Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals

An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be tim...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 100; pp. 270 - 278
Main Authors Acharya, U. Rajendra, Oh, Shu Lih, Hagiwara, Yuki, Tan, Jen Hong, Adeli, Hojjat
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.09.2018
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively. [Display omitted] •Classification of normal, preictal, and seizure EEG signals.•Performed 13-layer deep convolutional neural network.•Implemented ten-fold cross-validation strategy.•Obtained accuracy of 88.7%, sensitivity of 95% and specificity of 90%.
AbstractList An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively. [Display omitted] •Classification of normal, preictal, and seizure EEG signals.•Performed 13-layer deep convolutional neural network.•Implemented ten-fold cross-validation strategy.•Obtained accuracy of 88.7%, sensitivity of 95% and specificity of 90%.
An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.
An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.
Author Oh, Shu Lih
Hagiwara, Yuki
Acharya, U. Rajendra
Adeli, Hojjat
Tan, Jen Hong
Author_xml – sequence: 1
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  email: aru@np.edu.sg
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 2
  givenname: Shu Lih
  surname: Oh
  fullname: Oh, Shu Lih
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 3
  givenname: Yuki
  surname: Hagiwara
  fullname: Hagiwara, Yuki
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 4
  givenname: Jen Hong
  surname: Tan
  fullname: Tan, Jen Hong
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 5
  givenname: Hojjat
  surname: Adeli
  fullname: Adeli, Hojjat
  organization: Departments of Neuroscience, Neurology, Biomedical Engineering, Biomedical Informatics, and Civil, Environmental, and Geodetic Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, 43210, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28974302$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9rFDEUxYNU7Lb6FSTgiy8zvcn8y7yItm6rUPBFn0MmubPNdiZZk5lK_fRmui3CPi0hHALn_m4454ycOO-QEMogZ8Dqi22u_bjrrB_R5BxYk0ObJ3lFVkw0bQZVUZ6QFQCDrBS8OiVnMW4BoIQC3pBTLtqmLICvyN1XxB3V3j34YZ6sd2qgDufwJNMfH-5p7wOd7pCqefKjmtBQgxPqxUyVSy-rNs5HG6nvaUT7dw5I52jdhq7XNzTaTYLGt-R1nwTfPes5-XW9_nn1Lbv9cfP96sttpiteTVnXtEJo07VcqBpBK9AMRd3xCk3Vsa7iRjdMGVSCF6Zj6ULNVS9YXfQddMU5-bjn7oL_PWOc5GijxmFQDv0cJWvLBlrByzZZPxxYt34Oy2clB1Eu58n1_tk1dyluuQt2VOFRvmSYDJ_2Bh18jAF7qe2klnimoOwgGcilNLmV_0uTS2kSWpkkAcQB4GXHEaOX-1FMkT5YDDJqi06jsSFVJI23x0A-H0D0YJ3VarjHx-MQ_wBCjs9c
CitedBy_id crossref_primary_10_1016_j_medengphy_2024_104219
crossref_primary_10_29109_gujsc_1201819
crossref_primary_10_1142_S0129065723500569
crossref_primary_10_3390_app14178091
crossref_primary_10_1145_3386580
crossref_primary_10_1016_j_compbiomed_2021_104338
crossref_primary_10_1142_S0129065721500027
crossref_primary_10_2174_1574362413666181030103616
crossref_primary_10_1109_TNNLS_2021_3072885
crossref_primary_10_3390_ijerph19074014
crossref_primary_10_1016_j_bspc_2021_102928
crossref_primary_10_1016_j_chaos_2022_112528
crossref_primary_10_1080_09720529_2022_2072419
crossref_primary_10_1109_TNSRE_2019_2914603
crossref_primary_10_1109_ACCESS_2019_2921832
crossref_primary_10_3389_fneur_2024_1485799
crossref_primary_10_3390_s20010009
crossref_primary_10_1016_j_cmpb_2020_105472
crossref_primary_10_1002_ima_22400
crossref_primary_10_1016_j_compbiomed_2021_104347
crossref_primary_10_1016_j_mehy_2019_109519
crossref_primary_10_1088_1741_2552_aadc1f
crossref_primary_10_1186_s42494_020_00014_0
crossref_primary_10_1109_ACCESS_2022_3151692
crossref_primary_10_1142_S0129065720500628
crossref_primary_10_3390_brainsci9050115
crossref_primary_10_17694_bajece_410250
crossref_primary_10_1142_S0129065723500545
crossref_primary_10_1109_ACCESS_2020_2966834
crossref_primary_10_1186_s12938_023_01079_x
crossref_primary_10_1088_2515_7620_ad484b
crossref_primary_10_1016_j_bspc_2023_104652
crossref_primary_10_3390_electronics11142265
crossref_primary_10_3390_math8122125
crossref_primary_10_1016_j_eswa_2023_119613
crossref_primary_10_1088_1741_2552_ac8fb5
crossref_primary_10_1016_j_cnp_2022_11_004
crossref_primary_10_1155_2020_9689821
crossref_primary_10_3390_app10051609
crossref_primary_10_2174_1874120702115010090
crossref_primary_10_1142_S012906572150026X
crossref_primary_10_3389_fnins_2023_1156838
crossref_primary_10_1016_j_bspc_2023_104644
crossref_primary_10_1016_j_pedneo_2021_12_011
crossref_primary_10_1002_ima_22866
crossref_primary_10_1016_j_brainresbull_2024_110920
crossref_primary_10_1142_S0129065720500604
crossref_primary_10_1080_23808993_2021_1993595
crossref_primary_10_1016_j_bspc_2021_102936
crossref_primary_10_1142_S0129065721500271
crossref_primary_10_1088_1742_6596_1505_1_012055
crossref_primary_10_2139_ssrn_3351805
crossref_primary_10_54856_jiswa_202012119
crossref_primary_10_3389_fncom_2022_1059565
crossref_primary_10_1007_s42979_024_03202_8
crossref_primary_10_1142_S0129065721500222
crossref_primary_10_1016_j_compbiomed_2018_04_025
crossref_primary_10_1142_S0129065723500120
crossref_primary_10_1016_j_eswa_2020_113202
crossref_primary_10_1177_1550059419879569
crossref_primary_10_3390_bioengineering11030217
crossref_primary_10_1038_s41598_024_60996_6
crossref_primary_10_1016_j_measurement_2020_107602
crossref_primary_10_1007_s00500_019_04515_0
crossref_primary_10_1016_j_asoc_2022_109534
crossref_primary_10_1109_ACCESS_2021_3059858
crossref_primary_10_1016_j_yebeh_2018_11_011
crossref_primary_10_1016_j_eplepsyres_2021_106818
crossref_primary_10_1007_s10470_019_01424_y
crossref_primary_10_1088_2057_1976_ad3afd
crossref_primary_10_3390_diagnostics13040773
crossref_primary_10_1515_bmt_2019_0098
crossref_primary_10_1515_bmt_2018_0246
crossref_primary_10_1016_j_procs_2020_03_248
crossref_primary_10_1541_ieejeiss_142_543
crossref_primary_10_28979_jarnas_1505804
crossref_primary_10_1016_j_neurol_2023_10_005
crossref_primary_10_1016_j_bbe_2020_04_004
crossref_primary_10_1016_j_compbiomed_2019_103571
crossref_primary_10_1111_exsy_13514
crossref_primary_10_1109_ACCESS_2019_2918251
crossref_primary_10_1007_s11227_021_04196_3
crossref_primary_10_1155_2020_6490479
crossref_primary_10_1007_s10489_021_02309_2
crossref_primary_10_1016_j_bspc_2023_104693
crossref_primary_10_1142_S0129065721500489
crossref_primary_10_1111_cns_13773
crossref_primary_10_1080_08839514_2021_1991115
crossref_primary_10_1109_TCDS_2022_3232121
crossref_primary_10_1016_j_neucom_2020_02_121
crossref_primary_10_1371_journal_pcbi_1012376
crossref_primary_10_1007_s10470_021_01805_2
crossref_primary_10_1016_j_bspc_2021_102906
crossref_primary_10_1016_j_bspc_2022_104380
crossref_primary_10_1016_j_cmpb_2021_106604
crossref_primary_10_1007_s11571_021_09678_x
crossref_primary_10_3389_fnins_2023_1191683
crossref_primary_10_3390_math11173656
crossref_primary_10_3390_s20123346
crossref_primary_10_3389_fnins_2024_1436619
crossref_primary_10_37394_23208_2022_19_3
crossref_primary_10_1142_S0129065720500690
crossref_primary_10_1142_S0129065722500514
crossref_primary_10_1002_cnm_3573
crossref_primary_10_1088_1741_2552_ab094a
crossref_primary_10_3390_s20040969
crossref_primary_10_1016_j_bspc_2019_101702
crossref_primary_10_3390_s20102860
crossref_primary_10_1109_TIM_2022_3207799
crossref_primary_10_1111_exsy_13374
crossref_primary_10_1142_S0129065721500428
crossref_primary_10_3390_brainsci12121672
crossref_primary_10_1007_s00521_020_05384_7
crossref_primary_10_1007_s10462_024_10799_y
crossref_primary_10_1016_j_geoen_2024_212723
crossref_primary_10_3390_fi17030107
crossref_primary_10_1016_j_compbiomed_2018_05_019
crossref_primary_10_1049_ipr2_12101
crossref_primary_10_1109_ACCESS_2024_3415716
crossref_primary_10_1177_1550059418814983
crossref_primary_10_1016_j_cmpb_2021_105931
crossref_primary_10_3390_s20030911
crossref_primary_10_1007_s10586_022_03707_y
crossref_primary_10_1093_bib_bbaa310
crossref_primary_10_1155_2022_2014001
crossref_primary_10_1109_ACCESS_2020_2984677
crossref_primary_10_1142_S0129065721500416
crossref_primary_10_1007_s11042_023_15029_1
crossref_primary_10_1016_j_ymssp_2022_109567
crossref_primary_10_1016_j_eswa_2021_116414
crossref_primary_10_4103_0028_3886_317233
crossref_primary_10_1109_TNNLS_2023_3252569
crossref_primary_10_3233_JIFS_222745
crossref_primary_10_1109_ACCESS_2022_3201843
crossref_primary_10_1007_s13198_022_01845_5
crossref_primary_10_1038_s41598_020_62967_z
crossref_primary_10_1016_j_cmpb_2021_105941
crossref_primary_10_1088_1742_6596_1769_1_012015
crossref_primary_10_1016_j_patter_2020_100019
crossref_primary_10_1007_s00117_022_01051_1
crossref_primary_10_1016_j_jbi_2019_103303
crossref_primary_10_1142_S0129065720500677
crossref_primary_10_1109_ACCESS_2020_2994226
crossref_primary_10_1007_s11760_022_02315_y
crossref_primary_10_1142_S0129065720500434
crossref_primary_10_1007_s10462_019_09755_y
crossref_primary_10_1155_2019_8641074
crossref_primary_10_3233_THC_212847
crossref_primary_10_1007_s11042_022_12702_9
crossref_primary_10_1038_s41598_020_78784_3
crossref_primary_10_3233_BME_201081
crossref_primary_10_1016_j_neucom_2021_02_052
crossref_primary_10_1016_j_cmpb_2022_107113
crossref_primary_10_1016_j_heliyon_2025_e42993
crossref_primary_10_1016_j_isprsjprs_2021_01_013
crossref_primary_10_1088_1361_6579_ab3e2e
crossref_primary_10_1007_s11831_023_09920_1
crossref_primary_10_1142_S0129065720500446
crossref_primary_10_1016_j_compstruc_2021_106484
crossref_primary_10_1007_s00521_023_08254_0
crossref_primary_10_3389_fnins_2022_965871
crossref_primary_10_1016_j_bspc_2024_106097
crossref_primary_10_1007_s13369_022_06731_7
crossref_primary_10_1016_j_bbe_2019_05_010
crossref_primary_10_3390_a12070145
crossref_primary_10_1088_1755_1315_521_1_012018
crossref_primary_10_1109_TCDS_2020_3009020
crossref_primary_10_7554_eLife_56481
crossref_primary_10_1016_j_bspc_2021_103138
crossref_primary_10_1109_ACCESS_2022_3232563
crossref_primary_10_1142_S0129065720500653
crossref_primary_10_1002_cpe_5199
crossref_primary_10_1109_TNNLS_2022_3190448
crossref_primary_10_1016_j_bspc_2020_101921
crossref_primary_10_1111_epi_16628
crossref_primary_10_1109_TAI_2024_3410928
crossref_primary_10_1155_2021_6625141
crossref_primary_10_1016_j_neuri_2024_100184
crossref_primary_10_1109_ACCESS_2020_2976866
crossref_primary_10_1016_j_bspc_2021_103127
crossref_primary_10_1109_JBHI_2022_3199206
crossref_primary_10_1142_S0129065723500508
crossref_primary_10_1088_1742_6596_1567_2_022076
crossref_primary_10_1002_jbio_201800435
crossref_primary_10_1080_10255842_2024_2356634
crossref_primary_10_1109_TNSRE_2019_2953121
crossref_primary_10_3390_s22030728
crossref_primary_10_3762_bjnano_12_66
crossref_primary_10_1007_s40031_021_00693_4
crossref_primary_10_1088_1741_2552_ac23bf
crossref_primary_10_1117_1_JBO_24_5_051408
crossref_primary_10_1007_s11571_020_09626_1
crossref_primary_10_1038_s41598_019_56958_y
crossref_primary_10_1016_j_dsp_2021_103216
crossref_primary_10_1007_s11760_023_02871_x
crossref_primary_10_1016_j_compbiomed_2022_105366
crossref_primary_10_1016_j_clineuro_2020_106446
crossref_primary_10_3389_fncom_2024_1415967
crossref_primary_10_1088_2057_1976_ad3cde
crossref_primary_10_1142_S0129065722500502
crossref_primary_10_1186_s12911_024_02845_0
crossref_primary_10_1109_ACCESS_2019_2931616
crossref_primary_10_1155_2022_4114178
crossref_primary_10_1109_ACCESS_2022_3197645
crossref_primary_10_1016_j_eswa_2021_115551
crossref_primary_10_1016_j_bspc_2019_101708
crossref_primary_10_1016_j_addr_2021_05_015
crossref_primary_10_1016_j_bspc_2019_101707
crossref_primary_10_3390_electronics9071140
crossref_primary_10_1155_2022_9579422
crossref_primary_10_1142_S0129065720500641
crossref_primary_10_1177_14759217231216694
crossref_primary_10_3389_fnins_2024_1373515
crossref_primary_10_1111_mice_12515
crossref_primary_10_1109_ACCESS_2023_3251105
crossref_primary_10_1007_s11042_022_12611_x
crossref_primary_10_32604_cmc_2022_029073
crossref_primary_10_1155_2022_8452002
crossref_primary_10_1007_s41315_022_00233_3
crossref_primary_10_1007_s13755_021_00140_0
crossref_primary_10_3390_s18061720
crossref_primary_10_2478_jaiscr_2022_0012
crossref_primary_10_1007_s00521_021_05878_y
crossref_primary_10_1016_j_chaos_2024_114700
crossref_primary_10_1109_JBHI_2021_3059686
crossref_primary_10_1016_j_eswa_2023_121040
crossref_primary_10_1155_2019_9768072
crossref_primary_10_32604_cmc_2024_055910
crossref_primary_10_3390_s22197269
crossref_primary_10_1016_j_oceaneng_2023_116563
crossref_primary_10_1142_S0129065722500241
crossref_primary_10_1007_s11042_024_20049_6
crossref_primary_10_3390_electronics12030750
crossref_primary_10_1109_ACCESS_2020_2971656
crossref_primary_10_1142_S0129065724500655
crossref_primary_10_1002_lary_30589
crossref_primary_10_1016_j_chemolab_2020_104056
crossref_primary_10_1142_S0129065724500412
crossref_primary_10_1142_S0129065718500521
crossref_primary_10_3390_s23146578
crossref_primary_10_3390_s20072027
crossref_primary_10_1109_ACCESS_2023_3252897
crossref_primary_10_1109_ACCESS_2019_2934018
crossref_primary_10_1111_mice_12970
crossref_primary_10_1016_j_bspc_2020_102068
crossref_primary_10_1016_j_bspc_2020_102073
crossref_primary_10_3390_info16010020
crossref_primary_10_4103_ejpsy_ejpsy_10_22
crossref_primary_10_3233_AIS_210086
crossref_primary_10_1016_j_mejo_2024_106193
crossref_primary_10_1111_mice_12503
crossref_primary_10_1111_mice_12504
crossref_primary_10_1155_2022_7242667
crossref_primary_10_1016_j_bspc_2024_106327
crossref_primary_10_1016_j_bspc_2024_106322
crossref_primary_10_1016_j_bspc_2022_103774
crossref_primary_10_1142_S0219519419400050
crossref_primary_10_1109_TNSRE_2023_3257306
crossref_primary_10_1007_s11277_020_07542_5
crossref_primary_10_1016_j_measurement_2021_109954
crossref_primary_10_1142_S0129065723500090
crossref_primary_10_1134_S1063785019040278
crossref_primary_10_1016_j_neucom_2020_04_144
crossref_primary_10_3233_IDA_205534
crossref_primary_10_3389_fneur_2024_1374443
crossref_primary_10_1109_TCDS_2020_3012278
crossref_primary_10_1186_s12938_024_01244_w
crossref_primary_10_1108_JEIM_01_2020_0036
crossref_primary_10_1007_s00521_021_05736_x
crossref_primary_10_1109_TBME_2021_3062502
crossref_primary_10_1007_s13755_019_0069_1
crossref_primary_10_1111_mice_12948
crossref_primary_10_3390_diagnostics14131342
crossref_primary_10_1007_s11831_021_09551_4
crossref_primary_10_1016_j_neunet_2021_03_008
crossref_primary_10_1016_j_yebeh_2018_09_030
crossref_primary_10_1016_j_asoc_2021_107639
crossref_primary_10_1155_2022_4185835
crossref_primary_10_1007_s42979_021_00756_9
crossref_primary_10_1051_epjconf_202022501004
crossref_primary_10_1016_j_bspc_2022_103700
crossref_primary_10_1177_14759217251313496
crossref_primary_10_1016_j_jneumeth_2021_109353
crossref_primary_10_3390_s23052458
crossref_primary_10_1007_s11517_022_02656_3
crossref_primary_10_1016_j_eswa_2021_116339
crossref_primary_10_1109_ACCESS_2020_2995886
crossref_primary_10_1155_2021_2195922
crossref_primary_10_1016_j_clinph_2025_01_008
crossref_primary_10_17671_gazibtd_804617
crossref_primary_10_1109_TNNLS_2022_3214225
crossref_primary_10_3389_fnhum_2023_1126938
crossref_primary_10_1007_s00521_018_3889_z
crossref_primary_10_1002_ima_23127
crossref_primary_10_1007_s11071_022_08118_7
crossref_primary_10_1016_j_seizure_2019_08_006
crossref_primary_10_1142_S2424905X24300012
crossref_primary_10_17341_gazimmfd_827921
crossref_primary_10_1016_j_jneumeth_2021_109145
crossref_primary_10_1142_S0219519419400025
crossref_primary_10_1016_j_neucom_2024_128644
crossref_primary_10_1016_j_compbiomed_2022_106053
crossref_primary_10_1088_1741_2552_abc902
crossref_primary_10_2478_sjecr_2018_0063
crossref_primary_10_1088_1741_2552_abc903
crossref_primary_10_3390_ijgi10040242
crossref_primary_10_1186_s13634_019_0606_8
crossref_primary_10_1080_21681163_2022_2111721
crossref_primary_10_2139_ssrn_3987850
crossref_primary_10_1142_S0129065722500460
crossref_primary_10_1007_s13246_020_00938_4
crossref_primary_10_1007_s11571_020_09619_0
crossref_primary_10_1088_1361_6501_ad9043
crossref_primary_10_1007_s11042_021_10882_4
crossref_primary_10_1088_1741_2552_ad9957
crossref_primary_10_1142_S0219519419400013
crossref_primary_10_3389_frobt_2021_610653
crossref_primary_10_3389_fninf_2018_00095
crossref_primary_10_1142_S0129065724500679
crossref_primary_10_1080_21681163_2018_1523749
crossref_primary_10_1007_s00521_020_05467_5
crossref_primary_10_1016_j_neuroimage_2025_121049
crossref_primary_10_1109_LSP_2021_3069344
crossref_primary_10_3390_s21020655
crossref_primary_10_1080_16843703_2021_1992072
crossref_primary_10_1109_JIOT_2022_3143704
crossref_primary_10_1016_j_bspc_2020_102006
crossref_primary_10_1109_ACCESS_2024_3406332
crossref_primary_10_1523_ENEURO_0111_23_2023
crossref_primary_10_3390_s23218893
crossref_primary_10_1016_j_compbiomed_2019_103466
crossref_primary_10_32604_cmc_2022_027048
crossref_primary_10_1007_s11042_023_14995_w
crossref_primary_10_1515_bmt_2021_0170
crossref_primary_10_1007_s13534_023_00319_2
crossref_primary_10_1109_TBME_2019_2922235
crossref_primary_10_1007_s00500_024_10306_z
crossref_primary_10_1016_j_chemolab_2020_104214
crossref_primary_10_3390_ijerph16040599
crossref_primary_10_1007_s00521_018_3616_9
crossref_primary_10_1007_s00521_022_07279_1
crossref_primary_10_1038_s41597_020_0533_4
crossref_primary_10_1155_2018_9385947
crossref_primary_10_1016_j_bspc_2021_102792
crossref_primary_10_1038_s41582_024_00965_9
crossref_primary_10_1016_j_patrec_2020_03_009
crossref_primary_10_1007_s11571_019_09543_y
crossref_primary_10_1109_ACCESS_2018_2888813
crossref_primary_10_53982_aijnas_2021_0101_05_j
crossref_primary_10_33808_clinexphealthsci_1466714
crossref_primary_10_1007_s43657_023_00148_4
crossref_primary_10_1109_ACCESS_2018_2867078
crossref_primary_10_1142_S0129065719500102
crossref_primary_10_4103_0028_3886_310069
crossref_primary_10_1142_S0129065723500016
crossref_primary_10_1016_j_neucom_2021_06_048
crossref_primary_10_3389_fneur_2021_603868
crossref_primary_10_3390_app11115051
crossref_primary_10_1016_j_cvdhj_2020_07_001
crossref_primary_10_1371_journal_pone_0234178
crossref_primary_10_1007_s11571_024_10109_w
crossref_primary_10_1016_j_bspc_2024_106965
crossref_primary_10_1142_S0129065724500473
crossref_primary_10_14201_ADCAIJ2020923348
crossref_primary_10_1051_matecconf_202439201101
crossref_primary_10_1109_ACCESS_2023_3235913
crossref_primary_10_1016_j_neunet_2023_06_040
crossref_primary_10_1016_j_neuri_2023_100139
crossref_primary_10_1088_1741_4326_ab6c7a
crossref_primary_10_1109_ACCESS_2021_3133326
crossref_primary_10_3233_JIFS_232085
crossref_primary_10_1109_TNSRE_2020_2973434
crossref_primary_10_1007_s43441_021_00355_z
crossref_primary_10_1109_TCDS_2021_3079712
crossref_primary_10_1016_j_bspc_2023_105165
crossref_primary_10_1142_S0129065722500034
crossref_primary_10_1016_j_bspc_2021_102720
crossref_primary_10_1016_j_jneumeth_2022_109483
crossref_primary_10_3389_fnhum_2023_1153413
crossref_primary_10_1038_s41598_022_19020_y
crossref_primary_10_1016_j_bspc_2021_102723
crossref_primary_10_1007_s00521_019_04061_8
crossref_primary_10_1098_rsos_230022
crossref_primary_10_18048_2019_57_01
crossref_primary_10_31828_turkpsikoloji_1537964
crossref_primary_10_1109_TCDS_2021_3064228
crossref_primary_10_1142_S0129065725500030
crossref_primary_10_1007_s11277_022_09678_y
crossref_primary_10_1142_S0129065721500052
crossref_primary_10_1080_10408363_2018_1536111
crossref_primary_10_1007_s42979_023_02396_7
crossref_primary_10_1016_j_bspc_2020_102215
crossref_primary_10_3389_fnhum_2020_00338
crossref_primary_10_1007_s11042_024_20330_8
crossref_primary_10_1142_S0129065722500046
crossref_primary_10_1016_j_jneumeth_2021_109197
crossref_primary_10_1109_ACCESS_2019_2954294
crossref_primary_10_1145_3457893
crossref_primary_10_7555_JBR_34_20190043
crossref_primary_10_1016_j_ins_2019_10_069
crossref_primary_10_3390_diagnostics13111936
crossref_primary_10_1007_s00034_023_02423_1
crossref_primary_10_1142_S0129065719500138
crossref_primary_10_1007_s12652_022_04204_1
crossref_primary_10_1142_S0129065721500088
crossref_primary_10_3233_ICA_180584
crossref_primary_10_1016_j_neunet_2018_11_009
crossref_primary_10_3233_ICA_180580
crossref_primary_10_1007_s11517_023_02914_y
crossref_primary_10_1109_TMI_2019_2935409
crossref_primary_10_1007_s11571_021_09773_z
crossref_primary_10_1016_j_knosys_2022_108508
crossref_primary_10_1016_j_measurement_2019_107003
crossref_primary_10_3390_e22121415
crossref_primary_10_3233_ICA_180574
crossref_primary_10_1016_j_bbe_2020_02_002
crossref_primary_10_3390_aerospace8040112
crossref_primary_10_1109_ACCESS_2018_2886608
crossref_primary_10_1109_JSEN_2021_3077578
crossref_primary_10_1109_TNSRE_2019_2913142
crossref_primary_10_1145_3552512
crossref_primary_10_3233_IDT_240923
crossref_primary_10_1016_j_chaos_2021_111032
crossref_primary_10_46387_bjesr_1332678
crossref_primary_10_14201_ADCAIJ2020922332
crossref_primary_10_1109_JBHI_2020_3048006
crossref_primary_10_1016_j_bspc_2023_104798
crossref_primary_10_1016_j_clinph_2020_03_033
crossref_primary_10_1109_ACCESS_2021_3105917
crossref_primary_10_3389_fcomp_2021_661300
crossref_primary_10_3390_s23062993
crossref_primary_10_1007_s00500_023_08386_4
crossref_primary_10_1080_10255842_2024_2355490
crossref_primary_10_1016_j_inffus_2023_101898
crossref_primary_10_1080_21507740_2020_1740352
crossref_primary_10_1111_epi_16719
crossref_primary_10_1007_s42979_024_03510_z
crossref_primary_10_1007_s12539_023_00567_x
crossref_primary_10_3390_s22239302
crossref_primary_10_1155_2023_6683438
crossref_primary_10_1109_TNSRE_2020_2966290
crossref_primary_10_3390_bioengineering11121265
crossref_primary_10_1080_03091902_2020_1791988
crossref_primary_10_3389_fnins_2023_1133834
crossref_primary_10_1080_10106049_2021_1899302
crossref_primary_10_1007_s13198_024_02591_6
crossref_primary_10_3390_s24092823
crossref_primary_10_1142_S0129065720500744
crossref_primary_10_1016_j_jfca_2025_107355
crossref_primary_10_1007_s11042_023_16514_3
crossref_primary_10_3390_pr10112348
crossref_primary_10_1016_j_procs_2024_04_006
crossref_primary_10_1016_j_irbm_2020_07_002
crossref_primary_10_1142_S0129065723500429
crossref_primary_10_1007_s11517_020_02144_6
crossref_primary_10_1360_SSC_2022_0019
crossref_primary_10_3390_brainsci12080977
crossref_primary_10_1007_s10916_024_02122_7
crossref_primary_10_1016_j_jneumeth_2020_108886
crossref_primary_10_1142_S0129065720500707
crossref_primary_10_1007_s00500_022_06878_3
crossref_primary_10_1145_3675402
crossref_primary_10_3390_ani11020357
crossref_primary_10_3390_brainsci11050668
crossref_primary_10_3389_fneur_2024_1378076
crossref_primary_10_1109_ACCESS_2020_2976751
crossref_primary_10_3390_s18051372
crossref_primary_10_1016_j_resplu_2022_100263
crossref_primary_10_1016_j_procs_2021_08_071
crossref_primary_10_1177_1475921720932614
crossref_primary_10_1016_j_compbiomed_2019_05_016
crossref_primary_10_1007_s00521_023_08832_2
crossref_primary_10_1007_s11042_019_08359_6
crossref_primary_10_1007_s12264_024_01247_6
crossref_primary_10_1142_S0129065720500719
crossref_primary_10_1007_s12652_019_01220_6
crossref_primary_10_2139_ssrn_4065237
crossref_primary_10_3389_fncom_2022_822237
crossref_primary_10_1016_j_dsp_2020_102796
crossref_primary_10_3390_biomedicines12061221
crossref_primary_10_1109_TNSRE_2023_3299839
crossref_primary_10_3390_app14020599
crossref_primary_10_1016_j_engappai_2023_106122
crossref_primary_10_1142_S0129065720500720
crossref_primary_10_3389_fneur_2020_00375
crossref_primary_10_1007_s10044_024_01221_y
crossref_primary_10_1109_TCYB_2021_3052813
crossref_primary_10_3390_s23073673
crossref_primary_10_1049_iet_spr_2019_0277
crossref_primary_10_3390_s20164629
crossref_primary_10_1021_acsami_9b19362
crossref_primary_10_1002_int_23040
crossref_primary_10_1242_jeb_198101
crossref_primary_10_1016_j_bspc_2022_104234
crossref_primary_10_1007_s00521_021_06396_7
crossref_primary_10_1109_TCBB_2020_3024228
crossref_primary_10_1142_S0219843619410044
crossref_primary_10_3390_app11073163
crossref_primary_10_1016_j_ipm_2022_102888
crossref_primary_10_1142_S0218348X22501547
crossref_primary_10_3233_ICA_200617
crossref_primary_10_1049_sil2_12076
crossref_primary_10_32604_csse_2023_036985
crossref_primary_10_1016_j_compbiomed_2021_104250
crossref_primary_10_1049_htl_2018_5036
crossref_primary_10_3389_frai_2023_1069353
crossref_primary_10_1016_j_eswa_2021_115851
crossref_primary_10_1371_journal_pone_0270405
crossref_primary_10_3389_frai_2023_1156269
crossref_primary_10_1016_j_apacoust_2020_107607
crossref_primary_10_1038_s41598_019_47854_6
crossref_primary_10_1016_j_compbiomed_2018_09_008
crossref_primary_10_1016_j_future_2018_11_011
crossref_primary_10_1021_acsami_2c20057
crossref_primary_10_1016_j_jcin_2019_06_036
crossref_primary_10_1016_j_ress_2023_109212
crossref_primary_10_3389_fnsys_2021_685387
crossref_primary_10_1016_j_aei_2020_101191
crossref_primary_10_3389_fnins_2021_667373
crossref_primary_10_1520_JTE20190626
crossref_primary_10_1016_j_future_2018_10_005
crossref_primary_10_1016_j_jksuci_2021_11_015
crossref_primary_10_1109_JBHI_2020_3025381
crossref_primary_10_1142_S0129065723500223
crossref_primary_10_1142_S0129065723500466
crossref_primary_10_1109_ACCESS_2024_3409581
crossref_primary_10_3390_ijerph18115780
crossref_primary_10_1016_j_eswa_2022_119010
crossref_primary_10_3389_fnins_2023_1117340
crossref_primary_10_1016_j_neucom_2018_10_108
crossref_primary_10_1016_j_chb_2020_106640
crossref_primary_10_1021_acssensors_0c01424
crossref_primary_10_3233_ICA_200632
crossref_primary_10_1515_med_2020_0006
crossref_primary_10_3233_ICA_200638
crossref_primary_10_1007_s11042_024_19129_4
crossref_primary_10_3390_e20050386
crossref_primary_10_1155_2021_6614191
crossref_primary_10_1142_S0129065721500350
crossref_primary_10_1109_TNSRE_2022_3165060
crossref_primary_10_1016_j_compbiomed_2019_103446
crossref_primary_10_1016_j_compbiomed_2024_108258
crossref_primary_10_1016_j_compbiomed_2019_103448
crossref_primary_10_1049_ccs_2020_0011
crossref_primary_10_1186_s12911_020_01306_8
crossref_primary_10_1140_epjs_s11734_021_00380_x
crossref_primary_10_1016_j_apr_2020_04_001
crossref_primary_10_1007_s11704_021_0587_2
crossref_primary_10_3390_jimaging8040102
crossref_primary_10_3233_ICA_200621
crossref_primary_10_1007_s10916_019_1519_7
crossref_primary_10_1007_s40120_019_00153_8
crossref_primary_10_3390_app142411569
crossref_primary_10_3233_ICA_200625
crossref_primary_10_3390_diagnostics9030104
crossref_primary_10_3390_brainsci12111502
crossref_primary_10_3390_diagnostics15030300
crossref_primary_10_1016_j_engappai_2023_106763
crossref_primary_10_1016_j_comcom_2019_12_056
crossref_primary_10_1016_j_autcon_2022_104733
crossref_primary_10_1016_j_compbiomed_2021_104299
crossref_primary_10_1109_TNSRE_2022_3166517
crossref_primary_10_1007_s00521_018_3689_5
crossref_primary_10_1109_ACCESS_2020_3019336
crossref_primary_10_1088_2632_2153_abcf89
crossref_primary_10_1002_cnm_3225
crossref_primary_10_1016_j_array_2021_100072
crossref_primary_10_1109_ACCESS_2024_3375877
crossref_primary_10_1016_j_engappai_2019_08_017
crossref_primary_10_1109_JSEN_2019_2939908
crossref_primary_10_1016_j_compbiomed_2020_103919
crossref_primary_10_1007_s10916_019_1406_2
crossref_primary_10_1016_j_bspc_2025_107535
crossref_primary_10_1016_j_cmpb_2020_105750
crossref_primary_10_1109_JBHI_2023_3336935
crossref_primary_10_1111_exsy_13260
crossref_primary_10_1109_ACCESS_2019_2891390
crossref_primary_10_1038_s41598_023_41537_z
crossref_primary_10_1109_JSEN_2019_2935552
crossref_primary_10_3390_bdcc8090111
crossref_primary_10_1007_s12652_020_01722_8
crossref_primary_10_1016_j_bspc_2022_104439
crossref_primary_10_48084_etasr_5208
crossref_primary_10_1016_j_neunet_2024_106267
crossref_primary_10_3390_s20247251
crossref_primary_10_1142_S0129065722500411
crossref_primary_10_1007_s13246_020_00925_9
crossref_primary_10_3390_app9142870
crossref_primary_10_3390_s21227710
crossref_primary_10_1007_s13246_019_00794_x
crossref_primary_10_1016_j_compbiomed_2021_105120
crossref_primary_10_1016_j_compbiomed_2022_105441
crossref_primary_10_1109_ACCESS_2019_2959234
crossref_primary_10_1109_ACCESS_2020_3011877
crossref_primary_10_1142_S0129065721500556
crossref_primary_10_1016_j_cmpb_2020_105531
crossref_primary_10_2174_0118722121256663231019061211
crossref_primary_10_1007_s00138_020_01069_2
crossref_primary_10_3390_s20226592
crossref_primary_10_1007_s13369_019_04197_8
crossref_primary_10_1109_ACCESS_2021_3062291
crossref_primary_10_3389_fninf_2020_00006
crossref_primary_10_1016_j_cities_2021_103393
crossref_primary_10_1016_j_eswa_2024_125081
crossref_primary_10_1142_S0129065720500562
crossref_primary_10_1049_joe_2018_5435
crossref_primary_10_1016_j_jbi_2020_103627
crossref_primary_10_3847_1538_4357_acc8d5
crossref_primary_10_1155_2020_4825767
crossref_primary_10_1142_S0129065723500648
crossref_primary_10_1109_JSYST_2019_2923670
crossref_primary_10_1007_s12065_020_00459_9
crossref_primary_10_1016_j_knosys_2023_111305
crossref_primary_10_1142_S0219519419400086
crossref_primary_10_1631_jzus_B2400103
crossref_primary_10_3389_fnins_2020_00870
crossref_primary_10_1088_1741_2552_ab0ab5
crossref_primary_10_1109_TNSRE_2021_3129467
crossref_primary_10_1016_j_compbiomed_2020_103719
crossref_primary_10_1159_000512985
crossref_primary_10_3389_fnins_2020_00409
crossref_primary_10_1016_j_neuroscience_2021_11_017
crossref_primary_10_3390_s24010077
crossref_primary_10_1007_s00034_021_01789_4
crossref_primary_10_1109_TNNLS_2020_3016666
crossref_primary_10_1016_j_bspc_2021_103013
crossref_primary_10_1016_j_compbiomed_2020_103954
crossref_primary_10_1142_S0219519419400074
crossref_primary_10_1142_S0129065720500306
crossref_primary_10_3934_mbe_2021257
crossref_primary_10_1016_j_irbm_2020_06_008
crossref_primary_10_1109_TNNLS_2022_3145365
crossref_primary_10_1016_j_bspc_2023_104738
crossref_primary_10_1016_j_neuroscience_2024_01_014
crossref_primary_10_3389_fnins_2024_1468967
crossref_primary_10_1109_JBHI_2023_3282251
crossref_primary_10_1088_1748_0221_16_01_P01019
crossref_primary_10_1051_e3sconf_202235101068
crossref_primary_10_1016_j_bspc_2024_107041
crossref_primary_10_1016_j_bspc_2021_103281
crossref_primary_10_1109_TBME_2020_3042574
crossref_primary_10_1016_j_cmpb_2020_105740
crossref_primary_10_1186_s12911_021_01736_y
crossref_primary_10_3390_s22176458
crossref_primary_10_1016_j_cmpb_2018_04_012
crossref_primary_10_1049_iet_spr_2018_5258
crossref_primary_10_1088_2058_8585_ac6a96
crossref_primary_10_1142_S0129065721500519
crossref_primary_10_1186_s40708_020_00106_0
crossref_primary_10_1007_s00500_019_04157_2
crossref_primary_10_1109_JBHI_2022_3203454
crossref_primary_10_3390_s25030805
crossref_primary_10_2217_3dp_2021_0007
crossref_primary_10_1088_1674_4926_44_12_121401
crossref_primary_10_1016_j_eswa_2019_03_021
crossref_primary_10_1155_2022_8928021
crossref_primary_10_1142_S0129065723500612
crossref_primary_10_26416_Pedi_70_2_2023_8303
crossref_primary_10_1016_j_bspc_2019_101833
crossref_primary_10_1142_S0219519419400098
crossref_primary_10_1016_j_bspc_2021_103031
crossref_primary_10_1155_2022_3491828
crossref_primary_10_1007_s11042_023_15830_y
crossref_primary_10_1016_j_bspc_2021_103278
crossref_primary_10_1016_j_cmpb_2022_107277
crossref_primary_10_1371_journal_pcbi_1007067
crossref_primary_10_1142_S0218001421580015
crossref_primary_10_1515_jib_2023_0002
crossref_primary_10_7555_JBR_33_20190012
crossref_primary_10_1142_S0129065722500617
crossref_primary_10_1142_S0129065718500600
crossref_primary_10_3390_s24061889
crossref_primary_10_1007_s11571_021_09756_0
crossref_primary_10_1142_S0129065720500173
crossref_primary_10_1109_TNSRE_2021_3113888
crossref_primary_10_1007_s12652_020_02357_5
crossref_primary_10_3390_signals4040045
crossref_primary_10_1016_j_compbiomed_2020_103769
crossref_primary_10_1108_WJE_06_2021_0348
crossref_primary_10_1016_j_smhl_2021_100261
crossref_primary_10_1061__ASCE_BE_1943_5592_0001531
crossref_primary_10_1063_5_0062242
crossref_primary_10_18038_estubtda_1466349
crossref_primary_10_1007_s00521_021_06521_6
crossref_primary_10_1016_j_nanoen_2023_108712
crossref_primary_10_1016_j_jneumeth_2021_109209
crossref_primary_10_1016_j_physa_2023_129230
crossref_primary_10_1142_S0129065721300011
crossref_primary_10_1109_ACCESS_2019_2922367
crossref_primary_10_3390_s18103452
crossref_primary_10_1162_neco_a_01443
crossref_primary_10_1007_s11760_024_03077_5
crossref_primary_10_1088_1741_2552_ab5469
crossref_primary_10_1007_s00034_024_02715_0
crossref_primary_10_1016_j_compbiomed_2020_103757
crossref_primary_10_1016_j_cosrev_2020_100237
crossref_primary_10_3390_app9081526
crossref_primary_10_3934_math_2023840
crossref_primary_10_1016_j_compeleceng_2021_107461
crossref_primary_10_1016_j_eswa_2021_116016
crossref_primary_10_1109_TNSRE_2023_3330922
crossref_primary_10_1109_TPEL_2020_3023770
crossref_primary_10_1016_j_aej_2022_10_014
crossref_primary_10_1166_jmihi_2021_3916
crossref_primary_10_1007_s00034_021_01686_w
crossref_primary_10_1142_S0129065720500185
crossref_primary_10_1016_j_artmed_2019_07_006
crossref_primary_10_1016_j_bbe_2020_07_004
crossref_primary_10_35615_epilia_2021_00298
crossref_primary_10_1016_j_eswa_2019_05_041
crossref_primary_10_1021_acs_chemrestox_8b00054
crossref_primary_10_3389_fgene_2020_539227
crossref_primary_10_1109_ACCESS_2023_3277634
crossref_primary_10_1155_2021_8897105
crossref_primary_10_1016_j_heliyon_2020_e05694
crossref_primary_10_3390_app9112331
crossref_primary_10_1016_j_bspc_2019_101638
crossref_primary_10_48084_etasr_3878
crossref_primary_10_1007_s10462_021_09986_y
crossref_primary_10_1007_s11760_022_02318_9
crossref_primary_10_1038_s41746_020_0264_0
crossref_primary_10_1016_j_artmed_2019_101711
crossref_primary_10_1007_s11045_023_00870_2
crossref_primary_10_1016_j_bspc_2023_105059
crossref_primary_10_1007_s11042_023_17112_z
crossref_primary_10_3390_bios11090336
crossref_primary_10_1007_s13534_020_00156_7
crossref_primary_10_1142_S0129065724500515
crossref_primary_10_3390_ijerph17114152
crossref_primary_10_1109_TNNLS_2023_3287181
crossref_primary_10_1111_epi_17200
crossref_primary_10_1038_s41598_022_23656_1
crossref_primary_10_1007_s13534_023_00309_4
crossref_primary_10_1080_03772063_2020_1749143
crossref_primary_10_1016_j_bbe_2021_01_001
crossref_primary_10_1016_j_smhl_2021_100221
crossref_primary_10_1142_S0129065718500430
crossref_primary_10_1155_2021_6644365
crossref_primary_10_1016_j_bspc_2024_106264
crossref_primary_10_1142_S0129065722500320
crossref_primary_10_3390_s19051112
crossref_primary_10_1016_j_eswa_2021_115175
crossref_primary_10_1016_j_jocs_2023_101943
crossref_primary_10_3390_signals4030034
crossref_primary_10_1007_s11517_024_03032_z
crossref_primary_10_1016_j_brain_2023_100064
crossref_primary_10_31083_j_jin2004083
crossref_primary_10_3390_s21155145
crossref_primary_10_1016_j_neunet_2020_01_017
crossref_primary_10_2478_jaiscr_2025_0006
crossref_primary_10_1142_S0129065722500332
crossref_primary_10_2139_ssrn_4142417
crossref_primary_10_1016_j_bspc_2020_102393
crossref_primary_10_1109_ACCESS_2020_2985717
crossref_primary_10_1109_ACCESS_2019_2923281
crossref_primary_10_1109_TCBB_2020_3006699
crossref_primary_10_1109_JTEHM_2021_3050925
crossref_primary_10_2478_msr_2019_0029
crossref_primary_10_1142_S0129065720500355
crossref_primary_10_1016_j_artmed_2019_101756
crossref_primary_10_1016_j_seizure_2024_03_013
crossref_primary_10_1142_S0129065722500587
crossref_primary_10_1016_j_micpro_2021_103822
crossref_primary_10_1007_s11045_019_00673_4
crossref_primary_10_1016_j_bbrc_2022_06_004
crossref_primary_10_1016_j_cmpb_2023_107856
crossref_primary_10_1016_j_bea_2024_100114
crossref_primary_10_1109_ACCESS_2023_3275024
crossref_primary_10_1016_j_bspc_2024_106244
crossref_primary_10_1016_j_bspc_2020_102166
crossref_primary_10_1142_S0129065724500552
crossref_primary_10_1142_S0129065720500367
crossref_primary_10_1088_1741_2552_ac6770
crossref_primary_10_1142_S0129065720500124
crossref_primary_10_3389_fpsyg_2023_1126994
crossref_primary_10_1016_j_yebeh_2024_109796
crossref_primary_10_3390_jpm12050763
crossref_primary_10_1016_j_nicl_2019_101684
crossref_primary_10_3389_fninf_2023_1205529
crossref_primary_10_1088_1741_2552_ac697d
crossref_primary_10_1016_j_compbiomed_2019_03_017
crossref_primary_10_1016_j_engappai_2024_108665
crossref_primary_10_1016_j_cmpb_2021_106335
crossref_primary_10_1016_j_compbiomed_2024_108705
crossref_primary_10_1016_j_imu_2021_100606
crossref_primary_10_1007_s10544_024_00732_z
crossref_primary_10_1186_s12911_018_0693_8
crossref_primary_10_7759_cureus_79409
crossref_primary_10_1016_j_neucom_2021_08_119
crossref_primary_10_1109_TAI_2024_3394792
crossref_primary_10_1177_0954411920966937
crossref_primary_10_1142_S0129065719500205
crossref_primary_10_1016_j_medengphy_2022_103870
crossref_primary_10_1007_s10548_025_01111_4
crossref_primary_10_1109_TII_2021_3133307
crossref_primary_10_2478_jaiscr_2021_0017
crossref_primary_10_3174_ajnr_A8612
crossref_primary_10_1016_j_compbiomed_2019_03_016
crossref_primary_10_12677_ORF_2022_121001
crossref_primary_10_3390_s24061902
crossref_primary_10_1371_journal_pone_0298762
crossref_primary_10_1007_s00530_020_00694_1
crossref_primary_10_3390_s20143829
crossref_primary_10_3390_s19143051
crossref_primary_10_1088_2632_072X_ac5f8d
crossref_primary_10_3233_JIFS_190738
crossref_primary_10_1002_ima_22593
crossref_primary_10_1142_S0129065719500217
crossref_primary_10_1007_s11517_020_02208_7
crossref_primary_10_1142_S0129065723500144
crossref_primary_10_1515_revneuro_2020_0043
crossref_primary_10_1016_j_compbiomed_2021_104710
crossref_primary_10_1016_j_bspc_2021_102663
crossref_primary_10_1038_s41598_024_54416_y
crossref_primary_10_31083_j_jin_2020_01_24
crossref_primary_10_1109_ACCESS_2021_3132128
crossref_primary_10_1142_S0219519419400104
crossref_primary_10_1016_j_chemolab_2020_104103
crossref_primary_10_17694_bajece_941007
crossref_primary_10_32604_cmc_2022_020318
crossref_primary_10_1142_S0129065724500126
crossref_primary_10_3390_signals5020014
crossref_primary_10_1007_s00500_019_04174_1
crossref_primary_10_1109_JSEN_2020_2976519
crossref_primary_10_1155_2021_5511922
crossref_primary_10_1016_j_eswa_2019_112895
crossref_primary_10_1111_mice_13312
crossref_primary_10_37391_ijeer_110329
crossref_primary_10_1016_j_neucom_2020_07_056
crossref_primary_10_1136_practneurol_2020_002688
crossref_primary_10_1142_S0129065719500230
crossref_primary_10_1109_TKDE_2023_3321803
crossref_primary_10_1152_jn_00055_2024
crossref_primary_10_1038_s41746_021_00480_x
crossref_primary_10_1007_s11063_021_10533_7
crossref_primary_10_1007_s11571_023_09944_0
crossref_primary_10_1109_TII_2020_2976053
crossref_primary_10_1515_bmt_2021_0084
crossref_primary_10_1007_s00034_022_02282_2
crossref_primary_10_1142_S0129065722500150
crossref_primary_10_1016_j_wneu_2020_12_131
crossref_primary_10_1002_cae_22209
crossref_primary_10_1371_journal_pone_0216456
crossref_primary_10_3390_neurosci5010004
crossref_primary_10_1016_j_compbiomed_2021_104771
crossref_primary_10_1109_LSP_2019_2953870
crossref_primary_10_1142_S0129065719500242
crossref_primary_10_1142_S0129065721500180
crossref_primary_10_1186_s13321_020_00436_5
crossref_primary_10_1016_j_inffus_2023_102023
crossref_primary_10_1007_s10916_019_1345_y
crossref_primary_10_1007_s11571_020_09655_w
crossref_primary_10_3390_e22010096
crossref_primary_10_1002_ima_22565
crossref_primary_10_1007_s11042_024_18779_8
crossref_primary_10_3389_fncom_2024_1454529
crossref_primary_10_3389_fncom_2021_650050
crossref_primary_10_3389_fnins_2023_1145526
crossref_primary_10_4018_IJBCE_301215
crossref_primary_10_1016_j_eswa_2019_07_010
crossref_primary_10_1109_TNSE_2022_3222362
crossref_primary_10_3390_s21175831
crossref_primary_10_1109_TCDS_2019_2936441
crossref_primary_10_1016_j_clinph_2020_04_172
crossref_primary_10_1111_exsy_12949
crossref_primary_10_1016_j_bspc_2023_105263
crossref_primary_10_1016_j_yebeh_2024_109732
crossref_primary_10_3390_app10124089
crossref_primary_10_1002_ima_22552
crossref_primary_10_3390_app12136297
crossref_primary_10_1155_2022_1502934
crossref_primary_10_1002_ima_22558
crossref_primary_10_1002_ima_22559
crossref_primary_10_1016_j_brainresbull_2023_110826
crossref_primary_10_1177_1550059420916634
crossref_primary_10_1007_s11042_022_12512_z
crossref_primary_10_1016_j_artmed_2020_101792
crossref_primary_10_17798_bitlisfen_1012489
crossref_primary_10_1142_S0129065720500197
crossref_primary_10_1109_ACCESS_2020_2976156
crossref_primary_10_1111_mice_12660
crossref_primary_10_1111_exsy_12957
crossref_primary_10_1002_adhm_202100646
crossref_primary_10_1016_j_jneumeth_2020_108953
crossref_primary_10_1038_s41598_019_41500_x
crossref_primary_10_1007_s11042_022_13947_0
crossref_primary_10_1007_s10989_019_09887_3
crossref_primary_10_1016_j_compbiomed_2019_04_031
crossref_primary_10_1016_j_bspc_2021_102854
crossref_primary_10_1109_ACCESS_2018_2885639
crossref_primary_10_1002_aisy_202000198
crossref_primary_10_32604_cmc_2022_020348
crossref_primary_10_46810_tdfd_948098
Cites_doi 10.1016/j.knosys.2013.02.014
10.1016/j.jocs.2017.02.006
10.1109/TBME.2006.886855
10.1142/S0129065716500118
10.1142/S0129065715500409
10.1142/S012906571250027X
10.1103/PhysRevE.64.061907
10.1142/S0129065715500318
10.1243/09544119JEIM484
10.1142/S0129065715500288
10.1007/s10916-010-9433-z
10.1109/TBME.2007.905490
10.1142/S012906571550029X
10.1109/TMI.2016.2536809
10.1016/j.ins.2017.06.027
10.1038/nature14539
10.1142/S0129065712500025
10.1016/S0165-0270(02)00340-0
10.1142/S0129065711002912
10.1142/S0129065716500209
10.1142/S0129065711002808
10.1007/BF00344251
10.1016/j.eswa.2012.02.040
10.1016/j.seizure.2015.01.012
10.1016/0925-2312(93)90042-2
10.1142/S0129065715500379
10.3233/ICA-2007-14301
10.1061/(ASCE)CO.1943-7862.0001047
10.1016/j.bspc.2011.07.007
10.1016/j.knosys.2017.06.003
10.1142/S0129065715500203
10.1016/j.patrec.2017.03.023
10.1016/j.ins.2017.04.012
10.1109/TMI.2016.2538465
10.1016/j.compbiomed.2017.08.022
10.1109/TMI.2016.2532122
10.1109/TBME.2007.891945
10.1142/S0219519409003152
10.1016/j.neunet.2009.04.003
10.3348/kjr.2017.18.4.570
10.1016/j.eswa.2011.02.118
10.1109/TBME.2017.2650259
10.1142/S0129065709002002
10.1016/j.knosys.2015.08.004
10.1142/S0129065710002334
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
2017. Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
– notice: 2017. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2017.09.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Research Library Prep
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 278
ExternalDocumentID 28974302
10_1016_j_compbiomed_2017_09_017
S0010482517303153
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
T5K
UKHRP
WOW
Z5R
~G-
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
EFLBG
LCYCR
M0N
RIG
.55
.GJ
29F
53G
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AGQPQ
AGRNS
AIGII
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EMOBN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
R2-
SAE
SBC
SEW
SV3
TAE
UAP
WUQ
X7M
XPP
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c525t-b7988cdb928a6e0ca0c1e86b25ed5b1b52dc71adea823db13db062af8163fb0b3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Thu Jul 10 17:44:54 EDT 2025
Wed Aug 13 02:42:53 EDT 2025
Wed Feb 19 02:35:48 EST 2025
Tue Jul 01 03:28:28 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Fri Feb 23 02:24:56 EST 2024
Tue Aug 26 16:34:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Encephalogram signals
Deep learning
Seizure
Epilepsy
Convolutional neural network
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-b7988cdb928a6e0ca0c1e86b25ed5b1b52dc71adea823db13db062af8163fb0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28974302
PQID 2084848449
PQPubID 1226355
PageCount 9
ParticipantIDs proquest_miscellaneous_1947098249
proquest_journals_2084848449
pubmed_primary_28974302
crossref_citationtrail_10_1016_j_compbiomed_2017_09_017
crossref_primary_10_1016_j_compbiomed_2017_09_017
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2017_09_017
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2017_09_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
2018-09-00
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Martis, Acharya, Tan, Petznick, Yanti, Chua, Ng, Tong (bib59) 2012; 22
Ghosh-Dastidar, Adeli (bib41) 2009; 22
Hatipoglu, Bilgin (bib24) 2017
Acharya, Fujita, Oh, Hagiwara, Tan, Muhammad (bib28) 2017; 405
Guo, Rivero, Dorado, Munteanu, Pazos (bib55) 2011; 38
Hung, Adeli (bib32) 1993; 5
Nobukawa, Nishimura (bib42) 2016; 26
Krumholz, Wiebe, Gronseth, Shinnar, Levisohn, Ting, Hopp, Shafer, Morris, Seiden, Barkley, French (bib6) 2007; 69
American Epilepsy Society (bib2)
Garrido, Luque, Tolu, D'Angelo (bib40) 2016; 26
Acharya, Sree, Ang, Yanti, Suri (bib46) 2012; 22
Ortiz-Garcia, Munilla, Gorriz, Ramirez (bib13) 2016; 26
Pereira, Pinto, Alves, Silva (bib23) 2016; 35
Ghosh-Dastidar, Adeli (bib60) 2009; 19
Acharya, Molinari, Sree, Chattopadhay, Ng (bib45) 2012; 7
Zhang, Zhou (bib56) 2015; 25
Hsu (bib35) 2015; 25
Yang, Solis-Escalante, Yao, Daffertshofer, Schouten, Van der Helm (bib36) 2016; 26
Lee, Jun, Cho, Lee, Kim, Seo, Kim (bib18) 2017; 18
Bhattacharyya, Pachori (bib61) 2017; 64
Tan, Acharya, Bhandary, Chua, Sivaprasad (bib25) 2017
Acharya, Sree, Suri (bib49) 2011; 21
Adeli, Zhou, Dadmehr (bib7) 2003; 123
Faust, Acharya, Lim, Sputh (bib53) 2010; 20
Ghosh-Dastidar, Adeli, Dadmehr (bib37) 2007; 54
Ko, Benbadis (bib5) 2016
Adeli, Ghosh-Dastidar (bib39) 2010
.
He, Zhang, Ren, Sun (bib31) 2015
Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (bib30) 2017
Vahabi, Amirfattahi, Ghassemi, Shayegh (bib57) 2015; 25
Ghosh-Dastidar, Adeli (bib43) 2007; 14
Harvard Health Publications, Harvard Medical School (bib3) 2014
Acharya, Fujita, Sudarshan, Bhat, Koh (bib10) 2015; 88
Adeli, Ghosh-Dastidar, Dadmehr (bib34) 2007; 54
Goodfellow, Bengio, Courville (bib17) 2016
Acharya, Fujita, Oh, Muhammad, Tan, Chua (bib29) 2017
Kallenberg, Petersen, Nielsen, Ng, Diao, Igel, Vachon, Holland, Winkel, Karssemeijer, Lillholm (bib22) 2016; 35
International League Against Epilepsy (ILAE).dd
Yuan, Zhou, Wu, Zhang (bib58) 2016; 26
World Health Organization (bib1) 2017
Glorot, Bordes, Bengio (bib16) 2010; 15
Krizhevsky, Sutskever, Hinton (bib12) 2012
Rafiei, Adeli (bib14) 2016; 142
Acharya, Sree, Ang, Suri (bib48) 2012; 39
Acharya, Sree, Swapna, Martis, Suri (bib8) 2013; 45
Andrzejak, Lehnertz, Rieke, Mormann, David, Elger (bib19) 2001; 64
Setio, Ciompi, Litjens, Gerke, Jacobs, van Riel, Wille, Naqibullah, Sánchex, van Ginneken (bib26) 2016; 35
Rafiei, Khushefati, Demirboga, Adeli (bib15) 2017; 114
Acharya, Sree, Chattopadhyay, Yu, Ang (bib47) 2011; 21
Duda, Hart, Stork (bib33) 2001
Acharya, Chua, Lim, Dorithy, Suri (bib44) 2009; 9
Chua, Chandran, Acharya, Lim (bib51) 2009; 223
Acharya, Yanti, Swapna, Sree, Martis, Suri (bib50) 2012; 227
Castillo, Peteiro-Barral, Guijarro Berdinas, Fontenla-Romero (bib54) 2015; 25
Chua, Chandran, Acharya, Lim (bib52) 2010; 35
Bhattacharyya, Pachori, Upadhyay, Acharya (bib62) 2017; 7
LeCun, Bengio, Hinton (bib11) 2015; 521
Fukushima (bib21) 1980; 36
Acharya, Fujita, Oh, Hagiwara, Tan, Muhammad (bib27) 2017; 415–416
Ghosh-Dastidar, Adeli, Dadmehr (bib38) 2008; 55
Faust, Acharya, Adeli, Adeli (bib9) 2015; 26
Sharma, Pachori, Acharya (bib63) 2017; 94
Siddique, Adeli (bib20) 2013
Acharya (10.1016/j.compbiomed.2017.09.017_bib8) 2013; 45
He (10.1016/j.compbiomed.2017.09.017_bib31) 2015
Acharya (10.1016/j.compbiomed.2017.09.017_bib29) 2017
Krizhevsky (10.1016/j.compbiomed.2017.09.017_bib12) 2012
Acharya (10.1016/j.compbiomed.2017.09.017_bib47) 2011; 21
10.1016/j.compbiomed.2017.09.017_bib4
Acharya (10.1016/j.compbiomed.2017.09.017_bib48) 2012; 39
Sharma (10.1016/j.compbiomed.2017.09.017_bib63) 2017; 94
LeCun (10.1016/j.compbiomed.2017.09.017_bib11) 2015; 521
Ghosh-Dastidar (10.1016/j.compbiomed.2017.09.017_bib43) 2007; 14
Bhattacharyya (10.1016/j.compbiomed.2017.09.017_bib61) 2017; 64
Duda (10.1016/j.compbiomed.2017.09.017_bib33) 2001
Nobukawa (10.1016/j.compbiomed.2017.09.017_bib42) 2016; 26
Krumholz (10.1016/j.compbiomed.2017.09.017_bib6) 2007; 69
American Epilepsy Society (10.1016/j.compbiomed.2017.09.017_bib2)
Ghosh-Dastidar (10.1016/j.compbiomed.2017.09.017_bib38) 2008; 55
Setio (10.1016/j.compbiomed.2017.09.017_bib26) 2016; 35
Martis (10.1016/j.compbiomed.2017.09.017_bib59) 2012; 22
Rafiei (10.1016/j.compbiomed.2017.09.017_bib14) 2016; 142
Acharya (10.1016/j.compbiomed.2017.09.017_bib46) 2012; 22
Faust (10.1016/j.compbiomed.2017.09.017_bib53) 2010; 20
Acharya (10.1016/j.compbiomed.2017.09.017_bib28) 2017; 405
Yang (10.1016/j.compbiomed.2017.09.017_bib36) 2016; 26
Andrzejak (10.1016/j.compbiomed.2017.09.017_bib19) 2001; 64
Adeli (10.1016/j.compbiomed.2017.09.017_bib39) 2010
Rafiei (10.1016/j.compbiomed.2017.09.017_bib15) 2017; 114
Siddique (10.1016/j.compbiomed.2017.09.017_bib20) 2013
Acharya (10.1016/j.compbiomed.2017.09.017_bib44) 2009; 9
Ko (10.1016/j.compbiomed.2017.09.017_bib5) 2016
Faust (10.1016/j.compbiomed.2017.09.017_bib9) 2015; 26
Ghosh-Dastidar (10.1016/j.compbiomed.2017.09.017_bib60) 2009; 19
Bhattacharyya (10.1016/j.compbiomed.2017.09.017_bib62) 2017; 7
Hatipoglu (10.1016/j.compbiomed.2017.09.017_bib24) 2017
Acharya (10.1016/j.compbiomed.2017.09.017_bib49) 2011; 21
Zhang (10.1016/j.compbiomed.2017.09.017_bib56) 2015; 25
Chua (10.1016/j.compbiomed.2017.09.017_bib52) 2010; 35
Acharya (10.1016/j.compbiomed.2017.09.017_bib30) 2017
Ghosh-Dastidar (10.1016/j.compbiomed.2017.09.017_bib37) 2007; 54
World Health Organization (10.1016/j.compbiomed.2017.09.017_bib1) 2017
Hung (10.1016/j.compbiomed.2017.09.017_bib32) 1993; 5
Acharya (10.1016/j.compbiomed.2017.09.017_bib50) 2012; 227
Harvard Health Publications, Harvard Medical School (10.1016/j.compbiomed.2017.09.017_bib3) 2014
Ghosh-Dastidar (10.1016/j.compbiomed.2017.09.017_bib41) 2009; 22
Acharya (10.1016/j.compbiomed.2017.09.017_bib27) 2017; 415–416
Acharya (10.1016/j.compbiomed.2017.09.017_bib45) 2012; 7
Ortiz-Garcia (10.1016/j.compbiomed.2017.09.017_bib13) 2016; 26
Yuan (10.1016/j.compbiomed.2017.09.017_bib58) 2016; 26
Hsu (10.1016/j.compbiomed.2017.09.017_bib35) 2015; 25
Glorot (10.1016/j.compbiomed.2017.09.017_bib16) 2010; 15
Tan (10.1016/j.compbiomed.2017.09.017_bib25) 2017
Garrido (10.1016/j.compbiomed.2017.09.017_bib40) 2016; 26
Vahabi (10.1016/j.compbiomed.2017.09.017_bib57) 2015; 25
Adeli (10.1016/j.compbiomed.2017.09.017_bib7) 2003; 123
Goodfellow (10.1016/j.compbiomed.2017.09.017_bib17) 2016
Kallenberg (10.1016/j.compbiomed.2017.09.017_bib22) 2016; 35
Pereira (10.1016/j.compbiomed.2017.09.017_bib23) 2016; 35
Guo (10.1016/j.compbiomed.2017.09.017_bib55) 2011; 38
Lee (10.1016/j.compbiomed.2017.09.017_bib18) 2017; 18
Chua (10.1016/j.compbiomed.2017.09.017_bib51) 2009; 223
Fukushima (10.1016/j.compbiomed.2017.09.017_bib21) 1980; 36
Acharya (10.1016/j.compbiomed.2017.09.017_bib10) 2015; 88
Castillo (10.1016/j.compbiomed.2017.09.017_bib54) 2015; 25
Adeli (10.1016/j.compbiomed.2017.09.017_bib34) 2007; 54
References_xml – volume: 88
  start-page: 85
  year: 2015
  end-page: 96
  ident: bib10
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review
  publication-title: Knowl. Base Syst.
– year: 2016
  ident: bib5
  article-title: Epilepsy and Seizures
– year: 2016
  ident: bib17
  article-title: Deep Learning
– volume: 64
  start-page: 2003
  year: 2017
  end-page: 2015
  ident: bib61
  article-title: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 14
  start-page: 187
  year: 2007
  end-page: 212
  ident: bib43
  article-title: Improved spiking neural networks for EEG classification and epilepsy and seizure detection
  publication-title: Integr. Computer-Aided Eng.
– volume: 9
  start-page: 539
  year: 2009
  end-page: 553
  ident: bib44
  article-title: Automatic identification of epileptic EEG signals using nonlinear parameters
  publication-title: J. Mech. Med. Biol.
– volume: 18
  start-page: 570
  year: 2017
  end-page: 584
  ident: bib18
  article-title: Deep learning in medical imaging: general overview
  publication-title: Korean J. Radiol.
– volume: 142
  start-page: 04015066
  year: 2016
  ident: bib14
  article-title: A novel machine learning model for estimation of sale prices of real estate units
  publication-title: Construct. Eng. Manag.
– volume: 54
  start-page: 1545
  year: 2007
  end-page: 1551
  ident: bib37
  article-title: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 15
  year: 2010
  ident: bib16
  article-title: Deep sparse rectifier neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 64
  start-page: 061907
  year: 2001
  ident: bib19
  article-title: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
– volume: 22
  start-page: 1419
  year: 2009
  end-page: 1431
  ident: bib41
  article-title: A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection
  publication-title: Neural Netw.
– volume: 45
  start-page: 147
  year: 2013
  end-page: 165
  ident: bib8
  article-title: Automated EEG analysis of epilepsy: a review
  publication-title: Knowl. Base Syst.
– volume: 26
  start-page: 56
  year: 2015
  end-page: 64
  ident: bib9
  article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis
  publication-title: Seizure
– volume: 26
  start-page: 7
  year: 2016
  ident: bib13
  article-title: Ensembles of deep learning architectures for the early diagnosis of alzheimer's disease
  publication-title: Int. J. Neural Syst.
– volume: 25
  start-page: 1550028
  year: 2015
  ident: bib57
  article-title: Online epileptic seizure prediction using wavelet-based bi-phase correlation of electrical signal tomography
  publication-title: Int. J. Neural Syst.
– volume: 415–416
  start-page: 190
  year: 2017
  end-page: 198
  ident: bib27
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inf. Sci.
– volume: 35
  start-page: 1322
  year: 2016
  end-page: 1331
  ident: bib22
  article-title: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
  publication-title: IEEE Trans. Med. Imag.
– year: 2014
  ident: bib3
  article-title: Seizure Overview
– volume: 227
  year: 2012
  ident: bib50
  article-title: Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations
  publication-title: J. Eng. Med.
– volume: 54
  start-page: 205
  year: 2007
  end-page: 211
  ident: bib34
  article-title: A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2010
  ident: bib39
  article-title: Automated EEG-based Diagnosis of Neurological Disorders - Inventing the Future of Neurology
– volume: 55
  start-page: 512
  year: 2008
  end-page: 518
  ident: bib38
  article-title: Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 114
  start-page: 237
  year: 2017
  end-page: 244
  ident: bib15
  article-title: Supervised deep restricted boltzmann machine for estimation of concrete compressive strength
  publication-title: ACI Mater. J.
– volume: 21
  start-page: 199
  year: 2011
  end-page: 211
  ident: bib47
  article-title: Application of recurrence quantification analysis for the automated identification of epileptic EEG signals
  publication-title: Int. J. Neural Syst.
– volume: 22
  start-page: 1250027-1
  year: 2012
  end-page: 1250027-16
  ident: bib59
  article-title: Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals
  publication-title: Int. J. Neural Syst.
– reference: International League Against Epilepsy (ILAE).dd
– volume: 26
  start-page: 1550031
  year: 2016
  ident: bib36
  article-title: A general approach for quantifying nonlinear connectivity in the nervous system based on phase coupling
  publication-title: Int. J. Neural Syst.
– year: 2012
  ident: bib12
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Neural Information Processing Systems Conference
– volume: 25
  start-page: 1550037
  year: 2015
  ident: bib35
  article-title: Assembling a multi-feature EEG classifier for left-right motor data using wavelet-based fuzzy approximate entropy for improved accuracy
  publication-title: Int. J. Neural Syst.
– volume: 38
  start-page: 10425
  year: 2011
  end-page: 10436
  ident: bib55
  article-title: Automatic feature extraction using genetic programming: an application to epileptic EEG classification
  publication-title: Expert Syst. Appl.
– year: 2017
  ident: bib30
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
– volume: 5
  start-page: 287
  year: 1993
  end-page: 302
  ident: bib32
  article-title: Parallel backpropagation learning algorithms on cray Y-MP8/864 supercomputer
  publication-title: Neurocomputing
– year: 2017
  ident: bib25
  article-title: Segmentation of optic disc, fovea, and retinal vasculature using a single convolutional neural network
  publication-title: J. Comput. Sci.
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib31
  article-title: Delving Deep into Rectifiers: Surpassing Human-level Performance on Image Net Classification
– volume: 26
  start-page: 1650011
  year: 2016
  ident: bib58
  article-title: Epileptic seizure detection with log-euclidean gaussian kernel-based sparse representation
  publication-title: Int. J. Neural Syst.
– volume: 26
  start-page: 5
  year: 2016
  ident: bib42
  article-title: Enhancement of spike-timing dependent plasticity in spiking neural systems with noise
  publication-title: Int. J. Neural Syst.
– year: 2017
  ident: bib29
  article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
  publication-title: Knowl. Base. Syst.
– volume: 223
  start-page: 485
  year: 2009
  end-page: 495
  ident: bib51
  article-title: Automatic identification of epileptic electroencephalography signals using higher-order spectra
  publication-title: J. Eng. Med.
– volume: 405
  start-page: 81
  year: 2017
  end-page: 90
  ident: bib28
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inf. Sci.
– volume: 25
  start-page: 1550029
  year: 2015
  ident: bib54
  article-title: Distributed one-class support vector machine
  publication-title: Int. J. Neural Syst.
– year: 2013
  ident: bib20
  article-title: Computational Intelligence - Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing
– volume: 26
  start-page: 5
  year: 2016
  ident: bib40
  article-title: Oscillation-driven spike-timing dependent plasticity allows multiple overlapping pattern recognition in inhibitory interneuron networks
  publication-title: Int. J. Neural Syst.
– year: 2001
  ident: bib33
  article-title: Pattern Classification 2nd Edition
– volume: 7
  year: 2012
  ident: bib45
  article-title: Automated diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Process. Control
– volume: 22
  start-page: 1250002-1
  year: 2012
  end-page: 1250002-14
  ident: bib46
  article-title: Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals
  publication-title: Int. J. Neural Syst.
– volume: 19
  start-page: 295
  year: 2009
  end-page: 308
  ident: bib60
  article-title: Spiking neural networks
  publication-title: Int. J. Neural Syst.
– volume: 94
  start-page: 172
  year: 2017
  end-page: 179
  ident: bib63
  article-title: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension
  publication-title: Pattern Recognit. Lett.
– volume: 69
  year: 2007
  ident: bib6
  article-title: Quality standards subcommittee of the american academy of neurology
  publication-title: Neurology
– volume: 123
  start-page: 69
  year: 2003
  end-page: 87
  ident: bib7
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: J. Neurosci. Meth.
– start-page: 1
  year: 2017
  end-page: 20
  ident: bib24
  article-title: Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships
  publication-title: Med. Biol. Eng. Comput.
– volume: 36
  start-page: 193
  year: 1980
  end-page: 202
  ident: bib21
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
– volume: 25
  start-page: 1550020
  year: 2015
  ident: bib56
  article-title: Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial EEG
  publication-title: Int. J. Neural Syst.
– volume: 35
  start-page: 1160
  year: 2016
  end-page: 1169
  ident: bib26
  article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks
  publication-title: IEEE Trans. Med. Imag.
– volume: 39
  start-page: 9072
  year: 2012
  end-page: 9078
  ident: bib48
  article-title: Use of principal component analysis for automatic detection of epileptic EEG activities
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 159
  year: 2010
  end-page: 176
  ident: bib53
  article-title: Automatic identification of epileptic and background EEG signals using frequency domain parameters
  publication-title: Int. J. Neural Syst.
– ident: bib2
  article-title: Facts and Figures
– year: 2017
  ident: bib1
  article-title: Epilepsy
– volume: 7
  start-page: 385
  year: 2017
  ident: bib62
  article-title: Tunable-Q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals
  publication-title: Appl. Signal Process. Meth. Syst. Anal. Physiol. Health
– reference: .
– volume: 35
  start-page: 1240
  year: 2016
  end-page: 1251
  ident: bib23
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans. Med. Imag.
– volume: 21
  start-page: 403
  year: 2011
  end-page: 414
  ident: bib49
  article-title: Automatic detection of epileptic EEG signals using higher order cumulants features
  publication-title: Int. J. Neural Syst.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib11
  article-title: Deep learning
  publication-title: Nature
– volume: 35
  start-page: 1563
  year: 2010
  end-page: 1571
  ident: bib52
  article-title: Application of higher order spectra to identify epileptic EEG
  publication-title: J. Med. Syst.
– volume: 45
  start-page: 147
  year: 2013
  ident: 10.1016/j.compbiomed.2017.09.017_bib8
  article-title: Automated EEG analysis of epilepsy: a review
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2013.02.014
– year: 2017
  ident: 10.1016/j.compbiomed.2017.09.017_bib25
  article-title: Segmentation of optic disc, fovea, and retinal vasculature using a single convolutional neural network
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.02.006
– volume: 54
  start-page: 205
  issue: 2
  year: 2007
  ident: 10.1016/j.compbiomed.2017.09.017_bib34
  article-title: A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.886855
– volume: 26
  start-page: 1650011
  issue: 3
  year: 2016
  ident: 10.1016/j.compbiomed.2017.09.017_bib58
  article-title: Epileptic seizure detection with log-euclidean gaussian kernel-based sparse representation
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500118
– start-page: 1026
  year: 2015
  ident: 10.1016/j.compbiomed.2017.09.017_bib31
– year: 2001
  ident: 10.1016/j.compbiomed.2017.09.017_bib33
– volume: 26
  start-page: 5
  year: 2016
  ident: 10.1016/j.compbiomed.2017.09.017_bib42
  article-title: Enhancement of spike-timing dependent plasticity in spiking neural systems with noise
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065715500409
– year: 2014
  ident: 10.1016/j.compbiomed.2017.09.017_bib3
– volume: 22
  start-page: 1250027-1
  issue: 6
  year: 2012
  ident: 10.1016/j.compbiomed.2017.09.017_bib59
  article-title: Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S012906571250027X
– volume: 64
  start-page: 061907
  year: 2001
  ident: 10.1016/j.compbiomed.2017.09.017_bib19
  article-title: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.061907
– volume: 26
  start-page: 1550031
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2017.09.017_bib36
  article-title: A general approach for quantifying nonlinear connectivity in the nervous system based on phase coupling
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065715500318
– volume: 223
  start-page: 485
  issue: 4
  year: 2009
  ident: 10.1016/j.compbiomed.2017.09.017_bib51
  article-title: Automatic identification of epileptic electroencephalography signals using higher-order spectra
  publication-title: J. Eng. Med.
  doi: 10.1243/09544119JEIM484
– volume: 25
  start-page: 1550028
  issue: 6
  year: 2015
  ident: 10.1016/j.compbiomed.2017.09.017_bib57
  article-title: Online epileptic seizure prediction using wavelet-based bi-phase correlation of electrical signal tomography
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065715500288
– volume: 69
  issue: 21
  year: 2007
  ident: 10.1016/j.compbiomed.2017.09.017_bib6
  article-title: Quality standards subcommittee of the american academy of neurology
  publication-title: Neurology
– volume: 35
  start-page: 1563
  issue: 6
  year: 2010
  ident: 10.1016/j.compbiomed.2017.09.017_bib52
  article-title: Application of higher order spectra to identify epileptic EEG
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9433-z
– volume: 55
  start-page: 512
  issue: 2
  year: 2008
  ident: 10.1016/j.compbiomed.2017.09.017_bib38
  article-title: Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.905490
– volume: 25
  start-page: 1550029
  issue: 7
  year: 2015
  ident: 10.1016/j.compbiomed.2017.09.017_bib54
  article-title: Distributed one-class support vector machine
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S012906571550029X
– volume: 35
  start-page: 1160
  issue: 5
  year: 2016
  ident: 10.1016/j.compbiomed.2017.09.017_bib26
  article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2016.2536809
– volume: 15
  year: 2010
  ident: 10.1016/j.compbiomed.2017.09.017_bib16
  article-title: Deep sparse rectifier neural networks
  publication-title: J. Mach. Learn. Res.
– year: 2010
  ident: 10.1016/j.compbiomed.2017.09.017_bib39
– volume: 415–416
  start-page: 190
  year: 2017
  ident: 10.1016/j.compbiomed.2017.09.017_bib27
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.06.027
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.compbiomed.2017.09.017_bib11
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 22
  start-page: 1250002-1
  issue: 2
  year: 2012
  ident: 10.1016/j.compbiomed.2017.09.017_bib46
  article-title: Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065712500025
– volume: 123
  start-page: 69
  issue: 1
  year: 2003
  ident: 10.1016/j.compbiomed.2017.09.017_bib7
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/S0165-0270(02)00340-0
– volume: 21
  start-page: 403
  issue: 5
  year: 2011
  ident: 10.1016/j.compbiomed.2017.09.017_bib49
  article-title: Automatic detection of epileptic EEG signals using higher order cumulants features
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065711002912
– volume: 26
  start-page: 7
  year: 2016
  ident: 10.1016/j.compbiomed.2017.09.017_bib13
  article-title: Ensembles of deep learning architectures for the early diagnosis of alzheimer's disease
  publication-title: Int. J. Neural Syst.
– volume: 26
  start-page: 5
  year: 2016
  ident: 10.1016/j.compbiomed.2017.09.017_bib40
  article-title: Oscillation-driven spike-timing dependent plasticity allows multiple overlapping pattern recognition in inhibitory interneuron networks
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500209
– volume: 21
  start-page: 199
  issue: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2017.09.017_bib47
  article-title: Application of recurrence quantification analysis for the automated identification of epileptic EEG signals
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065711002808
– volume: 36
  start-page: 193
  year: 1980
  ident: 10.1016/j.compbiomed.2017.09.017_bib21
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– volume: 114
  start-page: 237
  issue: 2
  year: 2017
  ident: 10.1016/j.compbiomed.2017.09.017_bib15
  article-title: Supervised deep restricted boltzmann machine for estimation of concrete compressive strength
  publication-title: ACI Mater. J.
– volume: 39
  start-page: 9072
  issue: 10
  year: 2012
  ident: 10.1016/j.compbiomed.2017.09.017_bib48
  article-title: Use of principal component analysis for automatic detection of epileptic EEG activities
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.040
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2017.09.017_bib24
  article-title: Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships
  publication-title: Med. Biol. Eng. Comput.
– volume: 26
  start-page: 56
  year: 2015
  ident: 10.1016/j.compbiomed.2017.09.017_bib9
  article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis
  publication-title: Seizure
  doi: 10.1016/j.seizure.2015.01.012
– volume: 5
  start-page: 287
  issue: 6
  year: 1993
  ident: 10.1016/j.compbiomed.2017.09.017_bib32
  article-title: Parallel backpropagation learning algorithms on cray Y-MP8/864 supercomputer
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(93)90042-2
– volume: 25
  start-page: 1550037
  issue: 8
  year: 2015
  ident: 10.1016/j.compbiomed.2017.09.017_bib35
  article-title: Assembling a multi-feature EEG classifier for left-right motor data using wavelet-based fuzzy approximate entropy for improved accuracy
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065715500379
– volume: 14
  start-page: 187
  issue: 3
  year: 2007
  ident: 10.1016/j.compbiomed.2017.09.017_bib43
  article-title: Improved spiking neural networks for EEG classification and epilepsy and seizure detection
  publication-title: Integr. Computer-Aided Eng.
  doi: 10.3233/ICA-2007-14301
– volume: 142
  start-page: 04015066
  issue: 2
  year: 2016
  ident: 10.1016/j.compbiomed.2017.09.017_bib14
  article-title: A novel machine learning model for estimation of sale prices of real estate units
  publication-title: Construct. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001047
– year: 2016
  ident: 10.1016/j.compbiomed.2017.09.017_bib5
– year: 2013
  ident: 10.1016/j.compbiomed.2017.09.017_bib20
– volume: 7
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2017.09.017_bib45
  article-title: Automated diagnosis of epileptic EEG using entropies
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.07.007
– year: 2017
  ident: 10.1016/j.compbiomed.2017.09.017_bib29
  article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
  publication-title: Knowl. Base. Syst.
  doi: 10.1016/j.knosys.2017.06.003
– volume: 25
  start-page: 1550020
  issue: 6
  year: 2015
  ident: 10.1016/j.compbiomed.2017.09.017_bib56
  article-title: Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial EEG
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065715500203
– volume: 94
  start-page: 172
  year: 2017
  ident: 10.1016/j.compbiomed.2017.09.017_bib63
  article-title: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.03.023
– volume: 405
  start-page: 81
  year: 2017
  ident: 10.1016/j.compbiomed.2017.09.017_bib28
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.04.012
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  ident: 10.1016/j.compbiomed.2017.09.017_bib23
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2016.2538465
– year: 2017
  ident: 10.1016/j.compbiomed.2017.09.017_bib30
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.022
– year: 2017
  ident: 10.1016/j.compbiomed.2017.09.017_bib1
– year: 2016
  ident: 10.1016/j.compbiomed.2017.09.017_bib17
– volume: 35
  start-page: 1322
  issue: 5
  year: 2016
  ident: 10.1016/j.compbiomed.2017.09.017_bib22
  article-title: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2016.2532122
– volume: 54
  start-page: 1545
  issue: 9
  year: 2007
  ident: 10.1016/j.compbiomed.2017.09.017_bib37
  article-title: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.891945
– volume: 9
  start-page: 539
  issue: 4
  year: 2009
  ident: 10.1016/j.compbiomed.2017.09.017_bib44
  article-title: Automatic identification of epileptic EEG signals using nonlinear parameters
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519409003152
– ident: 10.1016/j.compbiomed.2017.09.017_bib2
– volume: 22
  start-page: 1419
  year: 2009
  ident: 10.1016/j.compbiomed.2017.09.017_bib41
  article-title: A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.04.003
– volume: 18
  start-page: 570
  issue: 4
  year: 2017
  ident: 10.1016/j.compbiomed.2017.09.017_bib18
  article-title: Deep learning in medical imaging: general overview
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2017.18.4.570
– volume: 38
  start-page: 10425
  year: 2011
  ident: 10.1016/j.compbiomed.2017.09.017_bib55
  article-title: Automatic feature extraction using genetic programming: an application to epileptic EEG classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.118
– volume: 64
  start-page: 2003
  issue: 9
  year: 2017
  ident: 10.1016/j.compbiomed.2017.09.017_bib61
  article-title: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2650259
– volume: 19
  start-page: 295
  issue: 4
  year: 2009
  ident: 10.1016/j.compbiomed.2017.09.017_bib60
  article-title: Spiking neural networks
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065709002002
– volume: 88
  start-page: 85
  year: 2015
  ident: 10.1016/j.compbiomed.2017.09.017_bib10
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2015.08.004
– year: 2012
  ident: 10.1016/j.compbiomed.2017.09.017_bib12
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 227
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2017.09.017_bib50
  article-title: Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations
  publication-title: J. Eng. Med.
– volume: 20
  start-page: 159
  issue: 2
  year: 2010
  ident: 10.1016/j.compbiomed.2017.09.017_bib53
  article-title: Automatic identification of epileptic and background EEG signals using frequency domain parameters
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065710002334
– volume: 7
  start-page: 385
  issue: 4
  year: 2017
  ident: 10.1016/j.compbiomed.2017.09.017_bib62
  article-title: Tunable-Q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals
  publication-title: Appl. Signal Process. Meth. Syst. Anal. Physiol. Health
– ident: 10.1016/j.compbiomed.2017.09.017_bib4
SSID ssj0004030
Score 2.6759028
Snippet An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 270
SubjectTerms Abnormalities
Accuracy
Algorithms
Artificial neural networks
Automation
Brain
Brain research
Convolutional neural network
Decomposition
Deep learning
Diagnosis
Diagnosis, Computer-Assisted
EEG
Electroencephalography
Encephalogram signals
Entropy
Epilepsy
Epilepsy - physiopathology
Female
Humans
Learning algorithms
Machine Learning
Male
Medical diagnosis
Neural networks
Neural Networks (Computer)
Patients
Principal components analysis
Researchers
Seizure
Seizures
Seizures - physiopathology
Signal Processing, Computer-Assisted
Wavelet transforms
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96gvgifrt6SgRfC2napAk-iOieh3A-ebBvIV_VE2n3rt0X_3pnknT3RWUppZRmSptMkt8kv5kh5G3TiT4IravWRlm1UrjKKlxtCs5xz3srU7Dqi6_y_LL9shGbsuA2FVrlMiamgTqMHtfIwUhXLR6tfr-9rjBrFO6ulhQat8kdDF2GlK5u0x38IlmTXVBgrGnBFCpMnszvQsp2dnFHgleXop2mtGV_nZ7-BT_TNHT2gNwv-JF-yA3-kNyKwyNy96LskD8mPz7FuKXIJS86BYUxZmW6JMY3BZhKAfZRu5tHwKsx0BDnxMgaqB3gLrPvriY69nSKV793N5EiP_47Xa8_U2R8gM4-IZdn628fz6uSTaHygou5chiZzAenubIyMm-Zr6OSjosYhKud4MF3tQ3RKt4EV8PJJLe9AsTWO-aap-RkGIf4nNAQmFeau8bFrgWTxPVSOSuVb1gfnGhXpFsq0fgSahwzXvwyC6fspzlUv8HqN0wbuKxIvZfc5nAbR8jopZ3M4k4KA6CBOeEI2Xd72QI5MpQ4Uvp0UQtTuv5kDoq6Im_2j6HT4k6MHeK4m0yt245pxbHMs6xO-98FCxhQHeMv_v_yl-QefInKdLdTcjLf7OIrwEeze506wR8GfhHf
  priority: 102
  providerName: ProQuest
Title Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482517303153
https://dx.doi.org/10.1016/j.compbiomed.2017.09.017
https://www.ncbi.nlm.nih.gov/pubmed/28974302
https://www.proquest.com/docview/2084848449
https://www.proquest.com/docview/1947098249
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg7GXse9l_UCDvXqVZcmW2VPXJs02GsZYIW9CsuQtpTihcV76sL99d5KcMtggMIwlZOlAPp9OJ-t3J0LeFZVsnazrTBhfZqKUNjMK_zY5a3nDW1OGYNWXs3J6JT7P5XyPnA2-MAirTLo_6vSgrdOTk8TNk9VigT6-sJRAz0sQ0gIGLnqwiwql_P2ve5iHYEV0QwF9g60TmidivBC2Hd3cEeRVhYin4eiyv05R_zJBw1Q0eUIeJxuSnsZuPiV7vntGHl6mXfLn5Oe59yuKePIkV9AY41aGLKC-KZiqFEw_ajb9EmxW76jzfUBlddR0UIoIvMWaLlu69ou7za2niJH_QcfjC4qoD5DbF-RqMv5-Ns3SiQpZI7nsM4vRyRpna65M6VljWJN7VVouvZM2t5K7psqN80bxwtkcblZy0yqw2lrLbPGS7HfLzr8m1DnWqJrbwvpKwLLEtqWyplRNwVpnpRiRamCiblK4cTz14kYPuLJrfc9-jezXrNaQjUi-pVzFkBs70NTDd9KDSykoQQ3zwg60H7a0f4jejtSHg1joNPzXUK8EXqIekbfbahi4uBtjOr_crHVei4rVimObV1Gctq8Lq2Cw7Bh_819dOyCPoKQiIu6Q7Pe3G38EJlRvj8MYgbSaV5CqycUxeXD66ct0BvnH8ezrt9_ENiIP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXxDeFAUaCx0iOYzu2EEKItevYuqdN2pvxV2AIJWVJheCP4m_kHCftC6C-TFUVRc1ZqXN3_l38uzuEXhUlrzxXKmMmiIwJbjMj49smby11tDKiL1a9OBHzM_bxnJ_voN9jLkykVY4-sXfUvnHxHTkE6ZLFD1Pvlt-z2DUq7q6OLTSSWhyFnz8gZGvfHu7D831N6Wx6-mGeDV0FMscp7zIbK3Q5bxWVRgTiDHF5kMJSHjy3ueXUuzI3PhhJC29z-BJBTSUBuVSW2ALGvYaus6JQ0aLk7GCTh0mKlPICvo1B6DUwhxKfLFLEU0p9JJSVfXXVvk3aX5fDf8Hdftmb3UG3B7yK3ycFu4t2Qn0P3VgMO_L30Zf9EJY4ctcHHYaLY43M_tAzzDHAYgwwE5tV1wA-Dh770PUMsBqbGs4S2--ixU2F23Dxa3UZcOTjf8bT6QGODBOwkQfo7Erm-SHarZs6PEbYe-KkorawoWQQAtlKSGuEdAWpvOVsgspxErUbSpvHDhvf9Mhh-6o306_j9GuiNBwmKF9LLlN5jy1k1Pic9Ji-Cg5Xwxq0heybtewAcRJ02VJ6b1QLPbiaVm8MY4Jern8GJxF3fkwdmlWrc8VKoiSN1zxK6rT-uxBxA4ok9Mn_B3-Bbs5PF8f6-PDk6Cm6BXclE9VuD-12l6vwDLBZZ5_3BoHRp6u2wD_W7FCR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeEN8rDDASPEY4Tuw4Qggh2rIxNvHApL4ZfwWGUFKWVAj-NP46zh9pXwD1ZaqqKGrOSp278-_i390h9LSoWGNZXWelcjwrOdOZEv5tk9WaGtooHopVn5zyw7Py3YItdtDvMRfG0ypHnxgcte2Mf0cOQboo_aesnzeJFvFhOn-1_J75DlJ-p3VspxFV5Nj9_AHhW__yaArP-hml89nHN4dZ6jCQGUbZkGlfrctYXVOhuCNGEZM7wTVlzjKda0atqXJlnRK0sDqHL-FUNQJQTKOJLmDcK-hqVbDc21i1qDY5maSI6S_g50oIwxKLKHLLPF08ptd7clkVKq2Glml_XRr_BX3DEji_ga4n7IpfR2W7iXZcewvtnaTd-dvoy9S5JfY89qTPcLGvlxkOgW2OASJjgJxYrYYOsLKz2LohsMFarFo4i8y_8x53De7d-a_VhcOem_8Zz2ZvsWebgL3cQWeXMs930W7btW4fYWuJETXVhXZVCeGQbrjQigtTkMZqVk5QNU6iNKnMue-28U2OfLavcjP90k-_JLWEwwTla8llLPWxhUw9Pic5prKC85WwHm0h-2Itm-BOhDFbSh-MaiGT2-nlxkgm6Mn6Z3AYfhdIta5b9TKvy4rUgvpr7kV1Wv9diL4BURJ6__-DP0Z7YHvy_dHp8QN0DW5KRNbdAdodLlbuIcC0QT8K9oDRp8s2wD8eBlS-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+convolutional+neural+network+for+the+automated+detection+and+diagnosis+of+seizure+using+EEG+signals&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Acharya%2C+U.+Rajendra&rft.au=Oh%2C+Shu+Lih&rft.au=Hagiwara%2C+Yuki&rft.au=Tan%2C+Jen+Hong&rft.date=2018-09-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=100&rft.spage=270&rft.epage=278&rft_id=info:doi/10.1016%2Fj.compbiomed.2017.09.017&rft.externalDocID=S0010482517303153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon