Neutrophil-activating therapy for the treatment of cancer
Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be...
Saved in:
Published in | Cancer cell Vol. 41; no. 2; pp. 356 - 372.e10 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
13.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer.
[Display omitted]
•Therapeutically activated neutrophils infiltrate and eradicate multiple tumor types•Intratumoral TNF + anti-CD40 + anti-tumor antibodies induce an inflammatory cascade•Neutrophil C5AR1 signaling stimulates LTB4 release, driving ROS production via XO•Neutrophil-mediated oxidative damage drives T cell-independent tumor clearance
Linde et al. describe a cancer therapy that activates neutrophils to infiltrate and eradicate tumors and reduce metastatic seeding. The authors elucidate the responsible mechanism, which involves complement component C5a, leukotriene B4, and reactive oxygen species, and demonstrate the potential of harnessing neutrophils through inflammatory activation to drive tumor clearance. |
---|---|
AbstractList | Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B
, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer. Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer.Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer. Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro , enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B 4 , which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer. Linde et al. describe a cancer therapy that activates neutrophils to infiltrate and eradicate tumors and reduce metastatic seeding. The authors elucidate the responsible mechanism, which involves complement component C5a, leukotriene B 4 , and reactive oxygen species, and demonstrate the potential of harnessing neutrophils through inflammatory activation to drive tumor clearance. Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer. [Display omitted] •Therapeutically activated neutrophils infiltrate and eradicate multiple tumor types•Intratumoral TNF + anti-CD40 + anti-tumor antibodies induce an inflammatory cascade•Neutrophil C5AR1 signaling stimulates LTB4 release, driving ROS production via XO•Neutrophil-mediated oxidative damage drives T cell-independent tumor clearance Linde et al. describe a cancer therapy that activates neutrophils to infiltrate and eradicate tumors and reduce metastatic seeding. The authors elucidate the responsible mechanism, which involves complement component C5a, leukotriene B4, and reactive oxygen species, and demonstrate the potential of harnessing neutrophils through inflammatory activation to drive tumor clearance. |
Author | Song, Wen-Chao Linde, Miles H. Zhang, Xiangyue Sheu, Lauren Y. Pilarowski, Genay Tolentino, Lorna L. Chiu, David Kung-Chun Qiu, Jingtao Van Deursen, Simon Shen, Lei Engleman, Edgar G. Prestwood, Tyler R. Reticker-Flynn, Nathan E. Linde, Ian L. |
AuthorAffiliation | 2 Department of Pathology, Stanford University; Stanford, CA 94305, USA 4 Lead Contact 3 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, The University of Pennsylvania; Philadelphia, PA 19104, USA 1 Program in Immunology, Stanford University; Stanford, CA 94305, USA |
AuthorAffiliation_xml | – name: 2 Department of Pathology, Stanford University; Stanford, CA 94305, USA – name: 4 Lead Contact – name: 3 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, The University of Pennsylvania; Philadelphia, PA 19104, USA – name: 1 Program in Immunology, Stanford University; Stanford, CA 94305, USA |
Author_xml | – sequence: 1 givenname: Ian L. surname: Linde fullname: Linde, Ian L. organization: Program in Immunology, Stanford University, Stanford, CA 94305, USA – sequence: 2 givenname: Tyler R. surname: Prestwood fullname: Prestwood, Tyler R. organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA – sequence: 3 givenname: Jingtao surname: Qiu fullname: Qiu, Jingtao organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA – sequence: 4 givenname: Genay surname: Pilarowski fullname: Pilarowski, Genay organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA – sequence: 5 givenname: Miles H. surname: Linde fullname: Linde, Miles H. organization: Program in Immunology, Stanford University, Stanford, CA 94305, USA – sequence: 6 givenname: Xiangyue surname: Zhang fullname: Zhang, Xiangyue organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA – sequence: 7 givenname: Lei surname: Shen fullname: Shen, Lei organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA – sequence: 8 givenname: Nathan E. surname: Reticker-Flynn fullname: Reticker-Flynn, Nathan E. organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA – sequence: 9 givenname: David Kung-Chun surname: Chiu fullname: Chiu, David Kung-Chun organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA – sequence: 10 givenname: Lauren Y. surname: Sheu fullname: Sheu, Lauren Y. organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA – sequence: 11 givenname: Simon surname: Van Deursen fullname: Van Deursen, Simon organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA – sequence: 12 givenname: Lorna L. surname: Tolentino fullname: Tolentino, Lorna L. organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA – sequence: 13 givenname: Wen-Chao surname: Song fullname: Song, Wen-Chao organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – sequence: 14 givenname: Edgar G. surname: Engleman fullname: Engleman, Edgar G. email: edengleman@stanford.edu organization: Program in Immunology, Stanford University, Stanford, CA 94305, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36706760$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLJDEUhYMovn-BMNRyNlXeW4-kslAYZHyA6MZ9SKdu2WmqKz1JusF_PylbxZmFrnIg57v3cs4R2x3dSIydIRQIyM8XhTE0DEUJZVUAFgDlDjvEVrR5xVu-m3RTNTlHaA_YUQgLSBQKuc8OKi6ACw6HTD7QOnq3mtsh1ybajY52fM7inLxevWS985POoicdlzTGzPWZ0aMhf8L2ej0EOn17j9nT9e-nq9v8_vHm7urXfW6asom55jNE4HXT8bKTQtc1cc6x7ivEshVdhxIk1TiDspEoCTVHk6SQhqoWq2N2uR27Ws-W1Jl0g9eDWnm71P5FOW3Vvz-jnatnt1FS8rZGSAN-vg3w7s-aQlRLG6bg9EhuHVQpBNRCcNkk64_Puz6WvMeVDNXWYLwLwVP_YUFQUylqoV5LUVMpClClUhIl_6OMjSlnNx1sh2_Yiy1LKeKNJa-CsZTy76wnE1Xn7Jf8X5j4qBw |
CitedBy_id | crossref_primary_10_3389_fimmu_2024_1419773 crossref_primary_10_3389_fimmu_2025_1524038 crossref_primary_10_1002_btm2_10712 crossref_primary_10_3390_ijms25052929 crossref_primary_10_1042_EBC20220245 crossref_primary_10_3390_cells12151981 crossref_primary_10_1016_j_jconrel_2025_02_027 crossref_primary_10_1038_s43018_025_00924_3 crossref_primary_10_1186_s13046_024_03240_3 crossref_primary_10_1038_s41420_024_02092_2 crossref_primary_10_3390_cancers15225484 crossref_primary_10_1186_s12943_025_02228_7 crossref_primary_10_1002_cac2_70021 crossref_primary_10_1038_s41551_024_01180_z crossref_primary_10_1007_s42765_025_00516_x crossref_primary_10_1158_1078_0432_CCR_24_0861 crossref_primary_10_3389_fimmu_2023_1060258 crossref_primary_10_1016_j_celrep_2024_115014 crossref_primary_10_1016_j_clnves_2024_100005 crossref_primary_10_1038_s41598_024_54115_8 crossref_primary_10_37349_etat_2024_00263 crossref_primary_10_1016_j_phrs_2023_106996 crossref_primary_10_1126_sciimmunol_adg6453 crossref_primary_10_1016_j_it_2024_12_006 crossref_primary_10_1016_j_tcb_2024_09_001 crossref_primary_10_3390_ijms252413569 crossref_primary_10_1186_s13058_023_01676_7 crossref_primary_10_3389_fimmu_2024_1445513 crossref_primary_10_1186_s40364_023_00534_0 crossref_primary_10_1016_j_smim_2024_101921 crossref_primary_10_1016_j_bbcan_2024_189197 crossref_primary_10_1016_j_immuni_2024_12_009 crossref_primary_10_1038_s41568_023_00555_9 crossref_primary_10_1097_MD_0000000000039300 crossref_primary_10_3390_vaccines11081354 crossref_primary_10_1016_j_ccell_2024_11_002 crossref_primary_10_1093_jleuko_qiad150 crossref_primary_10_1158_2767_9764_CRC_23_0319 crossref_primary_10_1016_j_ccell_2023_01_005 crossref_primary_10_1002_mba2_93 crossref_primary_10_1111_imm_13765 crossref_primary_10_1016_j_ccell_2024_04_011 crossref_primary_10_1016_j_celrep_2024_113934 crossref_primary_10_1038_s41392_024_02045_2 crossref_primary_10_7717_peerj_16823 crossref_primary_10_1016_j_cej_2024_159096 crossref_primary_10_1038_s41392_024_01765_9 crossref_primary_10_1186_s12951_024_02726_8 crossref_primary_10_1158_2326_6066_CIR_23_0399 crossref_primary_10_1002_ctm2_1599 crossref_primary_10_1007_s12274_024_6917_6 crossref_primary_10_1186_s13287_025_04147_2 crossref_primary_10_1002_cam4_6761 crossref_primary_10_1016_j_canlet_2024_217288 crossref_primary_10_1158_1535_7163_MCT_24_0163 crossref_primary_10_1016_j_cej_2024_153436 crossref_primary_10_1186_s13046_023_02913_9 crossref_primary_10_1016_j_cpt_2025_02_004 crossref_primary_10_1038_s41590_024_02006_5 crossref_primary_10_1080_2162402X_2024_2363000 crossref_primary_10_1186_s13045_024_01634_6 crossref_primary_10_1002_adma_202310318 crossref_primary_10_1038_s41388_024_03004_5 crossref_primary_10_1146_annurev_pathmechdis_051222_015009 crossref_primary_10_3390_clinpract14040097 crossref_primary_10_1016_j_clgc_2023_10_004 crossref_primary_10_1080_14789450_2024_2428332 crossref_primary_10_3389_fimmu_2024_1488042 crossref_primary_10_1016_j_trecan_2024_01_010 crossref_primary_10_1016_j_biopha_2024_116670 crossref_primary_10_1186_s13046_024_03122_8 crossref_primary_10_1038_s41590_024_02029_y crossref_primary_10_1186_s12885_024_12993_1 crossref_primary_10_1002_advs_202308174 crossref_primary_10_1002_btm2_10704 crossref_primary_10_1002_ctm2_1340 crossref_primary_10_1002_cac2_12613 crossref_primary_10_3389_fimmu_2023_1180810 crossref_primary_10_1093_procel_pwae015 crossref_primary_10_1007_s13402_025_01051_y crossref_primary_10_1126_scitranslmed_adk0642 crossref_primary_10_1016_j_trecan_2024_11_011 crossref_primary_10_1186_s12943_024_02004_z crossref_primary_10_1038_s41392_024_02049_y crossref_primary_10_1093_neuonc_noad256 crossref_primary_10_1038_s41556_025_01617_w crossref_primary_10_1186_s13046_024_03244_z crossref_primary_10_1002_jev2_12480 crossref_primary_10_1158_2159_8290_CD_23_0282 crossref_primary_10_3389_fcvm_2025_1526170 crossref_primary_10_1093_jleuko_qiae222 |
Cites_doi | 10.1038/nprot.2013.143 10.1172/JCI37223 10.1016/j.cell.2019.02.028 10.1182/blood-2011-10-383240 10.1016/j.molimm.2019.09.011 10.1007/s00262-020-02527-6 10.1016/j.chom.2017.11.009 10.1073/pnas.0601807103 10.1002/cam4.601 10.1016/j.ccell.2015.11.005 10.1002/ajh.24185 10.1016/j.kint.2019.01.009 10.1016/j.cell.2019.05.047 10.1016/j.cell.2016.12.022 10.1038/s41568-019-0210-0 10.1158/0008-5472.CAN-14-0157 10.1038/nature16140 10.1038/s41586-019-1118-2 10.1016/j.celrep.2018.05.082 10.1016/j.immuni.2020.06.005 10.1038/cr.2009.139 10.1016/j.bbamcr.2012.11.027 10.1002/cyto.a.20674 10.1093/carcin/bgx142 10.1002/ijc.31808 10.3389/fphar.2020.01289 10.1016/j.ccell.2016.06.001 10.1038/ni.1655 10.1016/j.ccr.2009.06.017 10.3389/fcimb.2017.00217 10.1038/s41586-019-0915-y 10.1002/ijc.32270 10.3791/54040-v 10.1038/nri3024 10.1182/blood-2015-08-664995 10.1016/j.immuni.2018.02.002 10.4049/jimmunol.1202275 10.1002/ijc.28770 10.1172/JCI77053 10.1172/JCI41782 10.1093/glycob/cwz085 10.1016/j.ccell.2016.04.014 10.1038/nature12175 10.1016/j.celrep.2014.12.039 10.1038/nbt.3437 10.1016/j.ccr.2011.08.012 10.18632/oncotarget.344 10.1038/s41571-019-0222-4 10.1084/jem.181.1.435 10.1038/nrc.2016.52 10.4049/jimmunol.1201654 10.1016/j.cell.2012.04.042 10.1084/jem.141.6.1442 10.1126/science.aal5081 10.1038/s41568-020-0281-y 10.3390/cells10061510 10.1016/j.smim.2017.08.006 10.1016/j.immuni.2018.03.015 10.1084/jem.20201803 10.1073/pnas.1213797109 10.1038/s41577-020-00490-y 10.1038/ncomms8064 10.1182/blood-2013-04-497446 10.1158/2159-8290.CD-16-1184 10.1080/2162402X.2015.1067744 10.1038/nature14424 10.1084/jem.20052349 10.1046/j.1365-2567.1996.d01-711.x 10.4049/jimmunol.181.8.5791 10.1182/blood-2010-05-283564 10.3389/fimmu.2019.00168 10.1074/jbc.M114.612622 10.4049/jimmunol.172.2.989 10.1172/JCI118718 10.1038/nm.3909 10.1038/nature07935 10.1016/0022-1759(91)90015-8 10.1158/2326-6066.CIR-18-0045 10.1038/nature14282 10.1182/blood-2006-04-017251 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.ccell.2023.01.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1878-3686 |
EndPage | 372.e10 |
ExternalDocumentID | PMC9968410 36706760 10_1016_j_ccell_2023_01_002 S1535610823000028 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA251174 – fundername: NIAID NIH HHS grantid: R01 AI117410 – fundername: NCI NIH HHS grantid: U54 CA209971 – fundername: NCI NIH HHS grantid: R01 CA262361 – fundername: NCI NIH HHS grantid: F32 CA189408 – fundername: NCI NIH HHS grantid: F31 CA196029 – fundername: NCI NIH HHS grantid: R01 CA233958 – fundername: NCI NIH HHS grantid: F30 CA196145 – fundername: NHLBI NIH HHS grantid: T32 HL120824 – fundername: NCI NIH HHS grantid: P01 CA244114 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IH2 IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UDS WQ6 ZA5 5VS AAFWJ AAIKJ AAMRU AAQFI AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG UHS CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c525t-a6b110645d62d97a44e66614f311287dd1909e41b025919e1a61c25979ce3813 |
IEDL.DBID | IXB |
ISSN | 1535-6108 1878-3686 |
IngestDate | Thu Aug 21 18:35:15 EDT 2025 Thu Jul 10 22:23:11 EDT 2025 Wed Jul 23 01:46:06 EDT 2025 Tue Jul 01 01:26:26 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Fri Feb 23 02:38:58 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | CD40 tumor immunology tumor necrosis factor cancer immunotherapy reactive oxygen species complement neutrophil xanthine oxidase C5a leukotriene B4 |
Language | English |
License | Copyright © 2023 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-a6b110645d62d97a44e66614f311287dd1909e41b025919e1a61c25979ce3813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceptualization: ILL, TRP; Methodology: ILL, TRP; Investigation: ILL, TRP, JQ, GP, MHL, XZ, LS, NERF, DK-CC, LYS, SVD; Resources: LT, W-CS; Writing – Original Draft: ILL; Writing – Review & Editing: ILL, TRP, JQ, GP, NERF, MHL, W-CS, EGE; Funding Acquisition: EGE; Supervision: EGE Author contributions |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9968410 |
PMID | 36706760 |
PQID | 2770477695 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9968410 proquest_miscellaneous_2770477695 pubmed_primary_36706760 crossref_primary_10_1016_j_ccell_2023_01_002 crossref_citationtrail_10_1016_j_ccell_2023_01_002 elsevier_sciencedirect_doi_10_1016_j_ccell_2023_01_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-13 |
PublicationDateYYYYMMDD | 2023-02-13 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer cell |
PublicationTitleAlternate | Cancer Cell |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Nozawa, Chiu, Hanahan (bib8) 2006; 103 Arroyo-Crespo, Armiñán, Charbonnier, Deladriere, Palomino-Schätzlein, Lamas-Domingo, Forteza, Pineda-Lucena, Vicent (bib72) 2019; 145 Shrestha, Noh, Kim, Ham, Kim, Yun, Kim, Kwon, Song, Hong (bib31) 2016; 5 Ajona, Ortiz-Espinosa, Moreno, Lozano, Pajares, Agorreta, Bértolo, Lasarte, Vicent, Hoehlig (bib52) 2017; 7 Brandt, Serezani (bib48) 2017; 33 Piao, Cai, Qiu, Jia, Song, Du (bib55) 2015; 290 Kimura, Zhou, Miwa, Song (bib67) 2010; 120 Mantovani, Cassatella, Costantini, Jaillon (bib3) 2011; 11 Jablonska, Leschner, Westphal, Lienenklaus, Weiss (bib7) 2010; 120 Woodfin, Beyrau, Voisin, Ma, Whiteford, Hordijk, Hogg, Nourshargh (bib35) 2016; 127 Kusmartsev, Nefedova, Yoder, Gabrilovich (bib15) 2004; 172 Challen, Boles, Lin, Goodell (bib40) 2009; 75 Yajuk, Baron, Toker, Zelter, Fainsod-Levi, Granot (bib44) 2021; 10 Yang, Kumar, Vilgelm, Chen, Ayers, Novitskiy, Joyce, Richmond (bib26) 2018; 6 Coffelt, Kersten, Doornebal, Weiden, Vrijland, Hau, Verstegen, Ciampricotti, Hawinkels, Jonkers, de Visser (bib9) 2015; 522 Sjögren, Lood, Nägeli (bib78) 2020; 30 Jaillon, Ponzetta, Di Mitri, Santoni, Bonecchi, Mantovani (bib2) 2020; 20 Akk, Springer, Yang, Hamilton-Burdess, Lambris, Yan, Hu, Wu, Hourcade, Miller, Pham (bib60) 2019; 114 Veglia, Tyurin, Blasi, De Leo, Kossenkov, Donthireddy, To, Schug, Basu, Wang (bib25) 2019; 569 Wculek, Malanchi (bib10) 2015; 528 Kwok, Becht, Xia, Ng, Teh, Tan, Evrard, Li, Tran, Tan (bib39) 2020; 53 Roberts, Zhou, Diaz, Holdhoff (bib73) 2011; 2 Miwa, Sato, Gullipalli, Nangaku, Song (bib74) 2013; 190 Wang, Wu, Newton, Bahaie, Long, Walcheck (bib51) 2013; 1833 Veglia, Sanseviero, Gabrilovich (bib14) 2021; 21 Markiewski, DeAngelis, Benencia, Ricklin-Lichtsteiner, Koutoulaki, Gerard, Coukos, Lambris (bib56) 2008; 9 Spitzer, Carmi, Reticker-Flynn, Kwek, Madhireddy, Martins, Gherardini, Prestwood, Chabon, Bendall (bib70) 2017; 168 Doench, Fusi, Sullender, Hegde, Vaimberg, Donovan, Smith, Tothova, Wilen, Orchard (bib81) 2016; 34 Tian, Jiang, Kim, Guan, Nicolls, Rockson (bib59) 2020; 11 Dunkelberger, Song (bib47) 2010; 20 Corrales, Ajona, Rafail, Lasarte, Riezu-Boj, Lambris, Rouzaut, Pajares, Montuenga, Pio (bib53) 2012; 189 Vadrevu, Chintala, Sharma, Sharma, Cleveland, Riediger, Manne, Fairlie, Gorczyca, Almanza (bib54) 2014; 74 Youn, Nagaraj, Collazo, Gabrilovich (bib16) 2008; 181 Shaul, Fridlender (bib5) 2019; 16 Clark, Klebanoff (bib17) 1975; 141 Kubo, Morgenstern, Quinian, Ward, Dinauer, Doerschuk (bib68) 1996; 97 Ponzetta, Carriero, Carnevale, Barbagallo, Molgora, Perucchini, Magrini, Gianni, Kunderfranco, Polentarutti (bib21) 2019; 178 Khan, Kelher, Heal, Blumberg, Boshkov, Phipps, Gettings, McLaughlin, Silliman (bib37) 2006; 108 Van den Berg, Aerts, Van Dijk (bib79) 1991; 136 Herndler-Brandstetter, Ishigame, Shinnakasu, Plajer, Stecher, Zhao, Lietzenmayer, Kroehling, Takumi, Kometani (bib46) 2018; 48 Pekarek, Starr, Toledano, Schreiber (bib6) 1995; 181 Condliffe, Chilvers, Haslett, Dransfield (bib36) 1996; 89 Coffelt, Wellenstein, de Visser (bib1) 2016; 16 Sagiv, Michaeli, Assi, Mishalian, Kisos, Levy, Damti, Lumbroso, Polyansky, Sionov (bib27) 2015; 10 Bonaventura, Shekarian, Alcazer, Valladeau-Guilemond, Valsesia-Wittmann, Amigorena, Caux, Depil (bib71) 2019; 10 Granot, Henke, Comen, King, Norton, Benezra (bib23) 2011; 20 Blaisdell, Crequer, Columbus, Daikoku, Mittal, Dey, Erlebacher (bib18) 2015; 28 Engblom, Pfirschke, Zilionis, Da Silva Martins, Bos, Courties, Rickelt, Severe, Baryawno, Faget (bib42) 2017; 358 Lee, Gillrie, Li, Arnason, Kim, Babes, Lou, Sanati-Nezhad, Kyei, Kelly (bib63) 2018; 23 Matlung, Babes, Zhao, van Houdt, Treffers, van Rees, Franke, Schornagel, Verkuijlen, Janssen (bib32) 2018; 23 Pylaeva, Harati, Spyra, Bordbari, Strachan, Thakur, Höing, Franklin, Skokowa, Welte (bib30) 2019; 144 Battelli, Polito, Bortolotti, Bolognesi (bib50) 2016; 5 Ran, Hsu, Wright, Agarwala, Scott, Zhang (bib76) 2013; 8 Camous, Roumenina, Bigot, Brachemi, Frémeaux-Bacchi, Lesavre, Halbwachs-Mecarelli (bib61) 2011; 117 Albanesi, Mancardi, Jönsson, Iannascoli, Fiette, Di Santo, Lowell, Bruhns (bib33) 2013; 122 Satpathy, Jala, Bodduluri, Krishnan, Hegde, Hoyle, Fraig, Luster, Haribabu (bib57) 2015; 6 Costanzo-Garvey, Keeley, Case, Watson, Alsamraae, Yu, Su, Heim, Kielian, Morrissey (bib22) 2020; 69 Gavillet, Martinod, Renella, Harris, Shapiro, Wagner, Williams (bib45) 2015; 90 Uderhardt, Martins, Tsang, Lämmermann, Germain (bib64) 2019; 177 Roumenina, Daugan, Petitprez, Sautès-Fridman, Fridman (bib49) 2019; 19 Yokota, Inoue, Matsumura, Nabeta, Narusawa, Watanabe, Sakamoto, Hijikata, Iga-Murahashi, Takayama (bib58) 2012; 120 Eruslanov, Bhojnagarwala, Quatromoni, Stephen, Ranganathan, Deshpande, Akimova, Vachani, Litzky, Hancock (bib19) 2014; 124 Singhal, Bhojnagarwala, O'Brien, Moon, Garfall, Rao, Quatromoni, Stephen, Litzky, Deshpande (bib20) 2016; 30 Sato, Vries, Snippert, van de Wetering, Barker, Stange, van Es, Abo, Kujala, Peters, Clevers (bib77) 2009; 459 Acharyya, Oskarsson, Vanharanta, Malladi, Kim, Morris, Manova-Todorova, Leversha, Hogg, Seshan (bib29) 2012; 150 Veglia, Hashimoto, Dweep, Sanseviero, De Leo, Tcyganov, Kossenkov, Mulligan, Nam, Masters (bib43) 2021; 218 Szczerba, Castro-Giner, Vetter, Krol, Gkountela, Landin, Scheidmann, Donato, Scherrer, Singer (bib11) 2019; 566 Fridlender, Sun, Kim, Kapoor, Cheng, Ling, Worthen, Albelda (bib24) 2009; 16 Kim, Chou, Seung, Tager, Luster (bib66) 2006; 203 Carmi, Spitzer, Linde, Burt, Prestwood, Perlman, Davidson, Kenkel, Segal, Pusapati (bib69) 2015; 521 Gentles, Newman, Liu, Bratman, Feng, Kim, Nair, Xu, Khuong, Hoang (bib4) 2015; 21 Miralda, Uriarte, McLeish (bib34) 2017; 7 Ueda, Miwa, Ito, Kim, Sato, Gullipalli, Zhou, Golla, Song, Dunaief (bib75) 2019; 96 Lämmermann, Afonso, Angermann, Wang, Kastenmüller, Parent, Germain (bib62) 2013; 498 Schmielau, Finn (bib12) 2001; 61 Steele, Karim, Leach, Bailey, Upstill-Goddard, Rishi, Foth, Bryson, McDaid, Wilson (bib28) 2016; 29 Mishalian, Bayuh, Eruslanov, Michaeli, Levy, Zolotarov, Singhal, Albelda, Granot, Fridlender (bib13) 2014; 135 Paschall, Liu (bib80) 2016 Evrard, Kwok, Chong, Teng, Becht, Chen, Sieow, Penny, Ching, Devi (bib38) 2018; 48 Sadik, Kim, Iwakura, Luster (bib65) 2012; 109 Zhou, Peng, Song, Yang, Shu, Yu, Yu, Lin, Wei, Chen (bib41) 2018; 39 Fridlender (10.1016/j.ccell.2023.01.002_bib24) 2009; 16 Evrard (10.1016/j.ccell.2023.01.002_bib38) 2018; 48 Jaillon (10.1016/j.ccell.2023.01.002_bib2) 2020; 20 Sagiv (10.1016/j.ccell.2023.01.002_bib27) 2015; 10 Roumenina (10.1016/j.ccell.2023.01.002_bib49) 2019; 19 Ueda (10.1016/j.ccell.2023.01.002_bib75) 2019; 96 Condliffe (10.1016/j.ccell.2023.01.002_bib36) 1996; 89 Lämmermann (10.1016/j.ccell.2023.01.002_bib62) 2013; 498 Albanesi (10.1016/j.ccell.2023.01.002_bib33) 2013; 122 Steele (10.1016/j.ccell.2023.01.002_bib28) 2016; 29 Kwok (10.1016/j.ccell.2023.01.002_bib39) 2020; 53 Wang (10.1016/j.ccell.2023.01.002_bib51) 2013; 1833 Ran (10.1016/j.ccell.2023.01.002_bib76) 2013; 8 Clark (10.1016/j.ccell.2023.01.002_bib17) 1975; 141 Veglia (10.1016/j.ccell.2023.01.002_bib25) 2019; 569 Tian (10.1016/j.ccell.2023.01.002_bib59) 2020; 11 Sato (10.1016/j.ccell.2023.01.002_bib77) 2009; 459 Lee (10.1016/j.ccell.2023.01.002_bib63) 2018; 23 Gavillet (10.1016/j.ccell.2023.01.002_bib45) 2015; 90 Coffelt (10.1016/j.ccell.2023.01.002_bib9) 2015; 522 Arroyo-Crespo (10.1016/j.ccell.2023.01.002_bib72) 2019; 145 Herndler-Brandstetter (10.1016/j.ccell.2023.01.002_bib46) 2018; 48 Shaul (10.1016/j.ccell.2023.01.002_bib5) 2019; 16 Corrales (10.1016/j.ccell.2023.01.002_bib53) 2012; 189 Acharyya (10.1016/j.ccell.2023.01.002_bib29) 2012; 150 Sadik (10.1016/j.ccell.2023.01.002_bib65) 2012; 109 Satpathy (10.1016/j.ccell.2023.01.002_bib57) 2015; 6 Engblom (10.1016/j.ccell.2023.01.002_bib42) 2017; 358 Wculek (10.1016/j.ccell.2023.01.002_bib10) 2015; 528 Challen (10.1016/j.ccell.2023.01.002_bib40) 2009; 75 Ajona (10.1016/j.ccell.2023.01.002_bib52) 2017; 7 Szczerba (10.1016/j.ccell.2023.01.002_bib11) 2019; 566 Gentles (10.1016/j.ccell.2023.01.002_bib4) 2015; 21 Bonaventura (10.1016/j.ccell.2023.01.002_bib71) 2019; 10 Kubo (10.1016/j.ccell.2023.01.002_bib68) 1996; 97 Zhou (10.1016/j.ccell.2023.01.002_bib41) 2018; 39 Khan (10.1016/j.ccell.2023.01.002_bib37) 2006; 108 Youn (10.1016/j.ccell.2023.01.002_bib16) 2008; 181 Roberts (10.1016/j.ccell.2023.01.002_bib73) 2011; 2 Nozawa (10.1016/j.ccell.2023.01.002_bib8) 2006; 103 Camous (10.1016/j.ccell.2023.01.002_bib61) 2011; 117 Yajuk (10.1016/j.ccell.2023.01.002_bib44) 2021; 10 Schmielau (10.1016/j.ccell.2023.01.002_bib12) 2001; 61 Uderhardt (10.1016/j.ccell.2023.01.002_bib64) 2019; 177 Costanzo-Garvey (10.1016/j.ccell.2023.01.002_bib22) 2020; 69 Veglia (10.1016/j.ccell.2023.01.002_bib14) 2021; 21 Carmi (10.1016/j.ccell.2023.01.002_bib69) 2015; 521 Eruslanov (10.1016/j.ccell.2023.01.002_bib19) 2014; 124 Mishalian (10.1016/j.ccell.2023.01.002_bib13) 2014; 135 Coffelt (10.1016/j.ccell.2023.01.002_bib1) 2016; 16 Vadrevu (10.1016/j.ccell.2023.01.002_bib54) 2014; 74 Woodfin (10.1016/j.ccell.2023.01.002_bib35) 2016; 127 Battelli (10.1016/j.ccell.2023.01.002_bib50) 2016; 5 Piao (10.1016/j.ccell.2023.01.002_bib55) 2015; 290 Brandt (10.1016/j.ccell.2023.01.002_bib48) 2017; 33 Singhal (10.1016/j.ccell.2023.01.002_bib20) 2016; 30 Yokota (10.1016/j.ccell.2023.01.002_bib58) 2012; 120 Markiewski (10.1016/j.ccell.2023.01.002_bib56) 2008; 9 Doench (10.1016/j.ccell.2023.01.002_bib81) 2016; 34 Kimura (10.1016/j.ccell.2023.01.002_bib67) 2010; 120 Pekarek (10.1016/j.ccell.2023.01.002_bib6) 1995; 181 Spitzer (10.1016/j.ccell.2023.01.002_bib70) 2017; 168 Veglia (10.1016/j.ccell.2023.01.002_bib43) 2021; 218 Matlung (10.1016/j.ccell.2023.01.002_bib32) 2018; 23 Van den Berg (10.1016/j.ccell.2023.01.002_bib79) 1991; 136 Ponzetta (10.1016/j.ccell.2023.01.002_bib21) 2019; 178 Akk (10.1016/j.ccell.2023.01.002_bib60) 2019; 114 Blaisdell (10.1016/j.ccell.2023.01.002_bib18) 2015; 28 Shrestha (10.1016/j.ccell.2023.01.002_bib31) 2016; 5 Mantovani (10.1016/j.ccell.2023.01.002_bib3) 2011; 11 Dunkelberger (10.1016/j.ccell.2023.01.002_bib47) 2010; 20 Pylaeva (10.1016/j.ccell.2023.01.002_bib30) 2019; 144 Sjögren (10.1016/j.ccell.2023.01.002_bib78) 2020; 30 Yang (10.1016/j.ccell.2023.01.002_bib26) 2018; 6 Miwa (10.1016/j.ccell.2023.01.002_bib74) 2013; 190 Jablonska (10.1016/j.ccell.2023.01.002_bib7) 2010; 120 Kusmartsev (10.1016/j.ccell.2023.01.002_bib15) 2004; 172 Granot (10.1016/j.ccell.2023.01.002_bib23) 2011; 20 Miralda (10.1016/j.ccell.2023.01.002_bib34) 2017; 7 Kim (10.1016/j.ccell.2023.01.002_bib66) 2006; 203 Paschall (10.1016/j.ccell.2023.01.002_bib80) 2016 36864183 - Nat Rev Cancer. 2023 Apr;23(4):190. doi: 10.1038/s41568-023-00555-9. 36787693 - Cancer Cell. 2023 Feb 13;41(2):227-229. doi: 10.1016/j.ccell.2023.01.005. |
References_xml | – volume: 141 start-page: 1442 year: 1975 end-page: 1447 ident: bib17 article-title: Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system publication-title: J. Exp. Med. – volume: 136 start-page: 287 year: 1991 end-page: 294 ident: bib79 article-title: In vivo anti-complementary activities of the cobra venom factors from Naja naja and Naja haje publication-title: J. Immunol. Methods – volume: 30 start-page: 254 year: 2020 end-page: 267 ident: bib78 article-title: On enzymatic remodeling of IgG glycosylation; unique tools with broad applications publication-title: Glycobiology – volume: 10 start-page: 562 year: 2015 end-page: 573 ident: bib27 article-title: Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer publication-title: Cell Rep. – volume: 9 start-page: 1225 year: 2008 end-page: 1235 ident: bib56 article-title: Modulation of the antitumor immune response by complement publication-title: Nat. Immunol. – volume: 8 start-page: 2281 year: 2013 end-page: 2308 ident: bib76 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. – volume: 521 start-page: 99 year: 2015 end-page: 104 ident: bib69 article-title: Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity publication-title: Nature – volume: 124 start-page: 5466 year: 2014 end-page: 5480 ident: bib19 article-title: Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer publication-title: J. Clin. Invest. – volume: 135 start-page: 1178 year: 2014 end-page: 1186 ident: bib13 article-title: Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17—a new mechanism of impaired antitumor immunity publication-title: Int. J. Cancer – volume: 20 start-page: 300 year: 2011 end-page: 314 ident: bib23 article-title: Tumor entrained neutrophils inhibit seeding in the premetastatic lung publication-title: Cancer Cell – volume: 181 start-page: 5791 year: 2008 end-page: 5802 ident: bib16 article-title: Subsets of myeloid-derived suppressor cells in tumor-bearing mice publication-title: J. Immunol. – volume: 190 start-page: 3552 year: 2013 end-page: 3559 ident: bib74 article-title: Blocking properdin, the alternative pathway, and anaphylatoxin receptors ameliorates renal ischemia-reperfusion injury in decay-accelerating factor and CD59 double-knockout mice publication-title: J. Immunol. – volume: 109 start-page: E3177 year: 2012 end-page: E3185 ident: bib65 article-title: Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and FcγR signaling publication-title: Proc. Natl. Acad. Sci. USA – volume: 127 start-page: 898 year: 2016 end-page: 907 ident: bib35 article-title: ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia publication-title: Blood – volume: 290 start-page: 10667 year: 2015 end-page: 10676 ident: bib55 article-title: Complement 5a enhances hepatic metastases of colon cancer via monocyte chemoattractant protein-1-mediated inflammatory cell infiltration publication-title: J. Biol. Chem. – volume: 34 start-page: 184 year: 2016 end-page: 191 ident: bib81 article-title: Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 publication-title: Nat. Biotechnol. – volume: 48 start-page: 364 year: 2018 end-page: 379.e8 ident: bib38 article-title: Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions publication-title: Immunity – volume: 5 start-page: 546 year: 2016 end-page: 557 ident: bib50 article-title: Xanthine oxidoreductase in cancer: more than a differentiation marker publication-title: Cancer Med. – volume: 7 start-page: 217 year: 2017 ident: bib34 article-title: Multiple phenotypic changes define neutrophil priming publication-title: Front. Cell. Infect. Microbiol. – volume: 117 start-page: 1340 year: 2011 end-page: 1349 ident: bib61 article-title: Complement alternative pathway acts as a positive feedback amplification of neutrophil activation publication-title: Blood – volume: 21 start-page: 938 year: 2015 end-page: 945 ident: bib4 article-title: The prognostic landscape of genes and infiltrating immune cells across human cancers publication-title: Nat. Med. – year: 2016 ident: bib80 article-title: An orthotopic mouse model of spontaneous breast cancer metastasis publication-title: J. Vis. Exp. – volume: 6 start-page: 7064 year: 2015 ident: bib57 article-title: Crystalline silica-induced leukotriene B4-dependent inflammation promotes lung tumour growth publication-title: Nat. Commun. – volume: 23 start-page: 3946 year: 2018 end-page: 3959.e6 ident: bib32 article-title: Neutrophils kill antibody-opsonized cancer cells by trogoptosis publication-title: Cell Rep. – volume: 168 start-page: 487 year: 2017 end-page: 502.e15 ident: bib70 article-title: Systemic immunity is required for effective cancer immunotherapy publication-title: Cell – volume: 21 start-page: 485 year: 2021 end-page: 498 ident: bib14 article-title: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity publication-title: Nat. Rev. Immunol. – volume: 74 start-page: 3454 year: 2014 end-page: 3465 ident: bib54 article-title: Complement c5a receptor facilitates cancer metastasis by altering T-cell responses in the metastatic niche publication-title: Cancer Res. – volume: 16 start-page: 601 year: 2019 end-page: 620 ident: bib5 article-title: Tumour-associated neutrophils in patients with cancer publication-title: Nat. Rev. Clin. Oncol. – volume: 103 start-page: 12493 year: 2006 end-page: 12498 ident: bib8 article-title: Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 1186 year: 2018 end-page: 1198 ident: bib26 article-title: Loss of CXCR4 in myeloid cells enhances antitumor immunity and reduces melanoma growth through NK cell and FASL mechanisms publication-title: Cancer Immunol. Res. – volume: 96 start-page: 67 year: 2019 end-page: 79 ident: bib75 article-title: Differential contribution of C5aR and C5b-9 pathways to renal thrombic microangiopathy and macrovascular thrombosis in mice carrying an atypical hemolytic syndrome-related factor H mutation publication-title: Kidney Int. – volume: 89 start-page: 105 year: 1996 end-page: 111 ident: bib36 article-title: Priming differentially regulates neutrophil adhesion molecule expression/function publication-title: Immunology – volume: 23 start-page: 121 year: 2018 end-page: 133.e4 ident: bib63 article-title: Leukotriene B4-mediated neutrophil recruitment causes pulmonary capillaritis during lethal fungal sepsis publication-title: Cell Host Microbe – volume: 177 start-page: 541 year: 2019 end-page: 555.e17 ident: bib64 article-title: Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage publication-title: Cell – volume: 61 start-page: 4756 year: 2001 end-page: 4760 ident: bib12 article-title: Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients publication-title: Cancer Res. – volume: 145 start-page: 2267 year: 2019 end-page: 2281 ident: bib72 article-title: Characterization of triple-negative breast cancer preclinical models provides functional evidence of metastatic progression publication-title: Int. J. Cancer – volume: 172 start-page: 989 year: 2004 end-page: 999 ident: bib15 article-title: Antigen-specific inhibition of CD8 publication-title: J. Immunol. – volume: 144 start-page: 136 year: 2019 end-page: 149 ident: bib30 article-title: NAMPT signaling is critical for the proangiogenic activity of tumor-associated neutrophils publication-title: Int. J. Cancer – volume: 33 start-page: 37 year: 2017 end-page: 43 ident: bib48 article-title: Too much of a good thing: how modulating LTB(4) actions restore host defense in homeostasis or disease publication-title: Semin. Immunol. – volume: 20 start-page: 34 year: 2010 end-page: 50 ident: bib47 article-title: Complement and its role in innate and adaptive immune responses publication-title: Cell Res. – volume: 120 start-page: 1151 year: 2010 end-page: 1164 ident: bib7 article-title: Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model publication-title: J. Clin. Invest. – volume: 48 start-page: 716 year: 2018 end-page: 729.e8 ident: bib46 article-title: KLRG1+ effector CD8+ T cells lose KLRG1, differentiate into all memory T cell lineages, and convey enhanced protective immunity publication-title: Immunity – volume: 53 start-page: 303 year: 2020 end-page: 318.e5 ident: bib39 article-title: Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor publication-title: Immunity – volume: 122 start-page: 3160 year: 2013 end-page: 3164 ident: bib33 article-title: Neutrophils mediate antibody-induced antitumor effects in mice publication-title: Blood – volume: 90 start-page: 1155 year: 2015 end-page: 1158 ident: bib45 article-title: Flow cytometric assay for direct quantification of neutrophil extracellular traps in blood samples publication-title: Am. J. Hematol. – volume: 181 start-page: 435 year: 1995 end-page: 440 ident: bib6 article-title: Inhibition of tumor growth by elimination of granulocytes publication-title: J. Exp. Med. – volume: 69 start-page: 1113 year: 2020 end-page: 1130 ident: bib22 article-title: Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer immunology, immunotherapy publication-title: Cancer Immunol. Immunother. – volume: 522 start-page: 345 year: 2015 end-page: 348 ident: bib9 article-title: IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis publication-title: Nature – volume: 150 start-page: 165 year: 2012 end-page: 178 ident: bib29 article-title: A CXCL1 paracrine network links cancer chemoresistance and metastasis publication-title: Cell – volume: 498 start-page: 371 year: 2013 end-page: 375 ident: bib62 article-title: Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo publication-title: Nature – volume: 97 start-page: 2680 year: 1996 end-page: 2684 ident: bib68 article-title: Preservation of complement-induced lung injury in mice with deficiency of NADPH oxidase publication-title: J. Clin. Invest. – volume: 11 start-page: 519 year: 2011 end-page: 531 ident: bib3 article-title: Neutrophils in the activation and regulation of innate and adaptive immunity publication-title: Nat. Rev. Immunol. – volume: 19 start-page: 698 year: 2019 end-page: 715 ident: bib49 article-title: Context-dependent roles of complement in cancer publication-title: Nat. Rev. Cancer – volume: 1833 start-page: 680 year: 2013 end-page: 685 ident: bib51 article-title: ADAM17 cleaves CD16b (FcγRIIIb) in human neutrophils publication-title: Biochim. Biophys. Acta – volume: 10 start-page: 168 year: 2019 ident: bib71 article-title: Cold tumors: a therapeutic challenge for immunotherapy publication-title: Front. Immunol. – volume: 30 start-page: 120 year: 2016 end-page: 135 ident: bib20 article-title: Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer publication-title: Cancer Cell – volume: 2 start-page: 739 year: 2011 end-page: 751 ident: bib73 article-title: Systemic use of tumor necrosis factor alpha as an anticancer agent publication-title: Oncotarget – volume: 569 start-page: 73 year: 2019 end-page: 78 ident: bib25 article-title: Fatty acid transport protein 2 reprograms neutrophils in cancer publication-title: Nature – volume: 108 start-page: 2455 year: 2006 end-page: 2462 ident: bib37 article-title: Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury publication-title: Blood – volume: 218 start-page: e20201803 year: 2021 ident: bib43 article-title: Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice publication-title: J. Exp. Med. – volume: 459 start-page: 262 year: 2009 end-page: 265 ident: bib77 article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche publication-title: Nature – volume: 16 start-page: 431 year: 2016 end-page: 446 ident: bib1 article-title: Neutrophils in cancer: neutral no more publication-title: Nat. Rev. Cancer – volume: 178 start-page: 346 year: 2019 end-page: 360.e24 ident: bib21 article-title: Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors publication-title: Cell – volume: 528 start-page: 413 year: 2015 end-page: 417 ident: bib10 article-title: Neutrophils support lung colonization of metastasis-initiating breast cancer cells publication-title: Nature – volume: 75 start-page: 14 year: 2009 end-page: 24 ident: bib40 article-title: Mouse hematopoietic stem cell identification and analysis publication-title: Cytometry A. – volume: 5 start-page: e1067744 year: 2016 ident: bib31 article-title: Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype publication-title: Oncoimmunology – volume: 11 start-page: 1289 year: 2020 ident: bib59 article-title: Leukotrienes in tumor-associated inflammation publication-title: Front. Pharmacol. – volume: 203 start-page: 829 year: 2006 end-page: 835 ident: bib66 article-title: A unique requirement for the leukotriene B4 receptor BLT1 for neutrophil recruitment in inflammatory arthritis publication-title: J. Exp. Med. – volume: 20 start-page: 485 year: 2020 end-page: 503 ident: bib2 article-title: Neutrophil diversity and plasticity in tumour progression and therapy publication-title: Nat. Rev. Cancer – volume: 358 start-page: eaal5081 year: 2017 ident: bib42 article-title: Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils publication-title: Science – volume: 189 start-page: 4674 year: 2012 end-page: 4683 ident: bib53 article-title: Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression publication-title: J. Immunol. – volume: 114 start-page: 629 year: 2019 end-page: 642 ident: bib60 article-title: Complement activation on neutrophils initiates endothelial adhesion and extravasation publication-title: Mol. Immunol. – volume: 28 start-page: 785 year: 2015 end-page: 799 ident: bib18 article-title: Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells publication-title: Cancer Cell – volume: 16 start-page: 183 year: 2009 end-page: 194 ident: bib24 article-title: Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN publication-title: Cancer Cell – volume: 566 start-page: 553 year: 2019 end-page: 557 ident: bib11 article-title: Neutrophils escort circulating tumour cells to enable cell cycle progression publication-title: Nature – volume: 39 start-page: 272 year: 2018 end-page: 282 ident: bib41 article-title: CD177+ neutrophils suppress epithelial cell tumourigenesis in colitis-associated cancer and predict good prognosis in colorectal cancer publication-title: Carcinogenesis – volume: 120 start-page: 3545 year: 2010 end-page: 3554 ident: bib67 article-title: Genetic and therapeutic targeting of properdin in mice prevents complement-mediated tissue injury publication-title: J. Clin. Invest. – volume: 7 start-page: 694 year: 2017 end-page: 703 ident: bib52 article-title: A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis publication-title: Cancer Discov. – volume: 29 start-page: 832 year: 2016 end-page: 845 ident: bib28 article-title: CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma publication-title: Cancer Cell – volume: 120 start-page: 3444 year: 2012 end-page: 3454 ident: bib58 article-title: Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems publication-title: Blood – volume: 10 start-page: 1510 year: 2021 ident: bib44 article-title: The PD-L1/PD-1 Axis blocks neutrophil cytotoxicity in cancer publication-title: Cells – volume: 61 start-page: 4756 year: 2001 ident: 10.1016/j.ccell.2023.01.002_bib12 article-title: Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients publication-title: Cancer Res. – volume: 8 start-page: 2281 year: 2013 ident: 10.1016/j.ccell.2023.01.002_bib76 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 120 start-page: 1151 year: 2010 ident: 10.1016/j.ccell.2023.01.002_bib7 article-title: Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model publication-title: J. Clin. Invest. doi: 10.1172/JCI37223 – volume: 177 start-page: 541 year: 2019 ident: 10.1016/j.ccell.2023.01.002_bib64 article-title: Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage publication-title: Cell doi: 10.1016/j.cell.2019.02.028 – volume: 120 start-page: 3444 year: 2012 ident: 10.1016/j.ccell.2023.01.002_bib58 article-title: Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems publication-title: Blood doi: 10.1182/blood-2011-10-383240 – volume: 114 start-page: 629 year: 2019 ident: 10.1016/j.ccell.2023.01.002_bib60 article-title: Complement activation on neutrophils initiates endothelial adhesion and extravasation publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2019.09.011 – volume: 69 start-page: 1113 year: 2020 ident: 10.1016/j.ccell.2023.01.002_bib22 article-title: Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer immunology, immunotherapy publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-020-02527-6 – volume: 23 start-page: 121 year: 2018 ident: 10.1016/j.ccell.2023.01.002_bib63 article-title: Leukotriene B4-mediated neutrophil recruitment causes pulmonary capillaritis during lethal fungal sepsis publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.11.009 – volume: 103 start-page: 12493 year: 2006 ident: 10.1016/j.ccell.2023.01.002_bib8 article-title: Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0601807103 – volume: 5 start-page: 546 year: 2016 ident: 10.1016/j.ccell.2023.01.002_bib50 article-title: Xanthine oxidoreductase in cancer: more than a differentiation marker publication-title: Cancer Med. doi: 10.1002/cam4.601 – volume: 28 start-page: 785 year: 2015 ident: 10.1016/j.ccell.2023.01.002_bib18 article-title: Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.11.005 – volume: 90 start-page: 1155 year: 2015 ident: 10.1016/j.ccell.2023.01.002_bib45 article-title: Flow cytometric assay for direct quantification of neutrophil extracellular traps in blood samples publication-title: Am. J. Hematol. doi: 10.1002/ajh.24185 – volume: 96 start-page: 67 year: 2019 ident: 10.1016/j.ccell.2023.01.002_bib75 article-title: Differential contribution of C5aR and C5b-9 pathways to renal thrombic microangiopathy and macrovascular thrombosis in mice carrying an atypical hemolytic syndrome-related factor H mutation publication-title: Kidney Int. doi: 10.1016/j.kint.2019.01.009 – volume: 178 start-page: 346 year: 2019 ident: 10.1016/j.ccell.2023.01.002_bib21 article-title: Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors publication-title: Cell doi: 10.1016/j.cell.2019.05.047 – volume: 168 start-page: 487 year: 2017 ident: 10.1016/j.ccell.2023.01.002_bib70 article-title: Systemic immunity is required for effective cancer immunotherapy publication-title: Cell doi: 10.1016/j.cell.2016.12.022 – volume: 19 start-page: 698 year: 2019 ident: 10.1016/j.ccell.2023.01.002_bib49 article-title: Context-dependent roles of complement in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-019-0210-0 – volume: 74 start-page: 3454 year: 2014 ident: 10.1016/j.ccell.2023.01.002_bib54 article-title: Complement c5a receptor facilitates cancer metastasis by altering T-cell responses in the metastatic niche publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-0157 – volume: 528 start-page: 413 year: 2015 ident: 10.1016/j.ccell.2023.01.002_bib10 article-title: Neutrophils support lung colonization of metastasis-initiating breast cancer cells publication-title: Nature doi: 10.1038/nature16140 – volume: 569 start-page: 73 year: 2019 ident: 10.1016/j.ccell.2023.01.002_bib25 article-title: Fatty acid transport protein 2 reprograms neutrophils in cancer publication-title: Nature doi: 10.1038/s41586-019-1118-2 – volume: 23 start-page: 3946 year: 2018 ident: 10.1016/j.ccell.2023.01.002_bib32 article-title: Neutrophils kill antibody-opsonized cancer cells by trogoptosis publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.082 – volume: 53 start-page: 303 year: 2020 ident: 10.1016/j.ccell.2023.01.002_bib39 article-title: Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor publication-title: Immunity doi: 10.1016/j.immuni.2020.06.005 – volume: 20 start-page: 34 year: 2010 ident: 10.1016/j.ccell.2023.01.002_bib47 article-title: Complement and its role in innate and adaptive immune responses publication-title: Cell Res. doi: 10.1038/cr.2009.139 – volume: 1833 start-page: 680 year: 2013 ident: 10.1016/j.ccell.2023.01.002_bib51 article-title: ADAM17 cleaves CD16b (FcγRIIIb) in human neutrophils publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2012.11.027 – volume: 75 start-page: 14 year: 2009 ident: 10.1016/j.ccell.2023.01.002_bib40 article-title: Mouse hematopoietic stem cell identification and analysis publication-title: Cytometry A. doi: 10.1002/cyto.a.20674 – volume: 39 start-page: 272 year: 2018 ident: 10.1016/j.ccell.2023.01.002_bib41 article-title: CD177+ neutrophils suppress epithelial cell tumourigenesis in colitis-associated cancer and predict good prognosis in colorectal cancer publication-title: Carcinogenesis doi: 10.1093/carcin/bgx142 – volume: 144 start-page: 136 year: 2019 ident: 10.1016/j.ccell.2023.01.002_bib30 article-title: NAMPT signaling is critical for the proangiogenic activity of tumor-associated neutrophils publication-title: Int. J. Cancer doi: 10.1002/ijc.31808 – volume: 11 start-page: 1289 year: 2020 ident: 10.1016/j.ccell.2023.01.002_bib59 article-title: Leukotrienes in tumor-associated inflammation publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.01289 – volume: 30 start-page: 120 year: 2016 ident: 10.1016/j.ccell.2023.01.002_bib20 article-title: Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.06.001 – volume: 9 start-page: 1225 year: 2008 ident: 10.1016/j.ccell.2023.01.002_bib56 article-title: Modulation of the antitumor immune response by complement publication-title: Nat. Immunol. doi: 10.1038/ni.1655 – volume: 16 start-page: 183 year: 2009 ident: 10.1016/j.ccell.2023.01.002_bib24 article-title: Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.06.017 – volume: 7 start-page: 217 year: 2017 ident: 10.1016/j.ccell.2023.01.002_bib34 article-title: Multiple phenotypic changes define neutrophil priming publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2017.00217 – volume: 566 start-page: 553 year: 2019 ident: 10.1016/j.ccell.2023.01.002_bib11 article-title: Neutrophils escort circulating tumour cells to enable cell cycle progression publication-title: Nature doi: 10.1038/s41586-019-0915-y – volume: 145 start-page: 2267 year: 2019 ident: 10.1016/j.ccell.2023.01.002_bib72 article-title: Characterization of triple-negative breast cancer preclinical models provides functional evidence of metastatic progression publication-title: Int. J. Cancer doi: 10.1002/ijc.32270 – year: 2016 ident: 10.1016/j.ccell.2023.01.002_bib80 article-title: An orthotopic mouse model of spontaneous breast cancer metastasis publication-title: J. Vis. Exp. doi: 10.3791/54040-v – volume: 11 start-page: 519 year: 2011 ident: 10.1016/j.ccell.2023.01.002_bib3 article-title: Neutrophils in the activation and regulation of innate and adaptive immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3024 – volume: 127 start-page: 898 year: 2016 ident: 10.1016/j.ccell.2023.01.002_bib35 article-title: ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia publication-title: Blood doi: 10.1182/blood-2015-08-664995 – volume: 48 start-page: 364 year: 2018 ident: 10.1016/j.ccell.2023.01.002_bib38 article-title: Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions publication-title: Immunity doi: 10.1016/j.immuni.2018.02.002 – volume: 190 start-page: 3552 year: 2013 ident: 10.1016/j.ccell.2023.01.002_bib74 article-title: Blocking properdin, the alternative pathway, and anaphylatoxin receptors ameliorates renal ischemia-reperfusion injury in decay-accelerating factor and CD59 double-knockout mice publication-title: J. Immunol. doi: 10.4049/jimmunol.1202275 – volume: 135 start-page: 1178 year: 2014 ident: 10.1016/j.ccell.2023.01.002_bib13 article-title: Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17—a new mechanism of impaired antitumor immunity publication-title: Int. J. Cancer doi: 10.1002/ijc.28770 – volume: 124 start-page: 5466 year: 2014 ident: 10.1016/j.ccell.2023.01.002_bib19 article-title: Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer publication-title: J. Clin. Invest. doi: 10.1172/JCI77053 – volume: 120 start-page: 3545 year: 2010 ident: 10.1016/j.ccell.2023.01.002_bib67 article-title: Genetic and therapeutic targeting of properdin in mice prevents complement-mediated tissue injury publication-title: J. Clin. Invest. doi: 10.1172/JCI41782 – volume: 30 start-page: 254 year: 2020 ident: 10.1016/j.ccell.2023.01.002_bib78 article-title: On enzymatic remodeling of IgG glycosylation; unique tools with broad applications publication-title: Glycobiology doi: 10.1093/glycob/cwz085 – volume: 29 start-page: 832 year: 2016 ident: 10.1016/j.ccell.2023.01.002_bib28 article-title: CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.04.014 – volume: 498 start-page: 371 year: 2013 ident: 10.1016/j.ccell.2023.01.002_bib62 article-title: Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo publication-title: Nature doi: 10.1038/nature12175 – volume: 10 start-page: 562 year: 2015 ident: 10.1016/j.ccell.2023.01.002_bib27 article-title: Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.039 – volume: 34 start-page: 184 year: 2016 ident: 10.1016/j.ccell.2023.01.002_bib81 article-title: Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3437 – volume: 20 start-page: 300 year: 2011 ident: 10.1016/j.ccell.2023.01.002_bib23 article-title: Tumor entrained neutrophils inhibit seeding in the premetastatic lung publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.08.012 – volume: 2 start-page: 739 year: 2011 ident: 10.1016/j.ccell.2023.01.002_bib73 article-title: Systemic use of tumor necrosis factor alpha as an anticancer agent publication-title: Oncotarget doi: 10.18632/oncotarget.344 – volume: 16 start-page: 601 year: 2019 ident: 10.1016/j.ccell.2023.01.002_bib5 article-title: Tumour-associated neutrophils in patients with cancer publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-019-0222-4 – volume: 181 start-page: 435 year: 1995 ident: 10.1016/j.ccell.2023.01.002_bib6 article-title: Inhibition of tumor growth by elimination of granulocytes publication-title: J. Exp. Med. doi: 10.1084/jem.181.1.435 – volume: 16 start-page: 431 year: 2016 ident: 10.1016/j.ccell.2023.01.002_bib1 article-title: Neutrophils in cancer: neutral no more publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.52 – volume: 189 start-page: 4674 year: 2012 ident: 10.1016/j.ccell.2023.01.002_bib53 article-title: Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression publication-title: J. Immunol. doi: 10.4049/jimmunol.1201654 – volume: 150 start-page: 165 year: 2012 ident: 10.1016/j.ccell.2023.01.002_bib29 article-title: A CXCL1 paracrine network links cancer chemoresistance and metastasis publication-title: Cell doi: 10.1016/j.cell.2012.04.042 – volume: 141 start-page: 1442 year: 1975 ident: 10.1016/j.ccell.2023.01.002_bib17 article-title: Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system publication-title: J. Exp. Med. doi: 10.1084/jem.141.6.1442 – volume: 358 start-page: eaal5081 year: 2017 ident: 10.1016/j.ccell.2023.01.002_bib42 article-title: Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils publication-title: Science doi: 10.1126/science.aal5081 – volume: 20 start-page: 485 year: 2020 ident: 10.1016/j.ccell.2023.01.002_bib2 article-title: Neutrophil diversity and plasticity in tumour progression and therapy publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-020-0281-y – volume: 10 start-page: 1510 year: 2021 ident: 10.1016/j.ccell.2023.01.002_bib44 article-title: The PD-L1/PD-1 Axis blocks neutrophil cytotoxicity in cancer publication-title: Cells doi: 10.3390/cells10061510 – volume: 33 start-page: 37 year: 2017 ident: 10.1016/j.ccell.2023.01.002_bib48 article-title: Too much of a good thing: how modulating LTB(4) actions restore host defense in homeostasis or disease publication-title: Semin. Immunol. doi: 10.1016/j.smim.2017.08.006 – volume: 48 start-page: 716 year: 2018 ident: 10.1016/j.ccell.2023.01.002_bib46 article-title: KLRG1+ effector CD8+ T cells lose KLRG1, differentiate into all memory T cell lineages, and convey enhanced protective immunity publication-title: Immunity doi: 10.1016/j.immuni.2018.03.015 – volume: 218 start-page: e20201803 year: 2021 ident: 10.1016/j.ccell.2023.01.002_bib43 article-title: Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice publication-title: J. Exp. Med. doi: 10.1084/jem.20201803 – volume: 109 start-page: E3177 year: 2012 ident: 10.1016/j.ccell.2023.01.002_bib65 article-title: Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and FcγR signaling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1213797109 – volume: 21 start-page: 485 year: 2021 ident: 10.1016/j.ccell.2023.01.002_bib14 article-title: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-00490-y – volume: 6 start-page: 7064 year: 2015 ident: 10.1016/j.ccell.2023.01.002_bib57 article-title: Crystalline silica-induced leukotriene B4-dependent inflammation promotes lung tumour growth publication-title: Nat. Commun. doi: 10.1038/ncomms8064 – volume: 122 start-page: 3160 year: 2013 ident: 10.1016/j.ccell.2023.01.002_bib33 article-title: Neutrophils mediate antibody-induced antitumor effects in mice publication-title: Blood doi: 10.1182/blood-2013-04-497446 – volume: 7 start-page: 694 year: 2017 ident: 10.1016/j.ccell.2023.01.002_bib52 article-title: A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-16-1184 – volume: 5 start-page: e1067744 year: 2016 ident: 10.1016/j.ccell.2023.01.002_bib31 article-title: Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype publication-title: Oncoimmunology doi: 10.1080/2162402X.2015.1067744 – volume: 521 start-page: 99 year: 2015 ident: 10.1016/j.ccell.2023.01.002_bib69 article-title: Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity publication-title: Nature doi: 10.1038/nature14424 – volume: 203 start-page: 829 year: 2006 ident: 10.1016/j.ccell.2023.01.002_bib66 article-title: A unique requirement for the leukotriene B4 receptor BLT1 for neutrophil recruitment in inflammatory arthritis publication-title: J. Exp. Med. doi: 10.1084/jem.20052349 – volume: 89 start-page: 105 year: 1996 ident: 10.1016/j.ccell.2023.01.002_bib36 article-title: Priming differentially regulates neutrophil adhesion molecule expression/function publication-title: Immunology doi: 10.1046/j.1365-2567.1996.d01-711.x – volume: 181 start-page: 5791 year: 2008 ident: 10.1016/j.ccell.2023.01.002_bib16 article-title: Subsets of myeloid-derived suppressor cells in tumor-bearing mice publication-title: J. Immunol. doi: 10.4049/jimmunol.181.8.5791 – volume: 117 start-page: 1340 year: 2011 ident: 10.1016/j.ccell.2023.01.002_bib61 article-title: Complement alternative pathway acts as a positive feedback amplification of neutrophil activation publication-title: Blood doi: 10.1182/blood-2010-05-283564 – volume: 10 start-page: 168 year: 2019 ident: 10.1016/j.ccell.2023.01.002_bib71 article-title: Cold tumors: a therapeutic challenge for immunotherapy publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00168 – volume: 290 start-page: 10667 year: 2015 ident: 10.1016/j.ccell.2023.01.002_bib55 article-title: Complement 5a enhances hepatic metastases of colon cancer via monocyte chemoattractant protein-1-mediated inflammatory cell infiltration publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.612622 – volume: 172 start-page: 989 year: 2004 ident: 10.1016/j.ccell.2023.01.002_bib15 article-title: Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species publication-title: J. Immunol. doi: 10.4049/jimmunol.172.2.989 – volume: 97 start-page: 2680 year: 1996 ident: 10.1016/j.ccell.2023.01.002_bib68 article-title: Preservation of complement-induced lung injury in mice with deficiency of NADPH oxidase publication-title: J. Clin. Invest. doi: 10.1172/JCI118718 – volume: 21 start-page: 938 year: 2015 ident: 10.1016/j.ccell.2023.01.002_bib4 article-title: The prognostic landscape of genes and infiltrating immune cells across human cancers publication-title: Nat. Med. doi: 10.1038/nm.3909 – volume: 459 start-page: 262 year: 2009 ident: 10.1016/j.ccell.2023.01.002_bib77 article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche publication-title: Nature doi: 10.1038/nature07935 – volume: 136 start-page: 287 year: 1991 ident: 10.1016/j.ccell.2023.01.002_bib79 article-title: In vivo anti-complementary activities of the cobra venom factors from Naja naja and Naja haje publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(91)90015-8 – volume: 6 start-page: 1186 year: 2018 ident: 10.1016/j.ccell.2023.01.002_bib26 article-title: Loss of CXCR4 in myeloid cells enhances antitumor immunity and reduces melanoma growth through NK cell and FASL mechanisms publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0045 – volume: 522 start-page: 345 year: 2015 ident: 10.1016/j.ccell.2023.01.002_bib9 article-title: IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis publication-title: Nature doi: 10.1038/nature14282 – volume: 108 start-page: 2455 year: 2006 ident: 10.1016/j.ccell.2023.01.002_bib37 article-title: Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury publication-title: Blood doi: 10.1182/blood-2006-04-017251 – reference: 36864183 - Nat Rev Cancer. 2023 Apr;23(4):190. doi: 10.1038/s41568-023-00555-9. – reference: 36787693 - Cancer Cell. 2023 Feb 13;41(2):227-229. doi: 10.1016/j.ccell.2023.01.005. |
SSID | ssj0016179 |
Score | 2.6676564 |
Snippet | Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 356 |
SubjectTerms | Animals Antineoplastic Agents C5a cancer immunotherapy CD40 complement Humans leukotriene B4 Leukotriene B4 - metabolism Leukotriene B4 - pharmacology Mice Neoplasms - drug therapy Neoplasms - metabolism neutrophil Neutrophils reactive oxygen species tumor immunology tumor necrosis factor Tumor Necrosis Factor-alpha - metabolism xanthine oxidase |
Title | Neutrophil-activating therapy for the treatment of cancer |
URI | https://dx.doi.org/10.1016/j.ccell.2023.01.002 https://www.ncbi.nlm.nih.gov/pubmed/36706760 https://www.proquest.com/docview/2770477695 https://pubmed.ncbi.nlm.nih.gov/PMC9968410 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iQbyIb9cXFTxat2nSpDmquIigFxX2Fpo2dSvSLmv34L93Jn3gquzBW9okECbJfJPMzBdCzlUSxMZw5VOr4ICSR6kfm9z6IoAKK2mSu0Tah0dx98Lvx9F4hdx0uTAYVtnq_kanO23d_hm20hxOi2L4BHsVwR89Re6SCPQw47FL4htf954EQGjVcKZGPrbumIdcjFeKt-OX-IK44-5s71b-QKff1ufPIMpvqDTaJButOeldNSPeIiu23CZrD63DfIeoRzuvZ9V0Urz7mMKAF7Dlq9dkXX16YLFi2evDzb0q91JcCLNd8jy6fb6589vXEvw0CqPaT4QBKBc8ykSYKZlwbgWCb87ApIpllgH0K8upAStHUWVpImgKRalSC7DN9shqWZX2gHjChMzY0Oacp1yaJGGG5pZljBn0H6sBCTsh6bRlEscHLd51FzL2pp1kNUpWB1SDZAfkou80bYg0ljcXnfT1wnrQoOqXdzzr5krDTsHqpLTV_EOHUgZcSqGiAdlv5q4fCdLYCSmCAZELs9o3QBbuxZqymDg2bjgwxpwGh_8d8BFZxy-MBKfsmKzWs7k9AUOnNqduJX8BvOT60A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SMAF8WY8i8SRsqZNk-UICDQe24Uh7RY1bQpDqJvGduDfY_clBogDt6hOpMhJ_Lmx_QXgVEVeyxiuXGYV_qCkYey2TGpd4aHAShaleSFtpyvaT_yuH_bn4KqqhaG0ytL2FzY9t9bll2apzeZoMGg-4lkl8KdIUX5JNA-L6A1IOp23_cs6lIAQrQrS1NCl7hX1UJ7kFdP1-Dk9IZ6Td5aXK7_A00_383sW5RdYulmD1dKfdC6KKa_DnM02YKlTRsw3QXXtdDIejl4Gby7VMNANbPbsFGVXHw66rNR26nxzZ5g6Me2E8Rb0bq57V223fC7BjUM_nLiRMIjlgoeJ8BMlI86tIPRNA_SpWjJJEPuV5cygm6OYsiwSLMamVLFF3A62YSEbZnYXHGH8wFjfppzHXJooCgxLbZAEgaEAsmqAXylJxyWVOL1o8aarnLFXnWtWk2a1xzRqtgFn9aBRwaTxd3dRaV_PbAiNtv7vgSfVWmk8KiSOMjucvmtfSo9LKVTYgJ1i7eqZEI-dkMJrgJxZ1boD0XDPSrLBS07HjX-MLc68vf9O-BiW273Og3647d7vwwpJKC2cBQewMBlP7SF6PRNzlO_qT17T_fA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutrophil-activating+therapy+for+the+treatment+of+cancer&rft.jtitle=Cancer+cell&rft.au=Linde%2C+Ian+L&rft.au=Prestwood%2C+Tyler+R&rft.au=Qiu%2C+Jingtao&rft.au=Pilarowski%2C+Genay&rft.date=2023-02-13&rft.issn=1878-3686&rft.eissn=1878-3686&rft.volume=41&rft.issue=2&rft.spage=356&rft_id=info:doi/10.1016%2Fj.ccell.2023.01.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-6108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-6108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-6108&client=summon |