Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be tim...
Saved in:
Published in | Computers in biology and medicine Vol. 100; pp. 270 - 278 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.09.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.
[Display omitted]
•Classification of normal, preictal, and seizure EEG signals.•Performed 13-layer deep convolutional neural network.•Implemented ten-fold cross-validation strategy.•Obtained accuracy of 88.7%, sensitivity of 95% and specificity of 90%. |
---|---|
AbstractList | An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.
[Display omitted]
•Classification of normal, preictal, and seizure EEG signals.•Performed 13-layer deep convolutional neural network.•Implemented ten-fold cross-validation strategy.•Obtained accuracy of 88.7%, sensitivity of 95% and specificity of 90%. An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively. An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively. |
Author | Oh, Shu Lih Hagiwara, Yuki Acharya, U. Rajendra Adeli, Hojjat Tan, Jen Hong |
Author_xml | – sequence: 1 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra email: aru@np.edu.sg organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 2 givenname: Shu Lih surname: Oh fullname: Oh, Shu Lih organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 3 givenname: Yuki surname: Hagiwara fullname: Hagiwara, Yuki organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 4 givenname: Jen Hong surname: Tan fullname: Tan, Jen Hong organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 5 givenname: Hojjat surname: Adeli fullname: Adeli, Hojjat organization: Departments of Neuroscience, Neurology, Biomedical Engineering, Biomedical Informatics, and Civil, Environmental, and Geodetic Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, 43210, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28974302$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9rFDEUxYNU7Lb6FSTgiy8zvcn8y7yItm6rUPBFn0MmubPNdiZZk5lK_fRmui3CPi0hHALn_m4454ycOO-QEMogZ8Dqi22u_bjrrB_R5BxYk0ObJ3lFVkw0bQZVUZ6QFQCDrBS8OiVnMW4BoIQC3pBTLtqmLICvyN1XxB3V3j34YZ6sd2qgDufwJNMfH-5p7wOd7pCqefKjmtBQgxPqxUyVSy-rNs5HG6nvaUT7dw5I52jdhq7XNzTaTYLGt-R1nwTfPes5-XW9_nn1Lbv9cfP96sttpiteTVnXtEJo07VcqBpBK9AMRd3xCk3Vsa7iRjdMGVSCF6Zj6ULNVS9YXfQddMU5-bjn7oL_PWOc5GijxmFQDv0cJWvLBlrByzZZPxxYt34Oy2clB1Eu58n1_tk1dyluuQt2VOFRvmSYDJ_2Bh18jAF7qe2klnimoOwgGcilNLmV_0uTS2kSWpkkAcQB4GXHEaOX-1FMkT5YDDJqi06jsSFVJI23x0A-H0D0YJ3VarjHx-MQ_wBCjs9c |
CitedBy_id | crossref_primary_10_1016_j_medengphy_2024_104219 crossref_primary_10_29109_gujsc_1201819 crossref_primary_10_1142_S0129065723500569 crossref_primary_10_3390_app14178091 crossref_primary_10_1145_3386580 crossref_primary_10_1016_j_compbiomed_2021_104338 crossref_primary_10_1142_S0129065721500027 crossref_primary_10_2174_1574362413666181030103616 crossref_primary_10_1109_TNNLS_2021_3072885 crossref_primary_10_3390_ijerph19074014 crossref_primary_10_1016_j_bspc_2021_102928 crossref_primary_10_1016_j_chaos_2022_112528 crossref_primary_10_1080_09720529_2022_2072419 crossref_primary_10_1109_TNSRE_2019_2914603 crossref_primary_10_1109_ACCESS_2019_2921832 crossref_primary_10_3389_fneur_2024_1485799 crossref_primary_10_3390_s20010009 crossref_primary_10_1016_j_cmpb_2020_105472 crossref_primary_10_1002_ima_22400 crossref_primary_10_1016_j_compbiomed_2021_104347 crossref_primary_10_1016_j_mehy_2019_109519 crossref_primary_10_1088_1741_2552_aadc1f crossref_primary_10_1186_s42494_020_00014_0 crossref_primary_10_1109_ACCESS_2022_3151692 crossref_primary_10_1142_S0129065720500628 crossref_primary_10_3390_brainsci9050115 crossref_primary_10_17694_bajece_410250 crossref_primary_10_1142_S0129065723500545 crossref_primary_10_1109_ACCESS_2020_2966834 crossref_primary_10_1186_s12938_023_01079_x crossref_primary_10_1088_2515_7620_ad484b crossref_primary_10_1016_j_bspc_2023_104652 crossref_primary_10_3390_electronics11142265 crossref_primary_10_3390_math8122125 crossref_primary_10_1016_j_eswa_2023_119613 crossref_primary_10_1088_1741_2552_ac8fb5 crossref_primary_10_1016_j_cnp_2022_11_004 crossref_primary_10_1155_2020_9689821 crossref_primary_10_3390_app10051609 crossref_primary_10_2174_1874120702115010090 crossref_primary_10_1142_S012906572150026X crossref_primary_10_3389_fnins_2023_1156838 crossref_primary_10_1016_j_bspc_2023_104644 crossref_primary_10_1016_j_pedneo_2021_12_011 crossref_primary_10_1002_ima_22866 crossref_primary_10_1016_j_brainresbull_2024_110920 crossref_primary_10_1142_S0129065720500604 crossref_primary_10_1080_23808993_2021_1993595 crossref_primary_10_1016_j_bspc_2021_102936 crossref_primary_10_1142_S0129065721500271 crossref_primary_10_1088_1742_6596_1505_1_012055 crossref_primary_10_2139_ssrn_3351805 crossref_primary_10_54856_jiswa_202012119 crossref_primary_10_3389_fncom_2022_1059565 crossref_primary_10_1007_s42979_024_03202_8 crossref_primary_10_1142_S0129065721500222 crossref_primary_10_1016_j_compbiomed_2018_04_025 crossref_primary_10_1142_S0129065723500120 crossref_primary_10_1016_j_eswa_2020_113202 crossref_primary_10_1177_1550059419879569 crossref_primary_10_3390_bioengineering11030217 crossref_primary_10_1038_s41598_024_60996_6 crossref_primary_10_1016_j_measurement_2020_107602 crossref_primary_10_1007_s00500_019_04515_0 crossref_primary_10_1016_j_asoc_2022_109534 crossref_primary_10_1109_ACCESS_2021_3059858 crossref_primary_10_1016_j_yebeh_2018_11_011 crossref_primary_10_1016_j_eplepsyres_2021_106818 crossref_primary_10_1007_s10470_019_01424_y crossref_primary_10_1088_2057_1976_ad3afd crossref_primary_10_3390_diagnostics13040773 crossref_primary_10_1515_bmt_2019_0098 crossref_primary_10_1515_bmt_2018_0246 crossref_primary_10_1016_j_procs_2020_03_248 crossref_primary_10_1541_ieejeiss_142_543 crossref_primary_10_28979_jarnas_1505804 crossref_primary_10_1016_j_neurol_2023_10_005 crossref_primary_10_1016_j_bbe_2020_04_004 crossref_primary_10_1016_j_compbiomed_2019_103571 crossref_primary_10_1111_exsy_13514 crossref_primary_10_1109_ACCESS_2019_2918251 crossref_primary_10_1007_s11227_021_04196_3 crossref_primary_10_1155_2020_6490479 crossref_primary_10_1007_s10489_021_02309_2 crossref_primary_10_1016_j_bspc_2023_104693 crossref_primary_10_1142_S0129065721500489 crossref_primary_10_1111_cns_13773 crossref_primary_10_1080_08839514_2021_1991115 crossref_primary_10_1109_TCDS_2022_3232121 crossref_primary_10_1016_j_neucom_2020_02_121 crossref_primary_10_1371_journal_pcbi_1012376 crossref_primary_10_1007_s10470_021_01805_2 crossref_primary_10_1016_j_bspc_2021_102906 crossref_primary_10_1016_j_bspc_2022_104380 crossref_primary_10_1016_j_cmpb_2021_106604 crossref_primary_10_1007_s11571_021_09678_x crossref_primary_10_3389_fnins_2023_1191683 crossref_primary_10_3390_math11173656 crossref_primary_10_3390_s20123346 crossref_primary_10_3389_fnins_2024_1436619 crossref_primary_10_37394_23208_2022_19_3 crossref_primary_10_1142_S0129065720500690 crossref_primary_10_1142_S0129065722500514 crossref_primary_10_1002_cnm_3573 crossref_primary_10_1088_1741_2552_ab094a crossref_primary_10_3390_s20040969 crossref_primary_10_1016_j_bspc_2019_101702 crossref_primary_10_3390_s20102860 crossref_primary_10_1109_TIM_2022_3207799 crossref_primary_10_1111_exsy_13374 crossref_primary_10_1142_S0129065721500428 crossref_primary_10_3390_brainsci12121672 crossref_primary_10_1007_s00521_020_05384_7 crossref_primary_10_1007_s10462_024_10799_y crossref_primary_10_1016_j_geoen_2024_212723 crossref_primary_10_3390_fi17030107 crossref_primary_10_1016_j_compbiomed_2018_05_019 crossref_primary_10_1049_ipr2_12101 crossref_primary_10_1109_ACCESS_2024_3415716 crossref_primary_10_1177_1550059418814983 crossref_primary_10_1016_j_cmpb_2021_105931 crossref_primary_10_3390_s20030911 crossref_primary_10_1007_s10586_022_03707_y crossref_primary_10_1093_bib_bbaa310 crossref_primary_10_1155_2022_2014001 crossref_primary_10_1109_ACCESS_2020_2984677 crossref_primary_10_1142_S0129065721500416 crossref_primary_10_1007_s11042_023_15029_1 crossref_primary_10_1016_j_ymssp_2022_109567 crossref_primary_10_1016_j_eswa_2021_116414 crossref_primary_10_4103_0028_3886_317233 crossref_primary_10_1109_TNNLS_2023_3252569 crossref_primary_10_3233_JIFS_222745 crossref_primary_10_1109_ACCESS_2022_3201843 crossref_primary_10_1007_s13198_022_01845_5 crossref_primary_10_1038_s41598_020_62967_z crossref_primary_10_1016_j_cmpb_2021_105941 crossref_primary_10_1088_1742_6596_1769_1_012015 crossref_primary_10_1016_j_patter_2020_100019 crossref_primary_10_1007_s00117_022_01051_1 crossref_primary_10_1016_j_jbi_2019_103303 crossref_primary_10_1142_S0129065720500677 crossref_primary_10_1109_ACCESS_2020_2994226 crossref_primary_10_1007_s11760_022_02315_y crossref_primary_10_1142_S0129065720500434 crossref_primary_10_1007_s10462_019_09755_y crossref_primary_10_1155_2019_8641074 crossref_primary_10_3233_THC_212847 crossref_primary_10_1007_s11042_022_12702_9 crossref_primary_10_1038_s41598_020_78784_3 crossref_primary_10_3233_BME_201081 crossref_primary_10_1016_j_neucom_2021_02_052 crossref_primary_10_1016_j_cmpb_2022_107113 crossref_primary_10_1016_j_heliyon_2025_e42993 crossref_primary_10_1016_j_isprsjprs_2021_01_013 crossref_primary_10_1088_1361_6579_ab3e2e crossref_primary_10_1007_s11831_023_09920_1 crossref_primary_10_1142_S0129065720500446 crossref_primary_10_1016_j_compstruc_2021_106484 crossref_primary_10_1007_s00521_023_08254_0 crossref_primary_10_3389_fnins_2022_965871 crossref_primary_10_1016_j_bspc_2024_106097 crossref_primary_10_1007_s13369_022_06731_7 crossref_primary_10_1016_j_bbe_2019_05_010 crossref_primary_10_3390_a12070145 crossref_primary_10_1088_1755_1315_521_1_012018 crossref_primary_10_1109_TCDS_2020_3009020 crossref_primary_10_7554_eLife_56481 crossref_primary_10_1016_j_bspc_2021_103138 crossref_primary_10_1109_ACCESS_2022_3232563 crossref_primary_10_1142_S0129065720500653 crossref_primary_10_1002_cpe_5199 crossref_primary_10_1109_TNNLS_2022_3190448 crossref_primary_10_1016_j_bspc_2020_101921 crossref_primary_10_1111_epi_16628 crossref_primary_10_1109_TAI_2024_3410928 crossref_primary_10_1155_2021_6625141 crossref_primary_10_1016_j_neuri_2024_100184 crossref_primary_10_1109_ACCESS_2020_2976866 crossref_primary_10_1016_j_bspc_2021_103127 crossref_primary_10_1109_JBHI_2022_3199206 crossref_primary_10_1142_S0129065723500508 crossref_primary_10_1088_1742_6596_1567_2_022076 crossref_primary_10_1002_jbio_201800435 crossref_primary_10_1080_10255842_2024_2356634 crossref_primary_10_1109_TNSRE_2019_2953121 crossref_primary_10_3390_s22030728 crossref_primary_10_3762_bjnano_12_66 crossref_primary_10_1007_s40031_021_00693_4 crossref_primary_10_1088_1741_2552_ac23bf crossref_primary_10_1117_1_JBO_24_5_051408 crossref_primary_10_1007_s11571_020_09626_1 crossref_primary_10_1038_s41598_019_56958_y crossref_primary_10_1016_j_dsp_2021_103216 crossref_primary_10_1007_s11760_023_02871_x crossref_primary_10_1016_j_compbiomed_2022_105366 crossref_primary_10_1016_j_clineuro_2020_106446 crossref_primary_10_3389_fncom_2024_1415967 crossref_primary_10_1088_2057_1976_ad3cde crossref_primary_10_1142_S0129065722500502 crossref_primary_10_1186_s12911_024_02845_0 crossref_primary_10_1109_ACCESS_2019_2931616 crossref_primary_10_1155_2022_4114178 crossref_primary_10_1109_ACCESS_2022_3197645 crossref_primary_10_1016_j_eswa_2021_115551 crossref_primary_10_1016_j_bspc_2019_101708 crossref_primary_10_1016_j_addr_2021_05_015 crossref_primary_10_1016_j_bspc_2019_101707 crossref_primary_10_3390_electronics9071140 crossref_primary_10_1155_2022_9579422 crossref_primary_10_1142_S0129065720500641 crossref_primary_10_1177_14759217231216694 crossref_primary_10_3389_fnins_2024_1373515 crossref_primary_10_1111_mice_12515 crossref_primary_10_1109_ACCESS_2023_3251105 crossref_primary_10_1007_s11042_022_12611_x crossref_primary_10_32604_cmc_2022_029073 crossref_primary_10_1155_2022_8452002 crossref_primary_10_1007_s41315_022_00233_3 crossref_primary_10_1007_s13755_021_00140_0 crossref_primary_10_3390_s18061720 crossref_primary_10_2478_jaiscr_2022_0012 crossref_primary_10_1007_s00521_021_05878_y crossref_primary_10_1016_j_chaos_2024_114700 crossref_primary_10_1109_JBHI_2021_3059686 crossref_primary_10_1016_j_eswa_2023_121040 crossref_primary_10_1155_2019_9768072 crossref_primary_10_32604_cmc_2024_055910 crossref_primary_10_3390_s22197269 crossref_primary_10_1016_j_oceaneng_2023_116563 crossref_primary_10_1142_S0129065722500241 crossref_primary_10_1007_s11042_024_20049_6 crossref_primary_10_3390_electronics12030750 crossref_primary_10_1109_ACCESS_2020_2971656 crossref_primary_10_1142_S0129065724500655 crossref_primary_10_1002_lary_30589 crossref_primary_10_1016_j_chemolab_2020_104056 crossref_primary_10_1142_S0129065724500412 crossref_primary_10_1142_S0129065718500521 crossref_primary_10_3390_s23146578 crossref_primary_10_3390_s20072027 crossref_primary_10_1109_ACCESS_2023_3252897 crossref_primary_10_1109_ACCESS_2019_2934018 crossref_primary_10_1111_mice_12970 crossref_primary_10_1016_j_bspc_2020_102068 crossref_primary_10_1016_j_bspc_2020_102073 crossref_primary_10_3390_info16010020 crossref_primary_10_4103_ejpsy_ejpsy_10_22 crossref_primary_10_3233_AIS_210086 crossref_primary_10_1016_j_mejo_2024_106193 crossref_primary_10_1111_mice_12503 crossref_primary_10_1111_mice_12504 crossref_primary_10_1155_2022_7242667 crossref_primary_10_1016_j_bspc_2024_106327 crossref_primary_10_1016_j_bspc_2024_106322 crossref_primary_10_1016_j_bspc_2022_103774 crossref_primary_10_1142_S0219519419400050 crossref_primary_10_1109_TNSRE_2023_3257306 crossref_primary_10_1007_s11277_020_07542_5 crossref_primary_10_1016_j_measurement_2021_109954 crossref_primary_10_1142_S0129065723500090 crossref_primary_10_1134_S1063785019040278 crossref_primary_10_1016_j_neucom_2020_04_144 crossref_primary_10_3233_IDA_205534 crossref_primary_10_3389_fneur_2024_1374443 crossref_primary_10_1109_TCDS_2020_3012278 crossref_primary_10_1186_s12938_024_01244_w crossref_primary_10_1108_JEIM_01_2020_0036 crossref_primary_10_1007_s00521_021_05736_x crossref_primary_10_1109_TBME_2021_3062502 crossref_primary_10_1007_s13755_019_0069_1 crossref_primary_10_1111_mice_12948 crossref_primary_10_3390_diagnostics14131342 crossref_primary_10_1007_s11831_021_09551_4 crossref_primary_10_1016_j_neunet_2021_03_008 crossref_primary_10_1016_j_yebeh_2018_09_030 crossref_primary_10_1016_j_asoc_2021_107639 crossref_primary_10_1155_2022_4185835 crossref_primary_10_1007_s42979_021_00756_9 crossref_primary_10_1051_epjconf_202022501004 crossref_primary_10_1016_j_bspc_2022_103700 crossref_primary_10_1177_14759217251313496 crossref_primary_10_1016_j_jneumeth_2021_109353 crossref_primary_10_3390_s23052458 crossref_primary_10_1007_s11517_022_02656_3 crossref_primary_10_1016_j_eswa_2021_116339 crossref_primary_10_1109_ACCESS_2020_2995886 crossref_primary_10_1155_2021_2195922 crossref_primary_10_1016_j_clinph_2025_01_008 crossref_primary_10_17671_gazibtd_804617 crossref_primary_10_1109_TNNLS_2022_3214225 crossref_primary_10_3389_fnhum_2023_1126938 crossref_primary_10_1007_s00521_018_3889_z crossref_primary_10_1002_ima_23127 crossref_primary_10_1007_s11071_022_08118_7 crossref_primary_10_1016_j_seizure_2019_08_006 crossref_primary_10_1142_S2424905X24300012 crossref_primary_10_17341_gazimmfd_827921 crossref_primary_10_1016_j_jneumeth_2021_109145 crossref_primary_10_1142_S0219519419400025 crossref_primary_10_1016_j_neucom_2024_128644 crossref_primary_10_1016_j_compbiomed_2022_106053 crossref_primary_10_1088_1741_2552_abc902 crossref_primary_10_2478_sjecr_2018_0063 crossref_primary_10_1088_1741_2552_abc903 crossref_primary_10_3390_ijgi10040242 crossref_primary_10_1186_s13634_019_0606_8 crossref_primary_10_1080_21681163_2022_2111721 crossref_primary_10_2139_ssrn_3987850 crossref_primary_10_1142_S0129065722500460 crossref_primary_10_1007_s13246_020_00938_4 crossref_primary_10_1007_s11571_020_09619_0 crossref_primary_10_1088_1361_6501_ad9043 crossref_primary_10_1007_s11042_021_10882_4 crossref_primary_10_1088_1741_2552_ad9957 crossref_primary_10_1142_S0219519419400013 crossref_primary_10_3389_frobt_2021_610653 crossref_primary_10_3389_fninf_2018_00095 crossref_primary_10_1142_S0129065724500679 crossref_primary_10_1080_21681163_2018_1523749 crossref_primary_10_1007_s00521_020_05467_5 crossref_primary_10_1016_j_neuroimage_2025_121049 crossref_primary_10_1109_LSP_2021_3069344 crossref_primary_10_3390_s21020655 crossref_primary_10_1080_16843703_2021_1992072 crossref_primary_10_1109_JIOT_2022_3143704 crossref_primary_10_1016_j_bspc_2020_102006 crossref_primary_10_1109_ACCESS_2024_3406332 crossref_primary_10_1523_ENEURO_0111_23_2023 crossref_primary_10_3390_s23218893 crossref_primary_10_1016_j_compbiomed_2019_103466 crossref_primary_10_32604_cmc_2022_027048 crossref_primary_10_1007_s11042_023_14995_w crossref_primary_10_1515_bmt_2021_0170 crossref_primary_10_1007_s13534_023_00319_2 crossref_primary_10_1109_TBME_2019_2922235 crossref_primary_10_1007_s00500_024_10306_z crossref_primary_10_1016_j_chemolab_2020_104214 crossref_primary_10_3390_ijerph16040599 crossref_primary_10_1007_s00521_018_3616_9 crossref_primary_10_1007_s00521_022_07279_1 crossref_primary_10_1038_s41597_020_0533_4 crossref_primary_10_1155_2018_9385947 crossref_primary_10_1016_j_bspc_2021_102792 crossref_primary_10_1038_s41582_024_00965_9 crossref_primary_10_1016_j_patrec_2020_03_009 crossref_primary_10_1007_s11571_019_09543_y crossref_primary_10_1109_ACCESS_2018_2888813 crossref_primary_10_53982_aijnas_2021_0101_05_j crossref_primary_10_33808_clinexphealthsci_1466714 crossref_primary_10_1007_s43657_023_00148_4 crossref_primary_10_1109_ACCESS_2018_2867078 crossref_primary_10_1142_S0129065719500102 crossref_primary_10_4103_0028_3886_310069 crossref_primary_10_1142_S0129065723500016 crossref_primary_10_1016_j_neucom_2021_06_048 crossref_primary_10_3389_fneur_2021_603868 crossref_primary_10_3390_app11115051 crossref_primary_10_1016_j_cvdhj_2020_07_001 crossref_primary_10_1371_journal_pone_0234178 crossref_primary_10_1007_s11571_024_10109_w crossref_primary_10_1016_j_bspc_2024_106965 crossref_primary_10_1142_S0129065724500473 crossref_primary_10_14201_ADCAIJ2020923348 crossref_primary_10_1051_matecconf_202439201101 crossref_primary_10_1109_ACCESS_2023_3235913 crossref_primary_10_1016_j_neunet_2023_06_040 crossref_primary_10_1016_j_neuri_2023_100139 crossref_primary_10_1088_1741_4326_ab6c7a crossref_primary_10_1109_ACCESS_2021_3133326 crossref_primary_10_3233_JIFS_232085 crossref_primary_10_1109_TNSRE_2020_2973434 crossref_primary_10_1007_s43441_021_00355_z crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1016_j_bspc_2023_105165 crossref_primary_10_1142_S0129065722500034 crossref_primary_10_1016_j_bspc_2021_102720 crossref_primary_10_1016_j_jneumeth_2022_109483 crossref_primary_10_3389_fnhum_2023_1153413 crossref_primary_10_1038_s41598_022_19020_y crossref_primary_10_1016_j_bspc_2021_102723 crossref_primary_10_1007_s00521_019_04061_8 crossref_primary_10_1098_rsos_230022 crossref_primary_10_18048_2019_57_01 crossref_primary_10_31828_turkpsikoloji_1537964 crossref_primary_10_1109_TCDS_2021_3064228 crossref_primary_10_1142_S0129065725500030 crossref_primary_10_1007_s11277_022_09678_y crossref_primary_10_1142_S0129065721500052 crossref_primary_10_1080_10408363_2018_1536111 crossref_primary_10_1007_s42979_023_02396_7 crossref_primary_10_1016_j_bspc_2020_102215 crossref_primary_10_3389_fnhum_2020_00338 crossref_primary_10_1007_s11042_024_20330_8 crossref_primary_10_1142_S0129065722500046 crossref_primary_10_1016_j_jneumeth_2021_109197 crossref_primary_10_1109_ACCESS_2019_2954294 crossref_primary_10_1145_3457893 crossref_primary_10_7555_JBR_34_20190043 crossref_primary_10_1016_j_ins_2019_10_069 crossref_primary_10_3390_diagnostics13111936 crossref_primary_10_1007_s00034_023_02423_1 crossref_primary_10_1142_S0129065719500138 crossref_primary_10_1007_s12652_022_04204_1 crossref_primary_10_1142_S0129065721500088 crossref_primary_10_3233_ICA_180584 crossref_primary_10_1016_j_neunet_2018_11_009 crossref_primary_10_3233_ICA_180580 crossref_primary_10_1007_s11517_023_02914_y crossref_primary_10_1109_TMI_2019_2935409 crossref_primary_10_1007_s11571_021_09773_z crossref_primary_10_1016_j_knosys_2022_108508 crossref_primary_10_1016_j_measurement_2019_107003 crossref_primary_10_3390_e22121415 crossref_primary_10_3233_ICA_180574 crossref_primary_10_1016_j_bbe_2020_02_002 crossref_primary_10_3390_aerospace8040112 crossref_primary_10_1109_ACCESS_2018_2886608 crossref_primary_10_1109_JSEN_2021_3077578 crossref_primary_10_1109_TNSRE_2019_2913142 crossref_primary_10_1145_3552512 crossref_primary_10_3233_IDT_240923 crossref_primary_10_1016_j_chaos_2021_111032 crossref_primary_10_46387_bjesr_1332678 crossref_primary_10_14201_ADCAIJ2020922332 crossref_primary_10_1109_JBHI_2020_3048006 crossref_primary_10_1016_j_bspc_2023_104798 crossref_primary_10_1016_j_clinph_2020_03_033 crossref_primary_10_1109_ACCESS_2021_3105917 crossref_primary_10_3389_fcomp_2021_661300 crossref_primary_10_3390_s23062993 crossref_primary_10_1007_s00500_023_08386_4 crossref_primary_10_1080_10255842_2024_2355490 crossref_primary_10_1016_j_inffus_2023_101898 crossref_primary_10_1080_21507740_2020_1740352 crossref_primary_10_1111_epi_16719 crossref_primary_10_1007_s42979_024_03510_z crossref_primary_10_1007_s12539_023_00567_x crossref_primary_10_3390_s22239302 crossref_primary_10_1155_2023_6683438 crossref_primary_10_1109_TNSRE_2020_2966290 crossref_primary_10_3390_bioengineering11121265 crossref_primary_10_1080_03091902_2020_1791988 crossref_primary_10_3389_fnins_2023_1133834 crossref_primary_10_1080_10106049_2021_1899302 crossref_primary_10_1007_s13198_024_02591_6 crossref_primary_10_3390_s24092823 crossref_primary_10_1142_S0129065720500744 crossref_primary_10_1016_j_jfca_2025_107355 crossref_primary_10_1007_s11042_023_16514_3 crossref_primary_10_3390_pr10112348 crossref_primary_10_1016_j_procs_2024_04_006 crossref_primary_10_1016_j_irbm_2020_07_002 crossref_primary_10_1142_S0129065723500429 crossref_primary_10_1007_s11517_020_02144_6 crossref_primary_10_1360_SSC_2022_0019 crossref_primary_10_3390_brainsci12080977 crossref_primary_10_1007_s10916_024_02122_7 crossref_primary_10_1016_j_jneumeth_2020_108886 crossref_primary_10_1142_S0129065720500707 crossref_primary_10_1007_s00500_022_06878_3 crossref_primary_10_1145_3675402 crossref_primary_10_3390_ani11020357 crossref_primary_10_3390_brainsci11050668 crossref_primary_10_3389_fneur_2024_1378076 crossref_primary_10_1109_ACCESS_2020_2976751 crossref_primary_10_3390_s18051372 crossref_primary_10_1016_j_resplu_2022_100263 crossref_primary_10_1016_j_procs_2021_08_071 crossref_primary_10_1177_1475921720932614 crossref_primary_10_1016_j_compbiomed_2019_05_016 crossref_primary_10_1007_s00521_023_08832_2 crossref_primary_10_1007_s11042_019_08359_6 crossref_primary_10_1007_s12264_024_01247_6 crossref_primary_10_1142_S0129065720500719 crossref_primary_10_1007_s12652_019_01220_6 crossref_primary_10_2139_ssrn_4065237 crossref_primary_10_3389_fncom_2022_822237 crossref_primary_10_1016_j_dsp_2020_102796 crossref_primary_10_3390_biomedicines12061221 crossref_primary_10_1109_TNSRE_2023_3299839 crossref_primary_10_3390_app14020599 crossref_primary_10_1016_j_engappai_2023_106122 crossref_primary_10_1142_S0129065720500720 crossref_primary_10_3389_fneur_2020_00375 crossref_primary_10_1007_s10044_024_01221_y crossref_primary_10_1109_TCYB_2021_3052813 crossref_primary_10_3390_s23073673 crossref_primary_10_1049_iet_spr_2019_0277 crossref_primary_10_3390_s20164629 crossref_primary_10_1021_acsami_9b19362 crossref_primary_10_1002_int_23040 crossref_primary_10_1242_jeb_198101 crossref_primary_10_1016_j_bspc_2022_104234 crossref_primary_10_1007_s00521_021_06396_7 crossref_primary_10_1109_TCBB_2020_3024228 crossref_primary_10_1142_S0219843619410044 crossref_primary_10_3390_app11073163 crossref_primary_10_1016_j_ipm_2022_102888 crossref_primary_10_1142_S0218348X22501547 crossref_primary_10_3233_ICA_200617 crossref_primary_10_1049_sil2_12076 crossref_primary_10_32604_csse_2023_036985 crossref_primary_10_1016_j_compbiomed_2021_104250 crossref_primary_10_1049_htl_2018_5036 crossref_primary_10_3389_frai_2023_1069353 crossref_primary_10_1016_j_eswa_2021_115851 crossref_primary_10_1371_journal_pone_0270405 crossref_primary_10_3389_frai_2023_1156269 crossref_primary_10_1016_j_apacoust_2020_107607 crossref_primary_10_1038_s41598_019_47854_6 crossref_primary_10_1016_j_compbiomed_2018_09_008 crossref_primary_10_1016_j_future_2018_11_011 crossref_primary_10_1021_acsami_2c20057 crossref_primary_10_1016_j_jcin_2019_06_036 crossref_primary_10_1016_j_ress_2023_109212 crossref_primary_10_3389_fnsys_2021_685387 crossref_primary_10_1016_j_aei_2020_101191 crossref_primary_10_3389_fnins_2021_667373 crossref_primary_10_1520_JTE20190626 crossref_primary_10_1016_j_future_2018_10_005 crossref_primary_10_1016_j_jksuci_2021_11_015 crossref_primary_10_1109_JBHI_2020_3025381 crossref_primary_10_1142_S0129065723500223 crossref_primary_10_1142_S0129065723500466 crossref_primary_10_1109_ACCESS_2024_3409581 crossref_primary_10_3390_ijerph18115780 crossref_primary_10_1016_j_eswa_2022_119010 crossref_primary_10_3389_fnins_2023_1117340 crossref_primary_10_1016_j_neucom_2018_10_108 crossref_primary_10_1016_j_chb_2020_106640 crossref_primary_10_1021_acssensors_0c01424 crossref_primary_10_3233_ICA_200632 crossref_primary_10_1515_med_2020_0006 crossref_primary_10_3233_ICA_200638 crossref_primary_10_1007_s11042_024_19129_4 crossref_primary_10_3390_e20050386 crossref_primary_10_1155_2021_6614191 crossref_primary_10_1142_S0129065721500350 crossref_primary_10_1109_TNSRE_2022_3165060 crossref_primary_10_1016_j_compbiomed_2019_103446 crossref_primary_10_1016_j_compbiomed_2024_108258 crossref_primary_10_1016_j_compbiomed_2019_103448 crossref_primary_10_1049_ccs_2020_0011 crossref_primary_10_1186_s12911_020_01306_8 crossref_primary_10_1140_epjs_s11734_021_00380_x crossref_primary_10_1016_j_apr_2020_04_001 crossref_primary_10_1007_s11704_021_0587_2 crossref_primary_10_3390_jimaging8040102 crossref_primary_10_3233_ICA_200621 crossref_primary_10_1007_s10916_019_1519_7 crossref_primary_10_1007_s40120_019_00153_8 crossref_primary_10_3390_app142411569 crossref_primary_10_3233_ICA_200625 crossref_primary_10_3390_diagnostics9030104 crossref_primary_10_3390_brainsci12111502 crossref_primary_10_3390_diagnostics15030300 crossref_primary_10_1016_j_engappai_2023_106763 crossref_primary_10_1016_j_comcom_2019_12_056 crossref_primary_10_1016_j_autcon_2022_104733 crossref_primary_10_1016_j_compbiomed_2021_104299 crossref_primary_10_1109_TNSRE_2022_3166517 crossref_primary_10_1007_s00521_018_3689_5 crossref_primary_10_1109_ACCESS_2020_3019336 crossref_primary_10_1088_2632_2153_abcf89 crossref_primary_10_1002_cnm_3225 crossref_primary_10_1016_j_array_2021_100072 crossref_primary_10_1109_ACCESS_2024_3375877 crossref_primary_10_1016_j_engappai_2019_08_017 crossref_primary_10_1109_JSEN_2019_2939908 crossref_primary_10_1016_j_compbiomed_2020_103919 crossref_primary_10_1007_s10916_019_1406_2 crossref_primary_10_1016_j_bspc_2025_107535 crossref_primary_10_1016_j_cmpb_2020_105750 crossref_primary_10_1109_JBHI_2023_3336935 crossref_primary_10_1111_exsy_13260 crossref_primary_10_1109_ACCESS_2019_2891390 crossref_primary_10_1038_s41598_023_41537_z crossref_primary_10_1109_JSEN_2019_2935552 crossref_primary_10_3390_bdcc8090111 crossref_primary_10_1007_s12652_020_01722_8 crossref_primary_10_1016_j_bspc_2022_104439 crossref_primary_10_48084_etasr_5208 crossref_primary_10_1016_j_neunet_2024_106267 crossref_primary_10_3390_s20247251 crossref_primary_10_1142_S0129065722500411 crossref_primary_10_1007_s13246_020_00925_9 crossref_primary_10_3390_app9142870 crossref_primary_10_3390_s21227710 crossref_primary_10_1007_s13246_019_00794_x crossref_primary_10_1016_j_compbiomed_2021_105120 crossref_primary_10_1016_j_compbiomed_2022_105441 crossref_primary_10_1109_ACCESS_2019_2959234 crossref_primary_10_1109_ACCESS_2020_3011877 crossref_primary_10_1142_S0129065721500556 crossref_primary_10_1016_j_cmpb_2020_105531 crossref_primary_10_2174_0118722121256663231019061211 crossref_primary_10_1007_s00138_020_01069_2 crossref_primary_10_3390_s20226592 crossref_primary_10_1007_s13369_019_04197_8 crossref_primary_10_1109_ACCESS_2021_3062291 crossref_primary_10_3389_fninf_2020_00006 crossref_primary_10_1016_j_cities_2021_103393 crossref_primary_10_1016_j_eswa_2024_125081 crossref_primary_10_1142_S0129065720500562 crossref_primary_10_1049_joe_2018_5435 crossref_primary_10_1016_j_jbi_2020_103627 crossref_primary_10_3847_1538_4357_acc8d5 crossref_primary_10_1155_2020_4825767 crossref_primary_10_1142_S0129065723500648 crossref_primary_10_1109_JSYST_2019_2923670 crossref_primary_10_1007_s12065_020_00459_9 crossref_primary_10_1016_j_knosys_2023_111305 crossref_primary_10_1142_S0219519419400086 crossref_primary_10_1631_jzus_B2400103 crossref_primary_10_3389_fnins_2020_00870 crossref_primary_10_1088_1741_2552_ab0ab5 crossref_primary_10_1109_TNSRE_2021_3129467 crossref_primary_10_1016_j_compbiomed_2020_103719 crossref_primary_10_1159_000512985 crossref_primary_10_3389_fnins_2020_00409 crossref_primary_10_1016_j_neuroscience_2021_11_017 crossref_primary_10_3390_s24010077 crossref_primary_10_1007_s00034_021_01789_4 crossref_primary_10_1109_TNNLS_2020_3016666 crossref_primary_10_1016_j_bspc_2021_103013 crossref_primary_10_1016_j_compbiomed_2020_103954 crossref_primary_10_1142_S0219519419400074 crossref_primary_10_1142_S0129065720500306 crossref_primary_10_3934_mbe_2021257 crossref_primary_10_1016_j_irbm_2020_06_008 crossref_primary_10_1109_TNNLS_2022_3145365 crossref_primary_10_1016_j_bspc_2023_104738 crossref_primary_10_1016_j_neuroscience_2024_01_014 crossref_primary_10_3389_fnins_2024_1468967 crossref_primary_10_1109_JBHI_2023_3282251 crossref_primary_10_1088_1748_0221_16_01_P01019 crossref_primary_10_1051_e3sconf_202235101068 crossref_primary_10_1016_j_bspc_2024_107041 crossref_primary_10_1016_j_bspc_2021_103281 crossref_primary_10_1109_TBME_2020_3042574 crossref_primary_10_1016_j_cmpb_2020_105740 crossref_primary_10_1186_s12911_021_01736_y crossref_primary_10_3390_s22176458 crossref_primary_10_1016_j_cmpb_2018_04_012 crossref_primary_10_1049_iet_spr_2018_5258 crossref_primary_10_1088_2058_8585_ac6a96 crossref_primary_10_1142_S0129065721500519 crossref_primary_10_1186_s40708_020_00106_0 crossref_primary_10_1007_s00500_019_04157_2 crossref_primary_10_1109_JBHI_2022_3203454 crossref_primary_10_3390_s25030805 crossref_primary_10_2217_3dp_2021_0007 crossref_primary_10_1088_1674_4926_44_12_121401 crossref_primary_10_1016_j_eswa_2019_03_021 crossref_primary_10_1155_2022_8928021 crossref_primary_10_1142_S0129065723500612 crossref_primary_10_26416_Pedi_70_2_2023_8303 crossref_primary_10_1016_j_bspc_2019_101833 crossref_primary_10_1142_S0219519419400098 crossref_primary_10_1016_j_bspc_2021_103031 crossref_primary_10_1155_2022_3491828 crossref_primary_10_1007_s11042_023_15830_y crossref_primary_10_1016_j_bspc_2021_103278 crossref_primary_10_1016_j_cmpb_2022_107277 crossref_primary_10_1371_journal_pcbi_1007067 crossref_primary_10_1142_S0218001421580015 crossref_primary_10_1515_jib_2023_0002 crossref_primary_10_7555_JBR_33_20190012 crossref_primary_10_1142_S0129065722500617 crossref_primary_10_1142_S0129065718500600 crossref_primary_10_3390_s24061889 crossref_primary_10_1007_s11571_021_09756_0 crossref_primary_10_1142_S0129065720500173 crossref_primary_10_1109_TNSRE_2021_3113888 crossref_primary_10_1007_s12652_020_02357_5 crossref_primary_10_3390_signals4040045 crossref_primary_10_1016_j_compbiomed_2020_103769 crossref_primary_10_1108_WJE_06_2021_0348 crossref_primary_10_1016_j_smhl_2021_100261 crossref_primary_10_1061__ASCE_BE_1943_5592_0001531 crossref_primary_10_1063_5_0062242 crossref_primary_10_18038_estubtda_1466349 crossref_primary_10_1007_s00521_021_06521_6 crossref_primary_10_1016_j_nanoen_2023_108712 crossref_primary_10_1016_j_jneumeth_2021_109209 crossref_primary_10_1016_j_physa_2023_129230 crossref_primary_10_1142_S0129065721300011 crossref_primary_10_1109_ACCESS_2019_2922367 crossref_primary_10_3390_s18103452 crossref_primary_10_1162_neco_a_01443 crossref_primary_10_1007_s11760_024_03077_5 crossref_primary_10_1088_1741_2552_ab5469 crossref_primary_10_1007_s00034_024_02715_0 crossref_primary_10_1016_j_compbiomed_2020_103757 crossref_primary_10_1016_j_cosrev_2020_100237 crossref_primary_10_3390_app9081526 crossref_primary_10_3934_math_2023840 crossref_primary_10_1016_j_compeleceng_2021_107461 crossref_primary_10_1016_j_eswa_2021_116016 crossref_primary_10_1109_TNSRE_2023_3330922 crossref_primary_10_1109_TPEL_2020_3023770 crossref_primary_10_1016_j_aej_2022_10_014 crossref_primary_10_1166_jmihi_2021_3916 crossref_primary_10_1007_s00034_021_01686_w crossref_primary_10_1142_S0129065720500185 crossref_primary_10_1016_j_artmed_2019_07_006 crossref_primary_10_1016_j_bbe_2020_07_004 crossref_primary_10_35615_epilia_2021_00298 crossref_primary_10_1016_j_eswa_2019_05_041 crossref_primary_10_1021_acs_chemrestox_8b00054 crossref_primary_10_3389_fgene_2020_539227 crossref_primary_10_1109_ACCESS_2023_3277634 crossref_primary_10_1155_2021_8897105 crossref_primary_10_1016_j_heliyon_2020_e05694 crossref_primary_10_3390_app9112331 crossref_primary_10_1016_j_bspc_2019_101638 crossref_primary_10_48084_etasr_3878 crossref_primary_10_1007_s10462_021_09986_y crossref_primary_10_1007_s11760_022_02318_9 crossref_primary_10_1038_s41746_020_0264_0 crossref_primary_10_1016_j_artmed_2019_101711 crossref_primary_10_1007_s11045_023_00870_2 crossref_primary_10_1016_j_bspc_2023_105059 crossref_primary_10_1007_s11042_023_17112_z crossref_primary_10_3390_bios11090336 crossref_primary_10_1007_s13534_020_00156_7 crossref_primary_10_1142_S0129065724500515 crossref_primary_10_3390_ijerph17114152 crossref_primary_10_1109_TNNLS_2023_3287181 crossref_primary_10_1111_epi_17200 crossref_primary_10_1038_s41598_022_23656_1 crossref_primary_10_1007_s13534_023_00309_4 crossref_primary_10_1080_03772063_2020_1749143 crossref_primary_10_1016_j_bbe_2021_01_001 crossref_primary_10_1016_j_smhl_2021_100221 crossref_primary_10_1142_S0129065718500430 crossref_primary_10_1155_2021_6644365 crossref_primary_10_1016_j_bspc_2024_106264 crossref_primary_10_1142_S0129065722500320 crossref_primary_10_3390_s19051112 crossref_primary_10_1016_j_eswa_2021_115175 crossref_primary_10_1016_j_jocs_2023_101943 crossref_primary_10_3390_signals4030034 crossref_primary_10_1007_s11517_024_03032_z crossref_primary_10_1016_j_brain_2023_100064 crossref_primary_10_31083_j_jin2004083 crossref_primary_10_3390_s21155145 crossref_primary_10_1016_j_neunet_2020_01_017 crossref_primary_10_2478_jaiscr_2025_0006 crossref_primary_10_1142_S0129065722500332 crossref_primary_10_2139_ssrn_4142417 crossref_primary_10_1016_j_bspc_2020_102393 crossref_primary_10_1109_ACCESS_2020_2985717 crossref_primary_10_1109_ACCESS_2019_2923281 crossref_primary_10_1109_TCBB_2020_3006699 crossref_primary_10_1109_JTEHM_2021_3050925 crossref_primary_10_2478_msr_2019_0029 crossref_primary_10_1142_S0129065720500355 crossref_primary_10_1016_j_artmed_2019_101756 crossref_primary_10_1016_j_seizure_2024_03_013 crossref_primary_10_1142_S0129065722500587 crossref_primary_10_1016_j_micpro_2021_103822 crossref_primary_10_1007_s11045_019_00673_4 crossref_primary_10_1016_j_bbrc_2022_06_004 crossref_primary_10_1016_j_cmpb_2023_107856 crossref_primary_10_1016_j_bea_2024_100114 crossref_primary_10_1109_ACCESS_2023_3275024 crossref_primary_10_1016_j_bspc_2024_106244 crossref_primary_10_1016_j_bspc_2020_102166 crossref_primary_10_1142_S0129065724500552 crossref_primary_10_1142_S0129065720500367 crossref_primary_10_1088_1741_2552_ac6770 crossref_primary_10_1142_S0129065720500124 crossref_primary_10_3389_fpsyg_2023_1126994 crossref_primary_10_1016_j_yebeh_2024_109796 crossref_primary_10_3390_jpm12050763 crossref_primary_10_1016_j_nicl_2019_101684 crossref_primary_10_3389_fninf_2023_1205529 crossref_primary_10_1088_1741_2552_ac697d crossref_primary_10_1016_j_compbiomed_2019_03_017 crossref_primary_10_1016_j_engappai_2024_108665 crossref_primary_10_1016_j_cmpb_2021_106335 crossref_primary_10_1016_j_compbiomed_2024_108705 crossref_primary_10_1016_j_imu_2021_100606 crossref_primary_10_1007_s10544_024_00732_z crossref_primary_10_1186_s12911_018_0693_8 crossref_primary_10_7759_cureus_79409 crossref_primary_10_1016_j_neucom_2021_08_119 crossref_primary_10_1109_TAI_2024_3394792 crossref_primary_10_1177_0954411920966937 crossref_primary_10_1142_S0129065719500205 crossref_primary_10_1016_j_medengphy_2022_103870 crossref_primary_10_1007_s10548_025_01111_4 crossref_primary_10_1109_TII_2021_3133307 crossref_primary_10_2478_jaiscr_2021_0017 crossref_primary_10_3174_ajnr_A8612 crossref_primary_10_1016_j_compbiomed_2019_03_016 crossref_primary_10_12677_ORF_2022_121001 crossref_primary_10_3390_s24061902 crossref_primary_10_1371_journal_pone_0298762 crossref_primary_10_1007_s00530_020_00694_1 crossref_primary_10_3390_s20143829 crossref_primary_10_3390_s19143051 crossref_primary_10_1088_2632_072X_ac5f8d crossref_primary_10_3233_JIFS_190738 crossref_primary_10_1002_ima_22593 crossref_primary_10_1142_S0129065719500217 crossref_primary_10_1007_s11517_020_02208_7 crossref_primary_10_1142_S0129065723500144 crossref_primary_10_1515_revneuro_2020_0043 crossref_primary_10_1016_j_compbiomed_2021_104710 crossref_primary_10_1016_j_bspc_2021_102663 crossref_primary_10_1038_s41598_024_54416_y crossref_primary_10_31083_j_jin_2020_01_24 crossref_primary_10_1109_ACCESS_2021_3132128 crossref_primary_10_1142_S0219519419400104 crossref_primary_10_1016_j_chemolab_2020_104103 crossref_primary_10_17694_bajece_941007 crossref_primary_10_32604_cmc_2022_020318 crossref_primary_10_1142_S0129065724500126 crossref_primary_10_3390_signals5020014 crossref_primary_10_1007_s00500_019_04174_1 crossref_primary_10_1109_JSEN_2020_2976519 crossref_primary_10_1155_2021_5511922 crossref_primary_10_1016_j_eswa_2019_112895 crossref_primary_10_1111_mice_13312 crossref_primary_10_37391_ijeer_110329 crossref_primary_10_1016_j_neucom_2020_07_056 crossref_primary_10_1136_practneurol_2020_002688 crossref_primary_10_1142_S0129065719500230 crossref_primary_10_1109_TKDE_2023_3321803 crossref_primary_10_1152_jn_00055_2024 crossref_primary_10_1038_s41746_021_00480_x crossref_primary_10_1007_s11063_021_10533_7 crossref_primary_10_1007_s11571_023_09944_0 crossref_primary_10_1109_TII_2020_2976053 crossref_primary_10_1515_bmt_2021_0084 crossref_primary_10_1007_s00034_022_02282_2 crossref_primary_10_1142_S0129065722500150 crossref_primary_10_1016_j_wneu_2020_12_131 crossref_primary_10_1002_cae_22209 crossref_primary_10_1371_journal_pone_0216456 crossref_primary_10_3390_neurosci5010004 crossref_primary_10_1016_j_compbiomed_2021_104771 crossref_primary_10_1109_LSP_2019_2953870 crossref_primary_10_1142_S0129065719500242 crossref_primary_10_1142_S0129065721500180 crossref_primary_10_1186_s13321_020_00436_5 crossref_primary_10_1016_j_inffus_2023_102023 crossref_primary_10_1007_s10916_019_1345_y crossref_primary_10_1007_s11571_020_09655_w crossref_primary_10_3390_e22010096 crossref_primary_10_1002_ima_22565 crossref_primary_10_1007_s11042_024_18779_8 crossref_primary_10_3389_fncom_2024_1454529 crossref_primary_10_3389_fncom_2021_650050 crossref_primary_10_3389_fnins_2023_1145526 crossref_primary_10_4018_IJBCE_301215 crossref_primary_10_1016_j_eswa_2019_07_010 crossref_primary_10_1109_TNSE_2022_3222362 crossref_primary_10_3390_s21175831 crossref_primary_10_1109_TCDS_2019_2936441 crossref_primary_10_1016_j_clinph_2020_04_172 crossref_primary_10_1111_exsy_12949 crossref_primary_10_1016_j_bspc_2023_105263 crossref_primary_10_1016_j_yebeh_2024_109732 crossref_primary_10_3390_app10124089 crossref_primary_10_1002_ima_22552 crossref_primary_10_3390_app12136297 crossref_primary_10_1155_2022_1502934 crossref_primary_10_1002_ima_22558 crossref_primary_10_1002_ima_22559 crossref_primary_10_1016_j_brainresbull_2023_110826 crossref_primary_10_1177_1550059420916634 crossref_primary_10_1007_s11042_022_12512_z crossref_primary_10_1016_j_artmed_2020_101792 crossref_primary_10_17798_bitlisfen_1012489 crossref_primary_10_1142_S0129065720500197 crossref_primary_10_1109_ACCESS_2020_2976156 crossref_primary_10_1111_mice_12660 crossref_primary_10_1111_exsy_12957 crossref_primary_10_1002_adhm_202100646 crossref_primary_10_1016_j_jneumeth_2020_108953 crossref_primary_10_1038_s41598_019_41500_x crossref_primary_10_1007_s11042_022_13947_0 crossref_primary_10_1007_s10989_019_09887_3 crossref_primary_10_1016_j_compbiomed_2019_04_031 crossref_primary_10_1016_j_bspc_2021_102854 crossref_primary_10_1109_ACCESS_2018_2885639 crossref_primary_10_1002_aisy_202000198 crossref_primary_10_32604_cmc_2022_020348 crossref_primary_10_46810_tdfd_948098 |
Cites_doi | 10.1016/j.knosys.2013.02.014 10.1016/j.jocs.2017.02.006 10.1109/TBME.2006.886855 10.1142/S0129065716500118 10.1142/S0129065715500409 10.1142/S012906571250027X 10.1103/PhysRevE.64.061907 10.1142/S0129065715500318 10.1243/09544119JEIM484 10.1142/S0129065715500288 10.1007/s10916-010-9433-z 10.1109/TBME.2007.905490 10.1142/S012906571550029X 10.1109/TMI.2016.2536809 10.1016/j.ins.2017.06.027 10.1038/nature14539 10.1142/S0129065712500025 10.1016/S0165-0270(02)00340-0 10.1142/S0129065711002912 10.1142/S0129065716500209 10.1142/S0129065711002808 10.1007/BF00344251 10.1016/j.eswa.2012.02.040 10.1016/j.seizure.2015.01.012 10.1016/0925-2312(93)90042-2 10.1142/S0129065715500379 10.3233/ICA-2007-14301 10.1061/(ASCE)CO.1943-7862.0001047 10.1016/j.bspc.2011.07.007 10.1016/j.knosys.2017.06.003 10.1142/S0129065715500203 10.1016/j.patrec.2017.03.023 10.1016/j.ins.2017.04.012 10.1109/TMI.2016.2538465 10.1016/j.compbiomed.2017.08.022 10.1109/TMI.2016.2532122 10.1109/TBME.2007.891945 10.1142/S0219519409003152 10.1016/j.neunet.2009.04.003 10.3348/kjr.2017.18.4.570 10.1016/j.eswa.2011.02.118 10.1109/TBME.2017.2650259 10.1142/S0129065709002002 10.1016/j.knosys.2015.08.004 10.1142/S0129065710002334 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. 2017. Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: 2017. Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.compbiomed.2017.09.017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 278 |
ExternalDocumentID | 28974302 10_1016_j_compbiomed_2017_09_017 S0010482517303153 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ T5K UKHRP WOW Z5R ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW EFLBG LCYCR M0N RIG .55 .GJ 29F 53G AAQXK AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AGQPQ AGRNS AIGII ALIPV APXCP ASPBG AVWKF AZFZN CITATION EMOBN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ R2- SAE SBC SEW SV3 TAE UAP WUQ X7M XPP ZGI CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c525t-b7988cdb928a6e0ca0c1e86b25ed5b1b52dc71adea823db13db062af8163fb0b3 |
IEDL.DBID | .~1 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Thu Jul 10 17:44:54 EDT 2025 Wed Aug 13 02:42:53 EDT 2025 Wed Feb 19 02:35:48 EST 2025 Tue Jul 01 03:28:28 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Fri Feb 23 02:24:56 EST 2024 Tue Aug 26 16:34:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Encephalogram signals Deep learning Seizure Epilepsy Convolutional neural network |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-b7988cdb928a6e0ca0c1e86b25ed5b1b52dc71adea823db13db062af8163fb0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28974302 |
PQID | 2084848449 |
PQPubID | 1226355 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1947098249 proquest_journals_2084848449 pubmed_primary_28974302 crossref_citationtrail_10_1016_j_compbiomed_2017_09_017 crossref_primary_10_1016_j_compbiomed_2017_09_017 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2017_09_017 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2017_09_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 2018-09-00 20180901 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Martis, Acharya, Tan, Petznick, Yanti, Chua, Ng, Tong (bib59) 2012; 22 Ghosh-Dastidar, Adeli (bib41) 2009; 22 Hatipoglu, Bilgin (bib24) 2017 Acharya, Fujita, Oh, Hagiwara, Tan, Muhammad (bib28) 2017; 405 Guo, Rivero, Dorado, Munteanu, Pazos (bib55) 2011; 38 Hung, Adeli (bib32) 1993; 5 Nobukawa, Nishimura (bib42) 2016; 26 Krumholz, Wiebe, Gronseth, Shinnar, Levisohn, Ting, Hopp, Shafer, Morris, Seiden, Barkley, French (bib6) 2007; 69 American Epilepsy Society (bib2) Garrido, Luque, Tolu, D'Angelo (bib40) 2016; 26 Acharya, Sree, Ang, Yanti, Suri (bib46) 2012; 22 Ortiz-Garcia, Munilla, Gorriz, Ramirez (bib13) 2016; 26 Pereira, Pinto, Alves, Silva (bib23) 2016; 35 Ghosh-Dastidar, Adeli (bib60) 2009; 19 Acharya, Molinari, Sree, Chattopadhay, Ng (bib45) 2012; 7 Zhang, Zhou (bib56) 2015; 25 Hsu (bib35) 2015; 25 Yang, Solis-Escalante, Yao, Daffertshofer, Schouten, Van der Helm (bib36) 2016; 26 Lee, Jun, Cho, Lee, Kim, Seo, Kim (bib18) 2017; 18 Bhattacharyya, Pachori (bib61) 2017; 64 Tan, Acharya, Bhandary, Chua, Sivaprasad (bib25) 2017 Acharya, Sree, Suri (bib49) 2011; 21 Adeli, Zhou, Dadmehr (bib7) 2003; 123 Faust, Acharya, Lim, Sputh (bib53) 2010; 20 Ghosh-Dastidar, Adeli, Dadmehr (bib37) 2007; 54 Ko, Benbadis (bib5) 2016 Adeli, Ghosh-Dastidar (bib39) 2010 . He, Zhang, Ren, Sun (bib31) 2015 Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (bib30) 2017 Vahabi, Amirfattahi, Ghassemi, Shayegh (bib57) 2015; 25 Ghosh-Dastidar, Adeli (bib43) 2007; 14 Harvard Health Publications, Harvard Medical School (bib3) 2014 Acharya, Fujita, Sudarshan, Bhat, Koh (bib10) 2015; 88 Adeli, Ghosh-Dastidar, Dadmehr (bib34) 2007; 54 Goodfellow, Bengio, Courville (bib17) 2016 Acharya, Fujita, Oh, Muhammad, Tan, Chua (bib29) 2017 Kallenberg, Petersen, Nielsen, Ng, Diao, Igel, Vachon, Holland, Winkel, Karssemeijer, Lillholm (bib22) 2016; 35 International League Against Epilepsy (ILAE).dd Yuan, Zhou, Wu, Zhang (bib58) 2016; 26 World Health Organization (bib1) 2017 Glorot, Bordes, Bengio (bib16) 2010; 15 Krizhevsky, Sutskever, Hinton (bib12) 2012 Rafiei, Adeli (bib14) 2016; 142 Acharya, Sree, Ang, Suri (bib48) 2012; 39 Acharya, Sree, Swapna, Martis, Suri (bib8) 2013; 45 Andrzejak, Lehnertz, Rieke, Mormann, David, Elger (bib19) 2001; 64 Setio, Ciompi, Litjens, Gerke, Jacobs, van Riel, Wille, Naqibullah, Sánchex, van Ginneken (bib26) 2016; 35 Rafiei, Khushefati, Demirboga, Adeli (bib15) 2017; 114 Acharya, Sree, Chattopadhyay, Yu, Ang (bib47) 2011; 21 Duda, Hart, Stork (bib33) 2001 Acharya, Chua, Lim, Dorithy, Suri (bib44) 2009; 9 Chua, Chandran, Acharya, Lim (bib51) 2009; 223 Acharya, Yanti, Swapna, Sree, Martis, Suri (bib50) 2012; 227 Castillo, Peteiro-Barral, Guijarro Berdinas, Fontenla-Romero (bib54) 2015; 25 Chua, Chandran, Acharya, Lim (bib52) 2010; 35 Bhattacharyya, Pachori, Upadhyay, Acharya (bib62) 2017; 7 LeCun, Bengio, Hinton (bib11) 2015; 521 Fukushima (bib21) 1980; 36 Acharya, Fujita, Oh, Hagiwara, Tan, Muhammad (bib27) 2017; 415–416 Ghosh-Dastidar, Adeli, Dadmehr (bib38) 2008; 55 Faust, Acharya, Adeli, Adeli (bib9) 2015; 26 Sharma, Pachori, Acharya (bib63) 2017; 94 Siddique, Adeli (bib20) 2013 Acharya (10.1016/j.compbiomed.2017.09.017_bib8) 2013; 45 He (10.1016/j.compbiomed.2017.09.017_bib31) 2015 Acharya (10.1016/j.compbiomed.2017.09.017_bib29) 2017 Krizhevsky (10.1016/j.compbiomed.2017.09.017_bib12) 2012 Acharya (10.1016/j.compbiomed.2017.09.017_bib47) 2011; 21 10.1016/j.compbiomed.2017.09.017_bib4 Acharya (10.1016/j.compbiomed.2017.09.017_bib48) 2012; 39 Sharma (10.1016/j.compbiomed.2017.09.017_bib63) 2017; 94 LeCun (10.1016/j.compbiomed.2017.09.017_bib11) 2015; 521 Ghosh-Dastidar (10.1016/j.compbiomed.2017.09.017_bib43) 2007; 14 Bhattacharyya (10.1016/j.compbiomed.2017.09.017_bib61) 2017; 64 Duda (10.1016/j.compbiomed.2017.09.017_bib33) 2001 Nobukawa (10.1016/j.compbiomed.2017.09.017_bib42) 2016; 26 Krumholz (10.1016/j.compbiomed.2017.09.017_bib6) 2007; 69 American Epilepsy Society (10.1016/j.compbiomed.2017.09.017_bib2) Ghosh-Dastidar (10.1016/j.compbiomed.2017.09.017_bib38) 2008; 55 Setio (10.1016/j.compbiomed.2017.09.017_bib26) 2016; 35 Martis (10.1016/j.compbiomed.2017.09.017_bib59) 2012; 22 Rafiei (10.1016/j.compbiomed.2017.09.017_bib14) 2016; 142 Acharya (10.1016/j.compbiomed.2017.09.017_bib46) 2012; 22 Faust (10.1016/j.compbiomed.2017.09.017_bib53) 2010; 20 Acharya (10.1016/j.compbiomed.2017.09.017_bib28) 2017; 405 Yang (10.1016/j.compbiomed.2017.09.017_bib36) 2016; 26 Andrzejak (10.1016/j.compbiomed.2017.09.017_bib19) 2001; 64 Adeli (10.1016/j.compbiomed.2017.09.017_bib39) 2010 Rafiei (10.1016/j.compbiomed.2017.09.017_bib15) 2017; 114 Siddique (10.1016/j.compbiomed.2017.09.017_bib20) 2013 Acharya (10.1016/j.compbiomed.2017.09.017_bib44) 2009; 9 Ko (10.1016/j.compbiomed.2017.09.017_bib5) 2016 Faust (10.1016/j.compbiomed.2017.09.017_bib9) 2015; 26 Ghosh-Dastidar (10.1016/j.compbiomed.2017.09.017_bib60) 2009; 19 Bhattacharyya (10.1016/j.compbiomed.2017.09.017_bib62) 2017; 7 Hatipoglu (10.1016/j.compbiomed.2017.09.017_bib24) 2017 Acharya (10.1016/j.compbiomed.2017.09.017_bib49) 2011; 21 Zhang (10.1016/j.compbiomed.2017.09.017_bib56) 2015; 25 Chua (10.1016/j.compbiomed.2017.09.017_bib52) 2010; 35 Acharya (10.1016/j.compbiomed.2017.09.017_bib30) 2017 Ghosh-Dastidar (10.1016/j.compbiomed.2017.09.017_bib37) 2007; 54 World Health Organization (10.1016/j.compbiomed.2017.09.017_bib1) 2017 Hung (10.1016/j.compbiomed.2017.09.017_bib32) 1993; 5 Acharya (10.1016/j.compbiomed.2017.09.017_bib50) 2012; 227 Harvard Health Publications, Harvard Medical School (10.1016/j.compbiomed.2017.09.017_bib3) 2014 Ghosh-Dastidar (10.1016/j.compbiomed.2017.09.017_bib41) 2009; 22 Acharya (10.1016/j.compbiomed.2017.09.017_bib27) 2017; 415–416 Acharya (10.1016/j.compbiomed.2017.09.017_bib45) 2012; 7 Ortiz-Garcia (10.1016/j.compbiomed.2017.09.017_bib13) 2016; 26 Yuan (10.1016/j.compbiomed.2017.09.017_bib58) 2016; 26 Hsu (10.1016/j.compbiomed.2017.09.017_bib35) 2015; 25 Glorot (10.1016/j.compbiomed.2017.09.017_bib16) 2010; 15 Tan (10.1016/j.compbiomed.2017.09.017_bib25) 2017 Garrido (10.1016/j.compbiomed.2017.09.017_bib40) 2016; 26 Vahabi (10.1016/j.compbiomed.2017.09.017_bib57) 2015; 25 Adeli (10.1016/j.compbiomed.2017.09.017_bib7) 2003; 123 Goodfellow (10.1016/j.compbiomed.2017.09.017_bib17) 2016 Kallenberg (10.1016/j.compbiomed.2017.09.017_bib22) 2016; 35 Pereira (10.1016/j.compbiomed.2017.09.017_bib23) 2016; 35 Guo (10.1016/j.compbiomed.2017.09.017_bib55) 2011; 38 Lee (10.1016/j.compbiomed.2017.09.017_bib18) 2017; 18 Chua (10.1016/j.compbiomed.2017.09.017_bib51) 2009; 223 Fukushima (10.1016/j.compbiomed.2017.09.017_bib21) 1980; 36 Acharya (10.1016/j.compbiomed.2017.09.017_bib10) 2015; 88 Castillo (10.1016/j.compbiomed.2017.09.017_bib54) 2015; 25 Adeli (10.1016/j.compbiomed.2017.09.017_bib34) 2007; 54 |
References_xml | – volume: 88 start-page: 85 year: 2015 end-page: 96 ident: bib10 article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review publication-title: Knowl. Base Syst. – year: 2016 ident: bib5 article-title: Epilepsy and Seizures – year: 2016 ident: bib17 article-title: Deep Learning – volume: 64 start-page: 2003 year: 2017 end-page: 2015 ident: bib61 article-title: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform publication-title: IEEE Trans. Biomed. Eng. – volume: 14 start-page: 187 year: 2007 end-page: 212 ident: bib43 article-title: Improved spiking neural networks for EEG classification and epilepsy and seizure detection publication-title: Integr. Computer-Aided Eng. – volume: 9 start-page: 539 year: 2009 end-page: 553 ident: bib44 article-title: Automatic identification of epileptic EEG signals using nonlinear parameters publication-title: J. Mech. Med. Biol. – volume: 18 start-page: 570 year: 2017 end-page: 584 ident: bib18 article-title: Deep learning in medical imaging: general overview publication-title: Korean J. Radiol. – volume: 142 start-page: 04015066 year: 2016 ident: bib14 article-title: A novel machine learning model for estimation of sale prices of real estate units publication-title: Construct. Eng. Manag. – volume: 54 start-page: 1545 year: 2007 end-page: 1551 ident: bib37 article-title: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection publication-title: IEEE Trans. Biomed. Eng. – volume: 15 year: 2010 ident: bib16 article-title: Deep sparse rectifier neural networks publication-title: J. Mach. Learn. Res. – volume: 64 start-page: 061907 year: 2001 ident: bib19 article-title: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E – volume: 22 start-page: 1419 year: 2009 end-page: 1431 ident: bib41 article-title: A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection publication-title: Neural Netw. – volume: 45 start-page: 147 year: 2013 end-page: 165 ident: bib8 article-title: Automated EEG analysis of epilepsy: a review publication-title: Knowl. Base Syst. – volume: 26 start-page: 56 year: 2015 end-page: 64 ident: bib9 article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis publication-title: Seizure – volume: 26 start-page: 7 year: 2016 ident: bib13 article-title: Ensembles of deep learning architectures for the early diagnosis of alzheimer's disease publication-title: Int. J. Neural Syst. – volume: 25 start-page: 1550028 year: 2015 ident: bib57 article-title: Online epileptic seizure prediction using wavelet-based bi-phase correlation of electrical signal tomography publication-title: Int. J. Neural Syst. – volume: 415–416 start-page: 190 year: 2017 end-page: 198 ident: bib27 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inf. Sci. – volume: 35 start-page: 1322 year: 2016 end-page: 1331 ident: bib22 article-title: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring publication-title: IEEE Trans. Med. Imag. – year: 2014 ident: bib3 article-title: Seizure Overview – volume: 227 year: 2012 ident: bib50 article-title: Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations publication-title: J. Eng. Med. – volume: 54 start-page: 205 year: 2007 end-page: 211 ident: bib34 article-title: A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy publication-title: IEEE Trans. Biomed. Eng. – year: 2010 ident: bib39 article-title: Automated EEG-based Diagnosis of Neurological Disorders - Inventing the Future of Neurology – volume: 55 start-page: 512 year: 2008 end-page: 518 ident: bib38 article-title: Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection publication-title: IEEE Trans. Biomed. Eng. – volume: 114 start-page: 237 year: 2017 end-page: 244 ident: bib15 article-title: Supervised deep restricted boltzmann machine for estimation of concrete compressive strength publication-title: ACI Mater. J. – volume: 21 start-page: 199 year: 2011 end-page: 211 ident: bib47 article-title: Application of recurrence quantification analysis for the automated identification of epileptic EEG signals publication-title: Int. J. Neural Syst. – volume: 22 start-page: 1250027-1 year: 2012 end-page: 1250027-16 ident: bib59 article-title: Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals publication-title: Int. J. Neural Syst. – reference: International League Against Epilepsy (ILAE).dd – volume: 26 start-page: 1550031 year: 2016 ident: bib36 article-title: A general approach for quantifying nonlinear connectivity in the nervous system based on phase coupling publication-title: Int. J. Neural Syst. – year: 2012 ident: bib12 article-title: ImageNet classification with deep convolutional neural networks publication-title: Neural Information Processing Systems Conference – volume: 25 start-page: 1550037 year: 2015 ident: bib35 article-title: Assembling a multi-feature EEG classifier for left-right motor data using wavelet-based fuzzy approximate entropy for improved accuracy publication-title: Int. J. Neural Syst. – volume: 38 start-page: 10425 year: 2011 end-page: 10436 ident: bib55 article-title: Automatic feature extraction using genetic programming: an application to epileptic EEG classification publication-title: Expert Syst. Appl. – year: 2017 ident: bib30 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. – volume: 5 start-page: 287 year: 1993 end-page: 302 ident: bib32 article-title: Parallel backpropagation learning algorithms on cray Y-MP8/864 supercomputer publication-title: Neurocomputing – year: 2017 ident: bib25 article-title: Segmentation of optic disc, fovea, and retinal vasculature using a single convolutional neural network publication-title: J. Comput. Sci. – start-page: 1026 year: 2015 end-page: 1034 ident: bib31 article-title: Delving Deep into Rectifiers: Surpassing Human-level Performance on Image Net Classification – volume: 26 start-page: 1650011 year: 2016 ident: bib58 article-title: Epileptic seizure detection with log-euclidean gaussian kernel-based sparse representation publication-title: Int. J. Neural Syst. – volume: 26 start-page: 5 year: 2016 ident: bib42 article-title: Enhancement of spike-timing dependent plasticity in spiking neural systems with noise publication-title: Int. J. Neural Syst. – year: 2017 ident: bib29 article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network publication-title: Knowl. Base. Syst. – volume: 223 start-page: 485 year: 2009 end-page: 495 ident: bib51 article-title: Automatic identification of epileptic electroencephalography signals using higher-order spectra publication-title: J. Eng. Med. – volume: 405 start-page: 81 year: 2017 end-page: 90 ident: bib28 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inf. Sci. – volume: 25 start-page: 1550029 year: 2015 ident: bib54 article-title: Distributed one-class support vector machine publication-title: Int. J. Neural Syst. – year: 2013 ident: bib20 article-title: Computational Intelligence - Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing – volume: 26 start-page: 5 year: 2016 ident: bib40 article-title: Oscillation-driven spike-timing dependent plasticity allows multiple overlapping pattern recognition in inhibitory interneuron networks publication-title: Int. J. Neural Syst. – year: 2001 ident: bib33 article-title: Pattern Classification 2nd Edition – volume: 7 year: 2012 ident: bib45 article-title: Automated diagnosis of epileptic EEG using entropies publication-title: Biomed. Signal Process. Control – volume: 22 start-page: 1250002-1 year: 2012 end-page: 1250002-14 ident: bib46 article-title: Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals publication-title: Int. J. Neural Syst. – volume: 19 start-page: 295 year: 2009 end-page: 308 ident: bib60 article-title: Spiking neural networks publication-title: Int. J. Neural Syst. – volume: 94 start-page: 172 year: 2017 end-page: 179 ident: bib63 article-title: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension publication-title: Pattern Recognit. Lett. – volume: 69 year: 2007 ident: bib6 article-title: Quality standards subcommittee of the american academy of neurology publication-title: Neurology – volume: 123 start-page: 69 year: 2003 end-page: 87 ident: bib7 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: J. Neurosci. Meth. – start-page: 1 year: 2017 end-page: 20 ident: bib24 article-title: Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships publication-title: Med. Biol. Eng. Comput. – volume: 36 start-page: 193 year: 1980 end-page: 202 ident: bib21 article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybern. – volume: 25 start-page: 1550020 year: 2015 ident: bib56 article-title: Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial EEG publication-title: Int. J. Neural Syst. – volume: 35 start-page: 1160 year: 2016 end-page: 1169 ident: bib26 article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks publication-title: IEEE Trans. Med. Imag. – volume: 39 start-page: 9072 year: 2012 end-page: 9078 ident: bib48 article-title: Use of principal component analysis for automatic detection of epileptic EEG activities publication-title: Expert Syst. Appl. – volume: 20 start-page: 159 year: 2010 end-page: 176 ident: bib53 article-title: Automatic identification of epileptic and background EEG signals using frequency domain parameters publication-title: Int. J. Neural Syst. – ident: bib2 article-title: Facts and Figures – year: 2017 ident: bib1 article-title: Epilepsy – volume: 7 start-page: 385 year: 2017 ident: bib62 article-title: Tunable-Q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals publication-title: Appl. Signal Process. Meth. Syst. Anal. Physiol. Health – reference: . – volume: 35 start-page: 1240 year: 2016 end-page: 1251 ident: bib23 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans. Med. Imag. – volume: 21 start-page: 403 year: 2011 end-page: 414 ident: bib49 article-title: Automatic detection of epileptic EEG signals using higher order cumulants features publication-title: Int. J. Neural Syst. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib11 article-title: Deep learning publication-title: Nature – volume: 35 start-page: 1563 year: 2010 end-page: 1571 ident: bib52 article-title: Application of higher order spectra to identify epileptic EEG publication-title: J. Med. Syst. – volume: 45 start-page: 147 year: 2013 ident: 10.1016/j.compbiomed.2017.09.017_bib8 article-title: Automated EEG analysis of epilepsy: a review publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2013.02.014 – year: 2017 ident: 10.1016/j.compbiomed.2017.09.017_bib25 article-title: Segmentation of optic disc, fovea, and retinal vasculature using a single convolutional neural network publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.02.006 – volume: 54 start-page: 205 issue: 2 year: 2007 ident: 10.1016/j.compbiomed.2017.09.017_bib34 article-title: A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.886855 – volume: 26 start-page: 1650011 issue: 3 year: 2016 ident: 10.1016/j.compbiomed.2017.09.017_bib58 article-title: Epileptic seizure detection with log-euclidean gaussian kernel-based sparse representation publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500118 – start-page: 1026 year: 2015 ident: 10.1016/j.compbiomed.2017.09.017_bib31 – year: 2001 ident: 10.1016/j.compbiomed.2017.09.017_bib33 – volume: 26 start-page: 5 year: 2016 ident: 10.1016/j.compbiomed.2017.09.017_bib42 article-title: Enhancement of spike-timing dependent plasticity in spiking neural systems with noise publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065715500409 – year: 2014 ident: 10.1016/j.compbiomed.2017.09.017_bib3 – volume: 22 start-page: 1250027-1 issue: 6 year: 2012 ident: 10.1016/j.compbiomed.2017.09.017_bib59 article-title: Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals publication-title: Int. J. Neural Syst. doi: 10.1142/S012906571250027X – volume: 64 start-page: 061907 year: 2001 ident: 10.1016/j.compbiomed.2017.09.017_bib19 article-title: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.061907 – volume: 26 start-page: 1550031 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2017.09.017_bib36 article-title: A general approach for quantifying nonlinear connectivity in the nervous system based on phase coupling publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065715500318 – volume: 223 start-page: 485 issue: 4 year: 2009 ident: 10.1016/j.compbiomed.2017.09.017_bib51 article-title: Automatic identification of epileptic electroencephalography signals using higher-order spectra publication-title: J. Eng. Med. doi: 10.1243/09544119JEIM484 – volume: 25 start-page: 1550028 issue: 6 year: 2015 ident: 10.1016/j.compbiomed.2017.09.017_bib57 article-title: Online epileptic seizure prediction using wavelet-based bi-phase correlation of electrical signal tomography publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065715500288 – volume: 69 issue: 21 year: 2007 ident: 10.1016/j.compbiomed.2017.09.017_bib6 article-title: Quality standards subcommittee of the american academy of neurology publication-title: Neurology – volume: 35 start-page: 1563 issue: 6 year: 2010 ident: 10.1016/j.compbiomed.2017.09.017_bib52 article-title: Application of higher order spectra to identify epileptic EEG publication-title: J. Med. Syst. doi: 10.1007/s10916-010-9433-z – volume: 55 start-page: 512 issue: 2 year: 2008 ident: 10.1016/j.compbiomed.2017.09.017_bib38 article-title: Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.905490 – volume: 25 start-page: 1550029 issue: 7 year: 2015 ident: 10.1016/j.compbiomed.2017.09.017_bib54 article-title: Distributed one-class support vector machine publication-title: Int. J. Neural Syst. doi: 10.1142/S012906571550029X – volume: 35 start-page: 1160 issue: 5 year: 2016 ident: 10.1016/j.compbiomed.2017.09.017_bib26 article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2016.2536809 – volume: 15 year: 2010 ident: 10.1016/j.compbiomed.2017.09.017_bib16 article-title: Deep sparse rectifier neural networks publication-title: J. Mach. Learn. Res. – year: 2010 ident: 10.1016/j.compbiomed.2017.09.017_bib39 – volume: 415–416 start-page: 190 year: 2017 ident: 10.1016/j.compbiomed.2017.09.017_bib27 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.06.027 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.compbiomed.2017.09.017_bib11 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 22 start-page: 1250002-1 issue: 2 year: 2012 ident: 10.1016/j.compbiomed.2017.09.017_bib46 article-title: Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065712500025 – volume: 123 start-page: 69 issue: 1 year: 2003 ident: 10.1016/j.compbiomed.2017.09.017_bib7 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: J. Neurosci. Meth. doi: 10.1016/S0165-0270(02)00340-0 – volume: 21 start-page: 403 issue: 5 year: 2011 ident: 10.1016/j.compbiomed.2017.09.017_bib49 article-title: Automatic detection of epileptic EEG signals using higher order cumulants features publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065711002912 – volume: 26 start-page: 7 year: 2016 ident: 10.1016/j.compbiomed.2017.09.017_bib13 article-title: Ensembles of deep learning architectures for the early diagnosis of alzheimer's disease publication-title: Int. J. Neural Syst. – volume: 26 start-page: 5 year: 2016 ident: 10.1016/j.compbiomed.2017.09.017_bib40 article-title: Oscillation-driven spike-timing dependent plasticity allows multiple overlapping pattern recognition in inhibitory interneuron networks publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500209 – volume: 21 start-page: 199 issue: 3 year: 2011 ident: 10.1016/j.compbiomed.2017.09.017_bib47 article-title: Application of recurrence quantification analysis for the automated identification of epileptic EEG signals publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065711002808 – volume: 36 start-page: 193 year: 1980 ident: 10.1016/j.compbiomed.2017.09.017_bib21 article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybern. doi: 10.1007/BF00344251 – volume: 114 start-page: 237 issue: 2 year: 2017 ident: 10.1016/j.compbiomed.2017.09.017_bib15 article-title: Supervised deep restricted boltzmann machine for estimation of concrete compressive strength publication-title: ACI Mater. J. – volume: 39 start-page: 9072 issue: 10 year: 2012 ident: 10.1016/j.compbiomed.2017.09.017_bib48 article-title: Use of principal component analysis for automatic detection of epileptic EEG activities publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.040 – start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2017.09.017_bib24 article-title: Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships publication-title: Med. Biol. Eng. Comput. – volume: 26 start-page: 56 year: 2015 ident: 10.1016/j.compbiomed.2017.09.017_bib9 article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis publication-title: Seizure doi: 10.1016/j.seizure.2015.01.012 – volume: 5 start-page: 287 issue: 6 year: 1993 ident: 10.1016/j.compbiomed.2017.09.017_bib32 article-title: Parallel backpropagation learning algorithms on cray Y-MP8/864 supercomputer publication-title: Neurocomputing doi: 10.1016/0925-2312(93)90042-2 – volume: 25 start-page: 1550037 issue: 8 year: 2015 ident: 10.1016/j.compbiomed.2017.09.017_bib35 article-title: Assembling a multi-feature EEG classifier for left-right motor data using wavelet-based fuzzy approximate entropy for improved accuracy publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065715500379 – volume: 14 start-page: 187 issue: 3 year: 2007 ident: 10.1016/j.compbiomed.2017.09.017_bib43 article-title: Improved spiking neural networks for EEG classification and epilepsy and seizure detection publication-title: Integr. Computer-Aided Eng. doi: 10.3233/ICA-2007-14301 – volume: 142 start-page: 04015066 issue: 2 year: 2016 ident: 10.1016/j.compbiomed.2017.09.017_bib14 article-title: A novel machine learning model for estimation of sale prices of real estate units publication-title: Construct. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001047 – year: 2016 ident: 10.1016/j.compbiomed.2017.09.017_bib5 – year: 2013 ident: 10.1016/j.compbiomed.2017.09.017_bib20 – volume: 7 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2017.09.017_bib45 article-title: Automated diagnosis of epileptic EEG using entropies publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2011.07.007 – year: 2017 ident: 10.1016/j.compbiomed.2017.09.017_bib29 article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network publication-title: Knowl. Base. Syst. doi: 10.1016/j.knosys.2017.06.003 – volume: 25 start-page: 1550020 issue: 6 year: 2015 ident: 10.1016/j.compbiomed.2017.09.017_bib56 article-title: Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial EEG publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065715500203 – volume: 94 start-page: 172 year: 2017 ident: 10.1016/j.compbiomed.2017.09.017_bib63 article-title: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.03.023 – volume: 405 start-page: 81 year: 2017 ident: 10.1016/j.compbiomed.2017.09.017_bib28 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.04.012 – volume: 35 start-page: 1240 issue: 5 year: 2016 ident: 10.1016/j.compbiomed.2017.09.017_bib23 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2016.2538465 – year: 2017 ident: 10.1016/j.compbiomed.2017.09.017_bib30 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.022 – year: 2017 ident: 10.1016/j.compbiomed.2017.09.017_bib1 – year: 2016 ident: 10.1016/j.compbiomed.2017.09.017_bib17 – volume: 35 start-page: 1322 issue: 5 year: 2016 ident: 10.1016/j.compbiomed.2017.09.017_bib22 article-title: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2016.2532122 – volume: 54 start-page: 1545 issue: 9 year: 2007 ident: 10.1016/j.compbiomed.2017.09.017_bib37 article-title: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.891945 – volume: 9 start-page: 539 issue: 4 year: 2009 ident: 10.1016/j.compbiomed.2017.09.017_bib44 article-title: Automatic identification of epileptic EEG signals using nonlinear parameters publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519409003152 – ident: 10.1016/j.compbiomed.2017.09.017_bib2 – volume: 22 start-page: 1419 year: 2009 ident: 10.1016/j.compbiomed.2017.09.017_bib41 article-title: A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.04.003 – volume: 18 start-page: 570 issue: 4 year: 2017 ident: 10.1016/j.compbiomed.2017.09.017_bib18 article-title: Deep learning in medical imaging: general overview publication-title: Korean J. Radiol. doi: 10.3348/kjr.2017.18.4.570 – volume: 38 start-page: 10425 year: 2011 ident: 10.1016/j.compbiomed.2017.09.017_bib55 article-title: Automatic feature extraction using genetic programming: an application to epileptic EEG classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.118 – volume: 64 start-page: 2003 issue: 9 year: 2017 ident: 10.1016/j.compbiomed.2017.09.017_bib61 article-title: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2650259 – volume: 19 start-page: 295 issue: 4 year: 2009 ident: 10.1016/j.compbiomed.2017.09.017_bib60 article-title: Spiking neural networks publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065709002002 – volume: 88 start-page: 85 year: 2015 ident: 10.1016/j.compbiomed.2017.09.017_bib10 article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2015.08.004 – year: 2012 ident: 10.1016/j.compbiomed.2017.09.017_bib12 article-title: ImageNet classification with deep convolutional neural networks – volume: 227 issue: 3 year: 2012 ident: 10.1016/j.compbiomed.2017.09.017_bib50 article-title: Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations publication-title: J. Eng. Med. – volume: 20 start-page: 159 issue: 2 year: 2010 ident: 10.1016/j.compbiomed.2017.09.017_bib53 article-title: Automatic identification of epileptic and background EEG signals using frequency domain parameters publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065710002334 – volume: 7 start-page: 385 issue: 4 year: 2017 ident: 10.1016/j.compbiomed.2017.09.017_bib62 article-title: Tunable-Q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals publication-title: Appl. Signal Process. Meth. Syst. Anal. Physiol. Health – ident: 10.1016/j.compbiomed.2017.09.017_bib4 |
SSID | ssj0004030 |
Score | 2.6759028 |
Snippet | An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 270 |
SubjectTerms | Abnormalities Accuracy Algorithms Artificial neural networks Automation Brain Brain research Convolutional neural network Decomposition Deep learning Diagnosis Diagnosis, Computer-Assisted EEG Electroencephalography Encephalogram signals Entropy Epilepsy Epilepsy - physiopathology Female Humans Learning algorithms Machine Learning Male Medical diagnosis Neural networks Neural Networks (Computer) Patients Principal components analysis Researchers Seizure Seizures Seizures - physiopathology Signal Processing, Computer-Assisted Wavelet transforms |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96gvgifrt6SgRfC2napAk-iOieh3A-ebBvIV_VE2n3rt0X_3pnknT3RWUppZRmSptMkt8kv5kh5G3TiT4IravWRlm1UrjKKlxtCs5xz3srU7Dqi6_y_LL9shGbsuA2FVrlMiamgTqMHtfIwUhXLR6tfr-9rjBrFO6ulhQat8kdDF2GlK5u0x38IlmTXVBgrGnBFCpMnszvQsp2dnFHgleXop2mtGV_nZ7-BT_TNHT2gNwv-JF-yA3-kNyKwyNy96LskD8mPz7FuKXIJS86BYUxZmW6JMY3BZhKAfZRu5tHwKsx0BDnxMgaqB3gLrPvriY69nSKV793N5EiP_47Xa8_U2R8gM4-IZdn628fz6uSTaHygou5chiZzAenubIyMm-Zr6OSjosYhKud4MF3tQ3RKt4EV8PJJLe9AsTWO-aap-RkGIf4nNAQmFeau8bFrgWTxPVSOSuVb1gfnGhXpFsq0fgSahwzXvwyC6fspzlUv8HqN0wbuKxIvZfc5nAbR8jopZ3M4k4KA6CBOeEI2Xd72QI5MpQ4Uvp0UQtTuv5kDoq6Im_2j6HT4k6MHeK4m0yt245pxbHMs6xO-98FCxhQHeMv_v_yl-QefInKdLdTcjLf7OIrwEeze506wR8GfhHf priority: 102 providerName: ProQuest |
Title | Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482517303153 https://dx.doi.org/10.1016/j.compbiomed.2017.09.017 https://www.ncbi.nlm.nih.gov/pubmed/28974302 https://www.proquest.com/docview/2084848449 https://www.proquest.com/docview/1947098249 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg7GXse9l_UCDvXqVZcmW2VPXJs02GsZYIW9CsuQtpTihcV76sL99d5KcMtggMIwlZOlAPp9OJ-t3J0LeFZVsnazrTBhfZqKUNjMK_zY5a3nDW1OGYNWXs3J6JT7P5XyPnA2-MAirTLo_6vSgrdOTk8TNk9VigT6-sJRAz0sQ0gIGLnqwiwql_P2ve5iHYEV0QwF9g60TmidivBC2Hd3cEeRVhYin4eiyv05R_zJBw1Q0eUIeJxuSnsZuPiV7vntGHl6mXfLn5Oe59yuKePIkV9AY41aGLKC-KZiqFEw_ajb9EmxW76jzfUBlddR0UIoIvMWaLlu69ou7za2niJH_QcfjC4qoD5DbF-RqMv5-Ns3SiQpZI7nsM4vRyRpna65M6VljWJN7VVouvZM2t5K7psqN80bxwtkcblZy0yqw2lrLbPGS7HfLzr8m1DnWqJrbwvpKwLLEtqWyplRNwVpnpRiRamCiblK4cTz14kYPuLJrfc9-jezXrNaQjUi-pVzFkBs70NTDd9KDSykoQQ3zwg60H7a0f4jejtSHg1joNPzXUK8EXqIekbfbahi4uBtjOr_crHVei4rVimObV1Gctq8Lq2Cw7Bh_819dOyCPoKQiIu6Q7Pe3G38EJlRvj8MYgbSaV5CqycUxeXD66ct0BvnH8ezrt9_ENiIP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXxDeFAUaCx0iOYzu2EEKItevYuqdN2pvxV2AIJWVJheCP4m_kHCftC6C-TFUVRc1ZqXN3_l38uzuEXhUlrzxXKmMmiIwJbjMj49smby11tDKiL1a9OBHzM_bxnJ_voN9jLkykVY4-sXfUvnHxHTkE6ZLFD1Pvlt-z2DUq7q6OLTSSWhyFnz8gZGvfHu7D831N6Wx6-mGeDV0FMscp7zIbK3Q5bxWVRgTiDHF5kMJSHjy3ueXUuzI3PhhJC29z-BJBTSUBuVSW2ALGvYaus6JQ0aLk7GCTh0mKlPICvo1B6DUwhxKfLFLEU0p9JJSVfXXVvk3aX5fDf8Hdftmb3UG3B7yK3ycFu4t2Qn0P3VgMO_L30Zf9EJY4ctcHHYaLY43M_tAzzDHAYgwwE5tV1wA-Dh770PUMsBqbGs4S2--ixU2F23Dxa3UZcOTjf8bT6QGODBOwkQfo7Erm-SHarZs6PEbYe-KkorawoWQQAtlKSGuEdAWpvOVsgspxErUbSpvHDhvf9Mhh-6o306_j9GuiNBwmKF9LLlN5jy1k1Pic9Ji-Cg5Xwxq0heybtewAcRJ02VJ6b1QLPbiaVm8MY4Jern8GJxF3fkwdmlWrc8VKoiSN1zxK6rT-uxBxA4ok9Mn_B3-Bbs5PF8f6-PDk6Cm6BXclE9VuD-12l6vwDLBZZ5_3BoHRp6u2wD_W7FCR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeEN8rDDASPEY4Tuw4Qggh2rIxNvHApL4ZfwWGUFKWVAj-NP46zh9pXwD1ZaqqKGrOSp278-_i390h9LSoWGNZXWelcjwrOdOZEv5tk9WaGtooHopVn5zyw7Py3YItdtDvMRfG0ypHnxgcte2Mf0cOQboo_aesnzeJFvFhOn-1_J75DlJ-p3VspxFV5Nj9_AHhW__yaArP-hml89nHN4dZ6jCQGUbZkGlfrctYXVOhuCNGEZM7wTVlzjKda0atqXJlnRK0sDqHL-FUNQJQTKOJLmDcK-hqVbDc21i1qDY5maSI6S_g50oIwxKLKHLLPF08ptd7clkVKq2Glml_XRr_BX3DEji_ga4n7IpfR2W7iXZcewvtnaTd-dvoy9S5JfY89qTPcLGvlxkOgW2OASJjgJxYrYYOsLKz2LohsMFarFo4i8y_8x53De7d-a_VhcOem_8Zz2ZvsWebgL3cQWeXMs930W7btW4fYWuJETXVhXZVCeGQbrjQigtTkMZqVk5QNU6iNKnMue-28U2OfLavcjP90k-_JLWEwwTla8llLPWxhUw9Pic5prKC85WwHm0h-2Itm-BOhDFbSh-MaiGT2-nlxkgm6Mn6Z3AYfhdIta5b9TKvy4rUgvpr7kV1Wv9diL4BURJ6__-DP0Z7YHvy_dHp8QN0DW5KRNbdAdodLlbuIcC0QT8K9oDRp8s2wD8eBlS- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+convolutional+neural+network+for+the+automated+detection+and+diagnosis+of+seizure+using+EEG+signals&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Acharya%2C+U.+Rajendra&rft.au=Oh%2C+Shu+Lih&rft.au=Hagiwara%2C+Yuki&rft.au=Tan%2C+Jen+Hong&rft.date=2018-09-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=100&rft.spage=270&rft.epage=278&rft_id=info:doi/10.1016%2Fj.compbiomed.2017.09.017&rft.externalDocID=S0010482517303153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |