Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land

Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are non-biodegradable, they persist in the environment, have potential to enter the food chain through crop plants, and eventually may accumulate in...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 11; p. 359
Main Authors Yan, An, Wang, Yamin, Tan, Swee Ngin, Mohd Yusof, Mohamed Lokman, Ghosh, Subhadip, Chen, Zhong
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 30.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are non-biodegradable, they persist in the environment, have potential to enter the food chain through crop plants, and eventually may accumulate in the human body through biomagnification. Owing to their toxic nature, heavy metal contamination has posed a serious threat to human health and the ecosystem. Therefore, remediation of land contamination is of paramount importance. Phytoremediation is an eco-friendly approach that could be a successful mitigation measure to revegetate heavy metal-polluted soil in a cost-effective way. To improve the efficiency of phytoremediation, a better understanding of the mechanisms underlying heavy metal accumulation and tolerance in plant is indispensable. In this review, we describe the mechanisms of how heavy metals are taken up, translocated, and detoxified in plants. We focus on the strategies applied to improve the efficiency of phytostabilization and phytoextraction, including the application of genetic engineering, microbe-assisted and chelate-assisted approaches.
AbstractList Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are non-biodegradable, they persist in the environment, have potential to enter the food chain through crop plants, and eventually may accumulate in the human body through biomagnification. Owing to their toxic nature, heavy metal contamination has posed a serious threat to human health and the ecosystem. Therefore, remediation of land contamination is of paramount importance. Phytoremediation is an eco-friendly approach that could be a successful mitigation measure to revegetate heavy metal-polluted soil in a cost-effective way. To improve the efficiency of phytoremediation, a better understanding of the mechanisms underlying heavy metal accumulation and tolerance in plant is indispensable. In this review, we describe the mechanisms of how heavy metals are taken up, translocated, and detoxified in plants. We focus on the strategies applied to improve the efficiency of phytostabilization and phytoextraction, including the application of genetic engineering, microbe-assisted and chelate-assisted approaches.
Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are non-biodegradable, they persist in the environment, have potential to enter the food chain through crop plants, and eventually may accumulate in the human body through biomagnification. Owing to their toxic nature, heavy metal contamination has posed a serious threat to human health and the ecosystem. Therefore, remediation of land contamination is of paramount importance. Phytoremediation is an eco-friendly approach that could be a successful mitigation measure to revegetate heavy metal-polluted soil in a cost-effective way. To improve the efficiency of phytoremediation, a better understanding of the mechanisms underlying heavy metal accumulation and tolerance in plant is indispensable. In this review, we describe the mechanisms of how heavy metals are taken up, translocated, and detoxified in plants. We focus on the strategies applied to improve the efficiency of phytostabilization and phytoextraction, including the application of genetic engineering, microbe-assisted and chelate-assisted approaches.Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are non-biodegradable, they persist in the environment, have potential to enter the food chain through crop plants, and eventually may accumulate in the human body through biomagnification. Owing to their toxic nature, heavy metal contamination has posed a serious threat to human health and the ecosystem. Therefore, remediation of land contamination is of paramount importance. Phytoremediation is an eco-friendly approach that could be a successful mitigation measure to revegetate heavy metal-polluted soil in a cost-effective way. To improve the efficiency of phytoremediation, a better understanding of the mechanisms underlying heavy metal accumulation and tolerance in plant is indispensable. In this review, we describe the mechanisms of how heavy metals are taken up, translocated, and detoxified in plants. We focus on the strategies applied to improve the efficiency of phytostabilization and phytoextraction, including the application of genetic engineering, microbe-assisted and chelate-assisted approaches.
Author Yan, An
Chen, Zhong
Tan, Swee Ngin
Wang, Yamin
Ghosh, Subhadip
Mohd Yusof, Mohamed Lokman
AuthorAffiliation 4 M Grass International Institute of Smart Urban Greenology , Singapore , Singapore
3 School of Environmental and Rural Science, University of New England , Armidale, NSW , Australia
1 Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University , Singapore , Singapore
2 Centre for Urban Greenery and Ecology, National Parks Board , Singapore , Singapore
AuthorAffiliation_xml – name: 1 Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University , Singapore , Singapore
– name: 4 M Grass International Institute of Smart Urban Greenology , Singapore , Singapore
– name: 2 Centre for Urban Greenery and Ecology, National Parks Board , Singapore , Singapore
– name: 3 School of Environmental and Rural Science, University of New England , Armidale, NSW , Australia
Author_xml – sequence: 1
  givenname: An
  surname: Yan
  fullname: Yan, An
– sequence: 2
  givenname: Yamin
  surname: Wang
  fullname: Wang, Yamin
– sequence: 3
  givenname: Swee Ngin
  surname: Tan
  fullname: Tan, Swee Ngin
– sequence: 4
  givenname: Mohamed Lokman
  surname: Mohd Yusof
  fullname: Mohd Yusof, Mohamed Lokman
– sequence: 5
  givenname: Subhadip
  surname: Ghosh
  fullname: Ghosh, Subhadip
– sequence: 6
  givenname: Zhong
  surname: Chen
  fullname: Chen, Zhong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32425957$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1rGzEQhkVJaT6ac29Fx17W0fdaPRRMSJOAS01JoTehlWZtBXm11a4N_veV7aQkheqiYfTOM8zoPUcnXeoAoQ-UTDif6qu2j8OEEUYmhHCp36AzqpSohGK_Tl7Ep-hyGB5JOZIQret36JQzwaSW9Rl6WKx2Y8qwBh_sGFL3Gc_wIqd1GEK3xLO-z8m6FW5Txj9gC0sYDzKcWnwHdrvD30omVosU42YEj-e28-_R29bGAS6f7gv08-vNw_VdNf9-e389m1dOMjlWzZQTabnyyqpGOe7A-sZRLrlijfbUNc5NfWPLENTzxpegqa0AKR0VhDJ-ge6PXJ_so-lzWNu8M8kGc0ikvDQ2j8FFMKLWXusWBFAruKJaSV_XmlPXtsq1srC-HFn9pinLcNCN2cZX0NcvXViZZdqamhEuaF0An54AOf3ewDCaskMHMdoO0mYwTBChilDQIv34stffJs_fUgTyKHA5DUOG1rhw3HtpHaKhxOwdYPYOMHsHmIMDSt3VP3XP6P9V_AGqwrTr
CitedBy_id crossref_primary_10_1016_j_eti_2021_101833
crossref_primary_10_1016_j_jenvman_2023_118005
crossref_primary_10_1007_s11368_022_03401_x
crossref_primary_10_1038_s41467_024_49869_8
crossref_primary_10_1007_s13762_024_05690_w
crossref_primary_10_3390_microorganisms11040864
crossref_primary_10_1016_j_envpol_2023_122112
crossref_primary_10_1016_j_stress_2024_100439
crossref_primary_10_21285_2227_2925_2021_11_2_228_235
crossref_primary_10_1007_s10661_022_10859_2
crossref_primary_10_1080_23312025_2020_1802814
crossref_primary_10_3390_min12040409
crossref_primary_10_3390_plants11091216
crossref_primary_10_1007_s10661_024_13414_3
crossref_primary_10_1016_j_chemosphere_2022_134055
crossref_primary_10_1080_02757540_2023_2203142
crossref_primary_10_1016_j_jhazmat_2021_127710
crossref_primary_10_1007_s10123_024_00546_2
crossref_primary_10_3389_fenvs_2022_949581
crossref_primary_10_1007_s13762_021_03696_2
crossref_primary_10_1016_j_agee_2022_108090
crossref_primary_10_3389_fenvs_2022_830087
crossref_primary_10_1080_15226514_2023_2170322
crossref_primary_10_1088_1755_1315_847_1_012012
crossref_primary_10_3390_microorganisms11061587
crossref_primary_10_1186_s40168_024_01959_x
crossref_primary_10_1007_s11356_023_29031_5
crossref_primary_10_1016_j_indic_2024_100396
crossref_primary_10_3390_ijerph19063583
crossref_primary_10_1007_s11356_024_35519_5
crossref_primary_10_1016_j_chemosphere_2022_137547
crossref_primary_10_1007_s11104_023_06338_3
crossref_primary_10_1515_opag_2022_0368
crossref_primary_10_3390_toxics10090499
crossref_primary_10_1007_s42729_024_01639_7
crossref_primary_10_1016_j_chemosphere_2022_137301
crossref_primary_10_1007_s41748_023_00349_x
crossref_primary_10_3390_jof10120844
crossref_primary_10_1007_s11270_021_05124_0
crossref_primary_10_1007_s11157_023_09653_4
crossref_primary_10_1007_s11270_023_06112_2
crossref_primary_10_1088_1755_1315_1109_1_012050
crossref_primary_10_15243_jdmlm_2024_114_6307
crossref_primary_10_1007_s11248_024_00393_x
crossref_primary_10_1016_j_matpr_2022_11_261
crossref_primary_10_1016_j_envadv_2022_100313
crossref_primary_10_3390_app13074223
crossref_primary_10_1007_s13762_022_04669_9
crossref_primary_10_1016_j_jhazmat_2021_125990
crossref_primary_10_1016_j_chemosphere_2022_134045
crossref_primary_10_1016_j_chemosphere_2022_137551
crossref_primary_10_3390_plants12071484
crossref_primary_10_1016_j_jhazmat_2021_127920
crossref_primary_10_1007_s11356_023_27566_1
crossref_primary_10_3390_su152014933
crossref_primary_10_1007_s10653_022_01378_7
crossref_primary_10_1080_15226514_2021_2023461
crossref_primary_10_1016_j_envpol_2024_123767
crossref_primary_10_1016_j_chemosphere_2024_142273
crossref_primary_10_3390_soilsystems8010008
crossref_primary_10_51847_evfEMeqisK
crossref_primary_10_1016_j_scitotenv_2022_156373
crossref_primary_10_3390_plants11091255
crossref_primary_10_1007_s11738_023_03644_2
crossref_primary_10_3390_soilsystems8010001
crossref_primary_10_3390_jox13020019
crossref_primary_10_1002_slct_202401426
crossref_primary_10_1002_ldr_4210
crossref_primary_10_1007_s11104_023_06095_3
crossref_primary_10_1007_s11356_024_34706_8
crossref_primary_10_1016_j_envpol_2020_115193
crossref_primary_10_1016_j_chemosphere_2022_135196
crossref_primary_10_1016_j_jhazmat_2023_132855
crossref_primary_10_1016_j_cscee_2023_100307
crossref_primary_10_1007_s10098_024_03116_2
crossref_primary_10_3390_agronomy12102587
crossref_primary_10_1080_10934529_2023_2236535
crossref_primary_10_1016_j_chemosphere_2022_137106
crossref_primary_10_1007_s11356_025_36097_w
crossref_primary_10_1080_15226514_2024_2321597
crossref_primary_10_3390_agronomy13061521
crossref_primary_10_1007_s11270_024_07445_2
crossref_primary_10_1016_j_jenvman_2023_119148
crossref_primary_10_1080_10408398_2021_1979931
crossref_primary_10_33002_nr2581_6853_040309
crossref_primary_10_1007_s12517_021_07521_5
crossref_primary_10_1007_s11157_023_09675_y
crossref_primary_10_1016_j_jtemin_2023_100057
crossref_primary_10_3389_fmicb_2022_853407
crossref_primary_10_1016_j_chemosphere_2023_139833
crossref_primary_10_1016_j_ecofro_2024_06_001
crossref_primary_10_3390_plants12163003
crossref_primary_10_3389_fpls_2024_1389207
crossref_primary_10_3390_plants12040725
crossref_primary_10_1016_j_chemosphere_2023_140819
crossref_primary_10_1093_inteam_vjaf024
crossref_primary_10_3389_fpls_2024_1423625
crossref_primary_10_3389_fmicb_2021_731723
crossref_primary_10_1016_j_jenvman_2023_119971
crossref_primary_10_1007_s11356_024_33698_9
crossref_primary_10_3390_metabo12111049
crossref_primary_10_1016_j_envpol_2022_120964
crossref_primary_10_3390_su151813375
crossref_primary_10_21285_2500_1582_2022_4_322_333
crossref_primary_10_1007_s10653_022_01387_6
crossref_primary_10_1016_j_jfp_2023_100166
crossref_primary_10_1016_j_indcrop_2022_114942
crossref_primary_10_1007_s11356_023_29002_w
crossref_primary_10_1007_s10661_023_12073_0
crossref_primary_10_1002_jobm_202100372
crossref_primary_10_1007_s11356_023_29279_x
crossref_primary_10_1007_s11356_024_34585_z
crossref_primary_10_1007_s11270_023_06423_4
crossref_primary_10_1080_15226514_2023_2185450
crossref_primary_10_1080_10889868_2022_2049682
crossref_primary_10_1007_s13762_023_05313_w
crossref_primary_10_1007_s41748_024_00386_0
crossref_primary_10_1016_j_jenvman_2024_123035
crossref_primary_10_1016_j_chemosphere_2022_136881
crossref_primary_10_1021_acsestwater_2c00535
crossref_primary_10_1016_j_radphyschem_2023_110851
crossref_primary_10_1016_j_envint_2022_107546
crossref_primary_10_1016_j_ijhydene_2024_01_081
crossref_primary_10_1038_s41598_023_32990_x
crossref_primary_10_1016_j_biteb_2021_100834
crossref_primary_10_1080_02757540_2024_2306839
crossref_primary_10_1080_10643389_2024_2315009
crossref_primary_10_3390_plants10102176
crossref_primary_10_3390_molecules27154671
crossref_primary_10_1007_s11356_022_23966_x
crossref_primary_10_1007_s00299_024_03351_3
crossref_primary_10_1007_s10653_022_01260_6
crossref_primary_10_1016_j_envres_2022_115055
crossref_primary_10_1007_s40726_023_00248_9
crossref_primary_10_1016_j_envpol_2023_123050
crossref_primary_10_1016_j_scitotenv_2024_171276
crossref_primary_10_1016_j_cej_2023_142006
crossref_primary_10_1590_1519_6984_271684
crossref_primary_10_1016_j_scitotenv_2021_149788
crossref_primary_10_1071_CP21583
crossref_primary_10_1016_j_jece_2024_113038
crossref_primary_10_1016_j_matpr_2022_11_418
crossref_primary_10_3390_pr12122733
crossref_primary_10_1016_j_chemosphere_2022_135531
crossref_primary_10_3390_su132413538
crossref_primary_10_3390_jmse11091826
crossref_primary_10_3390_pr10101954
crossref_primary_10_1007_s12665_024_11631_0
crossref_primary_10_3390_plants12223833
crossref_primary_10_1007_s11356_024_34911_5
crossref_primary_10_1007_s11270_024_07382_0
crossref_primary_10_1016_j_scitotenv_2024_173029
crossref_primary_10_1099_mgen_0_001223
crossref_primary_10_1021_acsabm_3c00669
crossref_primary_10_3390_toxics11050422
crossref_primary_10_3390_ma15207243
crossref_primary_10_1007_s11270_024_07251_w
crossref_primary_10_1016_j_chemosphere_2022_135581
crossref_primary_10_1080_21655979_2021_1996748
crossref_primary_10_1051_e3sconf_202340501001
crossref_primary_10_32604_jrm_2022_022393
crossref_primary_10_1080_17429145_2022_2096266
crossref_primary_10_1007_s44169_024_00074_0
crossref_primary_10_3390_plants12081653
crossref_primary_10_1155_2022_7425085
crossref_primary_10_1016_j_jece_2024_112125
crossref_primary_10_3390_plants12112084
crossref_primary_10_3390_app12199598
crossref_primary_10_3389_fenrg_2022_1032404
crossref_primary_10_1016_j_crmicr_2022_100166
crossref_primary_10_1016_j_envadv_2023_100430
crossref_primary_10_1016_j_envpol_2022_119559
crossref_primary_10_1016_j_jenvman_2021_113657
crossref_primary_10_4491_eer_2022_560
crossref_primary_10_1002_slct_202202970
crossref_primary_10_1007_s11356_022_22210_w
crossref_primary_10_1016_j_chemosphere_2024_142694
crossref_primary_10_1007_s11356_021_16084_7
crossref_primary_10_1016_j_plaphy_2024_109388
crossref_primary_10_1007_s11104_024_07107_6
crossref_primary_10_1016_j_chemosphere_2024_141369
crossref_primary_10_1016_j_ecoenv_2024_116731
crossref_primary_10_1016_j_heliyon_2024_e25942
crossref_primary_10_3390_agriculture14122110
crossref_primary_10_1080_15226514_2022_2161466
crossref_primary_10_1016_j_jhazmat_2023_133078
crossref_primary_10_3390_plants11233210
crossref_primary_10_46909_alse_574158
crossref_primary_10_1007_s11356_024_35018_7
crossref_primary_10_1080_14786419_2022_2097227
crossref_primary_10_3390_w15081566
crossref_primary_10_1007_s42773_023_00270_6
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000731
crossref_primary_10_1080_15226514_2020_1859986
crossref_primary_10_3390_w16060870
crossref_primary_10_3390_min13111354
crossref_primary_10_1007_s42729_024_02174_1
crossref_primary_10_1080_15226514_2024_2427928
crossref_primary_10_7831_ras_11_0_20
crossref_primary_10_3390_plants13172460
crossref_primary_10_1039_D3SU00440F
crossref_primary_10_1016_j_aquatox_2023_106496
crossref_primary_10_1016_j_envpol_2022_119779
crossref_primary_10_1016_j_envres_2025_121353
crossref_primary_10_1016_j_ecoenv_2024_116113
crossref_primary_10_3389_fpls_2023_1337700
crossref_primary_10_1016_j_jenvman_2024_120167
crossref_primary_10_3390_plants11050595
crossref_primary_10_1016_j_envdev_2024_100992
crossref_primary_10_3390_ijms24087383
crossref_primary_10_1080_15226514_2023_2187224
crossref_primary_10_3390_stresses1040018
crossref_primary_10_1080_01490451_2023_2286492
crossref_primary_10_3389_fenvs_2021_661423
crossref_primary_10_1007_s11356_023_25553_0
crossref_primary_10_1016_j_envres_2022_114955
crossref_primary_10_3390_ijerph192316309
crossref_primary_10_1002_wene_489
crossref_primary_10_1016_j_soh_2023_100013
crossref_primary_10_1007_s40626_024_00327_2
crossref_primary_10_1016_j_envres_2023_117270
crossref_primary_10_3390_ma15155233
crossref_primary_10_1007_s10661_021_09504_1
crossref_primary_10_3390_plants13010079
crossref_primary_10_2298_ABS220309016H
crossref_primary_10_1111_ppl_13285
crossref_primary_10_3390_su151813426
crossref_primary_10_1007_s10904_024_03114_3
crossref_primary_10_1016_j_seh_2024_100061
crossref_primary_10_1016_j_wasman_2024_03_010
crossref_primary_10_1007_s11356_024_35600_z
crossref_primary_10_1186_s12870_024_05906_8
crossref_primary_10_35118_apjmbb_2022_030_3_07
crossref_primary_10_3390_su15032518
crossref_primary_10_1007_s11356_023_27732_5
crossref_primary_10_3390_su16083315
crossref_primary_10_1080_09593330_2022_2113918
crossref_primary_10_3390_pr12040833
crossref_primary_10_1007_s42729_023_01275_7
crossref_primary_10_3390_su15032761
crossref_primary_10_1016_j_chnaes_2022_05_008
crossref_primary_10_15243_jdmlm_2025_122_7009
crossref_primary_10_3390_stresses4040062
crossref_primary_10_1007_s11356_024_35217_2
crossref_primary_10_1016_j_scitotenv_2023_163634
crossref_primary_10_2478_johr_2024_0003
crossref_primary_10_1016_j_heliyon_2023_e12921
crossref_primary_10_1016_j_chemosphere_2022_134842
crossref_primary_10_1016_j_envadv_2024_100598
crossref_primary_10_1016_j_jhazmat_2024_135643
crossref_primary_10_1186_s12863_025_01300_x
crossref_primary_10_1007_s44274_024_00170_x
crossref_primary_10_1007_s13762_024_05673_x
crossref_primary_10_1016_j_molstruc_2021_130277
crossref_primary_10_1016_j_wmb_2024_02_004
crossref_primary_10_1111_brv_13172
crossref_primary_10_2166_aqua_2024_427
crossref_primary_10_2174_0115734110286256240116061511
crossref_primary_10_1007_s13762_022_04128_5
crossref_primary_10_3390_nano11113082
crossref_primary_10_3390_agriculture13030735
crossref_primary_10_1016_j_envpol_2023_121733
crossref_primary_10_1016_j_envres_2022_113821
crossref_primary_10_1016_j_bcab_2024_103108
crossref_primary_10_3390_microorganisms9122545
crossref_primary_10_1016_j_biteb_2023_101678
crossref_primary_10_1016_j_psep_2022_12_035
crossref_primary_10_1016_j_envres_2023_117479
crossref_primary_10_1007_s12010_023_04545_3
crossref_primary_10_1016_j_chemosphere_2022_133577
crossref_primary_10_1016_j_hazadv_2024_100481
crossref_primary_10_1007_s44290_024_00103_w
crossref_primary_10_1007_s10661_024_13236_3
crossref_primary_10_1007_s11356_020_12271_0
crossref_primary_10_1016_j_ecoenv_2025_117750
crossref_primary_10_1007_s13201_023_01898_2
crossref_primary_10_1016_j_jenvman_2022_117211
crossref_primary_10_1016_j_jenvman_2022_116123
crossref_primary_10_3389_fmars_2021_697269
crossref_primary_10_3390_ijerph17134841
crossref_primary_10_1016_j_enmm_2024_100969
crossref_primary_10_1016_j_envpol_2022_119128
crossref_primary_10_3390_biology14010023
crossref_primary_10_1016_j_sajb_2023_08_053
crossref_primary_10_3390_soilsystems7030069
crossref_primary_10_3390_su162310587
crossref_primary_10_47430_ujmr_2491_010
crossref_primary_10_2174_2211550111666220428113114
crossref_primary_10_1007_s11738_024_03700_5
crossref_primary_10_17350_HJSE19030000290
crossref_primary_10_1016_j_enmm_2024_100975
crossref_primary_10_1016_j_jhazmat_2023_131181
crossref_primary_10_22159_ijpps_2024v16i5_50724
crossref_primary_10_3390_plants13010098
crossref_primary_10_1016_j_envpol_2022_119375
crossref_primary_10_1016_j_envres_2022_112709
crossref_primary_10_3390_app13084978
crossref_primary_10_3390_land12081533
crossref_primary_10_51847_NgvVoWUMKC
crossref_primary_10_1007_s13762_023_05120_3
crossref_primary_10_1016_j_seh_2024_100080
crossref_primary_10_1016_j_chemosphere_2024_142199
crossref_primary_10_1007_s12010_023_04465_2
crossref_primary_10_1016_j_heliyon_2023_e16692
crossref_primary_10_3390_f14030654
crossref_primary_10_3390_plants11192554
crossref_primary_10_1080_15592324_2021_1995647
crossref_primary_10_1016_j_chemosphere_2023_138411
crossref_primary_10_3390_microorganisms11071653
crossref_primary_10_1590_1678_4324_2024230161
crossref_primary_10_3390_plants13192733
crossref_primary_10_1007_s11356_024_35659_8
crossref_primary_10_1007_s00128_023_03704_w
crossref_primary_10_1002_jeq2_20503
crossref_primary_10_1016_j_jenvman_2024_120553
crossref_primary_10_1007_s11270_022_05620_x
crossref_primary_10_1016_j_jenvman_2024_121409
crossref_primary_10_3390_su142416415
crossref_primary_10_1002_tqem_22131
crossref_primary_10_3389_fpls_2022_1074383
crossref_primary_10_1007_s13762_024_05657_x
crossref_primary_10_1007_s11270_022_05775_7
crossref_primary_10_1007_s11356_022_19756_0
crossref_primary_10_1016_j_plaphy_2024_108652
crossref_primary_10_1021_acs_est_4c00977
crossref_primary_10_3390_cells13080686
crossref_primary_10_1016_j_eti_2023_103043
crossref_primary_10_3390_toxics12090625
crossref_primary_10_3390_su142315879
crossref_primary_10_1007_s00449_022_02745_5
crossref_primary_10_1007_s10098_024_03085_6
crossref_primary_10_3390_su152115646
crossref_primary_10_3390_agriculture12060749
crossref_primary_10_1016_j_exis_2023_101318
crossref_primary_10_1080_15226514_2023_2288906
crossref_primary_10_1007_s11356_023_31669_0
crossref_primary_10_3389_fpls_2023_1076876
crossref_primary_10_1109_LGRS_2023_3291019
crossref_primary_10_1111_1440_1703_12466
crossref_primary_10_1590_1413_7054202347011322
crossref_primary_10_1016_j_scitotenv_2024_173941
crossref_primary_10_1016_j_envexpbot_2022_105116
crossref_primary_10_1007_s00128_023_03694_9
crossref_primary_10_3390_biom12010043
crossref_primary_10_3390_ijerph192416482
crossref_primary_10_3390_plants13111534
crossref_primary_10_1007_s42729_021_00645_3
crossref_primary_10_1016_j_sajb_2023_09_033
crossref_primary_10_1016_j_scitotenv_2021_151474
crossref_primary_10_3390_app11072982
crossref_primary_10_4236_msce_2021_103001
crossref_primary_10_1007_s40415_022_00830_3
crossref_primary_10_3390_agriculture14111916
crossref_primary_10_1007_s42729_021_00743_2
crossref_primary_10_1016_j_pedsph_2024_09_003
crossref_primary_10_1007_s10971_023_06215_6
crossref_primary_10_1016_j_envpol_2020_116314
crossref_primary_10_36953_ECJ_12102318
crossref_primary_10_1016_j_jhazmat_2024_133813
crossref_primary_10_1016_j_envc_2021_100197
crossref_primary_10_1007_s11356_024_33910_w
crossref_primary_10_1071_FP23021
crossref_primary_10_4028_www_scientific_net_MSF_1025_273
crossref_primary_10_1080_15226514_2020_1813075
crossref_primary_10_1016_j_eti_2023_103488
crossref_primary_10_1016_j_ecoleng_2022_106669
crossref_primary_10_1016_j_scitotenv_2024_173707
crossref_primary_10_1016_j_plaphy_2024_108846
crossref_primary_10_1016_j_wsee_2024_10_001
crossref_primary_10_1016_j_indcrop_2024_119487
crossref_primary_10_1016_j_ecoenv_2024_117011
crossref_primary_10_1007_s42250_022_00326_3
crossref_primary_10_1007_s11356_024_35790_6
crossref_primary_10_1016_j_plaphy_2023_108330
crossref_primary_10_1016_j_taap_2023_116449
crossref_primary_10_1016_j_jsames_2023_104317
crossref_primary_10_1016_j_gexplo_2024_107426
crossref_primary_10_1016_j_eti_2024_103757
crossref_primary_10_1071_FP23236
crossref_primary_10_1002_tqem_22139
crossref_primary_10_3389_fpls_2023_1145012
crossref_primary_10_1016_j_jclepro_2021_129468
crossref_primary_10_1007_s44169_023_00039_9
crossref_primary_10_1007_s10534_022_00431_3
crossref_primary_10_3389_fpls_2024_1510482
crossref_primary_10_1080_15226514_2024_2327611
crossref_primary_10_1007_s10725_024_01130_4
crossref_primary_10_1007_s13530_023_00195_4
crossref_primary_10_1007_s11356_022_22874_4
crossref_primary_10_3390_mining3040044
crossref_primary_10_1016_j_scitotenv_2024_178147
crossref_primary_10_1016_j_envpol_2023_121599
crossref_primary_10_1016_j_jhazmat_2023_131580
crossref_primary_10_1016_j_sajb_2024_02_032
crossref_primary_10_1016_j_sajb_2024_02_034
crossref_primary_10_3389_ffunb_2024_1363460
crossref_primary_10_1016_j_indcrop_2024_119029
crossref_primary_10_1007_s00128_021_03401_6
crossref_primary_10_3390_f15010180
crossref_primary_10_1016_j_envpol_2023_121141
crossref_primary_10_1080_01490451_2024_2318227
crossref_primary_10_1007_s11270_023_06838_z
crossref_primary_10_3390_plants12040877
crossref_primary_10_1038_s41598_023_37430_4
crossref_primary_10_3390_app13031617
crossref_primary_10_1007_s11356_024_33054_x
crossref_primary_10_3390_w14233972
crossref_primary_10_1016_j_rhisph_2023_100836
crossref_primary_10_3389_fpls_2022_881242
crossref_primary_10_1186_s12934_024_02508_9
crossref_primary_10_7717_peerj_14015
crossref_primary_10_1007_s11356_022_24904_7
crossref_primary_10_3389_fpls_2024_1332426
crossref_primary_10_3390_su142013637
crossref_primary_10_36320_ajb_v16_i3_17108
crossref_primary_10_1016_j_jafr_2022_100374
crossref_primary_10_1007_s44154_024_00153_1
crossref_primary_10_1016_j_jafr_2022_100373
crossref_primary_10_1016_j_envpol_2023_121130
crossref_primary_10_3390_biology11050676
crossref_primary_10_3389_fpls_2022_999866
crossref_primary_10_1016_j_envexpbot_2023_105292
crossref_primary_10_1134_S0003683823602676
crossref_primary_10_1016_j_bcab_2023_102845
crossref_primary_10_1016_j_chemosphere_2024_143208
crossref_primary_10_3390_su14042148
crossref_primary_10_1016_j_ecoenv_2022_114065
crossref_primary_10_3390_app12188941
crossref_primary_10_3390_horticulturae9070738
crossref_primary_10_1088_2515_7620_ad61c5
crossref_primary_10_3390_agriculture13091676
crossref_primary_10_3390_plants11111497
crossref_primary_10_3390_plants10091945
crossref_primary_10_3389_fpls_2022_874723
crossref_primary_10_1016_j_chemosphere_2022_135488
crossref_primary_10_3390_plants11070855
crossref_primary_10_1016_j_jclepro_2022_133922
crossref_primary_10_1016_j_scenv_2023_100018
crossref_primary_10_1016_j_plaphy_2024_108811
crossref_primary_10_3390_plants13060913
crossref_primary_10_1016_j_chemosphere_2022_136332
crossref_primary_10_1016_j_jenvman_2024_121821
crossref_primary_10_3390_agriculture13091684
crossref_primary_10_1007_s00344_024_11284_0
crossref_primary_10_1007_s13562_022_00776_3
crossref_primary_10_1007_s11356_023_28374_3
crossref_primary_10_1016_j_jece_2024_112221
crossref_primary_10_1007_s11356_025_35997_1
crossref_primary_10_3390_app131810239
crossref_primary_10_1016_j_ecoenv_2023_115439
crossref_primary_10_3389_fpls_2021_806949
crossref_primary_10_3390_su15118963
crossref_primary_10_1080_10406026_2024_2396492
crossref_primary_10_1007_s41742_023_00544_8
crossref_primary_10_3390_ijms24010052
crossref_primary_10_1016_j_envres_2022_114248
crossref_primary_10_3390_agriculture13101983
crossref_primary_10_3390_plants10091969
crossref_primary_10_1007_s10661_024_12940_4
crossref_primary_10_18393_ejss_1522127
crossref_primary_10_1021_acs_iecr_4c04523
crossref_primary_10_1007_s12298_023_01346_0
crossref_primary_10_31857_S0002188124100094
crossref_primary_10_1038_s41598_023_31986_x
crossref_primary_10_1016_j_afres_2023_100347
crossref_primary_10_1016_j_scenv_2024_100112
crossref_primary_10_1080_10409238_2024_2405476
crossref_primary_10_1016_j_marenvres_2024_106935
crossref_primary_10_3390_molecules28031474
crossref_primary_10_1016_j_rser_2024_114877
crossref_primary_10_1007_s42832_022_0149_z
crossref_primary_10_1016_j_scitotenv_2024_177350
crossref_primary_10_1016_j_chemosphere_2022_137258
crossref_primary_10_5937_topola2413055K
crossref_primary_10_1016_j_envpol_2021_118681
crossref_primary_10_1016_j_jhazmat_2024_135028
crossref_primary_10_1016_j_jhazmat_2023_131404
crossref_primary_10_1007_s12517_022_09522_4
crossref_primary_10_3390_su151813901
crossref_primary_10_1080_01490451_2024_2388118
crossref_primary_10_1080_21683565_2022_2127044
crossref_primary_10_1016_j_plaphy_2023_01_045
crossref_primary_10_3390_stresses2040031
crossref_primary_10_1080_17518253_2024_2404235
crossref_primary_10_1016_j_envres_2022_114451
crossref_primary_10_1080_15226514_2022_2090500
crossref_primary_10_1016_j_scitotenv_2022_160523
crossref_primary_10_3390_molecules28093921
crossref_primary_10_3390_ani12233374
crossref_primary_10_3390_ijms25063080
crossref_primary_10_1134_S1021443722040185
crossref_primary_10_1021_acs_est_4c08749
crossref_primary_10_1007_s10661_024_13054_7
crossref_primary_10_3390_soilsystems6010003
crossref_primary_10_1016_j_stress_2024_100578
crossref_primary_10_2174_18743315_v16_e2201240
crossref_primary_10_1016_j_bbr_2024_115212
crossref_primary_10_1021_acsagscitech_2c00057
crossref_primary_10_3390_su14105856
crossref_primary_10_15446_dyna_v91n232_110906
crossref_primary_10_3390_toxics11040323
crossref_primary_10_1007_s13762_024_05978_x
crossref_primary_10_1016_j_scitotenv_2021_149222
crossref_primary_10_3390_resources13070098
crossref_primary_10_1080_15226514_2024_2357635
crossref_primary_10_1016_j_earscirev_2024_104854
crossref_primary_10_1016_j_prp_2024_155260
crossref_primary_10_1016_j_stress_2023_100283
crossref_primary_10_1002_ldr_4551
crossref_primary_10_3389_fmicb_2022_1106254
crossref_primary_10_1007_s00271_022_00809_8
crossref_primary_10_48175_IJARSCT_18774
crossref_primary_10_1080_15226514_2020_1774504
crossref_primary_10_1016_j_plaphy_2022_07_015
crossref_primary_10_1016_j_scenv_2024_100124
crossref_primary_10_1016_j_chemosphere_2022_136146
crossref_primary_10_3390_ma15165657
crossref_primary_10_3390_plants12132407
crossref_primary_10_1007_s10668_024_04929_3
crossref_primary_10_3390_genes15060696
crossref_primary_10_1016_j_heliyon_2021_e07979
crossref_primary_10_3390_su15097578
crossref_primary_10_1016_j_jhazmat_2024_135232
crossref_primary_10_1016_j_stress_2024_100394
crossref_primary_10_1080_03650340_2021_1983174
crossref_primary_10_1016_j_rhisph_2023_100672
crossref_primary_10_1016_j_ibiod_2023_105582
crossref_primary_10_1080_15592324_2022_2064072
crossref_primary_10_3390_catal14020118
crossref_primary_10_3390_foods13182921
crossref_primary_10_1080_10889868_2022_2138256
crossref_primary_10_1016_j_ecoenv_2024_116883
crossref_primary_10_3390_c9010001
crossref_primary_10_1007_s10340_024_01863_1
crossref_primary_10_1016_j_biortech_2021_125461
crossref_primary_10_3389_fnano_2022_1062608
crossref_primary_10_1016_j_jhazmat_2024_136795
crossref_primary_10_1016_j_sajce_2022_08_004
crossref_primary_10_1007_s11356_024_34150_8
crossref_primary_10_1016_j_chemosphere_2024_142774
crossref_primary_10_3390_su15053973
crossref_primary_10_1016_j_plantsci_2024_112265
crossref_primary_10_1007_s00344_022_10879_9
crossref_primary_10_1016_j_scitotenv_2024_176605
crossref_primary_10_1016_j_scitotenv_2022_153144
crossref_primary_10_1016_j_heliyon_2021_e07945
crossref_primary_10_1007_s42461_024_01138_4
crossref_primary_10_1016_j_jwpe_2024_105875
crossref_primary_10_1007_s00344_022_10700_7
crossref_primary_10_3389_fmicb_2022_929730
crossref_primary_10_1007_s11356_023_30500_0
crossref_primary_10_1111_raq_12892
crossref_primary_10_1016_j_jhazmat_2022_130674
crossref_primary_10_3390_agriengineering5010037
crossref_primary_10_3390_plants14020230
crossref_primary_10_52589_AJENSR_FOYAOUVY
crossref_primary_10_1016_j_scitotenv_2024_174237
crossref_primary_10_3390_plants13131823
crossref_primary_10_1080_15226514_2021_2002809
crossref_primary_10_1080_10643389_2021_1877033
crossref_primary_10_1002_ieam_4907
crossref_primary_10_3390_plants12193381
crossref_primary_10_4491_eer_2021_631
crossref_primary_10_1016_j_chemosphere_2023_137917
crossref_primary_10_1080_15320383_2023_2273348
crossref_primary_10_3390_hydrobiology1030021
crossref_primary_10_1016_j_copbio_2021_10_024
crossref_primary_10_1016_j_bcab_2022_102535
crossref_primary_10_1016_j_heliyon_2023_e13547
crossref_primary_10_2166_aqua_2022_134
crossref_primary_10_3389_fpls_2022_1015745
crossref_primary_10_3390_nano11092164
crossref_primary_10_3390_environments11060122
crossref_primary_10_1080_15592324_2024_2365576
crossref_primary_10_3390_plants13202839
crossref_primary_10_1007_s13369_021_05839_6
crossref_primary_10_1016_j_jhazmat_2020_123855
crossref_primary_10_1016_j_ecoenv_2021_112864
crossref_primary_10_1016_j_jenvman_2024_123192
crossref_primary_10_1021_acsestwater_4c00510
crossref_primary_10_3390_en14216953
crossref_primary_10_1016_j_jpba_2023_115718
crossref_primary_10_1128_mra_00617_24
crossref_primary_10_1007_s11356_023_29979_4
crossref_primary_10_1016_j_jtice_2024_105472
crossref_primary_10_7717_peerj_16067
crossref_primary_10_3390_nano12050769
crossref_primary_10_3390_su15086665
crossref_primary_10_1016_j_jhazmat_2022_129640
crossref_primary_10_3390_plants13131811
crossref_primary_10_2166_wpt_2023_140
crossref_primary_10_3390_toxics11070580
crossref_primary_10_1016_j_envint_2024_108904
crossref_primary_10_3389_fpls_2022_910714
crossref_primary_10_1016_j_envpol_2022_120641
crossref_primary_10_18006_2022_10_3__511_523
crossref_primary_10_3390_su16188230
crossref_primary_10_1002_ldr_4711
crossref_primary_10_1007_s12011_023_03762_5
crossref_primary_10_1016_j_micres_2021_126811
crossref_primary_10_3390_plants12091793
crossref_primary_10_1007_s10653_024_02110_3
crossref_primary_10_1016_j_enmm_2023_100781
crossref_primary_10_3390_su16051829
crossref_primary_10_1016_j_heliyon_2024_e29528
crossref_primary_10_1007_s00299_024_03305_9
crossref_primary_10_1007_s11356_024_32664_9
crossref_primary_10_1080_26395940_2022_2042395
crossref_primary_10_1080_07388551_2023_2170862
crossref_primary_10_3390_pollutants4030029
crossref_primary_10_1007_s10725_024_01171_9
crossref_primary_10_18006_2023_11_5__791_799
crossref_primary_10_3390_su15010876
crossref_primary_10_1016_j_jece_2021_105528
crossref_primary_10_1016_j_plaphy_2024_108598
crossref_primary_10_3389_fagro_2021_680456
crossref_primary_10_1039_D1MO00151E
crossref_primary_10_4491_eer_2024_592
crossref_primary_10_1016_j_jconhyd_2022_104101
crossref_primary_10_1093_jxb_erae229
crossref_primary_10_3390_w17060830
crossref_primary_10_1016_j_scitotenv_2023_165949
crossref_primary_10_1007_s00344_023_11075_z
crossref_primary_10_51847_A2gMbUMBUD
crossref_primary_10_1016_j_biortech_2020_124353
crossref_primary_10_3390_land12010062
crossref_primary_10_1007_s11356_022_24714_x
crossref_primary_10_3389_fpls_2022_1081624
crossref_primary_10_15835_nbha49412487
crossref_primary_10_1007_s11356_022_23848_2
crossref_primary_10_1007_s12633_022_02251_z
crossref_primary_10_1016_j_hazadv_2023_100293
crossref_primary_10_3390_horticulturae9040447
crossref_primary_10_1080_2314808X_2022_2106097
crossref_primary_10_53623_tasp_v4i1_343
crossref_primary_10_1016_j_chemosphere_2022_134954
crossref_primary_10_1016_j_jece_2021_105547
crossref_primary_10_1080_14786419_2024_2348673
crossref_primary_10_3390_ijerph18052239
crossref_primary_10_1016_j_indcrop_2021_114245
crossref_primary_10_1016_j_sciaf_2024_e02358
crossref_primary_10_1007_s11356_024_34734_4
crossref_primary_10_3390_cells11121947
crossref_primary_10_48022_mbl_2008_08015
crossref_primary_10_1016_j_dwt_2024_100654
crossref_primary_10_1007_s11356_023_31256_3
crossref_primary_10_1016_j_jenvman_2022_115124
crossref_primary_10_3390_agronomy12122945
crossref_primary_10_1080_15226514_2023_2188423
crossref_primary_10_1186_s40538_024_00689_4
crossref_primary_10_3389_fpls_2024_1351613
crossref_primary_10_1080_01490451_2022_2045648
crossref_primary_10_3390_pr12010148
crossref_primary_10_3390_ijms23095031
crossref_primary_10_1016_j_heliyon_2024_e40361
crossref_primary_10_1002_jobm_202400401
crossref_primary_10_3390_su13126555
crossref_primary_10_1088_1755_1315_1017_1_012022
crossref_primary_10_1007_s42729_022_00765_4
crossref_primary_10_1016_j_desal_2022_116079
crossref_primary_10_1016_j_heliyon_2022_e11240
crossref_primary_10_1016_j_trac_2021_116402
crossref_primary_10_1007_s13205_023_03585_0
crossref_primary_10_1016_j_jwpe_2024_105177
crossref_primary_10_1016_j_plaphy_2023_108261
crossref_primary_10_1016_j_scitotenv_2024_172588
crossref_primary_10_1080_15226514_2023_2231572
crossref_primary_10_1007_s11356_023_29003_9
crossref_primary_10_3389_fenvs_2023_1157415
crossref_primary_10_1016_j_heliyon_2024_e40370
crossref_primary_10_1080_10889868_2024_2440752
crossref_primary_10_3390_ijerph20064964
crossref_primary_10_3390_su14106379
crossref_primary_10_1016_j_chemosphere_2022_134788
crossref_primary_10_3390_w15081498
crossref_primary_10_1080_10889868_2023_2279194
crossref_primary_10_1080_15226514_2020_1825331
crossref_primary_10_1007_s11738_024_03745_6
crossref_primary_10_1093_plphys_kiab564
crossref_primary_10_1007_s40415_023_00878_9
crossref_primary_10_1016_j_pecs_2024_101161
crossref_primary_10_12944_CARJ_11_1_10
crossref_primary_10_3390_su132112266
crossref_primary_10_3390_ma16051827
crossref_primary_10_1016_j_scitotenv_2023_165739
crossref_primary_10_3390_min12020130
crossref_primary_10_1111_ppl_14226
crossref_primary_10_1080_15226514_2024_2373427
crossref_primary_10_1016_j_scitotenv_2024_171458
crossref_primary_10_1080_21622515_2023_2205026
crossref_primary_10_1007_s11270_024_07309_9
crossref_primary_10_1016_j_pharma_2022_08_005
crossref_primary_10_1007_s11104_022_05643_7
crossref_primary_10_1016_j_scitotenv_2024_172560
crossref_primary_10_1016_j_scitotenv_2023_165726
crossref_primary_10_3390_resources13120168
crossref_primary_10_1016_j_scitotenv_2025_178398
crossref_primary_10_1007_s11356_024_35318_y
crossref_primary_10_1007_s10311_023_01663_6
crossref_primary_10_1016_j_chemosphere_2024_141889
crossref_primary_10_1007_s00344_024_11335_6
crossref_primary_10_1016_j_scitotenv_2023_169241
crossref_primary_10_3389_fpls_2021_609396
crossref_primary_10_1515_pac_2023_1018
crossref_primary_10_1021_acs_est_4c05291
crossref_primary_10_1038_s41598_024_72651_1
crossref_primary_10_1016_j_jece_2024_111880
crossref_primary_10_1007_s40009_023_01375_z
crossref_primary_10_3390_agronomy13030883
crossref_primary_10_1088_1755_1315_1422_1_012030
crossref_primary_10_51801_turkjrfs_1378258
crossref_primary_10_1016_j_scitotenv_2022_160391
crossref_primary_10_3389_fpls_2023_1269082
crossref_primary_10_1016_j_sciaf_2023_e01984
crossref_primary_10_3389_fpls_2021_794373
crossref_primary_10_15421_012241
crossref_primary_10_3390_molecules28010430
crossref_primary_10_3390_plants12030429
crossref_primary_10_1016_j_hazl_2022_100064
crossref_primary_10_48175_IJARSCT_1342
crossref_primary_10_3390_plants11091186
crossref_primary_10_1016_j_chemosphere_2022_134900
crossref_primary_10_1016_j_jafrearsci_2022_104663
crossref_primary_10_1021_acs_iecr_2c00285
crossref_primary_10_1016_j_plaphy_2024_108770
crossref_primary_10_1039_D4EM00736K
crossref_primary_10_1007_s11356_023_28757_6
crossref_primary_10_1016_j_marpolbul_2023_115924
crossref_primary_10_3390_ijerph17249398
crossref_primary_10_3390_foods11172591
crossref_primary_10_1016_j_rhisph_2022_100618
crossref_primary_10_1007_s11368_022_03148_5
crossref_primary_10_1016_j_envres_2024_119451
crossref_primary_10_1186_s12866_022_02587_x
crossref_primary_10_1007_s10661_024_12682_3
crossref_primary_10_1080_15226514_2022_2105809
crossref_primary_10_1126_sciadv_adj6315
crossref_primary_10_1016_j_heliyon_2024_e38683
crossref_primary_10_1007_s11356_022_22984_z
crossref_primary_10_4236_msce_2022_103001
crossref_primary_10_3389_fpls_2022_1052659
crossref_primary_10_1080_15226514_2022_2109587
crossref_primary_10_3390_su152416865
crossref_primary_10_1007_s11356_023_31185_1
crossref_primary_10_1016_j_envres_2022_114635
crossref_primary_10_2298_ABS240301014P
crossref_primary_10_3390_su151511533
crossref_primary_10_3389_fpls_2024_1420408
crossref_primary_10_3389_fmolb_2021_709395
crossref_primary_10_3390_plants10112340
crossref_primary_10_1016_j_ibiod_2025_106015
crossref_primary_10_1016_j_chemosphere_2023_140881
crossref_primary_10_3389_fmicb_2022_889073
crossref_primary_10_1080_15226514_2023_2194999
crossref_primary_10_1007_s00344_021_10349_8
crossref_primary_10_1007_s12517_022_10968_9
crossref_primary_10_1016_j_jclepro_2023_139512
crossref_primary_10_17221_494_2023_PSE
crossref_primary_10_1002_ldr_5142
crossref_primary_10_1002_ldr_5384
crossref_primary_10_1016_j_sciaf_2022_e01278
crossref_primary_10_1007_s11270_023_06394_6
crossref_primary_10_1186_s12302_024_01023_3
crossref_primary_10_1016_j_jelechem_2023_117291
crossref_primary_10_1007_s00128_021_03194_8
crossref_primary_10_1007_s00248_023_02190_1
crossref_primary_10_1016_j_heliyon_2024_e40741
crossref_primary_10_1016_j_jelechem_2024_118222
crossref_primary_10_1016_j_jhazmat_2024_133951
crossref_primary_10_3390_su152015170
crossref_primary_10_1002_tqem_22262
crossref_primary_10_1007_s00299_022_02913_7
crossref_primary_10_1016_j_scitotenv_2023_168164
crossref_primary_10_1016_j_plaphy_2024_108740
crossref_primary_10_1007_s11356_023_28372_5
crossref_primary_10_1007_s13762_024_05852_w
crossref_primary_10_1016_j_chemosphere_2022_133823
crossref_primary_10_1080_15226514_2024_2430657
crossref_primary_10_1007_s10653_024_02195_w
crossref_primary_10_1002_ajb2_16310
crossref_primary_10_1016_j_plaphy_2022_09_009
crossref_primary_10_3906_tar_2006_45
crossref_primary_10_1016_j_resconrec_2024_108057
Cites_doi 10.1016/j.chemosphere.2008.11.063
10.1155/2016/2707989
10.1080/15226514.2011.568545
10.1016/S0005-2736(00)00138-3
10.1007/s11104-006-0064-6
10.1016/j.jhazmat.2009.06.141
10.1146/annurev.arplant.51.1.401
10.4148/1090-7025.1015
10.1016/j.plaphy.2016.04.049
10.2134/jeq1990.00472425001900040023x
10.1016/j.ecoenv.2015.12.023
10.1016/j.jhazmat.2016.07.053
10.1002/jctb.3826
10.1021/es990697s
10.1073/pnas.171039798
10.1104/pp.126.4.1519
10.1104/pp.122.4.1343
10.1080/15226510802432678
10.1016/j.chemosphere.2016.12.116
10.1080/07352680903035424
10.2134/jeq1997.00472425002600050032x
10.1104/pp.007799
10.1016/j.plantsci.2008.09.014
10.1080/713779219
10.1016/j.jenvman.2018.03.077
10.1016/j.biotechadv.2010.02.001
10.1007/BF03184113
10.1038/72678
10.1016/j.ecoleng.2014.09.053
10.3389/fpls.2018.01476
10.1104/pp.110.3.715
10.1007/4735_100
10.3184/095422998782775835
10.1016/j.tplants.2003.11.009
10.1016/j.febslet.2004.09.023
10.1007/s11270-011-0882-x
10.1016/j.apgeochem.2010.11.018
10.1081/LESA-200034269
10.1016/j.ecoenv.2019.02.068
10.1007/978-3-642-38469-1_4
10.1007/s11356-008-0079-z
10.1016/j.ecoenv.2017.05.038
10.1016/j.chemosphere.2013.01.075
10.1080/0735-260291044368
10.2134/jeq1992.00472425002100030006x
10.5402/2011/402647
10.1104/pp.122.4.1281
10.1146/annurev.arplant.49.1.643
10.3390/ijms13033145
10.1134/S1064229314090075
10.1007/978-1-4614-0046-2_1
10.1007/s11368-010-0190-x
10.1093/jexbot/53.366.1
10.1111/j.1365-3040.2001.00666.x
10.1080/15226514.2017.1365340
10.6088/ijes.002020300031
10.1023/A:1004328816645
10.1104/pp.18.00478
10.1007/s11356-011-0675-1
10.1016/j.scitotenv.2005.11.002
10.1104/pp.92.4.1086
10.1016/j.febslet.2005.06.046
10.2134/jeq2009.0006
10.1016/j.plantsci.2016.11.016
10.1002/jsfa.3916
10.1007/s12229-011-9092-x
10.3389/fpls.2013.00544
10.1046/j.1469-8137.2003.00743.x
10.1016/j.chemer.2005.06.001
10.1007/s001220051295
10.1093/jxb/erj073
10.1016/j.scitotenv.2015.01.032
10.1016/j.biortech.2010.03.027
10.1105/tpc.109.073023
10.1023/B:PLSO.0000020956.24027.f2
10.1002/9781444319477.ch14
10.1016/j.chemosphere.2008.09.013
10.1016/j.envpol.2003.12.018
10.1080/15226510802100606
10.1023/A:1022527207359
10.1104/pp.45.3.280
10.1111/pbi.12512
10.1016/j.envpol.2012.02.016
10.1080/01904168109362867
10.1016/j.chemosphere.2008.11.007
10.1016/S0958-1669(03)00060-0
10.1007/s11356-019-06563-3
10.1016/j.scitotenv.2015.08.117
10.1016/j.jhazmat.2007.10.080
10.3390/ijms20143412
10.1007/s11356-009-0213-6
10.1007/s11104-004-8068-6
10.1023/A:1022308229759
10.1007/s10311-009-0268-0
10.1002/clen.201000488
10.1007/s11104-012-1287-3
10.1007/s11816-017-0467-2
10.1016/j.jhazmat.2012.04.035
10.1016/j.tplants.2005.08.008
10.1007/s11270-011-0843-4
10.1016/j.micres.2013.09.009
10.1016/j.tibtech.2007.05.005
10.1038/379635a0
10.1104/pp.126.2.696
10.1186/S40659-015-0001-3
10.1111/pce.12963
10.1016/j.plantsci.2010.08.016
10.1111/j.1467-7652.2004.00092.x
10.2134/jeq2002.1090
10.1016/j.jenvman.2010.07.018
10.1016/j.scitotenv.2008.01.013
10.1007/978-981-10-4041-2_14
10.1111/j.1462-2920.2011.02556.x
10.1590/S1677-04202005000100010
10.1016/j.ecoleng.2015.12.041
10.1007/s13762-013-0299-8
10.1242/jeb.200.2.321
10.1007/s00425-006-0225-0
10.17221/401-PSE
10.1007/s10661-007-9732-0
10.1007/s11104-005-4642-9
10.1186/1471-2148-11-76
10.1016/B978-0-12-814864-8.00020-6
10.1007/s11356-013-1485-4
10.1016/0031-9422(77)84010-7
10.1016/S1360-1385(02)02295-1
10.1080/15226510701232880
10.1016/S0045-6535(02)00232-1
10.1016/j.chemgeo.2008.05.001
10.1631/jzus.B0710633
10.1007/s10661-016-5309-0
10.2134/jeq1993.00472425002200040021x
10.1016/j.biotechadv.2004.10.001
10.1021/es902514d
10.1016/S0045-6535(02)00228-X
10.1038/nbt0595-468
10.3906/bot-1101-10
10.1023/A:1025604627496
10.1016/j.biochi.2006.07.003
10.1016/j.chemosphere.2004.01.028
10.1016/j.mineng.2009.04.001
10.1080/15226514.2013.856846
10.1007/s10661-016-5211-9
10.1111/j.1438-8677.1992.tb01332.x
10.3389/fpls.2016.01862
10.1080/10643380902718418
10.1016/j.jhazmat.2009.09.113
10.1080/10643380701798272
10.2134/jeq1994.00472425002300060004x
10.17221/3460-pse
10.1023/a:1022527330401
10.1007/978-94-007-4441-7_2
10.1016/j.biotechadv.2010.12.001
ContentType Journal Article
Copyright Copyright © 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen.
Copyright © 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen. 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen
Copyright_xml – notice: Copyright © 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen.
– notice: Copyright © 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen. 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2020.00359
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_479d99fe4e1a4361965d77931cff6cf5
PMC7203417
32425957
10_3389_fpls_2020_00359
Genre Journal Article
Review
GrantInformation_xml – fundername: Ministry of National Development - Singapore
– fundername: National Parks Board - Singapore
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c525t-b8305a36d6a6b6c3ceadbc135362b9d1cbcc8dba4621d3bda46b7a4e55c140123
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:22:59 EDT 2025
Thu Aug 21 14:04:30 EDT 2025
Thu Jul 10 19:57:58 EDT 2025
Mon Jul 21 05:56:31 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Tue Jul 01 02:06:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords heavy metal
phytoremediation
chelate
detoxification
uptake
genetic engineering
Language English
License Copyright © 2020 Yan, Wang, Tan, Mohd Yusof, Ghosh and Chen.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-b8305a36d6a6b6c3ceadbc135362b9d1cbcc8dba4621d3bda46b7a4e55c140123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: David W. M. Leung, University of Canterbury, New Zealand
Reviewed by: Dharmendra Kumar Gupta, Experimental Station of Zaidín (EEZ), Spain; Bassam Taha Al-Iessa, Qatar University, Qatar
This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2020.00359
PMID 32425957
PQID 2404641741
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_479d99fe4e1a4361965d77931cff6cf5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7203417
proquest_miscellaneous_2404641741
pubmed_primary_32425957
crossref_citationtrail_10_3389_fpls_2020_00359
crossref_primary_10_3389_fpls_2020_00359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-30
PublicationDateYYYYMMDD 2020-04-30
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-30
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Gupta (B61)
Koptsik (B79) 2014; 47
Mahar (B93) 2016; 126
Brewer (B21) 1999; 99
Clemens (B31) 2006; 88
Sarret (B130) 2002; 130
Wong (B162) 2003; 50
Wang (B160) 2012; 221
Lasat (B86) 1999; 2
Chaney (B27) 2010
Dalvi (B35) 2013; 2
Neff (B105) 2011
Pichtel (B112) 2016; 2016
Salt (B129) 1998; 49
Yang (B167) 2002; 47
Arshad (B6) 2007; 25
Banuelos (B12) 1993; 22
Yang (B168) 2004; 259
García-Salgado (B50) 2012; 223
Sheoran (B138) 2011; 41
Hasan (B67) 2019; 8
Blaylock (B19) 2000
Seth (B135) 2012; 78
Zheng (B169) 2011; 26
Ali (B2) 2013; 91
Wuana (B164) 2011; 2011
Supek (B144) 1997; 200
Huang (B71) 2012; 19
Ebbs (B44) 1997; 26
Rai (B117) 2002; 45
Koźmińska (B80) 2018; 12
Robinson (B124) 2003; 158
Muradoglu (B104) 2015; 48
Cailliatte (B25) 2010; 22
Bizily (B18) 2000; 18
Souza (B140) 2013; 70
Li (B89) 2016; 7
Altinözlü (B4) 2012; 36
DalCorso (B34) 2019; 20
van der Ent (B154) 2013; 362
Dushenkov (B42) 2003; 249
Terry (B145) 1992; 21
Lee (B87) 1977; 16
Gerhardt (B52) 2009; 176
Srivastava (B141) 2006; 364
Krämer (B81) 1996; 379
Mitch (B103) 2002; 31
Gupta (B60) 2008; 29
Gerhardt (B51) 2017; 256
Persans (B111) 2001; 98
Hall (B63) 2002; 53
Mesjasz-Przybyłowicz (B102) 2004; 46
Yang (B166) 2008; 54
Berken (B16) 2002; 21
Schalk (B134) 2011; 13
Kubota (B83) 2003; 5
Peer (B108) 2005
Marques (B97) 2009; 39
Sakakibara (B127) 2011; 39
Baker (B10) 1989; 1
Dhanwal (B40) 2017
Prasad (B113) 2003; 50
Sharma (B136) 2006; 57
Gupta (B59) 2009; 172
Terry (B146) 2000; 51
Assunção (B8) 2001; 24
Javed (B75) 2019
Chen (B30) 2003; 50
Buendía-González (B23) 2010; 101
Suman (B142) 2018; 9
Thakur (B147) 2016; 188
Rieuwerts (B121) 1998; 10
Pérez-Sanz (B110) 2012; 95
Padmavathiamma (B107) 2012; 223
Brown (B22) 1994; 23
Sheoran (B137) 2009; 22
Jozefczak (B76) 2012; 13
Robinson (B122) 2009; 28
Mani (B96) 2014; 11
Rascio (B118) 2011; 180
Rehman (B119) 2017; 143
Braud (B20) 2009; 74
Ma (B92) 2011; 29
Mastretta (B98) 2009; 11
Rafique (B115) 2016; 188
Salt (B128) 1995; 13
Lone (B91) 2008; 9
Smolińska (B139) 2012; 87
Williams (B161) 2005; 10
Sun (B143) 2006; 285
Domínguez−Solís (B41) 2004; 2
Xiong (B165) 2004; 39
Harper (B66) 1999
Gustin (B62) 2011; 11
Hanikenne (B65) 2014; 4
Eapen (B43) 2005; 23
Chehregani (B28) 2007; 9
Mench (B101) 2010; 10
Peng (B109) 2008; 154
van Hoof (B155) 2001; 126
Lee (B88) 2014; 73
Ginn (B53) 2008; 253
Rai (B116) 2008; 10
Prasad (B114) 2005; 17
Ali (B3) 2012; 2
Herzig (B69) 2014; 16
Ernst (B46) 2005; 65
Rodriguez (B125) 2003; 9
Das (B36) 2016; 105
Robinson (B123) 1998; 203
Hooda (B70) 2007; 28
Nehnevajova (B106) 2007; 9
Vögeli-Lange (B158) 1990; 92
Kucharski (B84) 2005; 273
Manara (B95) 2012
Sarwar (B132) 2010; 90
Verret (B157) 2004; 576
Li (B90) 2003; 249
Tomé (B151) 2008; 393
Becerra-Castro (B15) 2011; 13
Memon (B100) 2009; 16
Epelde (B45) 2009; 38
Desbrosses-Fonrouge (B39) 2005; 579
Burges (B24) 2018; 20
Alvarenga (B5) 2009; 74
Glick (B55) 2014; 169
Huang (B72) 2004; 130
Hamzah (B64) 2016; 2
Guerinot (B57) 2000; 1465
Vamerali (B153) 2010; 8
Banuelos (B13) 1990; 19
Tlustoš (B150) 2006; 52
de Souza (B38) 2000; 122
Thangavel (B148) 2004; 70
Ernst (B47) 1992; 41
Glick (B54) 2010; 28
Roy (B126) 2002; 23
Jacob (B74) 2018; 217
Gupta (B58); 20
Rezania (B120) 2016; 318
Tiffin (B149) 1970; 45
Aken (B1) 2009; 44
Vangronsveld (B156) 2009; 16
Ashraf (B7) 2019; 174
de la Rosa (B37) 2004; 55
Berti (B17) 2000
Wu (B163) 2010; 174
Sarwar (B131) 2017; 171
Sas-Nowosielska (B133) 2008; 137
Farahat (B48) 2015; 51
Cunningham (B33) 1996; 110
Kayser (B78) 2000; 34
Krämer (B82) 2000; 122
Bastow (B14) 2018; 177
McGrath (B99) 2003; 14
Bani (B11) 2010; 34
Chen (B29) 2016; 539
Iqbal (B73) 2016; 88
Kalve (B77) 2011; 100
Malik (B94) 2010; 42
Tong (B152) 2004; 9
Fasani (B49) 2018; 41
He (B68) 2002; 44
Göhre (B56) 2006; 223
Cempel (B26) 2006; 15
Kumpiene (B85) 2012; 166
Axelsen (B9) 2001; 126
Clemens (B32) 2002; 7
Wang (B159) 2006; 281
References_xml – volume: 74
  start-page: 1292
  year: 2009
  ident: B5
  article-title: Organic residues as immobilizing agents in aided phytostabilization:(I) Effects on soil chemical characteristics.
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.11.063
– volume: 2016
  year: 2016
  ident: B112
  article-title: Oil and gas production wastewater: soil contamination and pollution prevention.
  publication-title: Appl. Environ. Soil Sci.
  doi: 10.1155/2016/2707989
– volume: 13
  start-page: 229
  year: 2011
  ident: B15
  article-title: Nickel solubilizing capacity and characterization of rhizobacteria isolated from hyperaccumulating and non-hyperaccumulating subspecies of Alyssum serpyllifolium.
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226514.2011.568545
– volume: 1465
  start-page: 190
  year: 2000
  ident: B57
  article-title: The ZIP family of metal transporters.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(00)00138-3
– volume: 285
  start-page: 125
  year: 2006
  ident: B143
  article-title: Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator.
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-0064-6
– volume: 172
  start-page: 479
  year: 2009
  ident: B59
  article-title: Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress.
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.06.141
– volume: 51
  start-page: 401
  year: 2000
  ident: B146
  article-title: Selenium in higher plants.
  publication-title: Annu. Rev. Plant Phys.
  doi: 10.1146/annurev.arplant.51.1.401
– volume: 2
  year: 1999
  ident: B86
  article-title: Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues.
  publication-title: J. Hazard Subst. Res.
  doi: 10.4148/1090-7025.1015
– volume: 2
  start-page: 362
  year: 2013
  ident: B35
  article-title: Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism.
  publication-title: Ann. Plant Sci.
– volume: 28
  start-page: 367
  year: 2007
  ident: B70
  article-title: Phytoremediation of toxic metals from soil and waste water.
  publication-title: J. Environ. Biol.
– volume: 105
  start-page: 297
  year: 2016
  ident: B36
  article-title: Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.04.049
– volume: 19
  start-page: 772
  year: 1990
  ident: B13
  article-title: Accumulation of selenium in plants grown on selenium-treated soil.
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1990.00472425001900040023x
– volume: 126
  start-page: 111
  year: 2016
  ident: B93
  article-title: Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review.
  publication-title: Ecotox. Environ. Safe.
  doi: 10.1016/j.ecoenv.2015.12.023
– volume: 318
  start-page: 587
  year: 2016
  ident: B120
  article-title: Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater.
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2016.07.053
– volume: 87
  start-page: 1360
  year: 2012
  ident: B139
  article-title: Leaching of mercury during phytoextraction assisted by EDTA, KI and citric acid.
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.3826
– volume: 34
  start-page: 1778
  year: 2000
  ident: B78
  article-title: Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments.
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es990697s
– volume: 98
  start-page: 9995
  year: 2001
  ident: B111
  article-title: Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.171039798
– volume: 126
  start-page: 1519
  year: 2001
  ident: B155
  article-title: Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.126.4.1519
– volume: 122
  start-page: 1343
  year: 2000
  ident: B82
  article-title: Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.122.4.1343
– volume: 11
  start-page: 251
  year: 2009
  ident: B98
  article-title: Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity.
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226510802432678
– volume: 171
  start-page: 710
  year: 2017
  ident: B131
  article-title: Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives.
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.12.116
– volume: 15
  start-page: 375
  year: 2006
  ident: B26
  article-title: Nickel: a review of its sources and environmental toxicology.
  publication-title: Pol. J. Environ. Stud.
– volume: 28
  start-page: 240
  year: 2009
  ident: B122
  article-title: The phytomanagement of trace elements in soil.
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352680903035424
– start-page: 71
  year: 2000
  ident: B17
  article-title: Phytostabilization of metals
  publication-title: Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment
– volume: 26
  start-page: 1424
  year: 1997
  ident: B44
  article-title: Phytoextraction of cadmium and zinc from a contaminated soil.
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1997.00472425002600050032x
– volume: 130
  start-page: 1815
  year: 2002
  ident: B130
  article-title: Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.007799
– volume: 176
  start-page: 20
  year: 2009
  ident: B52
  article-title: Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2008.09.014
– volume: 5
  start-page: 197
  year: 2003
  ident: B83
  article-title: Field Note: Arabis gemmifera is a hyperaccumulator of Cd and Zn.
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/713779219
– volume: 217
  start-page: 56
  year: 2018
  ident: B74
  article-title: Biological approaches to tackle heavy metal pollution: a survey of literature.
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2018.03.077
– volume: 28
  start-page: 367
  year: 2010
  ident: B54
  article-title: Using soil bacteria to facilitate phytoremediation.
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2010.02.001
– volume: 47
  start-page: 1634
  year: 2002
  ident: B167
  article-title: Sedum alfredii H: a new Zn hyperaccumulating plant first found in China.
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/BF03184113
– volume: 29
  start-page: 903
  year: 2008
  ident: B60
  article-title: EDTA enhances lead uptake and facilitates phytoremediation by vetiver grass.
  publication-title: J. Environ. Biol.
– volume: 18
  start-page: 213
  year: 2000
  ident: B18
  article-title: Phytodetoxification of hazardous organomercurials by genetically engineered plants.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/72678
– volume: 73
  start-page: 386
  year: 2014
  ident: B88
  article-title: Effects of chelates on soil microbial properties, plant growth and heavy metal accumulation in plants.
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2014.09.053
– volume: 9
  year: 2018
  ident: B142
  article-title: Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment?
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2018.01476
– volume: 110
  year: 1996
  ident: B33
  article-title: Promises and prospects of phytoremediation.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.3.715
– start-page: 299
  year: 2005
  ident: B108
  article-title: Phytoremediation and hyperaccumulator plants
  publication-title: Molecular Biology of Metal Homeostasis and Detoxification
  doi: 10.1007/4735_100
– volume: 10
  start-page: 61
  year: 1998
  ident: B121
  article-title: Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals.
  publication-title: Chem. Speciat. Bioavailab.
  doi: 10.3184/095422998782775835
– volume: 9
  start-page: 7
  year: 2004
  ident: B152
  article-title: Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2003.11.009
– volume: 576
  start-page: 306
  year: 2004
  ident: B157
  article-title: Overexpression of AtHMA4 enhances root−to−shoot translocation of zinc and cadmium and plant metal tolerance.
  publication-title: Febs. Lett.
  doi: 10.1016/j.febslet.2004.09.023
– volume: 223
  start-page: 559
  year: 2012
  ident: B50
  article-title: Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities.
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-011-0882-x
– volume: 26
  start-page: 188
  year: 2011
  ident: B169
  article-title: Mercury contamination due to zinc smelting and chlor-alkali production in NE China.
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2010.11.018
– volume: 39
  start-page: 2925
  year: 2004
  ident: B165
  article-title: Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance.
  publication-title: J. Environ. Sci. Heal. A
  doi: 10.1081/LESA-200034269
– volume: 174
  start-page: 714
  year: 2019
  ident: B7
  article-title: Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils.
  publication-title: Ecotox. Environ. Safe.
  doi: 10.1016/j.ecoenv.2019.02.068
– start-page: 73
  ident: B61
  article-title: Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants
  publication-title: Heavy Metal Stress in Plants
  doi: 10.1007/978-3-642-38469-1_4
– volume: 34
  start-page: 3
  year: 2010
  ident: B11
  article-title: Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans.
  publication-title: Bot. Serb.
– volume: 16
  start-page: 162
  year: 2009
  ident: B100
  article-title: Implications of metal accumulation mechanisms to phytoremediation.
  publication-title: Environ. Sci. Pollut. R
  doi: 10.1007/s11356-008-0079-z
– volume: 143
  start-page: 236
  year: 2017
  ident: B119
  article-title: Remediation of heavy metal contaminated soils by using Solanum nigrum: a review.
  publication-title: Ecotox. Environ. Safe.
  doi: 10.1016/j.ecoenv.2017.05.038
– volume: 70
  start-page: 109
  year: 2004
  ident: B148
  article-title: Phytoextraction: role of hyperaccumulators in metal contaminated soils.
  publication-title: Proc. Indian Nat. Sci. Acad. B
– volume: 91
  start-page: 869
  year: 2013
  ident: B2
  article-title: Phytoremediation of heavy metals-concepts and applications.
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.01.075
– volume: 21
  start-page: 567
  year: 2002
  ident: B16
  article-title: Genetic engineering of plants to enhance selenium phytoremediation.
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/0735-260291044368
– volume: 100
  start-page: 888
  year: 2011
  ident: B77
  article-title: Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata–prospective for phytoextraction from contaminated water and soil.
  publication-title: Curr. Sci. India
– volume: 21
  start-page: 341
  year: 1992
  ident: B145
  article-title: Rates of selenium volatilization among crop species.
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1992.00472425002100030006x
– volume: 2011
  year: 2011
  ident: B164
  article-title: Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation.
  publication-title: Isrn Ecology
  doi: 10.5402/2011/402647
– volume: 122
  start-page: 1281
  year: 2000
  ident: B38
  article-title: Selenium assimilation and volatilization from dimethylselenoniopropionate by Indian mustard.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.122.4.1281
– volume: 46
  start-page: 75
  year: 2004
  ident: B102
  article-title: Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii.
  publication-title: Acta Biol. Cracoviensia Ser. Bot.
– volume: 49
  start-page: 643
  year: 1998
  ident: B129
  article-title: Phytoremediation.
  publication-title: Annu. Rev. Plant Phys.
  doi: 10.1146/annurev.arplant.49.1.643
– volume: 13
  start-page: 3145
  year: 2012
  ident: B76
  article-title: Glutathione is a key player in metal-induced oxidative stress defenses.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms13033145
– volume: 47
  start-page: 923
  year: 2014
  ident: B79
  article-title: Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review.
  publication-title: Eurasian Soil Sci.
  doi: 10.1134/S1064229314090075
– start-page: 3
  year: 2011
  ident: B105
  article-title: Produced water: overview of composition, fates, and effects
  publication-title: Produced Water: Environmental Risks and Advances in Mitigation Technologies
  doi: 10.1007/978-1-4614-0046-2_1
– volume: 10
  start-page: 1039
  year: 2010
  ident: B101
  article-title: Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859.
  publication-title: J. Soil Sediment.
  doi: 10.1007/s11368-010-0190-x
– volume: 53
  start-page: 1
  year: 2002
  ident: B63
  article-title: Cellular mechanisms for heavy metal detoxification and tolerance.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/53.366.1
– volume: 24
  start-page: 217
  year: 2001
  ident: B8
  article-title: Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2001.00666.x
– volume: 2
  start-page: 8
  year: 2016
  ident: B64
  article-title: Phytoremediation of Cadmium-contaminated agricultural land using indigenous plants.
  publication-title: Int. J. Environ. Agric. Res.
– volume: 20
  start-page: 384
  year: 2018
  ident: B24
  article-title: From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites.
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226514.2017.1365340
– volume: 2
  start-page: 1459
  year: 2012
  ident: B3
  article-title: Phytoremediation of heavy metals by Trifolium alexandrinum.
  publication-title: Int. J. Environ. Sci.
  doi: 10.6088/ijes.002020300031
– volume: 203
  start-page: 47
  year: 1998
  ident: B123
  article-title: The potential of Thlaspi caerulescens for phytoremediation of contaminated soils.
  publication-title: Plant Soil
  doi: 10.1023/A:1004328816645
– volume: 177
  start-page: 1267
  year: 2018
  ident: B14
  article-title: Vacuolar iron stores gated by NRAMP3 and NRAMP4 are the primary source of iron in germinating seeds.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.00478
– volume: 19
  start-page: 1640
  year: 2012
  ident: B71
  article-title: Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii.
  publication-title: Environ. Sci. Pollut. R
  doi: 10.1007/s11356-011-0675-1
– volume: 42
  start-page: 291
  year: 2010
  ident: B94
  article-title: Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan.
  publication-title: Pak. J. Bot.
– volume: 364
  start-page: 24
  year: 2006
  ident: B141
  article-title: Three new arsenic hyperaccumulating ferns.
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.11.002
– volume: 92
  start-page: 1086
  year: 1990
  ident: B158
  article-title: Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.92.4.1086
– volume: 579
  start-page: 4165
  year: 2005
  ident: B39
  article-title: Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation.
  publication-title: Febs. Lett.
  doi: 10.1016/j.febslet.2005.06.046
– volume: 38
  start-page: 2041
  year: 2009
  ident: B45
  article-title: Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health.
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2009.0006
– volume: 256
  start-page: 170
  year: 2017
  ident: B51
  article-title: Opinion: taking phytoremediation from proven technology to accepted practice.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2016.11.016
– volume: 90
  start-page: 925
  year: 2010
  ident: B132
  article-title: Role of mineral nutrition in minimizing cadmium accumulation by plants.
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.3916
– volume: 78
  start-page: 32
  year: 2012
  ident: B135
  article-title: A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up.
  publication-title: Bot. Rev.
  doi: 10.1007/s12229-011-9092-x
– volume: 4
  year: 2014
  ident: B65
  article-title: Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida).
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2013.00544
– volume: 158
  start-page: 279
  year: 2003
  ident: B124
  article-title: Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii.
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2003.00743.x
– volume: 65
  start-page: 29
  year: 2005
  ident: B46
  article-title: Phytoextraction of mine wastes–options and impossibilities.
  publication-title: Chem. Erde Geochem.
  doi: 10.1016/j.chemer.2005.06.001
– volume: 99
  start-page: 761
  year: 1999
  ident: B21
  article-title: Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s001220051295
– volume: 57
  start-page: 711
  year: 2006
  ident: B136
  article-title: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erj073
– volume: 51
  start-page: 1
  year: 2015
  ident: B48
  article-title: The effect of long-term wastewater irrigation on accumulation and transfer of heavy metals in Cupressus sempervirens leaves and adjacent soils.
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.01.032
– volume: 101
  start-page: 5862
  year: 2010
  ident: B23
  article-title: Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant.
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.03.027
– volume: 22
  start-page: 904
  year: 2010
  ident: B25
  article-title: High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions.
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.073023
– volume: 259
  start-page: 181
  year: 2004
  ident: B168
  article-title: Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance).
  publication-title: Plant Soil
  doi: 10.1023/B:PLSO.0000020956.24027.f2
– volume: 9
  start-page: 462
  year: 2007
  ident: B28
  article-title: Removal of heavy metals by native accumulator plants.
  publication-title: Int. J. Agric. Biol.
– start-page: 311
  year: 2010
  ident: B27
  article-title: Phytoremediation of soil trace elements
  publication-title: Trace Elements in Soils
  doi: 10.1002/9781444319477.ch14
– volume: 74
  start-page: 280
  year: 2009
  ident: B20
  article-title: Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria.
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.09.013
– volume: 130
  start-page: 453
  year: 2004
  ident: B72
  article-title: Responses of three grass species to creosote during phytoremediation.
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2003.12.018
– volume: 10
  start-page: 430
  year: 2008
  ident: B116
  article-title: Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata.
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226510802100606
– volume: 249
  start-page: 167
  year: 2003
  ident: B42
  article-title: Trends in phytoremediation of radionuclides.
  publication-title: Plant Soil
  doi: 10.1023/A:1022527207359
– volume: 45
  start-page: 280
  year: 1970
  ident: B149
  article-title: Translocation of iron citrate and phosphorus in xylem exudate of soybean.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.45.3.280
– volume: 44
  start-page: 1365
  year: 2002
  ident: B68
  article-title: Sedum alfredii: a new lead accumulating ecotype.
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/pbi.12512
– volume: 166
  start-page: 82
  year: 2012
  ident: B85
  article-title: Arsenic fractionation in mine spoils 10 years after aided phytostabilization.
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2012.02.016
– volume: 1
  start-page: 81
  year: 1989
  ident: B10
  article-title: Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry.
  publication-title: Biorecovery
  doi: 10.1080/01904168109362867
– volume: 70
  start-page: 290
  year: 2013
  ident: B140
  article-title: Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents.
  publication-title: Sci. Agric.
  doi: 10.1016/j.chemosphere.2008.11.007
– volume: 14
  start-page: 277
  year: 2003
  ident: B99
  article-title: Phytoextraction of metals and metalloids from contaminated soils.
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/S0958-1669(03)00060-0
– volume: 9
  start-page: 328
  year: 2003
  ident: B125
  article-title: Phytoremediation of mercury-polluted soils using crop plants.
  publication-title: Fresen. Environ. Bull.
  doi: 10.1007/s11356-019-06563-3
– volume: 539
  start-page: 17
  year: 2016
  ident: B29
  article-title: Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter.
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2015.08.117
– volume: 154
  start-page: 674
  year: 2008
  ident: B109
  article-title: Manganese uptake and interactions with cadmium in the hyperaccumulator—Phytolacca Americana L.
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2007.10.080
– volume: 20
  year: 2019
  ident: B34
  article-title: Heavy metal pollutions: state of the art and innovation in phytoremediation.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20143412
– volume: 16
  start-page: 765
  year: 2009
  ident: B156
  article-title: Phytoremediation of contaminated soils and groundwater: lessons from the field.
  publication-title: Environ. Sci. Pollut. R
  doi: 10.1007/s11356-009-0213-6
– volume: 273
  start-page: 291
  year: 2005
  ident: B84
  article-title: The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland.
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-8068-6
– volume: 45
  start-page: 481
  year: 2002
  ident: B117
  article-title: Role of amino acids in plant responses to stresses.
  publication-title: Biol. Plantarum
  doi: 10.1023/A:1022308229759
– volume: 8
  start-page: 1
  year: 2010
  ident: B153
  article-title: Field crops for phytoremediation of metal-contaminated land. A review.
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-009-0268-0
– volume: 39
  start-page: 735
  year: 2011
  ident: B127
  article-title: Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis.
  publication-title: Clean Soil Air Water
  doi: 10.1002/clen.201000488
– volume: 362
  start-page: 319
  year: 2013
  ident: B154
  article-title: Hyperaccumulators of metal and metalloid trace elements: facts and fiction.
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1287-3
– volume: 12
  start-page: 1
  year: 2018
  ident: B80
  article-title: Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants.
  publication-title: Plant Biotechnol. Rep.
  doi: 10.1007/s11816-017-0467-2
– volume: 221
  start-page: 1
  year: 2012
  ident: B160
  article-title: Remediation of mercury contaminated sites–a review.
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2012.04.035
– volume: 10
  start-page: 491
  year: 2005
  ident: B161
  article-title: P1B-ATPases–an ancient family of transition metal pumps with diverse functions in plants.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2005.08.008
– volume: 223
  start-page: 107
  year: 2012
  ident: B107
  article-title: Rhizosphere influence and seasonal impact on phytostabilisation of metals—a field study.
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-011-0843-4
– start-page: 303
  year: 2000
  ident: B19
  article-title: Phytoextraction of metals
  publication-title: Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment
– volume: 169
  start-page: 30
  year: 2014
  ident: B55
  article-title: Bacteria with ACC deaminase can promote plant growth and help to feed the world.
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2013.09.009
– volume: 25
  start-page: 356
  year: 2007
  ident: B6
  article-title: Perspectives of bacterial ACC deaminase in phytoremediation.
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2007.05.005
– volume: 379
  start-page: 635
  year: 1996
  ident: B81
  article-title: Free histidine as a metal chelator in plants that accumulate nickel.
  publication-title: Nature
  doi: 10.1038/379635a0
– volume: 126
  start-page: 696
  year: 2001
  ident: B9
  article-title: Inventory of the superfamily of P-type ion pumps in Arabidopsis.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.126.2.696
– volume: 48
  year: 2015
  ident: B104
  article-title: Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry.
  publication-title: Biol. Res.
  doi: 10.1186/S40659-015-0001-3
– volume: 41
  start-page: 1201
  year: 2018
  ident: B49
  article-title: The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals.
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12963
– volume: 180
  start-page: 169
  year: 2011
  ident: B118
  article-title: Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2010.08.016
– volume: 2
  start-page: 469
  year: 2004
  ident: B41
  article-title: Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2004.00092.x
– volume: 31
  start-page: 109
  year: 2002
  ident: B103
  article-title: Phytoextraction of toxic metals: a review of biological mechanism.
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2002.1090
– volume: 95
  start-page: S233
  year: 2012
  ident: B110
  article-title: Mercury uptake by Silene vulgaris grown on contaminated spiked soils.
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2010.07.018
– volume: 393
  start-page: 351
  year: 2008
  ident: B151
  article-title: Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L.
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2008.01.013
– start-page: 227
  year: 2017
  ident: B40
  article-title: Recent advances in phytoremediation technology
  publication-title: Advances in Environmental Biotechnology
  doi: 10.1007/978-981-10-4041-2_14
– volume: 13
  start-page: 2844
  year: 2011
  ident: B134
  article-title: New roles for bacterial siderophores in metal transport and tolerance.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2011.02556.x
– volume: 17
  start-page: 113
  year: 2005
  ident: B114
  article-title: Nickelophilous plants and their significance in phytotechnologies.
  publication-title: Braz. J. Plant Physiol.
  doi: 10.1590/S1677-04202005000100010
– volume: 88
  start-page: 265
  year: 2016
  ident: B73
  article-title: Response surface methodology application in optimization of cadmium adsorption by shoe waste: a good option of waste mitigation by waste.
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2015.12.041
– volume: 11
  start-page: 843
  year: 2014
  ident: B96
  article-title: Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation.
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-013-0299-8
– volume: 200
  start-page: 321
  year: 1997
  ident: B144
  article-title: Function of metal-ion homeostasis in the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function.
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.200.2.321
– volume: 223
  start-page: 1115
  year: 2006
  ident: B56
  article-title: Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation.
  publication-title: Planta
  doi: 10.1007/s00425-006-0225-0
– volume: 54
  start-page: 441
  year: 2008
  ident: B166
  article-title: Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba.
  publication-title: Plant Soil Environ.
  doi: 10.17221/401-PSE
– volume: 137
  start-page: 101
  year: 2008
  ident: B133
  article-title: Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil.
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-007-9732-0
– volume: 281
  start-page: 325
  year: 2006
  ident: B159
  article-title: Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens.
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-4642-9
– volume: 11
  year: 2011
  ident: B62
  article-title: Structure and evolution of the plant cation diffusion facilitator family of ion transporters.
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-11-76
– start-page: 495
  year: 2019
  ident: B75
  article-title: Chapter 20 – Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes
  publication-title: Cadmium Toxicity and Tolerance in Plants
  doi: 10.1016/B978-0-12-814864-8.00020-6
– volume: 20
  start-page: 2150
  ident: B58
  article-title: Lead tolerance in plants: strategies for phytoremediation.
  publication-title: Environ. Sci. Pollut. R
  doi: 10.1007/s11356-013-1485-4
– volume: 16
  start-page: 1503
  year: 1977
  ident: B87
  article-title: Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants.
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(77)84010-7
– volume: 7
  start-page: 309
  year: 2002
  ident: B32
  article-title: A long way ahead: understanding and engineering plant metal accumulation.
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(02)02295-1
– volume: 9
  start-page: 149
  year: 2007
  ident: B106
  article-title: Chemical mutagenesis—a promising technique to increase metal concentration and extraction in sunflowers.
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226510701232880
– volume: 50
  start-page: 775
  year: 2003
  ident: B162
  article-title: Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils.
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(02)00232-1
– volume: 253
  start-page: 130
  year: 2008
  ident: B53
  article-title: Metal and proton binding onto the roots of Fescue rubra.
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2008.05.001
– volume: 9
  start-page: 210
  year: 2008
  ident: B91
  article-title: Phytoremediation of heavy metal polluted soils and water: progresses and perspectives.
  publication-title: J. Zhejiang Univ. Sci. B
  doi: 10.1631/jzus.B0710633
– volume: 188
  year: 2016
  ident: B115
  article-title: Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields.
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5309-0
– volume: 22
  start-page: 786
  year: 1993
  ident: B12
  article-title: Boron and selenium removal in boron−laden soils by four sprinkler irrigated plant species.
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1993.00472425002200040021x
– volume: 23
  start-page: 97
  year: 2005
  ident: B43
  article-title: Prospects of genetic engineering of plants for phytoremediation of toxic metals.
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2004.10.001
– volume: 8
  year: 2019
  ident: B67
  article-title: Assisting phytoremediation of heavy metals using chemical amendments.
  publication-title: Plants
  doi: 10.3390/ijms20143412
– volume: 44
  start-page: 2767
  year: 2009
  ident: B1
  article-title: Phytoremediation of polychlorinated biphenyls: new trends and promises.
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902514d
– volume: 50
  start-page: 839
  year: 2003
  ident: B30
  article-title: The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc.
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(02)00228-X
– volume: 13
  start-page: 468
  year: 1995
  ident: B128
  article-title: Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0595-468
– volume: 36
  start-page: 269
  year: 2012
  ident: B4
  article-title: Nickel hyperaccumulation by natural plants in Turkish serpentine soils.
  publication-title: Turk. J. Bot.
  doi: 10.3906/bot-1101-10
– volume: 50
  start-page: 686
  year: 2003
  ident: B113
  article-title: Phytoremediation of metal-polluted ecosystems: hype for commercialization.
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1023/A:1025604627496
– volume: 88
  start-page: 1707
  year: 2006
  ident: B31
  article-title: Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants.
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2006.07.003
– volume: 55
  start-page: 1159
  year: 2004
  ident: B37
  article-title: Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies.
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.01.028
– volume: 22
  start-page: 1007
  year: 2009
  ident: B137
  article-title: Phytomining: a review.
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2009.04.001
– volume: 16
  start-page: 735
  year: 2014
  ident: B69
  article-title: Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: results of five-and one-year field-scale experiments in Switzerland.
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226514.2013.856846
– volume: 188
  year: 2016
  ident: B147
  article-title: Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives.
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5211-9
– volume: 23
  start-page: 433
  year: 2002
  ident: B126
  article-title: Individual and combined effect of mercury and manganese on phenol and proline content in leaf and stem of mungbean seedlings.
  publication-title: J. Environ. Biol.
– year: 1999
  ident: B66
  article-title: Nickel uptake, translocation and hyperaccumulation in Berkheya coddii
  publication-title: Proceedings of the 3rd International Conference on Serpentine Ecology
– volume: 41
  start-page: 229
  year: 1992
  ident: B47
  article-title: Metal tolerance in plants.
  publication-title: Acta Bot. Neerl.
  doi: 10.1111/j.1438-8677.1992.tb01332.x
– volume: 7
  year: 2016
  ident: B89
  article-title: Cadmium accumulation characteristics in turnip landraces from China and assessment of their phytoremediation potential for contaminated soils.
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2016.01862
– volume: 41
  start-page: 168
  year: 2011
  ident: B138
  article-title: Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review.
  publication-title: Crit. Rev. Env. Sci. Technol.
  doi: 10.1080/10643380902718418
– volume: 174
  start-page: 1
  year: 2010
  ident: B163
  article-title: A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities.
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2009.09.113
– volume: 39
  start-page: 622
  year: 2009
  ident: B97
  article-title: Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology.
  publication-title: Crit. Rev. Env. Sci. Technol.
  doi: 10.1080/10643380701798272
– volume: 23
  start-page: 1151
  year: 1994
  ident: B22
  article-title: Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil.
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1994.00472425002300060004x
– volume: 52
  start-page: 413
  year: 2006
  ident: B150
  article-title: Removal of as, Cd, Pb, and Zn from contaminated soil by high biomass producing plants.
  publication-title: Plant Soil Environ.
  doi: 10.17221/3460-pse
– volume: 249
  start-page: 107
  year: 2003
  ident: B90
  article-title: Development of a technology for commercial phytoextraction of nickel: economic and technical considerations.
  publication-title: Plant Soil
  doi: 10.1023/a:1022527330401
– start-page: 27
  year: 2012
  ident: B95
  article-title: Plant responses to heavy metal toxicity
  publication-title: Plants and Heavy Metals
  doi: 10.1007/978-94-007-4441-7_2
– volume: 29
  start-page: 248
  year: 2011
  ident: B92
  article-title: Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2010.12.001
SSID ssj0000500997
Score 2.6946328
SecondaryResourceType review_article
Snippet Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 359
SubjectTerms chelate
detoxification
genetic engineering
heavy metal
phytoremediation
Plant Science
uptake
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIb-uLCB68VDdtkjbedkVZRGURBW8lTxWWVmQV9t8703aXXVG8eCtp2oRvps03TPINIcdeMadEJ8RArTsxFxCwmjyY2OV56q0yHdHB8863d7L_yK-fxNNMqS_cE9bIAzfAnfFMOaWC555pnkoUwHMZOBWzIUgbavVSWPNmgqlG1RupT9Zo-UAUps7C2xDVuRPcyZWiMunMMlSr9f9EMb_vlJxZeq5WyUrLGWm3mesaWfDlOlnqVcDrxhvkYfAyhsDZ12dAEOZz2qWD9woMCMsS7bai4RTYKb33n_653WBIq0D7Xn-O6S20DOMBFj0G_klvdOk2yePV5cNFP25rJcRWJGIEAMOHq1PppJZG2tSChxiLRS1kYpRj1libO6O5TJhLjYMLk2nuhbAYYiXpFlksq9LvEMq4gAg7tzLTFtXXFOM2y-E3mAitWQgROZ1AV9hWSBzrWQwLCCgQ6wKxLhDrosY6IifTB94aDY3fu_bQFtNuKH5dN4BLFK1LFH-5RESOJpYsAGvMgOjSVx8wEMdMLgRhLCLbjWWnQyGzFEpkEcnmbD43l_k75etLLciNqWx46-5_TH6PLCMcTcJqnyyO3j_8AfCekTmsXfwLa7AB-w
  priority: 102
  providerName: Directory of Open Access Journals
Title Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land
URI https://www.ncbi.nlm.nih.gov/pubmed/32425957
https://www.proquest.com/docview/2404641741
https://pubmed.ncbi.nlm.nih.gov/PMC7203417
https://doaj.org/article/479d99fe4e1a4361965d77931cff6cf5
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6CwQMvaNyzwWQkHnjJqBPbiZEQ6hCjQhRVaJX6Fvm6IVXJ6Lpp_fc7J8kKRUXiJYqci5Pv2D7fiZ3vALwJmnstBzFFaj1IhcSA1ZbRpr4s8-C0HcgB_e88_q5GU_F1Jme_0wH1AF5sDe0on9R0MT-8_rX6iB3-A0Wc6G_fxfM5CW9ntEgrl_ou3EO3VFA6g3HP9Tuhb2JDbbIVpUQqVDbrpH623WPDS7Vi_tsY6N8LKf_wTMe78LCnlGzYtYFHcCfUj-H-UYO0b_UETiZnK4yrQ_uLCFnhPRuyyaJB-6LXYsNeU5wheWU_wlU47dcfsiayUTBXKzbGknk6oZzISE_ZN1P7pzA9_nzyaZT2qRRSJzO5RPyxX5tceWWUVS532ICso5wXKrPac2edK701iAr3ufW4YwsjgpSOIrAsfwY7dVOHF8C4kBiAl04VxpE4m-bCFSWOkpk0hseYwOEtdJXrdcYp3cW8wniDsK4I64qwrlqsE3i7vuC8k9j496lHZIv1aaSN3RY0i9Oq72qVKLTXOgYRuBG5IslEX-AwxF2MykWZwOtbS1aINU2QmDo0l1iRoIlejNF4As87y66rIuIptSwSKDZsvvEsm0fqn2etXjfNdONd9_6j3n14QG_bTVe9hJ3l4jK8QtaztAft1wLcfpnxg7Zl3wDVzwKm
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phytoremediation%3A+A+Promising+Approach+for+Revegetation+of+Heavy+Metal-Polluted+Land&rft.jtitle=Frontiers+in+plant+science&rft.au=Yan%2C+An&rft.au=Wang%2C+Yamin&rft.au=Tan%2C+Swee+Ngin&rft.au=Mohd+Yusof%2C+Mohamed+Lokman&rft.date=2020-04-30&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=11&rft.spage=359&rft_id=info:doi/10.3389%2Ffpls.2020.00359&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon