175_IJARSCT_18774 crossref_primary_10_1080_15226514_2020_1774504 crossref_primary_10_1016_j_plaphy_2022_07_015 crossref_primary_10_1016_j_scenv_2024_100124 crossref_primary_10_1016_j_chemosphere_2022_136146 crossref_primary_10_3390_ma15165657 crossref_primary_10_3390_plants12132407 crossref_primary_10_1007_s10668_024_04929_3 crossref_primary_10_3390_genes15060696 crossref_primary_10_1016_j_heliyon_2021_e07979 crossref_primary_10_3390_su15097578 crossref_primary_10_1016_j_jhazmat_2024_135232 crossref_primary_10_1016_j_stress_2024_100394 crossref_primary_10_1080_03650340_2021_1983174 crossref_primary_10_1016_j_rhisph_2023_100672 crossref_primary_10_1016_j_ibiod_2023_105582 crossref_primary_10_1080_15592324_2022_2064072 crossref_primary_10_3390_catal14020118 crossref_primary_10_3390_foods13182921 crossref_primary_10_1080_10889868_2022_2138256 crossref_primary_10_1016_j_ecoenv_2024_116883 crossref_primary_10_3390_c9010001 crossref_primary_10_1007_s10340_024_01863_1 crossref_primary_10_1016_j_biortech_2021_125461 crossref_primary_10_3389_fnano_2022_1062608 crossref_primary_10_1016_j_jhazmat_2024_136795 crossref_primary_10_1016_j_sajce_2022_08_004 crossref_primary_10_1007_s11356_024_34150_8 crossref_primary_10_1016_j_chemosphere_2024_142774 crossref_primary_10_3390_su15053973 crossref_primary_10_1016_j_plantsci_2024_112265 crossref_primary_10_1007_s00344_022_10879_9 crossref_primary_10_1016_j_scitotenv_2024_176605 crossref_primary_10_1016_j_scitotenv_2022_153144 crossref_primary_10_1016_j_heliyon_2021_e07945 crossref_primary_10_1007_s42461_024_01138_4 crossref_primary_10_1016_j_jwpe_2024_105875 crossref_primary_10_1007_s00344_022_10700_7 crossref_primary_10_3389_fmicb_2022_929730 crossref_primary_10_1007_s11356_023_30500_0 crossref_primary_10_1111_raq_12892 crossref_primary_10_1016_j_jhazmat_2022_130674 crossref_primary_10_3390_agriengineering5010037 crossref_primary_10_3390_plants14020230 crossref_primary_10_52589_AJENSR_FOYAOUVY crossref_primary_10_1016_j_scitotenv_2024_174237 crossref_primary_10_3390_plants13131823 crossref_primary_10_1080_15226514_2021_2002809 crossref_primary_10_1080_10643389_2021_1877033 crossref_primary_10_1002_ieam_4907 crossref_primary_10_3390_plants12193381 crossref_primary_10_4491_eer_2021_631 crossref_primary_10_1016_j_chemosphere_2023_137917 crossref_primary_10_1080_15320383_2023_2273348 crossref_primary_10_3390_hydrobiology1030021 crossref_primary_10_1016_j_copbio_2021_10_024 crossref_primary_10_1016_j_bcab_2022_102535 crossref_primary_10_1016_j_heliyon_2023_e13547 crossref_primary_10_2166_aqua_2022_134 crossref_primary_10_3389_fpls_2022_1015745 crossref_primary_10_3390_nano11092164 crossref_primary_10_3390_environments11060122 crossref_primary_10_1080_15592324_2024_2365576 crossref_primary_10_3390_plants13202839 crossref_primary_10_1007_s13369_021_05839_6 crossref_primary_10_1016_j_jhazmat_2020_123855 crossref_primary_10_1016_j_ecoenv_2021_112864 crossref_primary_10_1016_j_jenvman_2024_123192 crossref_primary_10_1021_acsestwater_4c00510 crossref_primary_10_3390_en14216953 crossref_primary_10_1016_j_jpba_2023_115718 crossref_primary_10_1128_mra_00617_24 crossref_primary_10_1007_s11356_023_29979_4 crossref_primary_10_1016_j_jtice_2024_105472 crossref_primary_10_7717_peerj_16067 crossref_primary_10_3390_nano12050769 crossref_primary_10_3390_su15086665 crossref_primary_10_1016_j_jhazmat_2022_129640 crossref_primary_10_3390_plants13131811 crossref_primary_10_2166_wpt_2023_140 crossref_primary_10_3390_toxics11070580 crossref_primary_10_1016_j_envint_2024_108904 crossref_primary_10_3389_fpls_2022_910714 crossref_primary_10_1016_j_envpol_2022_120641 crossref_primary_10_18006_2022_10_3__511_523 crossref_primary_10_3390_su16188230 crossref_primary_10_1002_ldr_4711 crossref_primary_10_1007_s12011_023_03762_5 crossref_primary_10_1016_j_micres_2021_126811 crossref_primary_10_3390_plants12091793 crossref_primary_10_1007_s10653_024_02110_3 crossref_primary_10_1016_j_enmm_2023_100781 crossref_primary_10_3390_su16051829 crossref_primary_10_1016_j_heliyon_2024_e29528 crossref_primary_10_1007_s00299_024_03305_9 crossref_primary_10_1007_s11356_024_32664_9 crossref_primary_10_1080_26395940_2022_2042395 crossref_primary_10_1080_07388551_2023_2170862 crossref_primary_10_3390_pollutants4030029 crossref_primary_10_1007_s10725_024_01171_9 crossref_primary_10_18006_2023_11_5__791_799 crossref_primary_10_3390_su15010876 crossref_primary_10_1016_j_jece_2021_105528 crossref_primary_10_1016_j_plaphy_2024_108598 crossref_primary_10_3389_fagro_2021_680456 crossref_primary_10_1039_D1MO00151E crossref_primary_10_4491_eer_2024_592 crossref_primary_10_1016_j_jconhyd_2022_104101 crossref_primary_10_1093_jxb_erae229 crossref_primary_10_3390_w17060830 crossref_primary_10_1016_j_scitotenv_2023_165949 crossref_primary_10_1007_s00344_023_11075_z crossref_primary_10_51847_A2gMbUMBUD crossref_primary_10_1016_j_biortech_2020_124353 crossref_primary_10_3390_land12010062 crossref_primary_10_1007_s11356_022_24714_x crossref_primary_10_3389_fpls_2022_1081624 crossref_primary_10_15835_nbha49412487 crossref_primary_10_1007_s11356_022_23848_2 crossref_primary_10_1007_s12633_022_02251_z crossref_primary_10_1016_j_hazadv_2023_100293 crossref_primary_10_3390_horticulturae9040447 crossref_primary_10_1080_2314808X_2022_2106097 crossref_primary_10_53623_tasp_v4i1_343 crossref_primary_10_1016_j_chemosphere_2022_134954 crossref_primary_10_1016_j_jece_2021_105547 crossref_primary_10_1080_14786419_2024_2348673 crossref_primary_10_3390_ijerph18052239 crossref_primary_10_1016_j_indcrop_2021_114245 crossref_primary_10_1016_j_sciaf_2024_e02358 crossref_primary_10_1007_s11356_024_34734_4 crossref_primary_10_3390_cells11121947 crossref_primary_10_48022_mbl_2008_08015 crossref_primary_10_1016_j_dwt_2024_100654 crossref_primary_10_1007_s11356_023_31256_3 crossref_primary_10_1016_j_jenvman_2022_115124 crossref_primary_10_3390_agronomy12122945 crossref_primary_10_1080_15226514_2023_2188423 crossref_primary_10_1186_s40538_024_00689_4 crossref_primary_10_3389_fpls_2024_1351613 crossref_primary_10_1080_01490451_2022_2045648 crossref_primary_10_3390_pr12010148 crossref_primary_10_3390_ijms23095031 crossref_primary_10_1016_j_heliyon_2024_e40361 crossref_primary_10_1002_jobm_202400401 crossref_primary_10_3390_su13126555 crossref_primary_10_1088_1755_1315_1017_1_012022 crossref_primary_10_1007_s42729_022_00765_4 crossref_primary_10_1016_j_desal_2022_116079 crossref_primary_10_1016_j_heliyon_2022_e11240 crossref_primary_10_1016_j_trac_2021_116402 crossref_primary_10_1007_s13205_023_03585_0 crossref_primary_10_1016_j_jwpe_2024_105177 crossref_primary_10_1016_j_plaphy_2023_108261 crossref_primary_10_1016_j_scitotenv_2024_172588 crossref_primary_10_1080_15226514_2023_2231572 crossref_primary_10_1007_s11356_023_29003_9 crossref_primary_10_3389_fenvs_2023_1157415 crossref_primary_10_1016_j_heliyon_2024_e40370 crossref_primary_10_1080_10889868_2024_2440752 crossref_primary_10_3390_ijerph20064964 crossref_primary_10_3390_su14106379 crossref_primary_10_1016_j_chemosphere_2022_134788 crossref_primary_10_3390_w15081498 crossref_primary_10_1080_10889868_2023_2279194 crossref_primary_10_1080_15226514_2020_1825331 crossref_primary_10_1007_s11738_024_03745_6 crossref_primary_10_1093_plphys_kiab564 crossref_primary_10_1007_s40415_023_00878_9 crossref_primary_10_1016_j_pecs_2024_101161 crossref_primary_10_12944_CARJ_11_1_10 crossref_primary_10_3390_su132112266 crossref_primary_10_3390_ma16051827 crossref_primary_10_1016_j_scitotenv_2023_165739 crossref_primary_10_3390_min12020130 crossref_primary_10_1111_ppl_14226 crossref_primary_10_1080_15226514_2024_2373427 crossref_primary_10_1016_j_scitotenv_2024_171458 crossref_primary_10_1080_21622515_2023_2205026 crossref_primary_10_1007_s11270_024_07309_9 crossref_primary_10_1016_j_pharma_2022_08_005 crossref_primary_10_1007_s11104_022_05643_7 crossref_primary_10_1016_j_scitotenv_2024_172560 crossref_primary_10_1016_j_scitotenv_2023_165726 crossref_primary_10_3390_resources13120168 crossref_primary_10_1016_j_scitotenv_2025_178398 crossref_primary_10_1007_s11356_024_35318_y crossref_primary_10_1007_s10311_023_01663_6 crossref_primary_10_1016_j_chemosphere_2024_141889 crossref_primary_10_1007_s00344_024_11335_6 crossref_primary_10_1016_j_scitotenv_2023_169241 crossref_primary_10_3389_fpls_2021_609396 crossref_primary_10_1515_pac_2023_1018 crossref_primary_10_1021_acs_est_4c05291 crossref_primary_10_1038_s41598_024_72651_1 crossref_primary_10_1016_j_jece_2024_111880 crossref_primary_10_1007_s40009_023_01375_z crossref_primary_10_3390_agronomy13030883 crossref_primary_10_1088_1755_1315_1422_1_012030 crossref_primary_10_51801_turkjrfs_1378258 crossref_primary_10_1016_j_scitotenv_2022_160391 crossref_primary_10_3389_fpls_2023_1269082 crossref_primary_10_1016_j_sciaf_2023_e01984 crossref_primary_10_3389_fpls_2021_794373 crossref_primary_10_15421_012241 crossref_primary_10_3390_molecules28010430 crossref_primary_10_3390_plants12030429 crossref_primary_10_1016_j_hazl_2022_100064 crossref_primary_10_48175_IJARSCT_1342 crossref_primary_10_3390_plants11091186 crossref_primary_10_1016_j_chemosphere_2022_134900 crossref_primary_10_1016_j_jafrearsci_2022_104663 crossref_primary_10_1021_acs_iecr_2c00285 crossref_primary_10_1016_j_plaphy_2024_108770 crossref_primary_10_1039_D4EM00736K crossref_primary_10_1007_s11356_023_28757_6 crossref_primary_10_1016_j_marpolbul_2023_115924 crossref_primary_10_3390_ijerph17249398 crossref_primary_10_3390_foods11172591 crossref_primary_10_1016_j_rhisph_2022_100618 crossref_primary_10_1007_s11368_022_03148_5 crossref_primary_10_1016_j_envres_2024_119451 crossref_primary_10_1186_s12866_022_02587_x crossref_primary_10_1007_s10661_024_12682_3 crossref_primary_10_1080_15226514_2022_2105809 crossref_primary_10_1126_sciadv_adj6315 crossref_primary_10_1016_j_heliyon_2024_e38683 crossref_primary_10_1007_s11356_022_22984_z crossref_primary_10_4236_msce_2022_103001 crossref_primary_10_3389_fpls_2022_1052659 crossref_primary_10_1080_15226514_2022_2109587 crossref_primary_10_3390_su152416865 crossref_primary_10_1007_s11356_023_31185_1 crossref_primary_10_1016_j_envres_2022_114635 crossref_primary_10_2298_ABS240301014P crossref_primary_10_3390_su151511533 crossref_primary_10_3389_fpls_2024_1420408 crossref_primary_10_3389_fmolb_2021_709395 crossref_primary_10_3390_plants10112340 crossref_primary_10_1016_j_ibiod_2025_106015 crossref_primary_10_1016_j_chemosphere_2023_140881 crossref_primary_10_3389_fmicb_2022_889073 crossref_primary_10_1080_15226514_2023_2194999 crossref_primary_10_1007_s00344_021_10349_8 crossref_primary_10_1007_s12517_022_10968_9 crossref_primary_10_1016_j_jclepro_2023_139512 crossref_primary_10_17221_494_2023_PSE crossref_primary_10_1002_ldr_5142 crossref_primary_10_1002_ldr_5384 crossref_primary_10_1016_j_sciaf_2022_e01278 crossref_primary_10_1007_s11270_023_06394_6 crossref_primary_10_1186_s12302_024_01023_3 crossref_primary_10_1016_j_jelechem_2023_117291 crossref_primary_10_1007_s00128_021_03194_8 crossref_primary_10_1007_s00248_023_02190_1 crossref_primary_10_1016_j_heliyon_2024_e40741 crossref_primary_10_1016_j_jelechem_2024_118222 crossref_primary_10_1016_j_jhazmat_2024_133951 crossref_primary_10_3390_su152015170 crossref_primary_10_1002_tqem_22262 crossref_primary_10_1007_s00299_022_02913_7 crossref_primary_10_1016_j_scitotenv_2023_168164 crossref_primary_10_1016_j_plaphy_2024_108740 crossref_primary_10_1007_s11356_023_28372_5 crossref_primary_10_1007_s13762_024_05852_w crossref_primary_10_1016_j_chemosphere_2022_133823 crossref_primary_10_1080_15226514_2024_2430657 crossref_primary_10_1007_s10653_024_02195_w crossref_primary_10_1002_ajb2_16310 crossref_primary_10_1016_j_plaphy_2022_09_009 crossref_primary_10_3906_tar_2006_45 crossref_primary_10_1016_j_resconrec_2024_108057 |
Cites_doi | 10.1016/j.chemosphere.2008.11.063 10.1155/2016/2707989 10.1080/15226514.2011.568545 10.1016/S0005-2736(00)00138-3 10.1007/s11104-006-0064-6 10.1016/j.jhazmat.2009.06.141 10.1146/annurev.arplant.51.1.401 10.4148/1090-7025.1015 10.1016/j.plaphy.2016.04.049 10.2134/jeq1990.00472425001900040023x 10.1016/j.ecoenv.2015.12.023 10.1016/j.jhazmat.2016.07.053 10.1002/jctb.3826 10.1021/es990697s 10.1073/pnas.171039798 10.1104/pp.126.4.1519 10.1104/pp.122.4.1343 10.1080/15226510802432678 10.1016/j.chemosphere.2016.12.116 10.1080/07352680903035424 10.2134/jeq1997.00472425002600050032x 10.1104/pp.007799 10.1016/j.plantsci.2008.09.014 10.1080/713779219 10.1016/j.jenvman.2018.03.077 10.1016/j.biotechadv.2010.02.001 10.1007/BF03184113 10.1038/72678 10.1016/j.ecoleng.2014.09.053 10.3389/fpls.2018.01476 10.1104/pp.110.3.715 10.1007/4735_100 10.3184/095422998782775835 10.1016/j.tplants.2003.11.009 10.1016/j.febslet.2004.09.023 10.1007/s11270-011-0882-x 10.1016/j.apgeochem.2010.11.018 10.1081/LESA-200034269 10.1016/j.ecoenv.2019.02.068 10.1007/978-3-642-38469-1_4 10.1007/s11356-008-0079-z 10.1016/j.ecoenv.2017.05.038 10.1016/j.chemosphere.2013.01.075 10.1080/0735-260291044368 10.2134/jeq1992.00472425002100030006x 10.5402/2011/402647 10.1104/pp.122.4.1281 10.1146/annurev.arplant.49.1.643 10.3390/ijms13033145 10.1134/S1064229314090075 10.1007/978-1-4614-0046-2_1 10.1007/s11368-010-0190-x 10.1093/jexbot/53.366.1 10.1111/j.1365-3040.2001.00666.x 10.1080/15226514.2017.1365340 10.6088/ijes.002020300031 10.1023/A:1004328816645 10.1104/pp.18.00478 10.1007/s11356-011-0675-1 10.1016/j.scitotenv.2005.11.002 10.1104/pp.92.4.1086 10.1016/j.febslet.2005.06.046 10.2134/jeq2009.0006 10.1016/j.plantsci.2016.11.016 10.1002/jsfa.3916 10.1007/s12229-011-9092-x 10.3389/fpls.2013.00544 10.1046/j.1469-8137.2003.00743.x 10.1016/j.chemer.2005.06.001 10.1007/s001220051295 10.1093/jxb/erj073 10.1016/j.scitotenv.2015.01.032 10.1016/j.biortech.2010.03.027 10.1105/tpc.109.073023 10.1023/B:PLSO.0000020956.24027.f2 10.1002/9781444319477.ch14 10.1016/j.chemosphere.2008.09.013 10.1016/j.envpol.2003.12.018 10.1080/15226510802100606 10.1023/A:1022527207359 10.1104/pp.45.3.280 10.1111/pbi.12512 10.1016/j.envpol.2012.02.016 10.1080/01904168109362867 10.1016/j.chemosphere.2008.11.007 10.1016/S0958-1669(03)00060-0 10.1007/s11356-019-06563-3 10.1016/j.scitotenv.2015.08.117 10.1016/j.jhazmat.2007.10.080 10.3390/ijms20143412 10.1007/s11356-009-0213-6 10.1007/s11104-004-8068-6 10.1023/A:1022308229759 10.1007/s10311-009-0268-0 10.1002/clen.201000488 10.1007/s11104-012-1287-3 10.1007/s11816-017-0467-2 10.1016/j.jhazmat.2012.04.035 10.1016/j.tplants.2005.08.008 10.1007/s11270-011-0843-4 10.1016/j.micres.2013.09.009 10.1016/j.tibtech.2007.05.005 10.1038/379635a0 10.1104/pp.126.2.696 10.1186/S40659-015-0001-3 10.1111/pce.12963 10.1016/j.plantsci.2010.08.016 10.1111/j.1467-7652.2004.00092.x 10.2134/jeq2002.1090 10.1016/j.jenvman.2010.07.018 10.1016/j.scitotenv.2008.01.013 10.1007/978-981-10-4041-2_14 10.1111/j.1462-2920.2011.02556.x 10.1590/S1677-04202005000100010 10.1016/j.ecoleng.2015.12.041 10.1007/s13762-013-0299-8 10.1242/jeb.200.2.321 10.1007/s00425-006-0225-0 10.17221/401-PSE 10.1007/s10661-007-9732-0 10.1007/s11104-005-4642-9 10.1186/1471-2148-11-76 10.1016/B978-0-12-814864-8.00020-6 10.1007/s11356-013-1485-4 10.1016/0031-9422(77)84010-7 10.1016/S1360-1385(02)02295-1 10.1080/15226510701232880 10.1016/S0045-6535(02)00232-1 10.1016/j.chemgeo.2008.05.001 10.1631/jzus.B0710633 10.1007/s10661-016-5309-0 10.2134/jeq1993.00472425002200040021x 10.1016/j.biotechadv.2004.10.001 10.1021/es902514d 10.1016/S0045-6535(02)00228-X 10.1038/nbt0595-468 10.3906/bot-1101-10 10.1023/A:1025604627496 10.1016/j.biochi.2006.07.003 10.1016/j.chemosphere.2004.01.028 10.1016/j.mineng.2009.04.001 10.1080/15226514.2013.856846 10.1007/s10661-016-5211-9 10.1111/j.1438-8677.1992.tb01332.x 10.3389/fpls.2016.01862 10.1080/10643380902718418 10.1016/j.jhazmat.2009.09.113 10.1080/10643380701798272 10.2134/jeq1994.00472425002300060004x 10.17221/3460-pse 10.1023/a:1022527330401 10.1007/978-94-007-4441-7_2 10.1016/j.biotechadv.2010.12.001 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen. Copyright © 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen. 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen |
Copyright_xml | – notice: Copyright © 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen. – notice: Copyright © 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen. 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2020.00359 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_479d99fe4e1a4361965d77931cff6cf5 PMC7203417 32425957 10_3389_fpls_2020_00359 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Ministry of National Development - Singapore – fundername: National Parks Board - Singapore |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c525t-b8305a36d6a6b6c3ceadbc135362b9d1cbcc8dba4621d3bda46b7a4e55c140123 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:22:59 EDT 2025 Thu Aug 21 14:04:30 EDT 2025 Thu Jul 10 19:57:58 EDT 2025 Mon Jul 21 05:56:31 EDT 2025 Thu Apr 24 22:55:49 EDT 2025 Tue Jul 01 02:06:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | heavy metal phytoremediation chelate detoxification uptake genetic engineering |
Language | English |
License | Copyright © 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-b8305a36d6a6b6c3ceadbc135362b9d1cbcc8dba4621d3bda46b7a4e55c140123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: David W. M. Leung, University of Canterbury, New Zealand Reviewed by: Dharmendra Kumar Gupta, Experimental Station of Zaidín (EEZ), Spain; Bassam Taha Al-Iessa, Qatar University, Qatar This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2020.00359 |
PMID | 32425957 |
PQID | 2404641741 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_479d99fe4e1a4361965d77931cff6cf5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7203417 proquest_miscellaneous_2404641741 pubmed_primary_32425957 crossref_citationtrail_10_3389_fpls_2020_00359 crossref_primary_10_3389_fpls_2020_00359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-30 |
PublicationDateYYYYMMDD | 2020-04-30 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Gupta (B61) Koptsik (B79) 2014; 47 Mahar (B93) 2016; 126 Brewer (B21) 1999; 99 Clemens (B31) 2006; 88 Sarret (B130) 2002; 130 Wong (B162) 2003; 50 Wang (B160) 2012; 221 Lasat (B86) 1999; 2 Chaney (B27) 2010 Dalvi (B35) 2013; 2 Neff (B105) 2011 Pichtel (B112) 2016; 2016 Salt (B129) 1998; 49 Yang (B167) 2002; 47 Arshad (B6) 2007; 25 Banuelos (B12) 1993; 22 Yang (B168) 2004; 259 García-Salgado (B50) 2012; 223 Sheoran (B138) 2011; 41 Hasan (B67) 2019; 8 Blaylock (B19) 2000 Seth (B135) 2012; 78 Zheng (B169) 2011; 26 Ali (B2) 2013; 91 Wuana (B164) 2011; 2011 Supek (B144) 1997; 200 Huang (B71) 2012; 19 Ebbs (B44) 1997; 26 Rai (B117) 2002; 45 Koźmińska (B80) 2018; 12 Robinson (B124) 2003; 158 Muradoglu (B104) 2015; 48 Cailliatte (B25) 2010; 22 Bizily (B18) 2000; 18 Souza (B140) 2013; 70 Li (B89) 2016; 7 Altinözlü (B4) 2012; 36 DalCorso (B34) 2019; 20 van der Ent (B154) 2013; 362 Dushenkov (B42) 2003; 249 Terry (B145) 1992; 21 Lee (B87) 1977; 16 Gerhardt (B52) 2009; 176 Srivastava (B141) 2006; 364 Krämer (B81) 1996; 379 Mitch (B103) 2002; 31 Gupta (B60) 2008; 29 Gerhardt (B51) 2017; 256 Persans (B111) 2001; 98 Hall (B63) 2002; 53 Mesjasz-Przybyłowicz (B102) 2004; 46 Yang (B166) 2008; 54 Berken (B16) 2002; 21 Schalk (B134) 2011; 13 Kubota (B83) 2003; 5 Peer (B108) 2005 Marques (B97) 2009; 39 Sakakibara (B127) 2011; 39 Baker (B10) 1989; 1 Dhanwal (B40) 2017 Prasad (B113) 2003; 50 Sharma (B136) 2006; 57 Gupta (B59) 2009; 172 Terry (B146) 2000; 51 Assunção (B8) 2001; 24 Javed (B75) 2019 Chen (B30) 2003; 50 Buendía-González (B23) 2010; 101 Suman (B142) 2018; 9 Thakur (B147) 2016; 188 Rieuwerts (B121) 1998; 10 Pérez-Sanz (B110) 2012; 95 Padmavathiamma (B107) 2012; 223 Brown (B22) 1994; 23 Sheoran (B137) 2009; 22 Jozefczak (B76) 2012; 13 Robinson (B122) 2009; 28 Mani (B96) 2014; 11 Rascio (B118) 2011; 180 Rehman (B119) 2017; 143 Braud (B20) 2009; 74 Ma (B92) 2011; 29 Mastretta (B98) 2009; 11 Rafique (B115) 2016; 188 Salt (B128) 1995; 13 Lone (B91) 2008; 9 Smolińska (B139) 2012; 87 Williams (B161) 2005; 10 Sun (B143) 2006; 285 Domínguez−Solís (B41) 2004; 2 Xiong (B165) 2004; 39 Harper (B66) 1999 Gustin (B62) 2011; 11 Hanikenne (B65) 2014; 4 Eapen (B43) 2005; 23 Chehregani (B28) 2007; 9 Mench (B101) 2010; 10 Peng (B109) 2008; 154 van Hoof (B155) 2001; 126 Lee (B88) 2014; 73 Ginn (B53) 2008; 253 Rai (B116) 2008; 10 Prasad (B114) 2005; 17 Ali (B3) 2012; 2 Herzig (B69) 2014; 16 Ernst (B46) 2005; 65 Rodriguez (B125) 2003; 9 Das (B36) 2016; 105 Robinson (B123) 1998; 203 Hooda (B70) 2007; 28 Nehnevajova (B106) 2007; 9 Vögeli-Lange (B158) 1990; 92 Kucharski (B84) 2005; 273 Manara (B95) 2012 Sarwar (B132) 2010; 90 Verret (B157) 2004; 576 Li (B90) 2003; 249 Tomé (B151) 2008; 393 Becerra-Castro (B15) 2011; 13 Memon (B100) 2009; 16 Epelde (B45) 2009; 38 Desbrosses-Fonrouge (B39) 2005; 579 Burges (B24) 2018; 20 Alvarenga (B5) 2009; 74 Glick (B55) 2014; 169 Huang (B72) 2004; 130 Hamzah (B64) 2016; 2 Guerinot (B57) 2000; 1465 Vamerali (B153) 2010; 8 Banuelos (B13) 1990; 19 Tlustoš (B150) 2006; 52 de Souza (B38) 2000; 122 Thangavel (B148) 2004; 70 Ernst (B47) 1992; 41 Glick (B54) 2010; 28 Roy (B126) 2002; 23 Jacob (B74) 2018; 217 Gupta (B58); 20 Rezania (B120) 2016; 318 Tiffin (B149) 1970; 45 Aken (B1) 2009; 44 Vangronsveld (B156) 2009; 16 Ashraf (B7) 2019; 174 de la Rosa (B37) 2004; 55 Berti (B17) 2000 Wu (B163) 2010; 174 Sarwar (B131) 2017; 171 Sas-Nowosielska (B133) 2008; 137 Farahat (B48) 2015; 51 Cunningham (B33) 1996; 110 Kayser (B78) 2000; 34 Krämer (B82) 2000; 122 Bastow (B14) 2018; 177 McGrath (B99) 2003; 14 Bani (B11) 2010; 34 Chen (B29) 2016; 539 Iqbal (B73) 2016; 88 Kalve (B77) 2011; 100 Malik (B94) 2010; 42 Tong (B152) 2004; 9 Fasani (B49) 2018; 41 He (B68) 2002; 44 Göhre (B56) 2006; 223 Cempel (B26) 2006; 15 Kumpiene (B85) 2012; 166 Axelsen (B9) 2001; 126 Clemens (B32) 2002; 7 Wang (B159) 2006; 281 |
References_xml | – volume: 74 start-page: 1292 year: 2009 ident: B5 article-title: Organic residues as immobilizing agents in aided phytostabilization:(I) Effects on soil chemical characteristics. publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.11.063 – volume: 2016 year: 2016 ident: B112 article-title: Oil and gas production wastewater: soil contamination and pollution prevention. publication-title: Appl. Environ. Soil Sci. doi: 10.1155/2016/2707989 – volume: 13 start-page: 229 year: 2011 ident: B15 article-title: Nickel solubilizing capacity and characterization of rhizobacteria isolated from hyperaccumulating and non-hyperaccumulating subspecies of Alyssum serpyllifolium. publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2011.568545 – volume: 1465 start-page: 190 year: 2000 ident: B57 article-title: The ZIP family of metal transporters. publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(00)00138-3 – volume: 285 start-page: 125 year: 2006 ident: B143 article-title: Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. publication-title: Plant Soil doi: 10.1007/s11104-006-0064-6 – volume: 172 start-page: 479 year: 2009 ident: B59 article-title: Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.06.141 – volume: 51 start-page: 401 year: 2000 ident: B146 article-title: Selenium in higher plants. publication-title: Annu. Rev. Plant Phys. doi: 10.1146/annurev.arplant.51.1.401 – volume: 2 year: 1999 ident: B86 article-title: Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. publication-title: J. Hazard Subst. Res. doi: 10.4148/1090-7025.1015 – volume: 2 start-page: 362 year: 2013 ident: B35 article-title: Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. publication-title: Ann. Plant Sci. – volume: 28 start-page: 367 year: 2007 ident: B70 article-title: Phytoremediation of toxic metals from soil and waste water. publication-title: J. Environ. Biol. – volume: 105 start-page: 297 year: 2016 ident: B36 article-title: Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.04.049 – volume: 19 start-page: 772 year: 1990 ident: B13 article-title: Accumulation of selenium in plants grown on selenium-treated soil. publication-title: J. Environ. Qual. doi: 10.2134/jeq1990.00472425001900040023x – volume: 126 start-page: 111 year: 2016 ident: B93 article-title: Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. publication-title: Ecotox. Environ. Safe. doi: 10.1016/j.ecoenv.2015.12.023 – volume: 318 start-page: 587 year: 2016 ident: B120 article-title: Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.07.053 – volume: 87 start-page: 1360 year: 2012 ident: B139 article-title: Leaching of mercury during phytoextraction assisted by EDTA, KI and citric acid. publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.3826 – volume: 34 start-page: 1778 year: 2000 ident: B78 article-title: Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. publication-title: Environ. Sci. Technol. doi: 10.1021/es990697s – volume: 98 start-page: 9995 year: 2001 ident: B111 article-title: Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.171039798 – volume: 126 start-page: 1519 year: 2001 ident: B155 article-title: Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. publication-title: Plant Physiol. doi: 10.1104/pp.126.4.1519 – volume: 122 start-page: 1343 year: 2000 ident: B82 article-title: Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. publication-title: Plant Physiol. doi: 10.1104/pp.122.4.1343 – volume: 11 start-page: 251 year: 2009 ident: B98 article-title: Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. publication-title: Int. J. Phytoremediat. doi: 10.1080/15226510802432678 – volume: 171 start-page: 710 year: 2017 ident: B131 article-title: Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.12.116 – volume: 15 start-page: 375 year: 2006 ident: B26 article-title: Nickel: a review of its sources and environmental toxicology. publication-title: Pol. J. Environ. Stud. – volume: 28 start-page: 240 year: 2009 ident: B122 article-title: The phytomanagement of trace elements in soil. publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352680903035424 – start-page: 71 year: 2000 ident: B17 article-title: Phytostabilization of metals publication-title: Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment – volume: 26 start-page: 1424 year: 1997 ident: B44 article-title: Phytoextraction of cadmium and zinc from a contaminated soil. publication-title: J. Environ. Qual. doi: 10.2134/jeq1997.00472425002600050032x – volume: 130 start-page: 1815 year: 2002 ident: B130 article-title: Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. publication-title: Plant Physiol. doi: 10.1104/pp.007799 – volume: 176 start-page: 20 year: 2009 ident: B52 article-title: Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2008.09.014 – volume: 5 start-page: 197 year: 2003 ident: B83 article-title: Field Note: Arabis gemmifera is a hyperaccumulator of Cd and Zn. publication-title: Int. J. Phytoremediat. doi: 10.1080/713779219 – volume: 217 start-page: 56 year: 2018 ident: B74 article-title: Biological approaches to tackle heavy metal pollution: a survey of literature. publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2018.03.077 – volume: 28 start-page: 367 year: 2010 ident: B54 article-title: Using soil bacteria to facilitate phytoremediation. publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2010.02.001 – volume: 47 start-page: 1634 year: 2002 ident: B167 article-title: Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. publication-title: Chin. Sci. Bull. doi: 10.1007/BF03184113 – volume: 29 start-page: 903 year: 2008 ident: B60 article-title: EDTA enhances lead uptake and facilitates phytoremediation by vetiver grass. publication-title: J. Environ. Biol. – volume: 18 start-page: 213 year: 2000 ident: B18 article-title: Phytodetoxification of hazardous organomercurials by genetically engineered plants. publication-title: Nat. Biotechnol. doi: 10.1038/72678 – volume: 73 start-page: 386 year: 2014 ident: B88 article-title: Effects of chelates on soil microbial properties, plant growth and heavy metal accumulation in plants. publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.09.053 – volume: 9 year: 2018 ident: B142 article-title: Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? publication-title: Front Plant Sci. doi: 10.3389/fpls.2018.01476 – volume: 110 year: 1996 ident: B33 article-title: Promises and prospects of phytoremediation. publication-title: Plant Physiol. doi: 10.1104/pp.110.3.715 – start-page: 299 year: 2005 ident: B108 article-title: Phytoremediation and hyperaccumulator plants publication-title: Molecular Biology of Metal Homeostasis and Detoxification doi: 10.1007/4735_100 – volume: 10 start-page: 61 year: 1998 ident: B121 article-title: Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. publication-title: Chem. Speciat. Bioavailab. doi: 10.3184/095422998782775835 – volume: 9 start-page: 7 year: 2004 ident: B152 article-title: Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2003.11.009 – volume: 576 start-page: 306 year: 2004 ident: B157 article-title: Overexpression of AtHMA4 enhances root−to−shoot translocation of zinc and cadmium and plant metal tolerance. publication-title: Febs. Lett. doi: 10.1016/j.febslet.2004.09.023 – volume: 223 start-page: 559 year: 2012 ident: B50 article-title: Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-011-0882-x – volume: 26 start-page: 188 year: 2011 ident: B169 article-title: Mercury contamination due to zinc smelting and chlor-alkali production in NE China. publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2010.11.018 – volume: 39 start-page: 2925 year: 2004 ident: B165 article-title: Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. publication-title: J. Environ. Sci. Heal. A doi: 10.1081/LESA-200034269 – volume: 174 start-page: 714 year: 2019 ident: B7 article-title: Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. publication-title: Ecotox. Environ. Safe. doi: 10.1016/j.ecoenv.2019.02.068 – start-page: 73 ident: B61 article-title: Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants publication-title: Heavy Metal Stress in Plants doi: 10.1007/978-3-642-38469-1_4 – volume: 34 start-page: 3 year: 2010 ident: B11 article-title: Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. publication-title: Bot. Serb. – volume: 16 start-page: 162 year: 2009 ident: B100 article-title: Implications of metal accumulation mechanisms to phytoremediation. publication-title: Environ. Sci. Pollut. R doi: 10.1007/s11356-008-0079-z – volume: 143 start-page: 236 year: 2017 ident: B119 article-title: Remediation of heavy metal contaminated soils by using Solanum nigrum: a review. publication-title: Ecotox. Environ. Safe. doi: 10.1016/j.ecoenv.2017.05.038 – volume: 70 start-page: 109 year: 2004 ident: B148 article-title: Phytoextraction: role of hyperaccumulators in metal contaminated soils. publication-title: Proc. Indian Nat. Sci. Acad. B – volume: 91 start-page: 869 year: 2013 ident: B2 article-title: Phytoremediation of heavy metals-concepts and applications. publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.01.075 – volume: 21 start-page: 567 year: 2002 ident: B16 article-title: Genetic engineering of plants to enhance selenium phytoremediation. publication-title: Crit. Rev. Plant Sci. doi: 10.1080/0735-260291044368 – volume: 100 start-page: 888 year: 2011 ident: B77 article-title: Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata–prospective for phytoextraction from contaminated water and soil. publication-title: Curr. Sci. India – volume: 21 start-page: 341 year: 1992 ident: B145 article-title: Rates of selenium volatilization among crop species. publication-title: J. Environ. Qual. doi: 10.2134/jeq1992.00472425002100030006x – volume: 2011 year: 2011 ident: B164 article-title: Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. publication-title: Isrn Ecology doi: 10.5402/2011/402647 – volume: 122 start-page: 1281 year: 2000 ident: B38 article-title: Selenium assimilation and volatilization from dimethylselenoniopropionate by Indian mustard. publication-title: Plant Physiol. doi: 10.1104/pp.122.4.1281 – volume: 46 start-page: 75 year: 2004 ident: B102 article-title: Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. publication-title: Acta Biol. Cracoviensia Ser. Bot. – volume: 49 start-page: 643 year: 1998 ident: B129 article-title: Phytoremediation. publication-title: Annu. Rev. Plant Phys. doi: 10.1146/annurev.arplant.49.1.643 – volume: 13 start-page: 3145 year: 2012 ident: B76 article-title: Glutathione is a key player in metal-induced oxidative stress defenses. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms13033145 – volume: 47 start-page: 923 year: 2014 ident: B79 article-title: Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. publication-title: Eurasian Soil Sci. doi: 10.1134/S1064229314090075 – start-page: 3 year: 2011 ident: B105 article-title: Produced water: overview of composition, fates, and effects publication-title: Produced Water: Environmental Risks and Advances in Mitigation Technologies doi: 10.1007/978-1-4614-0046-2_1 – volume: 10 start-page: 1039 year: 2010 ident: B101 article-title: Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. publication-title: J. Soil Sediment. doi: 10.1007/s11368-010-0190-x – volume: 53 start-page: 1 year: 2002 ident: B63 article-title: Cellular mechanisms for heavy metal detoxification and tolerance. publication-title: J. Exp. Bot. doi: 10.1093/jexbot/53.366.1 – volume: 24 start-page: 217 year: 2001 ident: B8 article-title: Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2001.00666.x – volume: 2 start-page: 8 year: 2016 ident: B64 article-title: Phytoremediation of Cadmium-contaminated agricultural land using indigenous plants. publication-title: Int. J. Environ. Agric. Res. – volume: 20 start-page: 384 year: 2018 ident: B24 article-title: From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2017.1365340 – volume: 2 start-page: 1459 year: 2012 ident: B3 article-title: Phytoremediation of heavy metals by Trifolium alexandrinum. publication-title: Int. J. Environ. Sci. doi: 10.6088/ijes.002020300031 – volume: 203 start-page: 47 year: 1998 ident: B123 article-title: The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. publication-title: Plant Soil doi: 10.1023/A:1004328816645 – volume: 177 start-page: 1267 year: 2018 ident: B14 article-title: Vacuolar iron stores gated by NRAMP3 and NRAMP4 are the primary source of iron in germinating seeds. publication-title: Plant Physiol. doi: 10.1104/pp.18.00478 – volume: 19 start-page: 1640 year: 2012 ident: B71 article-title: Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii. publication-title: Environ. Sci. Pollut. R doi: 10.1007/s11356-011-0675-1 – volume: 42 start-page: 291 year: 2010 ident: B94 article-title: Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. publication-title: Pak. J. Bot. – volume: 364 start-page: 24 year: 2006 ident: B141 article-title: Three new arsenic hyperaccumulating ferns. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2005.11.002 – volume: 92 start-page: 1086 year: 1990 ident: B158 article-title: Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. publication-title: Plant Physiol. doi: 10.1104/pp.92.4.1086 – volume: 579 start-page: 4165 year: 2005 ident: B39 article-title: Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. publication-title: Febs. Lett. doi: 10.1016/j.febslet.2005.06.046 – volume: 38 start-page: 2041 year: 2009 ident: B45 article-title: Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. publication-title: J. Environ. Qual. doi: 10.2134/jeq2009.0006 – volume: 256 start-page: 170 year: 2017 ident: B51 article-title: Opinion: taking phytoremediation from proven technology to accepted practice. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2016.11.016 – volume: 90 start-page: 925 year: 2010 ident: B132 article-title: Role of mineral nutrition in minimizing cadmium accumulation by plants. publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.3916 – volume: 78 start-page: 32 year: 2012 ident: B135 article-title: A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. publication-title: Bot. Rev. doi: 10.1007/s12229-011-9092-x – volume: 4 year: 2014 ident: B65 article-title: Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida). publication-title: Front Plant Sci. doi: 10.3389/fpls.2013.00544 – volume: 158 start-page: 279 year: 2003 ident: B124 article-title: Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00743.x – volume: 65 start-page: 29 year: 2005 ident: B46 article-title: Phytoextraction of mine wastes–options and impossibilities. publication-title: Chem. Erde Geochem. doi: 10.1016/j.chemer.2005.06.001 – volume: 99 start-page: 761 year: 1999 ident: B21 article-title: Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. publication-title: Theor. Appl. Genet. doi: 10.1007/s001220051295 – volume: 57 start-page: 711 year: 2006 ident: B136 article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj073 – volume: 51 start-page: 1 year: 2015 ident: B48 article-title: The effect of long-term wastewater irrigation on accumulation and transfer of heavy metals in Cupressus sempervirens leaves and adjacent soils. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.01.032 – volume: 101 start-page: 5862 year: 2010 ident: B23 article-title: Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.03.027 – volume: 22 start-page: 904 year: 2010 ident: B25 article-title: High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. publication-title: Plant Cell doi: 10.1105/tpc.109.073023 – volume: 259 start-page: 181 year: 2004 ident: B168 article-title: Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). publication-title: Plant Soil doi: 10.1023/B:PLSO.0000020956.24027.f2 – volume: 9 start-page: 462 year: 2007 ident: B28 article-title: Removal of heavy metals by native accumulator plants. publication-title: Int. J. Agric. Biol. – start-page: 311 year: 2010 ident: B27 article-title: Phytoremediation of soil trace elements publication-title: Trace Elements in Soils doi: 10.1002/9781444319477.ch14 – volume: 74 start-page: 280 year: 2009 ident: B20 article-title: Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.09.013 – volume: 130 start-page: 453 year: 2004 ident: B72 article-title: Responses of three grass species to creosote during phytoremediation. publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2003.12.018 – volume: 10 start-page: 430 year: 2008 ident: B116 article-title: Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. publication-title: Int. J. Phytoremediat. doi: 10.1080/15226510802100606 – volume: 249 start-page: 167 year: 2003 ident: B42 article-title: Trends in phytoremediation of radionuclides. publication-title: Plant Soil doi: 10.1023/A:1022527207359 – volume: 45 start-page: 280 year: 1970 ident: B149 article-title: Translocation of iron citrate and phosphorus in xylem exudate of soybean. publication-title: Plant Physiol. doi: 10.1104/pp.45.3.280 – volume: 44 start-page: 1365 year: 2002 ident: B68 article-title: Sedum alfredii: a new lead accumulating ecotype. publication-title: J. Integr. Plant Biol. doi: 10.1111/pbi.12512 – volume: 166 start-page: 82 year: 2012 ident: B85 article-title: Arsenic fractionation in mine spoils 10 years after aided phytostabilization. publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2012.02.016 – volume: 1 start-page: 81 year: 1989 ident: B10 article-title: Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. publication-title: Biorecovery doi: 10.1080/01904168109362867 – volume: 70 start-page: 290 year: 2013 ident: B140 article-title: Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. publication-title: Sci. Agric. doi: 10.1016/j.chemosphere.2008.11.007 – volume: 14 start-page: 277 year: 2003 ident: B99 article-title: Phytoextraction of metals and metalloids from contaminated soils. publication-title: Curr. Opin. Biotechnol. doi: 10.1016/S0958-1669(03)00060-0 – volume: 9 start-page: 328 year: 2003 ident: B125 article-title: Phytoremediation of mercury-polluted soils using crop plants. publication-title: Fresen. Environ. Bull. doi: 10.1007/s11356-019-06563-3 – volume: 539 start-page: 17 year: 2016 ident: B29 article-title: Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter. publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2015.08.117 – volume: 154 start-page: 674 year: 2008 ident: B109 article-title: Manganese uptake and interactions with cadmium in the hyperaccumulator—Phytolacca Americana L. publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2007.10.080 – volume: 20 year: 2019 ident: B34 article-title: Heavy metal pollutions: state of the art and innovation in phytoremediation. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20143412 – volume: 16 start-page: 765 year: 2009 ident: B156 article-title: Phytoremediation of contaminated soils and groundwater: lessons from the field. publication-title: Environ. Sci. Pollut. R doi: 10.1007/s11356-009-0213-6 – volume: 273 start-page: 291 year: 2005 ident: B84 article-title: The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. publication-title: Plant Soil doi: 10.1007/s11104-004-8068-6 – volume: 45 start-page: 481 year: 2002 ident: B117 article-title: Role of amino acids in plant responses to stresses. publication-title: Biol. Plantarum doi: 10.1023/A:1022308229759 – volume: 8 start-page: 1 year: 2010 ident: B153 article-title: Field crops for phytoremediation of metal-contaminated land. A review. publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-009-0268-0 – volume: 39 start-page: 735 year: 2011 ident: B127 article-title: Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. publication-title: Clean Soil Air Water doi: 10.1002/clen.201000488 – volume: 362 start-page: 319 year: 2013 ident: B154 article-title: Hyperaccumulators of metal and metalloid trace elements: facts and fiction. publication-title: Plant Soil doi: 10.1007/s11104-012-1287-3 – volume: 12 start-page: 1 year: 2018 ident: B80 article-title: Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. publication-title: Plant Biotechnol. Rep. doi: 10.1007/s11816-017-0467-2 – volume: 221 start-page: 1 year: 2012 ident: B160 article-title: Remediation of mercury contaminated sites–a review. publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2012.04.035 – volume: 10 start-page: 491 year: 2005 ident: B161 article-title: P1B-ATPases–an ancient family of transition metal pumps with diverse functions in plants. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2005.08.008 – volume: 223 start-page: 107 year: 2012 ident: B107 article-title: Rhizosphere influence and seasonal impact on phytostabilisation of metals—a field study. publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-011-0843-4 – start-page: 303 year: 2000 ident: B19 article-title: Phytoextraction of metals publication-title: Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment – volume: 169 start-page: 30 year: 2014 ident: B55 article-title: Bacteria with ACC deaminase can promote plant growth and help to feed the world. publication-title: Microbiol. Res. doi: 10.1016/j.micres.2013.09.009 – volume: 25 start-page: 356 year: 2007 ident: B6 article-title: Perspectives of bacterial ACC deaminase in phytoremediation. publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2007.05.005 – volume: 379 start-page: 635 year: 1996 ident: B81 article-title: Free histidine as a metal chelator in plants that accumulate nickel. publication-title: Nature doi: 10.1038/379635a0 – volume: 126 start-page: 696 year: 2001 ident: B9 article-title: Inventory of the superfamily of P-type ion pumps in Arabidopsis. publication-title: Plant Physiol. doi: 10.1104/pp.126.2.696 – volume: 48 year: 2015 ident: B104 article-title: Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. publication-title: Biol. Res. doi: 10.1186/S40659-015-0001-3 – volume: 41 start-page: 1201 year: 2018 ident: B49 article-title: The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. publication-title: Plant Cell Environ. doi: 10.1111/pce.12963 – volume: 180 start-page: 169 year: 2011 ident: B118 article-title: Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? publication-title: Plant Sci. doi: 10.1016/j.plantsci.2010.08.016 – volume: 2 start-page: 469 year: 2004 ident: B41 article-title: Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2004.00092.x – volume: 31 start-page: 109 year: 2002 ident: B103 article-title: Phytoextraction of toxic metals: a review of biological mechanism. publication-title: J. Environ. Qual. doi: 10.2134/jeq2002.1090 – volume: 95 start-page: S233 year: 2012 ident: B110 article-title: Mercury uptake by Silene vulgaris grown on contaminated spiked soils. publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2010.07.018 – volume: 393 start-page: 351 year: 2008 ident: B151 article-title: Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.01.013 – start-page: 227 year: 2017 ident: B40 article-title: Recent advances in phytoremediation technology publication-title: Advances in Environmental Biotechnology doi: 10.1007/978-981-10-4041-2_14 – volume: 13 start-page: 2844 year: 2011 ident: B134 article-title: New roles for bacterial siderophores in metal transport and tolerance. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2011.02556.x – volume: 17 start-page: 113 year: 2005 ident: B114 article-title: Nickelophilous plants and their significance in phytotechnologies. publication-title: Braz. J. Plant Physiol. doi: 10.1590/S1677-04202005000100010 – volume: 88 start-page: 265 year: 2016 ident: B73 article-title: Response surface methodology application in optimization of cadmium adsorption by shoe waste: a good option of waste mitigation by waste. publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2015.12.041 – volume: 11 start-page: 843 year: 2014 ident: B96 article-title: Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-013-0299-8 – volume: 200 start-page: 321 year: 1997 ident: B144 article-title: Function of metal-ion homeostasis in the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function. publication-title: J. Exp. Biol. doi: 10.1242/jeb.200.2.321 – volume: 223 start-page: 1115 year: 2006 ident: B56 article-title: Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. publication-title: Planta doi: 10.1007/s00425-006-0225-0 – volume: 54 start-page: 441 year: 2008 ident: B166 article-title: Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. publication-title: Plant Soil Environ. doi: 10.17221/401-PSE – volume: 137 start-page: 101 year: 2008 ident: B133 article-title: Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil. publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-007-9732-0 – volume: 281 start-page: 325 year: 2006 ident: B159 article-title: Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. publication-title: Plant Soil doi: 10.1007/s11104-005-4642-9 – volume: 11 year: 2011 ident: B62 article-title: Structure and evolution of the plant cation diffusion facilitator family of ion transporters. publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-11-76 – start-page: 495 year: 2019 ident: B75 article-title: Chapter 20 – Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes publication-title: Cadmium Toxicity and Tolerance in Plants doi: 10.1016/B978-0-12-814864-8.00020-6 – volume: 20 start-page: 2150 ident: B58 article-title: Lead tolerance in plants: strategies for phytoremediation. publication-title: Environ. Sci. Pollut. R doi: 10.1007/s11356-013-1485-4 – volume: 16 start-page: 1503 year: 1977 ident: B87 article-title: Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. publication-title: Phytochemistry doi: 10.1016/0031-9422(77)84010-7 – volume: 7 start-page: 309 year: 2002 ident: B32 article-title: A long way ahead: understanding and engineering plant metal accumulation. publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(02)02295-1 – volume: 9 start-page: 149 year: 2007 ident: B106 article-title: Chemical mutagenesis—a promising technique to increase metal concentration and extraction in sunflowers. publication-title: Int. J. Phytoremediat. doi: 10.1080/15226510701232880 – volume: 50 start-page: 775 year: 2003 ident: B162 article-title: Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00232-1 – volume: 253 start-page: 130 year: 2008 ident: B53 article-title: Metal and proton binding onto the roots of Fescue rubra. publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2008.05.001 – volume: 9 start-page: 210 year: 2008 ident: B91 article-title: Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. publication-title: J. Zhejiang Univ. Sci. B doi: 10.1631/jzus.B0710633 – volume: 188 year: 2016 ident: B115 article-title: Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields. publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-016-5309-0 – volume: 22 start-page: 786 year: 1993 ident: B12 article-title: Boron and selenium removal in boron−laden soils by four sprinkler irrigated plant species. publication-title: J. Environ. Qual. doi: 10.2134/jeq1993.00472425002200040021x – volume: 23 start-page: 97 year: 2005 ident: B43 article-title: Prospects of genetic engineering of plants for phytoremediation of toxic metals. publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2004.10.001 – volume: 8 year: 2019 ident: B67 article-title: Assisting phytoremediation of heavy metals using chemical amendments. publication-title: Plants doi: 10.3390/ijms20143412 – volume: 44 start-page: 2767 year: 2009 ident: B1 article-title: Phytoremediation of polychlorinated biphenyls: new trends and promises. publication-title: Environ. Sci. Technol. doi: 10.1021/es902514d – volume: 50 start-page: 839 year: 2003 ident: B30 article-title: The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00228-X – volume: 13 start-page: 468 year: 1995 ident: B128 article-title: Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. publication-title: Nat. Biotechnol. doi: 10.1038/nbt0595-468 – volume: 36 start-page: 269 year: 2012 ident: B4 article-title: Nickel hyperaccumulation by natural plants in Turkish serpentine soils. publication-title: Turk. J. Bot. doi: 10.3906/bot-1101-10 – volume: 50 start-page: 686 year: 2003 ident: B113 article-title: Phytoremediation of metal-polluted ecosystems: hype for commercialization. publication-title: Russ. J. Plant Physiol. doi: 10.1023/A:1025604627496 – volume: 88 start-page: 1707 year: 2006 ident: B31 article-title: Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. publication-title: Biochimie doi: 10.1016/j.biochi.2006.07.003 – volume: 55 start-page: 1159 year: 2004 ident: B37 article-title: Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.01.028 – volume: 22 start-page: 1007 year: 2009 ident: B137 article-title: Phytomining: a review. publication-title: Miner. Eng. doi: 10.1016/j.mineng.2009.04.001 – volume: 16 start-page: 735 year: 2014 ident: B69 article-title: Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: results of five-and one-year field-scale experiments in Switzerland. publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2013.856846 – volume: 188 year: 2016 ident: B147 article-title: Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-016-5211-9 – volume: 23 start-page: 433 year: 2002 ident: B126 article-title: Individual and combined effect of mercury and manganese on phenol and proline content in leaf and stem of mungbean seedlings. publication-title: J. Environ. Biol. – year: 1999 ident: B66 article-title: Nickel uptake, translocation and hyperaccumulation in Berkheya coddii publication-title: Proceedings of the 3rd International Conference on Serpentine Ecology – volume: 41 start-page: 229 year: 1992 ident: B47 article-title: Metal tolerance in plants. publication-title: Acta Bot. Neerl. doi: 10.1111/j.1438-8677.1992.tb01332.x – volume: 7 year: 2016 ident: B89 article-title: Cadmium accumulation characteristics in turnip landraces from China and assessment of their phytoremediation potential for contaminated soils. publication-title: Front Plant Sci. doi: 10.3389/fpls.2016.01862 – volume: 41 start-page: 168 year: 2011 ident: B138 article-title: Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. publication-title: Crit. Rev. Env. Sci. Technol. doi: 10.1080/10643380902718418 – volume: 174 start-page: 1 year: 2010 ident: B163 article-title: A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.09.113 – volume: 39 start-page: 622 year: 2009 ident: B97 article-title: Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. publication-title: Crit. Rev. Env. Sci. Technol. doi: 10.1080/10643380701798272 – volume: 23 start-page: 1151 year: 1994 ident: B22 article-title: Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil. publication-title: J. Environ. Qual. doi: 10.2134/jeq1994.00472425002300060004x – volume: 52 start-page: 413 year: 2006 ident: B150 article-title: Removal of as, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. publication-title: Plant Soil Environ. doi: 10.17221/3460-pse – volume: 249 start-page: 107 year: 2003 ident: B90 article-title: Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. publication-title: Plant Soil doi: 10.1023/a:1022527330401 – start-page: 27 year: 2012 ident: B95 article-title: Plant responses to heavy metal toxicity publication-title: Plants and Heavy Metals doi: 10.1007/978-94-007-4441-7_2 – volume: 29 start-page: 248 year: 2011 ident: B92 article-title: Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2010.12.001 |
SSID | ssj0000500997 |
Score | 2.6946328 |
SecondaryResourceType | review_article |
Snippet | Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 359 |
SubjectTerms | chelate detoxification genetic engineering heavy metal phytoremediation Plant Science uptake |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIb-uLCB68VDdtkjbedkVZRGURBW8lTxWWVmQV9t8703aXXVG8eCtp2oRvps03TPINIcdeMadEJ8RArTsxFxCwmjyY2OV56q0yHdHB8863d7L_yK-fxNNMqS_cE9bIAzfAnfFMOaWC555pnkoUwHMZOBWzIUgbavVSWPNmgqlG1RupT9Zo-UAUps7C2xDVuRPcyZWiMunMMlSr9f9EMb_vlJxZeq5WyUrLGWm3mesaWfDlOlnqVcDrxhvkYfAyhsDZ12dAEOZz2qWD9woMCMsS7bai4RTYKb33n_653WBIq0D7Xn-O6S20DOMBFj0G_klvdOk2yePV5cNFP25rJcRWJGIEAMOHq1PppJZG2tSChxiLRS1kYpRj1libO6O5TJhLjYMLk2nuhbAYYiXpFlksq9LvEMq4gAg7tzLTFtXXFOM2y-E3mAitWQgROZ1AV9hWSBzrWQwLCCgQ6wKxLhDrosY6IifTB94aDY3fu_bQFtNuKH5dN4BLFK1LFH-5RESOJpYsAGvMgOjSVx8wEMdMLgRhLCLbjWWnQyGzFEpkEcnmbD43l_k75etLLciNqWx46-5_TH6PLCMcTcJqnyyO3j_8AfCekTmsXfwLa7AB-w priority: 102 providerName: Directory of Open Access Journals |
Title | Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32425957 https://www.proquest.com/docview/2404641741 https://pubmed.ncbi.nlm.nih.gov/PMC7203417 https://doaj.org/article/479d99fe4e1a4361965d77931cff6cf5 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6CwQMvaNyzwWQkHnjJqBPbiZEQ6hCjQhRVaJX6Fvm6IVXJ6Lpp_fc7J8kKRUXiJYqci5Pv2D7fiZ3vALwJmnstBzFFaj1IhcSA1ZbRpr4s8-C0HcgB_e88_q5GU_F1Jme_0wH1AF5sDe0on9R0MT-8_rX6iB3-A0Wc6G_fxfM5CW9ntEgrl_ou3EO3VFA6g3HP9Tuhb2JDbbIVpUQqVDbrpH623WPDS7Vi_tsY6N8LKf_wTMe78LCnlGzYtYFHcCfUj-H-UYO0b_UETiZnK4yrQ_uLCFnhPRuyyaJB-6LXYsNeU5wheWU_wlU47dcfsiayUTBXKzbGknk6oZzISE_ZN1P7pzA9_nzyaZT2qRRSJzO5RPyxX5tceWWUVS532ICso5wXKrPac2edK701iAr3ufW4YwsjgpSOIrAsfwY7dVOHF8C4kBiAl04VxpE4m-bCFSWOkpk0hseYwOEtdJXrdcYp3cW8wniDsK4I64qwrlqsE3i7vuC8k9j496lHZIv1aaSN3RY0i9Oq72qVKLTXOgYRuBG5IslEX-AwxF2MykWZwOtbS1aINU2QmDo0l1iRoIlejNF4As87y66rIuIptSwSKDZsvvEsm0fqn2etXjfNdONd9_6j3n14QG_bTVe9hJ3l4jK8QtaztAft1wLcfpnxg7Zl3wDVzwKm |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phytoremediation%3A+A+Promising+Approach+for+Revegetation+of+Heavy+Metal-Polluted+Land&rft.jtitle=Frontiers+in+plant+science&rft.au=Yan%2C+An&rft.au=Wang%2C+Yamin&rft.au=Tan%2C+Swee+Ngin&rft.au=Mohd+Yusof%2C+Mohamed+Lokman&rft.date=2020-04-30&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=11&rft.spage=359&rft_id=info:doi/10.3389%2Ffpls.2020.00359&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |