Role of ion-pair interactions on asphaltene stabilization by alkylbenzenesulfonic acids

[Display omitted] •Asphaltene interactions with DBSA and alkylphenols are different.•Flocculates with DBSA consist of thick filaments with short lateral ramifications.•DBSA promoted the formation of large and compact flocculates.•Flocculation mechanism driven by ion-pair interactions was proposed. T...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 440; pp. 23 - 31
Main Authors Goual, Lamia, Sedghi, Mohammad
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Asphaltene interactions with DBSA and alkylphenols are different.•Flocculates with DBSA consist of thick filaments with short lateral ramifications.•DBSA promoted the formation of large and compact flocculates.•Flocculation mechanism driven by ion-pair interactions was proposed. The dispersion of asphaltenes by dodecylbenzenesulfonic acid (DBSA) has been the subject of several studies in the past. However, it is unclear how these interactions affect the structure of asphaltenes and why asphaltene aggregates are larger in the presence of ionic DBSA. The main goal of this study was to address these points using a combination of high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) simulations. Another objective was to compare ionic DBSA (i.e., dodecylbenzenesulfonate or DBS−) to nonionic amphiphiles such as alkylphenols. A striking similarity between dodecylbenzenesulfonate and alkylphenols was that both favored the formation of filamentary rather than globular asphaltene flocculates. However the mechanism by which those filaments formed was very different. Two strong electrostatic interactions between DBSA and asphaltenes were found: (i) those between protonated asphaltenes (i.e., AH+) and DBS− molecules, which were fifteen times stronger than asphaltene–alkylphenol interactions, and (ii) those between two asphaltene–dispersant pairs (i.e., AH+–DBS− ion pairs), which did not exist with alkylphenols. These interactions promoted the formation of large and compact asphaltene flocculates, as compared to small and loose ones formed without DBSA. Flocculates with DBSA could further bind to each other through ion-pair interactions. The binding occurred in series (generating long filaments) or in parallel (generating lateral ramifications). However the series configuration was energetically favored due to less steric effects generated by the side aliphatic chains of asphaltenes and DBSA.
AbstractList The dispersion of asphaltenes by dodecylbenzenesulfonic acid (DBSA) has been the subject of several studies in the past. However, it is unclear how these interactions affect the structure of asphaltenes and why asphaltene aggregates are larger in the presence of ionic DBSA. The main goal of this study was to address these points using a combination of high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) simulations. Another objective was to compare ionic DBSA (i.e., dodecylbenzenesulfonate or DBS(-)) to nonionic amphiphiles such as alkylphenols. A striking similarity between dodecylbenzenesulfonate and alkylphenols was that both favored the formation of filamentary rather than globular asphaltene flocculates. However the mechanism by which those filaments formed was very different. Two strong electrostatic interactions between DBSA and asphaltenes were found: (i) those between protonated asphaltenes (i.e., AH(+)) and DBS(-) molecules, which were fifteen times stronger than asphaltene-alkylphenol interactions, and (ii) those between two asphaltene-dispersant pairs (i.e., AH(+)-DBS(-) ion pairs), which did not exist with alkylphenols. These interactions promoted the formation of large and compact asphaltene flocculates, as compared to small and loose ones formed without DBSA. Flocculates with DBSA could further bind to each other through ion-pair interactions. The binding occurred in series (generating long filaments) or in parallel (generating lateral ramifications). However the series configuration was energetically favored due to less steric effects generated by the side aliphatic chains of asphaltenes and DBSA.The dispersion of asphaltenes by dodecylbenzenesulfonic acid (DBSA) has been the subject of several studies in the past. However, it is unclear how these interactions affect the structure of asphaltenes and why asphaltene aggregates are larger in the presence of ionic DBSA. The main goal of this study was to address these points using a combination of high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) simulations. Another objective was to compare ionic DBSA (i.e., dodecylbenzenesulfonate or DBS(-)) to nonionic amphiphiles such as alkylphenols. A striking similarity between dodecylbenzenesulfonate and alkylphenols was that both favored the formation of filamentary rather than globular asphaltene flocculates. However the mechanism by which those filaments formed was very different. Two strong electrostatic interactions between DBSA and asphaltenes were found: (i) those between protonated asphaltenes (i.e., AH(+)) and DBS(-) molecules, which were fifteen times stronger than asphaltene-alkylphenol interactions, and (ii) those between two asphaltene-dispersant pairs (i.e., AH(+)-DBS(-) ion pairs), which did not exist with alkylphenols. These interactions promoted the formation of large and compact asphaltene flocculates, as compared to small and loose ones formed without DBSA. Flocculates with DBSA could further bind to each other through ion-pair interactions. The binding occurred in series (generating long filaments) or in parallel (generating lateral ramifications). However the series configuration was energetically favored due to less steric effects generated by the side aliphatic chains of asphaltenes and DBSA.
The dispersion of asphaltenes by dodecylbenzenesulfonic acid (DBSA) has been the subject of several studies in the past. However, it is unclear how these interactions affect the structure of asphaltenes and why asphaltene aggregates are larger in the presence of ionic DBSA. The main goal of this study was to address these points using a combination of high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) simulations. Another objective was to compare ionic DBSA (i.e., dodecylbenzenesulfonate or DBS(-)) to nonionic amphiphiles such as alkylphenols. A striking similarity between dodecylbenzenesulfonate and alkylphenols was that both favored the formation of filamentary rather than globular asphaltene flocculates. However the mechanism by which those filaments formed was very different. Two strong electrostatic interactions between DBSA and asphaltenes were found: (i) those between protonated asphaltenes (i.e., AH(+)) and DBS(-) molecules, which were fifteen times stronger than asphaltene-alkylphenol interactions, and (ii) those between two asphaltene-dispersant pairs (i.e., AH(+)-DBS(-) ion pairs), which did not exist with alkylphenols. These interactions promoted the formation of large and compact asphaltene flocculates, as compared to small and loose ones formed without DBSA. Flocculates with DBSA could further bind to each other through ion-pair interactions. The binding occurred in series (generating long filaments) or in parallel (generating lateral ramifications). However the series configuration was energetically favored due to less steric effects generated by the side aliphatic chains of asphaltenes and DBSA.
The dispersion of asphaltenes by dodecylbenzenesulfonic acid (DBSA) has been the subject of several studies in the past. However, it is unclear how these interactions affect the structure of asphaltenes and why asphaltene aggregates are larger in the presence of ionic DBSA. The main goal of this study was to address these points using a combination of high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) simulations. Another objective was to compare ionic DBSA (i.e., dodecylbenzenesulfonate or DBS⁻) to nonionic amphiphiles such as alkylphenols. A striking similarity between dodecylbenzenesulfonate and alkylphenols was that both favored the formation of filamentary rather than globular asphaltene flocculates. However the mechanism by which those filaments formed was very different. Two strong electrostatic interactions between DBSA and asphaltenes were found: (i) those between protonated asphaltenes (i.e., AH⁺) and DBS⁻ molecules, which were fifteen times stronger than asphaltene–alkylphenol interactions, and (ii) those between two asphaltene–dispersant pairs (i.e., AH⁺–DBS⁻ ion pairs), which did not exist with alkylphenols. These interactions promoted the formation of large and compact asphaltene flocculates, as compared to small and loose ones formed without DBSA. Flocculates with DBSA could further bind to each other through ion-pair interactions. The binding occurred in series (generating long filaments) or in parallel (generating lateral ramifications). However the series configuration was energetically favored due to less steric effects generated by the side aliphatic chains of asphaltenes and DBSA.
[Display omitted] •Asphaltene interactions with DBSA and alkylphenols are different.•Flocculates with DBSA consist of thick filaments with short lateral ramifications.•DBSA promoted the formation of large and compact flocculates.•Flocculation mechanism driven by ion-pair interactions was proposed. The dispersion of asphaltenes by dodecylbenzenesulfonic acid (DBSA) has been the subject of several studies in the past. However, it is unclear how these interactions affect the structure of asphaltenes and why asphaltene aggregates are larger in the presence of ionic DBSA. The main goal of this study was to address these points using a combination of high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) simulations. Another objective was to compare ionic DBSA (i.e., dodecylbenzenesulfonate or DBS−) to nonionic amphiphiles such as alkylphenols. A striking similarity between dodecylbenzenesulfonate and alkylphenols was that both favored the formation of filamentary rather than globular asphaltene flocculates. However the mechanism by which those filaments formed was very different. Two strong electrostatic interactions between DBSA and asphaltenes were found: (i) those between protonated asphaltenes (i.e., AH+) and DBS− molecules, which were fifteen times stronger than asphaltene–alkylphenol interactions, and (ii) those between two asphaltene–dispersant pairs (i.e., AH+–DBS− ion pairs), which did not exist with alkylphenols. These interactions promoted the formation of large and compact asphaltene flocculates, as compared to small and loose ones formed without DBSA. Flocculates with DBSA could further bind to each other through ion-pair interactions. The binding occurred in series (generating long filaments) or in parallel (generating lateral ramifications). However the series configuration was energetically favored due to less steric effects generated by the side aliphatic chains of asphaltenes and DBSA.
The dispersion of asphaltenes by dodecylbenzenesulfonic acid (DBSA) has been the subject of several studies in the past. However, it is unclear how these interactions affect the structure of asphaltenes and why asphaltene aggregates are larger in the presence of ionic DBSA. The main goal of this study was to address these points using a combination of high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) simulations. Another objective was to compare ionic DBSA (i.e., dodecylbenzenesulfonate or DBS super(-)) to nonionic amphiphiles such as alkylphenols. A striking similarity between dodecylbenzenesulfonate and alkylphenols was that both favored the formation of filamentary rather than globular asphaltene flocculates. However the mechanism by which those filaments formed was very different. Two strong electrostatic interactions between DBSA and asphaltenes were found: (i) those between protonated asphaltenes (i.e., AH super(+)) and DBS super(-) molecules, which were fifteen times stronger than asphaltene-alkylphenol interactions, and (ii) those between two asphaltene-dispersant pairs (i.e., AH super(+)-DBS super(-) ion pairs), which did not exist with alkylphenols. These interactions promoted the formation of large and compact asphaltene flocculates, as compared to small and loose ones formed without DBSA. Flocculates with DBSA could further bind to each other through ion-pair interactions. The binding occurred in series (generating long filaments) or in parallel (generating lateral ramifications). However the series configuration was energetically favored due to less steric effects generated by the side aliphatic chains of asphaltenes and DBSA.
Author Sedghi, Mohammad
Goual, Lamia
Author_xml – sequence: 1
  givenname: Lamia
  surname: Goual
  fullname: Goual, Lamia
  email: lgoual@uwyo.edu
– sequence: 2
  givenname: Mohammad
  surname: Sedghi
  fullname: Sedghi, Mohammad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25460685$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuLFDEUhYOMzPS08wdcSC3dVHvzrCpwI4MvGBgQxWVIpW4wbTppk7TQ8-utskcXLsZZBc79vizOuSRnMUUk5DmFDQWqXm03W-vLhgEVc7ABwZ-QFYVBth0FfkZWAIy2Qzd0F-SylC0ApVIO5-SCSaFA9XJFvn5KAZvkGp9iuzc-Nz5WzMbWOShNio0p-28mVIzYlGpGH_ydWY7NeGxM-H4MI8a7-VoOwaXobWOsn8oz8tSZUPDq_l2TL-_efr7-0N7cvv94_eamtZLJ2ho7dTjaYRKMK94pZftOOHQOBnSMdWJko7BmctYAReCCCorK9UA5SBg7viYvT__uc_pxwFL1zheLIZiI6VA0m5viUnLF_otSpYZeSA7wCJSLjik502vy4h49jDuc9D77nclH_afiGWAnwOZUSkb3F6Gglx31Vi876mXHJZt3nKX-H8n6-rv2mo0PD6uvTyrOtf_0mHWxHqPFyWe0VU_JP6T_Aj3EuIM
CitedBy_id crossref_primary_10_1016_j_molliq_2019_112125
crossref_primary_10_1021_acs_energyfuels_8b01933
crossref_primary_10_1016_j_colsurfa_2022_130865
crossref_primary_10_1021_acs_energyfuels_6b03333
crossref_primary_10_1002_app_55981
crossref_primary_10_1021_acs_energyfuels_6b01512
crossref_primary_10_1021_acs_energyfuels_1c02037
crossref_primary_10_1016_j_colsurfa_2021_127614
crossref_primary_10_1021_acs_energyfuels_8b04246
crossref_primary_10_1016_j_apsusc_2019_144516
crossref_primary_10_1016_j_nxmate_2024_100205
crossref_primary_10_1021_acs_energyfuels_5b01013
crossref_primary_10_3390_pr13010141
crossref_primary_10_1007_s13233_023_00122_z
crossref_primary_10_1016_j_molliq_2021_116897
crossref_primary_10_1021_acs_energyfuels_3c04561
crossref_primary_10_1080_10916466_2024_2399357
crossref_primary_10_1016_j_molliq_2022_119567
crossref_primary_10_1016_j_petrol_2019_106502
crossref_primary_10_1021_acs_energyfuels_2c01387
crossref_primary_10_1016_j_molliq_2023_122777
crossref_primary_10_1021_acs_energyfuels_0c04273
crossref_primary_10_1016_j_molliq_2023_122935
crossref_primary_10_1016_j_jmrt_2020_10_038
crossref_primary_10_1080_01932691_2022_2158850
crossref_primary_10_1021_acs_energyfuels_0c03466
crossref_primary_10_1016_j_molliq_2018_10_163
crossref_primary_10_1021_acs_energyfuels_8b03196
crossref_primary_10_1021_acs_energyfuels_2c00925
crossref_primary_10_1016_j_petrol_2021_108858
crossref_primary_10_1088_1755_1315_1271_1_012085
crossref_primary_10_1021_acs_energyfuels_9b00821
crossref_primary_10_1080_10916466_2023_2224825
crossref_primary_10_1016_j_fuel_2019_01_071
crossref_primary_10_1021_acsomega_2c07120
crossref_primary_10_1021_acs_energyfuels_7b00419
crossref_primary_10_17482_uumfd_881634
crossref_primary_10_1021_acs_energyfuels_0c02443
crossref_primary_10_1016_j_molliq_2022_120026
crossref_primary_10_3390_colloids7010003
crossref_primary_10_1021_acs_jpcc_6b11763
crossref_primary_10_1080_01932691_2016_1172972
crossref_primary_10_1080_10916466_2022_2091595
crossref_primary_10_1021_acs_energyfuels_9b03703
crossref_primary_10_1016_j_petrol_2020_107956
crossref_primary_10_1016_j_petrol_2019_01_004
crossref_primary_10_1021_acs_energyfuels_3c03056
crossref_primary_10_1021_acs_energyfuels_9b03504
crossref_primary_10_1016_j_molliq_2023_121347
crossref_primary_10_1080_01932691_2021_1980001
crossref_primary_10_1016_j_fuel_2018_08_124
crossref_primary_10_1016_j_fuel_2021_122194
Cites_doi 10.1016/j.colsurfa.2003.12.013
10.1021/ja9621760
10.1002/wcms.66
10.1016/S0378-3812(01)00702-6
10.1021/ef800706c
10.1016/j.petrol.2005.11.006
10.1021/ef401412w
10.1021/ef990111n
10.1016/j.jcis.2012.11.069
10.1016/j.fuel.2011.02.025
10.1002/jcc.540130812
10.1016/j.fluid.2014.02.021
10.1021/ef300365x
10.1021/ct700301q
10.1016/S0166-1280(97)00237-6
10.1021/ef000152f
10.1021/la500615k
10.1081/LFT-100106905
10.1021/jp401584u
10.1021/ef800860x
10.1021/la9812370
10.1021/ef401958n
10.1021/ef800872g
10.1039/c2sm26003d
10.1021/la00018a023
10.1021/la00018a022
10.1002/jcc.540140208
10.1002/aic.10041
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7U5
8FD
L7M
7S9
L.6
DOI 10.1016/j.jcis.2014.10.043
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 31
ExternalDocumentID 25460685
10_1016_j_jcis_2014_10_043
S002197971400808X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
NPM
7X8
EFKBS
7U5
8FD
L7M
7S9
L.6
ID FETCH-LOGICAL-c525t-acd7ebc9d42363766c874feff09ef2274b2b4cadfca01e034141e6f8013050b73
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Thu Jul 10 22:37:39 EDT 2025
Thu Jul 10 17:56:36 EDT 2025
Mon Jul 21 10:55:58 EDT 2025
Thu Apr 03 07:00:59 EDT 2025
Thu Apr 24 22:59:19 EDT 2025
Tue Jul 01 01:18:19 EDT 2025
Fri Feb 23 02:33:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Asphaltene
Molecular dynamics
DBSA
Dispersion
Ion-pair interaction
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-acd7ebc9d42363766c874feff09ef2274b2b4cadfca01e034141e6f8013050b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25460685
PQID 1634726545
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2101355362
proquest_miscellaneous_1669845300
proquest_miscellaneous_1634726545
pubmed_primary_25460685
crossref_primary_10_1016_j_jcis_2014_10_043
crossref_citationtrail_10_1016_j_jcis_2014_10_043
elsevier_sciencedirect_doi_10_1016_j_jcis_2014_10_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-15
PublicationDateYYYYMMDD 2015-02-15
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kaminski, Fogler, Wolf, Wattana, Mairal (b0060) 2000; 14
Chang, Fogler (b0015) 1994; 10
Rogel, Leon (b0050) 2001; 15
Sedghi, Goual, Welch, Kubelka (b0120) 2013; 117
Rocha, Ferreira, da Silva Ramos (b0035) 2006; 51
Sedghi, Goual (b0145) 2014; 369
Goual, Firoozabadi (b0075) 2004; 50
Goual, Sedghi, Wang, Zhu (b0010) 2014; 30
Chang, Fogler (b0005) 1994; 10
Mansur, de Melo, Lucas (b0065) 2012; 26
Jorgensen, McDonald (b0110) 1998; 424
Ostlund, Nyden, Fogler, Holmberg (b0055) 2004; 234
Headen, Boek, Skipper (b0115) 2009; 23
Hess, Kutzner, van der Spoel, Lindahl (b0095) 2008; 4
Goual (b0085) 2009; 23
American Society for Testing and Material, Annual Book of ASTM Standards, ASTM D2007, Philadelphia, PA, 1991.
Hashmi, Firoozabadi (b0070) 2013; 394
Al-Sahhaf, Fahim, Elkilano (b0030) 2002; 194–197
Goual, Sedghi, Zeng, Mostowfi, McFarlane, Mullins (b0090) 2011; 90
Jorgensen, Maxwell, Tirado-Rives (b0100) 1996; 118
Kraiwattanawong, Fogler, Gharfeh, Singh, Thomason, Chavadej (b0040) 2009; 23
Jorgensen, Laird, Nguyen, Tirado-Rive (b0105) 1993; 14
(b0140) 2000
Wu, Pomerantz, Mullins, Zare (b0150) 2014; 28
Hashmi, Zhong, Firoozabadi (b0045) 2012; 8
Majumdar, Gerken, Mikula, Hazendonk (b0125) 2013; 27
Kästner (b0130) 2011; 1
León, Rogel, Urbina, Andújar, Lucas (b0020) 1999; 15
Pillon (b0025) 2001; 19
Kumar, Bouzida, Swendsen, Kollman, Rosenberg (b0135) 1992; 13
Chang (10.1016/j.jcis.2014.10.043_b0005) 1994; 10
Rogel (10.1016/j.jcis.2014.10.043_b0050) 2001; 15
Kaminski (10.1016/j.jcis.2014.10.043_b0060) 2000; 14
Kästner (10.1016/j.jcis.2014.10.043_b0130) 2011; 1
Hashmi (10.1016/j.jcis.2014.10.043_b0045) 2012; 8
Ostlund (10.1016/j.jcis.2014.10.043_b0055) 2004; 234
Jorgensen (10.1016/j.jcis.2014.10.043_b0100) 1996; 118
Chang (10.1016/j.jcis.2014.10.043_b0015) 1994; 10
Jorgensen (10.1016/j.jcis.2014.10.043_b0105) 1993; 14
(10.1016/j.jcis.2014.10.043_b0140) 2000
Goual (10.1016/j.jcis.2014.10.043_b0085) 2009; 23
Sedghi (10.1016/j.jcis.2014.10.043_b0120) 2013; 117
Kraiwattanawong (10.1016/j.jcis.2014.10.043_b0040) 2009; 23
Al-Sahhaf (10.1016/j.jcis.2014.10.043_b0030) 2002; 194–197
Goual (10.1016/j.jcis.2014.10.043_b0090) 2011; 90
Jorgensen (10.1016/j.jcis.2014.10.043_b0110) 1998; 424
Goual (10.1016/j.jcis.2014.10.043_b0075) 2004; 50
Pillon (10.1016/j.jcis.2014.10.043_b0025) 2001; 19
Rocha (10.1016/j.jcis.2014.10.043_b0035) 2006; 51
Kumar (10.1016/j.jcis.2014.10.043_b0135) 1992; 13
Majumdar (10.1016/j.jcis.2014.10.043_b0125) 2013; 27
Wu (10.1016/j.jcis.2014.10.043_b0150) 2014; 28
Goual (10.1016/j.jcis.2014.10.043_b0010) 2014; 30
10.1016/j.jcis.2014.10.043_b0080
León (10.1016/j.jcis.2014.10.043_b0020) 1999; 15
Sedghi (10.1016/j.jcis.2014.10.043_b0145) 2014; 369
Hess (10.1016/j.jcis.2014.10.043_b0095) 2008; 4
Mansur (10.1016/j.jcis.2014.10.043_b0065) 2012; 26
Hashmi (10.1016/j.jcis.2014.10.043_b0070) 2013; 394
Headen (10.1016/j.jcis.2014.10.043_b0115) 2009; 23
References_xml – volume: 194–197
  start-page: 1045
  year: 2002
  end-page: 1057
  ident: b0030
  publication-title: Fluid Phase Equilib.
– volume: 10
  start-page: 1758
  year: 1994
  end-page: 1766
  ident: b0015
  publication-title: Langmuir
– volume: 27
  start-page: 6528
  year: 2013
  end-page: 6537
  ident: b0125
  publication-title: Energy Fuels
– volume: 13
  start-page: 1011
  year: 1992
  end-page: 1021
  ident: b0135
  publication-title: J. Comput. Chem.
– volume: 4
  start-page: 435
  year: 2008
  end-page: 447
  ident: b0095
  publication-title: J. Chem. Theory Comput.
– volume: 234
  start-page: 95
  year: 2004
  end-page: 102
  ident: b0055
  publication-title: Colloids Surf. A: Physicochem. Eng. Aspects
– volume: 30
  start-page: 5394
  year: 2014
  end-page: 5403
  ident: b0010
  publication-title: Langmuir
– volume: 90
  start-page: 2480
  year: 2011
  end-page: 2490
  ident: b0090
  publication-title: Fuel
– volume: 10
  start-page: 1749
  year: 1994
  end-page: 1757
  ident: b0005
  publication-title: Langmuir
– volume: 369
  start-page: 86
  year: 2014
  end-page: 94
  ident: b0145
  publication-title: Fluid Phase Equilib.
– volume: 23
  start-page: 1220
  year: 2009
  end-page: 1229
  ident: b0115
  publication-title: Energy Fuels
– reference: American Society for Testing and Material, Annual Book of ASTM Standards, ASTM D2007, Philadelphia, PA, 1991.
– volume: 14
  start-page: 206
  year: 1993
  end-page: 215
  ident: b0105
  publication-title: J. Comput. Chem.
– volume: 15
  start-page: 1077
  year: 2001
  end-page: 1086
  ident: b0050
  publication-title: Energy Fuels
– volume: 424
  start-page: 145
  year: 1998
  end-page: 155
  ident: b0110
  publication-title: J. Mol. Struct. (Theochem)
– volume: 14
  start-page: 25
  year: 2000
  end-page: 30
  ident: b0060
  publication-title: Energy Fuels
– volume: 26
  start-page: 4988
  year: 2012
  end-page: 4994
  ident: b0065
  publication-title: Addit. Temp. Energy Fuels
– volume: 51
  start-page: 26
  year: 2006
  end-page: 36
  ident: b0035
  publication-title: J. Petrol. Sci. Eng.
– volume: 118
  start-page: 11225
  year: 1996
  end-page: 11236
  ident: b0100
  publication-title: J. Am. Chem. Soc.
– year: 2000
  ident: b0140
  publication-title: Equations of state for Fluids and Fluid Mixtures
– volume: 117
  start-page: 5765
  year: 2013
  end-page: 5776
  ident: b0120
  publication-title: J. Phys. Chem. B
– volume: 28
  start-page: 475
  year: 2014
  end-page: 482
  ident: b0150
  publication-title: Energy Fuels
– volume: 23
  start-page: 2090
  year: 2009
  end-page: 2094
  ident: b0085
  publication-title: Energy Fuels
– volume: 50
  start-page: 470
  year: 2004
  end-page: 479
  ident: b0075
  publication-title: AIChE J.
– volume: 23
  start-page: 1575
  year: 2009
  end-page: 1582
  ident: b0040
  publication-title: Energy Fuels
– volume: 19
  start-page: 863
  year: 2001
  end-page: 873
  ident: b0025
  publication-title: Petrol. Sci. Technol.
– volume: 1
  start-page: 932
  year: 2011
  end-page: 942
  ident: b0130
  publication-title: WIREs Comput. Mol. Sci.
– volume: 394
  start-page: 115
  year: 2013
  end-page: 123
  ident: b0070
  publication-title: J. Colloid Interf. Sci.
– volume: 15
  start-page: 7653
  year: 1999
  end-page: 7657
  ident: b0020
  publication-title: Langmuir
– volume: 8
  start-page: 8778
  year: 2012
  ident: b0045
  publication-title: Soft Matter
– ident: 10.1016/j.jcis.2014.10.043_b0080
– volume: 234
  start-page: 95
  year: 2004
  ident: 10.1016/j.jcis.2014.10.043_b0055
  publication-title: Colloids Surf. A: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2003.12.013
– volume: 118
  start-page: 11225
  year: 1996
  ident: 10.1016/j.jcis.2014.10.043_b0100
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9621760
– volume: 1
  start-page: 932
  year: 2011
  ident: 10.1016/j.jcis.2014.10.043_b0130
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.66
– volume: 194–197
  start-page: 1045
  year: 2002
  ident: 10.1016/j.jcis.2014.10.043_b0030
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/S0378-3812(01)00702-6
– volume: 23
  start-page: 1575
  year: 2009
  ident: 10.1016/j.jcis.2014.10.043_b0040
  publication-title: Energy Fuels
  doi: 10.1021/ef800706c
– volume: 51
  start-page: 26
  year: 2006
  ident: 10.1016/j.jcis.2014.10.043_b0035
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2005.11.006
– volume: 27
  start-page: 6528
  year: 2013
  ident: 10.1016/j.jcis.2014.10.043_b0125
  publication-title: Energy Fuels
  doi: 10.1021/ef401412w
– volume: 14
  start-page: 25
  year: 2000
  ident: 10.1016/j.jcis.2014.10.043_b0060
  publication-title: Energy Fuels
  doi: 10.1021/ef990111n
– volume: 394
  start-page: 115
  year: 2013
  ident: 10.1016/j.jcis.2014.10.043_b0070
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2012.11.069
– volume: 90
  start-page: 2480
  year: 2011
  ident: 10.1016/j.jcis.2014.10.043_b0090
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.02.025
– volume: 13
  start-page: 1011
  year: 1992
  ident: 10.1016/j.jcis.2014.10.043_b0135
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540130812
– volume: 369
  start-page: 86
  year: 2014
  ident: 10.1016/j.jcis.2014.10.043_b0145
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2014.02.021
– volume: 26
  start-page: 4988
  year: 2012
  ident: 10.1016/j.jcis.2014.10.043_b0065
  publication-title: Addit. Temp. Energy Fuels
  doi: 10.1021/ef300365x
– volume: 4
  start-page: 435
  year: 2008
  ident: 10.1016/j.jcis.2014.10.043_b0095
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700301q
– volume: 424
  start-page: 145
  year: 1998
  ident: 10.1016/j.jcis.2014.10.043_b0110
  publication-title: J. Mol. Struct. (Theochem)
  doi: 10.1016/S0166-1280(97)00237-6
– volume: 15
  start-page: 1077
  year: 2001
  ident: 10.1016/j.jcis.2014.10.043_b0050
  publication-title: Energy Fuels
  doi: 10.1021/ef000152f
– volume: 30
  start-page: 5394
  year: 2014
  ident: 10.1016/j.jcis.2014.10.043_b0010
  publication-title: Langmuir
  doi: 10.1021/la500615k
– volume: 19
  start-page: 863
  issue: 7–8
  year: 2001
  ident: 10.1016/j.jcis.2014.10.043_b0025
  publication-title: Petrol. Sci. Technol.
  doi: 10.1081/LFT-100106905
– volume: 117
  start-page: 5765
  year: 2013
  ident: 10.1016/j.jcis.2014.10.043_b0120
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp401584u
– volume: 23
  start-page: 2090
  issue: 4
  year: 2009
  ident: 10.1016/j.jcis.2014.10.043_b0085
  publication-title: Energy Fuels
  doi: 10.1021/ef800860x
– volume: 15
  start-page: 7653
  year: 1999
  ident: 10.1016/j.jcis.2014.10.043_b0020
  publication-title: Langmuir
  doi: 10.1021/la9812370
– volume: 28
  start-page: 475
  year: 2014
  ident: 10.1016/j.jcis.2014.10.043_b0150
  publication-title: Energy Fuels
  doi: 10.1021/ef401958n
– volume: 23
  start-page: 1220
  year: 2009
  ident: 10.1016/j.jcis.2014.10.043_b0115
  publication-title: Energy Fuels
  doi: 10.1021/ef800872g
– volume: 8
  start-page: 8778
  year: 2012
  ident: 10.1016/j.jcis.2014.10.043_b0045
  publication-title: Soft Matter
  doi: 10.1039/c2sm26003d
– volume: 10
  start-page: 1758
  year: 1994
  ident: 10.1016/j.jcis.2014.10.043_b0015
  publication-title: Langmuir
  doi: 10.1021/la00018a023
– volume: 10
  start-page: 1749
  year: 1994
  ident: 10.1016/j.jcis.2014.10.043_b0005
  publication-title: Langmuir
  doi: 10.1021/la00018a022
– volume: 14
  start-page: 206
  year: 1993
  ident: 10.1016/j.jcis.2014.10.043_b0105
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540140208
– year: 2000
  ident: 10.1016/j.jcis.2014.10.043_b0140
– volume: 50
  start-page: 470
  issue: 2
  year: 2004
  ident: 10.1016/j.jcis.2014.10.043_b0075
  publication-title: AIChE J.
  doi: 10.1002/aic.10041
SSID ssj0011559
Score 2.3731692
Snippet [Display omitted] •Asphaltene interactions with DBSA and alkylphenols are different.•Flocculates with DBSA consist of thick filaments with short lateral...
The dispersion of asphaltenes by dodecylbenzenesulfonic acid (DBSA) has been the subject of several studies in the past. However, it is unclear how these...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23
SubjectTerms acids
Aliphatic compounds
alkylphenols
Asphaltene
Asphaltenes
Asphalts
DBSA
Dispersion
Dispersions
electrostatic interactions
Filaments
Flocculating
Formations
Ion-pair interaction
Molecular dynamics
Molecular structure
surfactants
transmission electron microscopy
Title Role of ion-pair interactions on asphaltene stabilization by alkylbenzenesulfonic acids
URI https://dx.doi.org/10.1016/j.jcis.2014.10.043
https://www.ncbi.nlm.nih.gov/pubmed/25460685
https://www.proquest.com/docview/1634726545
https://www.proquest.com/docview/1669845300
https://www.proquest.com/docview/2101355362
Volume 440
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhOaQ9hCR9bV6o0FtRInkl23sMS8K2JTmUhu7NSPIInBp72cchOeS3Z8aPpT3sHnq0GYE8M575hnkx9sWmMgzzBEQcTCJ0lAfhcpACvYU2BqSLgALFu_t48qC_T810h437Xhgqq-xsf2vTG2vdvbnquHk1Kwrq8cW_LRnRxDmEPemUOth1Qlp--bIu81CUdmvLPJQg6q5xpq3xevQFjexW-pIqvPRwk3PaBD4bJ3R7yA469Miv2wsesR2ojtn-uF_adsze_jVf8B37_bMugdeBI_PFzBZzTtMh5m0vw4LXFbeLWZMwr4AjTKRC2bYtk7snbss_T6WD6pnM4aoMNESXW1_ki_fs4fbm13giuk0KwpvILIX1KA7nRzmCpxhNSuzTRAcIQY4gRBiYushpb_PgrVQg0bNpBXFIKa1ppEuGH9huVVfwiXEI3oFRIUJeameczT1GbNS7hVhSh3zAVM_CzHdjxmnbRZn19WSPGbE9I7bTO2T7gH1dn5m1Qza2UpteMtk_qpKhF9h67nMvxgylQokRW0G9WmSISXUSxQgmt9HEo1SboZSbaTB8VojfEBMM2MdWT9bfQ3sHZJyak_-8_Sl7g09NN70yZ2x3OV_BOeKhpbtoFP6C7V1_-zG5fwWlPQqV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcKihQlqeR4ITcOlk7yR44oEK1pY8DasXegu3YUkqUrDa7qpYDf4o_yEweKzjsHpB6TezImRnPfKN5AbzVifDDLHY88irmMsw8N5kTHK2FVMoJEzpyFM8vovGV_DJRky343dfCUFplp_tbnd5o6-7JYUfNw2meU40v3rZ4RB3nEPYkky6z8tQtb9Bvqz-cfEImvwvD48-XR2PejRbgVoVqzrXF8xk7yhBNRHjHIpvE0jvvxcj5ED01ExppdeatFoETqOpl4CKfUJxPCRMP8bt34K5EdUFjEw5-rfJKAorztXklAafjdZU6bVLZtc2pR3ggDyilTA7XWcN1aLexescPYLeDq-xjS5GHsOXKPdg56qfE7cH9vxoaPoJvX6vCscoz5Daf6nzGqB3FrC2eqFlVMl1Pmwh96RjiUsrMbetAmVkyXfxYFsaVP0n_LgpPXXuZtnlWP4arW6HvE9guq9I9Bea8NU4FPkRaSqOMziy6iFQshuBV-mwAQU_C1HZ9zWm8RpH2CWzXKZE9JbLTMyT7AN6v9kzbrh4bV6ueM-k_spmi2dm4703PxhS5QpEYXbpqUacIgmUcRoheN62JRgkKmBDr16C_HiBgRBAygP1WTlb_Q4MORJSoZ_95-tewM748P0vPTi5On8M9fNOU8gfqBWzPZwv3EsHY3LxqhJ_B99u-bX8ArD9Gmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+ion-pair+interactions+on+asphaltene+stabilization+by+alkylbenzenesulfonic+acids&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Goual%2C+Lamia&rft.au=Sedghi%2C+Mohammad&rft.date=2015-02-15&rft.issn=0021-9797&rft.volume=440&rft.spage=23&rft.epage=31&rft_id=info:doi/10.1016%2Fj.jcis.2014.10.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2014_10_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon