Neutrophil-activating therapy for the treatment of cancer

Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be...

Full description

Saved in:
Bibliographic Details
Published inCancer cell Vol. 41; no. 2; pp. 356 - 372.e10
Main Authors Linde, Ian L., Prestwood, Tyler R., Qiu, Jingtao, Pilarowski, Genay, Linde, Miles H., Zhang, Xiangyue, Shen, Lei, Reticker-Flynn, Nathan E., Chiu, David Kung-Chun, Sheu, Lauren Y., Van Deursen, Simon, Tolentino, Lorna L., Song, Wen-Chao, Engleman, Edgar G.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer. [Display omitted] •Therapeutically activated neutrophils infiltrate and eradicate multiple tumor types•Intratumoral TNF + anti-CD40 + anti-tumor antibodies induce an inflammatory cascade•Neutrophil C5AR1 signaling stimulates LTB4 release, driving ROS production via XO•Neutrophil-mediated oxidative damage drives T cell-independent tumor clearance Linde et al. describe a cancer therapy that activates neutrophils to infiltrate and eradicate tumors and reduce metastatic seeding. The authors elucidate the responsible mechanism, which involves complement component C5a, leukotriene B4, and reactive oxygen species, and demonstrate the potential of harnessing neutrophils through inflammatory activation to drive tumor clearance.
AbstractList Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B , which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer.
Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer.Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer.
Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro , enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B 4 , which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer. Linde et al. describe a cancer therapy that activates neutrophils to infiltrate and eradicate tumors and reduce metastatic seeding. The authors elucidate the responsible mechanism, which involves complement component C5a, leukotriene B 4 , and reactive oxygen species, and demonstrate the potential of harnessing neutrophils through inflammatory activation to drive tumor clearance.
Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer. [Display omitted] •Therapeutically activated neutrophils infiltrate and eradicate multiple tumor types•Intratumoral TNF + anti-CD40 + anti-tumor antibodies induce an inflammatory cascade•Neutrophil C5AR1 signaling stimulates LTB4 release, driving ROS production via XO•Neutrophil-mediated oxidative damage drives T cell-independent tumor clearance Linde et al. describe a cancer therapy that activates neutrophils to infiltrate and eradicate tumors and reduce metastatic seeding. The authors elucidate the responsible mechanism, which involves complement component C5a, leukotriene B4, and reactive oxygen species, and demonstrate the potential of harnessing neutrophils through inflammatory activation to drive tumor clearance.
Author Song, Wen-Chao
Linde, Miles H.
Zhang, Xiangyue
Sheu, Lauren Y.
Pilarowski, Genay
Tolentino, Lorna L.
Chiu, David Kung-Chun
Qiu, Jingtao
Van Deursen, Simon
Shen, Lei
Engleman, Edgar G.
Prestwood, Tyler R.
Reticker-Flynn, Nathan E.
Linde, Ian L.
AuthorAffiliation 2 Department of Pathology, Stanford University; Stanford, CA 94305, USA
4 Lead Contact
3 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, The University of Pennsylvania; Philadelphia, PA 19104, USA
1 Program in Immunology, Stanford University; Stanford, CA 94305, USA
AuthorAffiliation_xml – name: 2 Department of Pathology, Stanford University; Stanford, CA 94305, USA
– name: 4 Lead Contact
– name: 3 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, The University of Pennsylvania; Philadelphia, PA 19104, USA
– name: 1 Program in Immunology, Stanford University; Stanford, CA 94305, USA
Author_xml – sequence: 1
  givenname: Ian L.
  surname: Linde
  fullname: Linde, Ian L.
  organization: Program in Immunology, Stanford University, Stanford, CA 94305, USA
– sequence: 2
  givenname: Tyler R.
  surname: Prestwood
  fullname: Prestwood, Tyler R.
  organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA
– sequence: 3
  givenname: Jingtao
  surname: Qiu
  fullname: Qiu, Jingtao
  organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA
– sequence: 4
  givenname: Genay
  surname: Pilarowski
  fullname: Pilarowski, Genay
  organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA
– sequence: 5
  givenname: Miles H.
  surname: Linde
  fullname: Linde, Miles H.
  organization: Program in Immunology, Stanford University, Stanford, CA 94305, USA
– sequence: 6
  givenname: Xiangyue
  surname: Zhang
  fullname: Zhang, Xiangyue
  organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA
– sequence: 7
  givenname: Lei
  surname: Shen
  fullname: Shen, Lei
  organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA
– sequence: 8
  givenname: Nathan E.
  surname: Reticker-Flynn
  fullname: Reticker-Flynn, Nathan E.
  organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA
– sequence: 9
  givenname: David Kung-Chun
  surname: Chiu
  fullname: Chiu, David Kung-Chun
  organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA
– sequence: 10
  givenname: Lauren Y.
  surname: Sheu
  fullname: Sheu, Lauren Y.
  organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA
– sequence: 11
  givenname: Simon
  surname: Van Deursen
  fullname: Van Deursen, Simon
  organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA
– sequence: 12
  givenname: Lorna L.
  surname: Tolentino
  fullname: Tolentino, Lorna L.
  organization: Department of Pathology, Stanford University, Stanford, CA 94305, USA
– sequence: 13
  givenname: Wen-Chao
  surname: Song
  fullname: Song, Wen-Chao
  organization: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 14
  givenname: Edgar G.
  surname: Engleman
  fullname: Engleman, Edgar G.
  email: edengleman@stanford.edu
  organization: Program in Immunology, Stanford University, Stanford, CA 94305, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36706760$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLJDEUhYMovn-BMNRyNlXeW4-kslAYZHyA6MZ9SKdu2WmqKz1JusF_PylbxZmFrnIg57v3cs4R2x3dSIydIRQIyM8XhTE0DEUJZVUAFgDlDjvEVrR5xVu-m3RTNTlHaA_YUQgLSBQKuc8OKi6ACw6HTD7QOnq3mtsh1ybajY52fM7inLxevWS985POoicdlzTGzPWZ0aMhf8L2ej0EOn17j9nT9e-nq9v8_vHm7urXfW6asom55jNE4HXT8bKTQtc1cc6x7ivEshVdhxIk1TiDspEoCTVHk6SQhqoWq2N2uR27Ws-W1Jl0g9eDWnm71P5FOW3Vvz-jnatnt1FS8rZGSAN-vg3w7s-aQlRLG6bg9EhuHVQpBNRCcNkk64_Puz6WvMeVDNXWYLwLwVP_YUFQUylqoV5LUVMpClClUhIl_6OMjSlnNx1sh2_Yiy1LKeKNJa-CsZTy76wnE1Xn7Jf8X5j4qBw
CitedBy_id crossref_primary_10_3389_fimmu_2024_1419773
crossref_primary_10_3389_fimmu_2025_1524038
crossref_primary_10_1002_btm2_10712
crossref_primary_10_3390_ijms25052929
crossref_primary_10_1042_EBC20220245
crossref_primary_10_3390_cells12151981
crossref_primary_10_1016_j_jconrel_2025_02_027
crossref_primary_10_1038_s43018_025_00924_3
crossref_primary_10_1186_s13046_024_03240_3
crossref_primary_10_1038_s41420_024_02092_2
crossref_primary_10_3390_cancers15225484
crossref_primary_10_1186_s12943_025_02228_7
crossref_primary_10_1002_cac2_70021
crossref_primary_10_1038_s41551_024_01180_z
crossref_primary_10_1007_s42765_025_00516_x
crossref_primary_10_1158_1078_0432_CCR_24_0861
crossref_primary_10_3389_fimmu_2023_1060258
crossref_primary_10_1016_j_celrep_2024_115014
crossref_primary_10_1016_j_clnves_2024_100005
crossref_primary_10_1038_s41598_024_54115_8
crossref_primary_10_37349_etat_2024_00263
crossref_primary_10_1016_j_phrs_2023_106996
crossref_primary_10_1126_sciimmunol_adg6453
crossref_primary_10_1016_j_it_2024_12_006
crossref_primary_10_1016_j_tcb_2024_09_001
crossref_primary_10_3390_ijms252413569
crossref_primary_10_1186_s13058_023_01676_7
crossref_primary_10_3389_fimmu_2024_1445513
crossref_primary_10_1186_s40364_023_00534_0
crossref_primary_10_1016_j_smim_2024_101921
crossref_primary_10_1016_j_bbcan_2024_189197
crossref_primary_10_1016_j_immuni_2024_12_009
crossref_primary_10_1038_s41568_023_00555_9
crossref_primary_10_1097_MD_0000000000039300
crossref_primary_10_3390_vaccines11081354
crossref_primary_10_1016_j_ccell_2024_11_002
crossref_primary_10_1093_jleuko_qiad150
crossref_primary_10_1158_2767_9764_CRC_23_0319
crossref_primary_10_1016_j_ccell_2023_01_005
crossref_primary_10_1002_mba2_93
crossref_primary_10_1111_imm_13765
crossref_primary_10_1016_j_ccell_2024_04_011
crossref_primary_10_1016_j_celrep_2024_113934
crossref_primary_10_1038_s41392_024_02045_2
crossref_primary_10_7717_peerj_16823
crossref_primary_10_1016_j_cej_2024_159096
crossref_primary_10_1038_s41392_024_01765_9
crossref_primary_10_1186_s12951_024_02726_8
crossref_primary_10_1158_2326_6066_CIR_23_0399
crossref_primary_10_1002_ctm2_1599
crossref_primary_10_1007_s12274_024_6917_6
crossref_primary_10_1186_s13287_025_04147_2
crossref_primary_10_1002_cam4_6761
crossref_primary_10_1016_j_canlet_2024_217288
crossref_primary_10_1158_1535_7163_MCT_24_0163
crossref_primary_10_1016_j_cej_2024_153436
crossref_primary_10_1186_s13046_023_02913_9
crossref_primary_10_1016_j_cpt_2025_02_004
crossref_primary_10_1038_s41590_024_02006_5
crossref_primary_10_1080_2162402X_2024_2363000
crossref_primary_10_1186_s13045_024_01634_6
crossref_primary_10_1002_adma_202310318
crossref_primary_10_1038_s41388_024_03004_5
crossref_primary_10_1146_annurev_pathmechdis_051222_015009
crossref_primary_10_3390_clinpract14040097
crossref_primary_10_1016_j_clgc_2023_10_004
crossref_primary_10_1080_14789450_2024_2428332
crossref_primary_10_3389_fimmu_2024_1488042
crossref_primary_10_1016_j_trecan_2024_01_010
crossref_primary_10_1016_j_biopha_2024_116670
crossref_primary_10_1186_s13046_024_03122_8
crossref_primary_10_1038_s41590_024_02029_y
crossref_primary_10_1186_s12885_024_12993_1
crossref_primary_10_1002_advs_202308174
crossref_primary_10_1002_btm2_10704
crossref_primary_10_1002_ctm2_1340
crossref_primary_10_1002_cac2_12613
crossref_primary_10_3389_fimmu_2023_1180810
crossref_primary_10_1093_procel_pwae015
crossref_primary_10_1007_s13402_025_01051_y
crossref_primary_10_1126_scitranslmed_adk0642
crossref_primary_10_1016_j_trecan_2024_11_011
crossref_primary_10_1186_s12943_024_02004_z
crossref_primary_10_1038_s41392_024_02049_y
crossref_primary_10_1093_neuonc_noad256
crossref_primary_10_1038_s41556_025_01617_w
crossref_primary_10_1186_s13046_024_03244_z
crossref_primary_10_1002_jev2_12480
crossref_primary_10_1158_2159_8290_CD_23_0282
crossref_primary_10_3389_fcvm_2025_1526170
crossref_primary_10_1093_jleuko_qiae222
Cites_doi 10.1038/nprot.2013.143
10.1172/JCI37223
10.1016/j.cell.2019.02.028
10.1182/blood-2011-10-383240
10.1016/j.molimm.2019.09.011
10.1007/s00262-020-02527-6
10.1016/j.chom.2017.11.009
10.1073/pnas.0601807103
10.1002/cam4.601
10.1016/j.ccell.2015.11.005
10.1002/ajh.24185
10.1016/j.kint.2019.01.009
10.1016/j.cell.2019.05.047
10.1016/j.cell.2016.12.022
10.1038/s41568-019-0210-0
10.1158/0008-5472.CAN-14-0157
10.1038/nature16140
10.1038/s41586-019-1118-2
10.1016/j.celrep.2018.05.082
10.1016/j.immuni.2020.06.005
10.1038/cr.2009.139
10.1016/j.bbamcr.2012.11.027
10.1002/cyto.a.20674
10.1093/carcin/bgx142
10.1002/ijc.31808
10.3389/fphar.2020.01289
10.1016/j.ccell.2016.06.001
10.1038/ni.1655
10.1016/j.ccr.2009.06.017
10.3389/fcimb.2017.00217
10.1038/s41586-019-0915-y
10.1002/ijc.32270
10.3791/54040-v
10.1038/nri3024
10.1182/blood-2015-08-664995
10.1016/j.immuni.2018.02.002
10.4049/jimmunol.1202275
10.1002/ijc.28770
10.1172/JCI77053
10.1172/JCI41782
10.1093/glycob/cwz085
10.1016/j.ccell.2016.04.014
10.1038/nature12175
10.1016/j.celrep.2014.12.039
10.1038/nbt.3437
10.1016/j.ccr.2011.08.012
10.18632/oncotarget.344
10.1038/s41571-019-0222-4
10.1084/jem.181.1.435
10.1038/nrc.2016.52
10.4049/jimmunol.1201654
10.1016/j.cell.2012.04.042
10.1084/jem.141.6.1442
10.1126/science.aal5081
10.1038/s41568-020-0281-y
10.3390/cells10061510
10.1016/j.smim.2017.08.006
10.1016/j.immuni.2018.03.015
10.1084/jem.20201803
10.1073/pnas.1213797109
10.1038/s41577-020-00490-y
10.1038/ncomms8064
10.1182/blood-2013-04-497446
10.1158/2159-8290.CD-16-1184
10.1080/2162402X.2015.1067744
10.1038/nature14424
10.1084/jem.20052349
10.1046/j.1365-2567.1996.d01-711.x
10.4049/jimmunol.181.8.5791
10.1182/blood-2010-05-283564
10.3389/fimmu.2019.00168
10.1074/jbc.M114.612622
10.4049/jimmunol.172.2.989
10.1172/JCI118718
10.1038/nm.3909
10.1038/nature07935
10.1016/0022-1759(91)90015-8
10.1158/2326-6066.CIR-18-0045
10.1038/nature14282
10.1182/blood-2006-04-017251
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.ccell.2023.01.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1878-3686
EndPage 372.e10
ExternalDocumentID PMC9968410
36706760
10_1016_j_ccell_2023_01_002
S1535610823000028
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA251174
– fundername: NIAID NIH HHS
  grantid: R01 AI117410
– fundername: NCI NIH HHS
  grantid: U54 CA209971
– fundername: NCI NIH HHS
  grantid: R01 CA262361
– fundername: NCI NIH HHS
  grantid: F32 CA189408
– fundername: NCI NIH HHS
  grantid: F31 CA196029
– fundername: NCI NIH HHS
  grantid: R01 CA233958
– fundername: NCI NIH HHS
  grantid: F30 CA196145
– fundername: NHLBI NIH HHS
  grantid: T32 HL120824
– fundername: NCI NIH HHS
  grantid: P01 CA244114
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IH2
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UDS
WQ6
ZA5
5VS
AAFWJ
AAIKJ
AAMRU
AAQFI
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
UHS
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c525t-a6b110645d62d97a44e66614f311287dd1909e41b025919e1a61c25979ce3813
IEDL.DBID IXB
ISSN 1535-6108
1878-3686
IngestDate Thu Aug 21 18:35:15 EDT 2025
Thu Jul 10 22:23:11 EDT 2025
Wed Jul 23 01:46:06 EDT 2025
Tue Jul 01 01:26:26 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Fri Feb 23 02:38:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords CD40
tumor immunology
tumor necrosis factor
cancer immunotherapy
reactive oxygen species
complement
neutrophil
xanthine oxidase
C5a
leukotriene B4
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-a6b110645d62d97a44e66614f311287dd1909e41b025919e1a61c25979ce3813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceptualization: ILL, TRP; Methodology: ILL, TRP; Investigation: ILL, TRP, JQ, GP, MHL, XZ, LS, NERF, DK-CC, LYS, SVD; Resources: LT, W-CS; Writing – Original Draft: ILL; Writing – Review & Editing: ILL, TRP, JQ, GP, NERF, MHL, W-CS, EGE; Funding Acquisition: EGE; Supervision: EGE
Author contributions
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9968410
PMID 36706760
PQID 2770477695
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9968410
proquest_miscellaneous_2770477695
pubmed_primary_36706760
crossref_primary_10_1016_j_ccell_2023_01_002
crossref_citationtrail_10_1016_j_ccell_2023_01_002
elsevier_sciencedirect_doi_10_1016_j_ccell_2023_01_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-13
PublicationDateYYYYMMDD 2023-02-13
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer cell
PublicationTitleAlternate Cancer Cell
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Nozawa, Chiu, Hanahan (bib8) 2006; 103
Arroyo-Crespo, Armiñán, Charbonnier, Deladriere, Palomino-Schätzlein, Lamas-Domingo, Forteza, Pineda-Lucena, Vicent (bib72) 2019; 145
Shrestha, Noh, Kim, Ham, Kim, Yun, Kim, Kwon, Song, Hong (bib31) 2016; 5
Ajona, Ortiz-Espinosa, Moreno, Lozano, Pajares, Agorreta, Bértolo, Lasarte, Vicent, Hoehlig (bib52) 2017; 7
Brandt, Serezani (bib48) 2017; 33
Piao, Cai, Qiu, Jia, Song, Du (bib55) 2015; 290
Kimura, Zhou, Miwa, Song (bib67) 2010; 120
Mantovani, Cassatella, Costantini, Jaillon (bib3) 2011; 11
Jablonska, Leschner, Westphal, Lienenklaus, Weiss (bib7) 2010; 120
Woodfin, Beyrau, Voisin, Ma, Whiteford, Hordijk, Hogg, Nourshargh (bib35) 2016; 127
Kusmartsev, Nefedova, Yoder, Gabrilovich (bib15) 2004; 172
Challen, Boles, Lin, Goodell (bib40) 2009; 75
Yajuk, Baron, Toker, Zelter, Fainsod-Levi, Granot (bib44) 2021; 10
Yang, Kumar, Vilgelm, Chen, Ayers, Novitskiy, Joyce, Richmond (bib26) 2018; 6
Coffelt, Kersten, Doornebal, Weiden, Vrijland, Hau, Verstegen, Ciampricotti, Hawinkels, Jonkers, de Visser (bib9) 2015; 522
Sjögren, Lood, Nägeli (bib78) 2020; 30
Jaillon, Ponzetta, Di Mitri, Santoni, Bonecchi, Mantovani (bib2) 2020; 20
Akk, Springer, Yang, Hamilton-Burdess, Lambris, Yan, Hu, Wu, Hourcade, Miller, Pham (bib60) 2019; 114
Veglia, Tyurin, Blasi, De Leo, Kossenkov, Donthireddy, To, Schug, Basu, Wang (bib25) 2019; 569
Wculek, Malanchi (bib10) 2015; 528
Kwok, Becht, Xia, Ng, Teh, Tan, Evrard, Li, Tran, Tan (bib39) 2020; 53
Roberts, Zhou, Diaz, Holdhoff (bib73) 2011; 2
Miwa, Sato, Gullipalli, Nangaku, Song (bib74) 2013; 190
Wang, Wu, Newton, Bahaie, Long, Walcheck (bib51) 2013; 1833
Veglia, Sanseviero, Gabrilovich (bib14) 2021; 21
Markiewski, DeAngelis, Benencia, Ricklin-Lichtsteiner, Koutoulaki, Gerard, Coukos, Lambris (bib56) 2008; 9
Spitzer, Carmi, Reticker-Flynn, Kwek, Madhireddy, Martins, Gherardini, Prestwood, Chabon, Bendall (bib70) 2017; 168
Doench, Fusi, Sullender, Hegde, Vaimberg, Donovan, Smith, Tothova, Wilen, Orchard (bib81) 2016; 34
Tian, Jiang, Kim, Guan, Nicolls, Rockson (bib59) 2020; 11
Dunkelberger, Song (bib47) 2010; 20
Corrales, Ajona, Rafail, Lasarte, Riezu-Boj, Lambris, Rouzaut, Pajares, Montuenga, Pio (bib53) 2012; 189
Vadrevu, Chintala, Sharma, Sharma, Cleveland, Riediger, Manne, Fairlie, Gorczyca, Almanza (bib54) 2014; 74
Youn, Nagaraj, Collazo, Gabrilovich (bib16) 2008; 181
Shaul, Fridlender (bib5) 2019; 16
Clark, Klebanoff (bib17) 1975; 141
Kubo, Morgenstern, Quinian, Ward, Dinauer, Doerschuk (bib68) 1996; 97
Ponzetta, Carriero, Carnevale, Barbagallo, Molgora, Perucchini, Magrini, Gianni, Kunderfranco, Polentarutti (bib21) 2019; 178
Khan, Kelher, Heal, Blumberg, Boshkov, Phipps, Gettings, McLaughlin, Silliman (bib37) 2006; 108
Van den Berg, Aerts, Van Dijk (bib79) 1991; 136
Herndler-Brandstetter, Ishigame, Shinnakasu, Plajer, Stecher, Zhao, Lietzenmayer, Kroehling, Takumi, Kometani (bib46) 2018; 48
Pekarek, Starr, Toledano, Schreiber (bib6) 1995; 181
Condliffe, Chilvers, Haslett, Dransfield (bib36) 1996; 89
Coffelt, Wellenstein, de Visser (bib1) 2016; 16
Sagiv, Michaeli, Assi, Mishalian, Kisos, Levy, Damti, Lumbroso, Polyansky, Sionov (bib27) 2015; 10
Bonaventura, Shekarian, Alcazer, Valladeau-Guilemond, Valsesia-Wittmann, Amigorena, Caux, Depil (bib71) 2019; 10
Granot, Henke, Comen, King, Norton, Benezra (bib23) 2011; 20
Blaisdell, Crequer, Columbus, Daikoku, Mittal, Dey, Erlebacher (bib18) 2015; 28
Engblom, Pfirschke, Zilionis, Da Silva Martins, Bos, Courties, Rickelt, Severe, Baryawno, Faget (bib42) 2017; 358
Lee, Gillrie, Li, Arnason, Kim, Babes, Lou, Sanati-Nezhad, Kyei, Kelly (bib63) 2018; 23
Matlung, Babes, Zhao, van Houdt, Treffers, van Rees, Franke, Schornagel, Verkuijlen, Janssen (bib32) 2018; 23
Pylaeva, Harati, Spyra, Bordbari, Strachan, Thakur, Höing, Franklin, Skokowa, Welte (bib30) 2019; 144
Battelli, Polito, Bortolotti, Bolognesi (bib50) 2016; 5
Ran, Hsu, Wright, Agarwala, Scott, Zhang (bib76) 2013; 8
Camous, Roumenina, Bigot, Brachemi, Frémeaux-Bacchi, Lesavre, Halbwachs-Mecarelli (bib61) 2011; 117
Albanesi, Mancardi, Jönsson, Iannascoli, Fiette, Di Santo, Lowell, Bruhns (bib33) 2013; 122
Satpathy, Jala, Bodduluri, Krishnan, Hegde, Hoyle, Fraig, Luster, Haribabu (bib57) 2015; 6
Costanzo-Garvey, Keeley, Case, Watson, Alsamraae, Yu, Su, Heim, Kielian, Morrissey (bib22) 2020; 69
Gavillet, Martinod, Renella, Harris, Shapiro, Wagner, Williams (bib45) 2015; 90
Uderhardt, Martins, Tsang, Lämmermann, Germain (bib64) 2019; 177
Roumenina, Daugan, Petitprez, Sautès-Fridman, Fridman (bib49) 2019; 19
Yokota, Inoue, Matsumura, Nabeta, Narusawa, Watanabe, Sakamoto, Hijikata, Iga-Murahashi, Takayama (bib58) 2012; 120
Eruslanov, Bhojnagarwala, Quatromoni, Stephen, Ranganathan, Deshpande, Akimova, Vachani, Litzky, Hancock (bib19) 2014; 124
Singhal, Bhojnagarwala, O'Brien, Moon, Garfall, Rao, Quatromoni, Stephen, Litzky, Deshpande (bib20) 2016; 30
Sato, Vries, Snippert, van de Wetering, Barker, Stange, van Es, Abo, Kujala, Peters, Clevers (bib77) 2009; 459
Acharyya, Oskarsson, Vanharanta, Malladi, Kim, Morris, Manova-Todorova, Leversha, Hogg, Seshan (bib29) 2012; 150
Veglia, Hashimoto, Dweep, Sanseviero, De Leo, Tcyganov, Kossenkov, Mulligan, Nam, Masters (bib43) 2021; 218
Szczerba, Castro-Giner, Vetter, Krol, Gkountela, Landin, Scheidmann, Donato, Scherrer, Singer (bib11) 2019; 566
Fridlender, Sun, Kim, Kapoor, Cheng, Ling, Worthen, Albelda (bib24) 2009; 16
Kim, Chou, Seung, Tager, Luster (bib66) 2006; 203
Carmi, Spitzer, Linde, Burt, Prestwood, Perlman, Davidson, Kenkel, Segal, Pusapati (bib69) 2015; 521
Gentles, Newman, Liu, Bratman, Feng, Kim, Nair, Xu, Khuong, Hoang (bib4) 2015; 21
Miralda, Uriarte, McLeish (bib34) 2017; 7
Ueda, Miwa, Ito, Kim, Sato, Gullipalli, Zhou, Golla, Song, Dunaief (bib75) 2019; 96
Lämmermann, Afonso, Angermann, Wang, Kastenmüller, Parent, Germain (bib62) 2013; 498
Schmielau, Finn (bib12) 2001; 61
Steele, Karim, Leach, Bailey, Upstill-Goddard, Rishi, Foth, Bryson, McDaid, Wilson (bib28) 2016; 29
Mishalian, Bayuh, Eruslanov, Michaeli, Levy, Zolotarov, Singhal, Albelda, Granot, Fridlender (bib13) 2014; 135
Paschall, Liu (bib80) 2016
Evrard, Kwok, Chong, Teng, Becht, Chen, Sieow, Penny, Ching, Devi (bib38) 2018; 48
Sadik, Kim, Iwakura, Luster (bib65) 2012; 109
Zhou, Peng, Song, Yang, Shu, Yu, Yu, Lin, Wei, Chen (bib41) 2018; 39
Fridlender (10.1016/j.ccell.2023.01.002_bib24) 2009; 16
Evrard (10.1016/j.ccell.2023.01.002_bib38) 2018; 48
Jaillon (10.1016/j.ccell.2023.01.002_bib2) 2020; 20
Sagiv (10.1016/j.ccell.2023.01.002_bib27) 2015; 10
Roumenina (10.1016/j.ccell.2023.01.002_bib49) 2019; 19
Ueda (10.1016/j.ccell.2023.01.002_bib75) 2019; 96
Condliffe (10.1016/j.ccell.2023.01.002_bib36) 1996; 89
Lämmermann (10.1016/j.ccell.2023.01.002_bib62) 2013; 498
Albanesi (10.1016/j.ccell.2023.01.002_bib33) 2013; 122
Steele (10.1016/j.ccell.2023.01.002_bib28) 2016; 29
Kwok (10.1016/j.ccell.2023.01.002_bib39) 2020; 53
Wang (10.1016/j.ccell.2023.01.002_bib51) 2013; 1833
Ran (10.1016/j.ccell.2023.01.002_bib76) 2013; 8
Clark (10.1016/j.ccell.2023.01.002_bib17) 1975; 141
Veglia (10.1016/j.ccell.2023.01.002_bib25) 2019; 569
Tian (10.1016/j.ccell.2023.01.002_bib59) 2020; 11
Sato (10.1016/j.ccell.2023.01.002_bib77) 2009; 459
Lee (10.1016/j.ccell.2023.01.002_bib63) 2018; 23
Gavillet (10.1016/j.ccell.2023.01.002_bib45) 2015; 90
Coffelt (10.1016/j.ccell.2023.01.002_bib9) 2015; 522
Arroyo-Crespo (10.1016/j.ccell.2023.01.002_bib72) 2019; 145
Herndler-Brandstetter (10.1016/j.ccell.2023.01.002_bib46) 2018; 48
Shaul (10.1016/j.ccell.2023.01.002_bib5) 2019; 16
Corrales (10.1016/j.ccell.2023.01.002_bib53) 2012; 189
Acharyya (10.1016/j.ccell.2023.01.002_bib29) 2012; 150
Sadik (10.1016/j.ccell.2023.01.002_bib65) 2012; 109
Satpathy (10.1016/j.ccell.2023.01.002_bib57) 2015; 6
Engblom (10.1016/j.ccell.2023.01.002_bib42) 2017; 358
Wculek (10.1016/j.ccell.2023.01.002_bib10) 2015; 528
Challen (10.1016/j.ccell.2023.01.002_bib40) 2009; 75
Ajona (10.1016/j.ccell.2023.01.002_bib52) 2017; 7
Szczerba (10.1016/j.ccell.2023.01.002_bib11) 2019; 566
Gentles (10.1016/j.ccell.2023.01.002_bib4) 2015; 21
Bonaventura (10.1016/j.ccell.2023.01.002_bib71) 2019; 10
Kubo (10.1016/j.ccell.2023.01.002_bib68) 1996; 97
Zhou (10.1016/j.ccell.2023.01.002_bib41) 2018; 39
Khan (10.1016/j.ccell.2023.01.002_bib37) 2006; 108
Youn (10.1016/j.ccell.2023.01.002_bib16) 2008; 181
Roberts (10.1016/j.ccell.2023.01.002_bib73) 2011; 2
Nozawa (10.1016/j.ccell.2023.01.002_bib8) 2006; 103
Camous (10.1016/j.ccell.2023.01.002_bib61) 2011; 117
Yajuk (10.1016/j.ccell.2023.01.002_bib44) 2021; 10
Schmielau (10.1016/j.ccell.2023.01.002_bib12) 2001; 61
Uderhardt (10.1016/j.ccell.2023.01.002_bib64) 2019; 177
Costanzo-Garvey (10.1016/j.ccell.2023.01.002_bib22) 2020; 69
Veglia (10.1016/j.ccell.2023.01.002_bib14) 2021; 21
Carmi (10.1016/j.ccell.2023.01.002_bib69) 2015; 521
Eruslanov (10.1016/j.ccell.2023.01.002_bib19) 2014; 124
Mishalian (10.1016/j.ccell.2023.01.002_bib13) 2014; 135
Coffelt (10.1016/j.ccell.2023.01.002_bib1) 2016; 16
Vadrevu (10.1016/j.ccell.2023.01.002_bib54) 2014; 74
Woodfin (10.1016/j.ccell.2023.01.002_bib35) 2016; 127
Battelli (10.1016/j.ccell.2023.01.002_bib50) 2016; 5
Piao (10.1016/j.ccell.2023.01.002_bib55) 2015; 290
Brandt (10.1016/j.ccell.2023.01.002_bib48) 2017; 33
Singhal (10.1016/j.ccell.2023.01.002_bib20) 2016; 30
Yokota (10.1016/j.ccell.2023.01.002_bib58) 2012; 120
Markiewski (10.1016/j.ccell.2023.01.002_bib56) 2008; 9
Doench (10.1016/j.ccell.2023.01.002_bib81) 2016; 34
Kimura (10.1016/j.ccell.2023.01.002_bib67) 2010; 120
Pekarek (10.1016/j.ccell.2023.01.002_bib6) 1995; 181
Spitzer (10.1016/j.ccell.2023.01.002_bib70) 2017; 168
Veglia (10.1016/j.ccell.2023.01.002_bib43) 2021; 218
Matlung (10.1016/j.ccell.2023.01.002_bib32) 2018; 23
Van den Berg (10.1016/j.ccell.2023.01.002_bib79) 1991; 136
Ponzetta (10.1016/j.ccell.2023.01.002_bib21) 2019; 178
Akk (10.1016/j.ccell.2023.01.002_bib60) 2019; 114
Blaisdell (10.1016/j.ccell.2023.01.002_bib18) 2015; 28
Shrestha (10.1016/j.ccell.2023.01.002_bib31) 2016; 5
Mantovani (10.1016/j.ccell.2023.01.002_bib3) 2011; 11
Dunkelberger (10.1016/j.ccell.2023.01.002_bib47) 2010; 20
Pylaeva (10.1016/j.ccell.2023.01.002_bib30) 2019; 144
Sjögren (10.1016/j.ccell.2023.01.002_bib78) 2020; 30
Yang (10.1016/j.ccell.2023.01.002_bib26) 2018; 6
Miwa (10.1016/j.ccell.2023.01.002_bib74) 2013; 190
Jablonska (10.1016/j.ccell.2023.01.002_bib7) 2010; 120
Kusmartsev (10.1016/j.ccell.2023.01.002_bib15) 2004; 172
Granot (10.1016/j.ccell.2023.01.002_bib23) 2011; 20
Miralda (10.1016/j.ccell.2023.01.002_bib34) 2017; 7
Kim (10.1016/j.ccell.2023.01.002_bib66) 2006; 203
Paschall (10.1016/j.ccell.2023.01.002_bib80) 2016
36864183 - Nat Rev Cancer. 2023 Apr;23(4):190. doi: 10.1038/s41568-023-00555-9.
36787693 - Cancer Cell. 2023 Feb 13;41(2):227-229. doi: 10.1016/j.ccell.2023.01.005.
References_xml – volume: 141
  start-page: 1442
  year: 1975
  end-page: 1447
  ident: bib17
  article-title: Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system
  publication-title: J. Exp. Med.
– volume: 136
  start-page: 287
  year: 1991
  end-page: 294
  ident: bib79
  article-title: In vivo anti-complementary activities of the cobra venom factors from Naja naja and Naja haje
  publication-title: J. Immunol. Methods
– volume: 30
  start-page: 254
  year: 2020
  end-page: 267
  ident: bib78
  article-title: On enzymatic remodeling of IgG glycosylation; unique tools with broad applications
  publication-title: Glycobiology
– volume: 10
  start-page: 562
  year: 2015
  end-page: 573
  ident: bib27
  article-title: Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer
  publication-title: Cell Rep.
– volume: 9
  start-page: 1225
  year: 2008
  end-page: 1235
  ident: bib56
  article-title: Modulation of the antitumor immune response by complement
  publication-title: Nat. Immunol.
– volume: 8
  start-page: 2281
  year: 2013
  end-page: 2308
  ident: bib76
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
– volume: 521
  start-page: 99
  year: 2015
  end-page: 104
  ident: bib69
  article-title: Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity
  publication-title: Nature
– volume: 124
  start-page: 5466
  year: 2014
  end-page: 5480
  ident: bib19
  article-title: Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer
  publication-title: J. Clin. Invest.
– volume: 135
  start-page: 1178
  year: 2014
  end-page: 1186
  ident: bib13
  article-title: Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17—a new mechanism of impaired antitumor immunity
  publication-title: Int. J. Cancer
– volume: 20
  start-page: 300
  year: 2011
  end-page: 314
  ident: bib23
  article-title: Tumor entrained neutrophils inhibit seeding in the premetastatic lung
  publication-title: Cancer Cell
– volume: 181
  start-page: 5791
  year: 2008
  end-page: 5802
  ident: bib16
  article-title: Subsets of myeloid-derived suppressor cells in tumor-bearing mice
  publication-title: J. Immunol.
– volume: 190
  start-page: 3552
  year: 2013
  end-page: 3559
  ident: bib74
  article-title: Blocking properdin, the alternative pathway, and anaphylatoxin receptors ameliorates renal ischemia-reperfusion injury in decay-accelerating factor and CD59 double-knockout mice
  publication-title: J. Immunol.
– volume: 109
  start-page: E3177
  year: 2012
  end-page: E3185
  ident: bib65
  article-title: Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and FcγR signaling
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 127
  start-page: 898
  year: 2016
  end-page: 907
  ident: bib35
  article-title: ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia
  publication-title: Blood
– volume: 290
  start-page: 10667
  year: 2015
  end-page: 10676
  ident: bib55
  article-title: Complement 5a enhances hepatic metastases of colon cancer via monocyte chemoattractant protein-1-mediated inflammatory cell infiltration
  publication-title: J. Biol. Chem.
– volume: 34
  start-page: 184
  year: 2016
  end-page: 191
  ident: bib81
  article-title: Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
  publication-title: Nat. Biotechnol.
– volume: 48
  start-page: 364
  year: 2018
  end-page: 379.e8
  ident: bib38
  article-title: Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions
  publication-title: Immunity
– volume: 5
  start-page: 546
  year: 2016
  end-page: 557
  ident: bib50
  article-title: Xanthine oxidoreductase in cancer: more than a differentiation marker
  publication-title: Cancer Med.
– volume: 7
  start-page: 217
  year: 2017
  ident: bib34
  article-title: Multiple phenotypic changes define neutrophil priming
  publication-title: Front. Cell. Infect. Microbiol.
– volume: 117
  start-page: 1340
  year: 2011
  end-page: 1349
  ident: bib61
  article-title: Complement alternative pathway acts as a positive feedback amplification of neutrophil activation
  publication-title: Blood
– volume: 21
  start-page: 938
  year: 2015
  end-page: 945
  ident: bib4
  article-title: The prognostic landscape of genes and infiltrating immune cells across human cancers
  publication-title: Nat. Med.
– year: 2016
  ident: bib80
  article-title: An orthotopic mouse model of spontaneous breast cancer metastasis
  publication-title: J. Vis. Exp.
– volume: 6
  start-page: 7064
  year: 2015
  ident: bib57
  article-title: Crystalline silica-induced leukotriene B4-dependent inflammation promotes lung tumour growth
  publication-title: Nat. Commun.
– volume: 23
  start-page: 3946
  year: 2018
  end-page: 3959.e6
  ident: bib32
  article-title: Neutrophils kill antibody-opsonized cancer cells by trogoptosis
  publication-title: Cell Rep.
– volume: 168
  start-page: 487
  year: 2017
  end-page: 502.e15
  ident: bib70
  article-title: Systemic immunity is required for effective cancer immunotherapy
  publication-title: Cell
– volume: 21
  start-page: 485
  year: 2021
  end-page: 498
  ident: bib14
  article-title: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity
  publication-title: Nat. Rev. Immunol.
– volume: 74
  start-page: 3454
  year: 2014
  end-page: 3465
  ident: bib54
  article-title: Complement c5a receptor facilitates cancer metastasis by altering T-cell responses in the metastatic niche
  publication-title: Cancer Res.
– volume: 16
  start-page: 601
  year: 2019
  end-page: 620
  ident: bib5
  article-title: Tumour-associated neutrophils in patients with cancer
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 103
  start-page: 12493
  year: 2006
  end-page: 12498
  ident: bib8
  article-title: Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 1186
  year: 2018
  end-page: 1198
  ident: bib26
  article-title: Loss of CXCR4 in myeloid cells enhances antitumor immunity and reduces melanoma growth through NK cell and FASL mechanisms
  publication-title: Cancer Immunol. Res.
– volume: 96
  start-page: 67
  year: 2019
  end-page: 79
  ident: bib75
  article-title: Differential contribution of C5aR and C5b-9 pathways to renal thrombic microangiopathy and macrovascular thrombosis in mice carrying an atypical hemolytic syndrome-related factor H mutation
  publication-title: Kidney Int.
– volume: 89
  start-page: 105
  year: 1996
  end-page: 111
  ident: bib36
  article-title: Priming differentially regulates neutrophil adhesion molecule expression/function
  publication-title: Immunology
– volume: 23
  start-page: 121
  year: 2018
  end-page: 133.e4
  ident: bib63
  article-title: Leukotriene B4-mediated neutrophil recruitment causes pulmonary capillaritis during lethal fungal sepsis
  publication-title: Cell Host Microbe
– volume: 177
  start-page: 541
  year: 2019
  end-page: 555.e17
  ident: bib64
  article-title: Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage
  publication-title: Cell
– volume: 61
  start-page: 4756
  year: 2001
  end-page: 4760
  ident: bib12
  article-title: Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients
  publication-title: Cancer Res.
– volume: 145
  start-page: 2267
  year: 2019
  end-page: 2281
  ident: bib72
  article-title: Characterization of triple-negative breast cancer preclinical models provides functional evidence of metastatic progression
  publication-title: Int. J. Cancer
– volume: 172
  start-page: 989
  year: 2004
  end-page: 999
  ident: bib15
  article-title: Antigen-specific inhibition of CD8
  publication-title: J. Immunol.
– volume: 144
  start-page: 136
  year: 2019
  end-page: 149
  ident: bib30
  article-title: NAMPT signaling is critical for the proangiogenic activity of tumor-associated neutrophils
  publication-title: Int. J. Cancer
– volume: 33
  start-page: 37
  year: 2017
  end-page: 43
  ident: bib48
  article-title: Too much of a good thing: how modulating LTB(4) actions restore host defense in homeostasis or disease
  publication-title: Semin. Immunol.
– volume: 20
  start-page: 34
  year: 2010
  end-page: 50
  ident: bib47
  article-title: Complement and its role in innate and adaptive immune responses
  publication-title: Cell Res.
– volume: 120
  start-page: 1151
  year: 2010
  end-page: 1164
  ident: bib7
  article-title: Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model
  publication-title: J. Clin. Invest.
– volume: 48
  start-page: 716
  year: 2018
  end-page: 729.e8
  ident: bib46
  article-title: KLRG1+ effector CD8+ T cells lose KLRG1, differentiate into all memory T cell lineages, and convey enhanced protective immunity
  publication-title: Immunity
– volume: 53
  start-page: 303
  year: 2020
  end-page: 318.e5
  ident: bib39
  article-title: Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor
  publication-title: Immunity
– volume: 122
  start-page: 3160
  year: 2013
  end-page: 3164
  ident: bib33
  article-title: Neutrophils mediate antibody-induced antitumor effects in mice
  publication-title: Blood
– volume: 90
  start-page: 1155
  year: 2015
  end-page: 1158
  ident: bib45
  article-title: Flow cytometric assay for direct quantification of neutrophil extracellular traps in blood samples
  publication-title: Am. J. Hematol.
– volume: 181
  start-page: 435
  year: 1995
  end-page: 440
  ident: bib6
  article-title: Inhibition of tumor growth by elimination of granulocytes
  publication-title: J. Exp. Med.
– volume: 69
  start-page: 1113
  year: 2020
  end-page: 1130
  ident: bib22
  article-title: Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer immunology, immunotherapy
  publication-title: Cancer Immunol. Immunother.
– volume: 522
  start-page: 345
  year: 2015
  end-page: 348
  ident: bib9
  article-title: IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis
  publication-title: Nature
– volume: 150
  start-page: 165
  year: 2012
  end-page: 178
  ident: bib29
  article-title: A CXCL1 paracrine network links cancer chemoresistance and metastasis
  publication-title: Cell
– volume: 498
  start-page: 371
  year: 2013
  end-page: 375
  ident: bib62
  article-title: Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo
  publication-title: Nature
– volume: 97
  start-page: 2680
  year: 1996
  end-page: 2684
  ident: bib68
  article-title: Preservation of complement-induced lung injury in mice with deficiency of NADPH oxidase
  publication-title: J. Clin. Invest.
– volume: 11
  start-page: 519
  year: 2011
  end-page: 531
  ident: bib3
  article-title: Neutrophils in the activation and regulation of innate and adaptive immunity
  publication-title: Nat. Rev. Immunol.
– volume: 19
  start-page: 698
  year: 2019
  end-page: 715
  ident: bib49
  article-title: Context-dependent roles of complement in cancer
  publication-title: Nat. Rev. Cancer
– volume: 1833
  start-page: 680
  year: 2013
  end-page: 685
  ident: bib51
  article-title: ADAM17 cleaves CD16b (FcγRIIIb) in human neutrophils
  publication-title: Biochim. Biophys. Acta
– volume: 10
  start-page: 168
  year: 2019
  ident: bib71
  article-title: Cold tumors: a therapeutic challenge for immunotherapy
  publication-title: Front. Immunol.
– volume: 30
  start-page: 120
  year: 2016
  end-page: 135
  ident: bib20
  article-title: Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer
  publication-title: Cancer Cell
– volume: 2
  start-page: 739
  year: 2011
  end-page: 751
  ident: bib73
  article-title: Systemic use of tumor necrosis factor alpha as an anticancer agent
  publication-title: Oncotarget
– volume: 569
  start-page: 73
  year: 2019
  end-page: 78
  ident: bib25
  article-title: Fatty acid transport protein 2 reprograms neutrophils in cancer
  publication-title: Nature
– volume: 108
  start-page: 2455
  year: 2006
  end-page: 2462
  ident: bib37
  article-title: Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury
  publication-title: Blood
– volume: 218
  start-page: e20201803
  year: 2021
  ident: bib43
  article-title: Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice
  publication-title: J. Exp. Med.
– volume: 459
  start-page: 262
  year: 2009
  end-page: 265
  ident: bib77
  article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
  publication-title: Nature
– volume: 16
  start-page: 431
  year: 2016
  end-page: 446
  ident: bib1
  article-title: Neutrophils in cancer: neutral no more
  publication-title: Nat. Rev. Cancer
– volume: 178
  start-page: 346
  year: 2019
  end-page: 360.e24
  ident: bib21
  article-title: Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors
  publication-title: Cell
– volume: 528
  start-page: 413
  year: 2015
  end-page: 417
  ident: bib10
  article-title: Neutrophils support lung colonization of metastasis-initiating breast cancer cells
  publication-title: Nature
– volume: 75
  start-page: 14
  year: 2009
  end-page: 24
  ident: bib40
  article-title: Mouse hematopoietic stem cell identification and analysis
  publication-title: Cytometry A.
– volume: 5
  start-page: e1067744
  year: 2016
  ident: bib31
  article-title: Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype
  publication-title: Oncoimmunology
– volume: 11
  start-page: 1289
  year: 2020
  ident: bib59
  article-title: Leukotrienes in tumor-associated inflammation
  publication-title: Front. Pharmacol.
– volume: 203
  start-page: 829
  year: 2006
  end-page: 835
  ident: bib66
  article-title: A unique requirement for the leukotriene B4 receptor BLT1 for neutrophil recruitment in inflammatory arthritis
  publication-title: J. Exp. Med.
– volume: 20
  start-page: 485
  year: 2020
  end-page: 503
  ident: bib2
  article-title: Neutrophil diversity and plasticity in tumour progression and therapy
  publication-title: Nat. Rev. Cancer
– volume: 358
  start-page: eaal5081
  year: 2017
  ident: bib42
  article-title: Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils
  publication-title: Science
– volume: 189
  start-page: 4674
  year: 2012
  end-page: 4683
  ident: bib53
  article-title: Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression
  publication-title: J. Immunol.
– volume: 114
  start-page: 629
  year: 2019
  end-page: 642
  ident: bib60
  article-title: Complement activation on neutrophils initiates endothelial adhesion and extravasation
  publication-title: Mol. Immunol.
– volume: 28
  start-page: 785
  year: 2015
  end-page: 799
  ident: bib18
  article-title: Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells
  publication-title: Cancer Cell
– volume: 16
  start-page: 183
  year: 2009
  end-page: 194
  ident: bib24
  article-title: Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN
  publication-title: Cancer Cell
– volume: 566
  start-page: 553
  year: 2019
  end-page: 557
  ident: bib11
  article-title: Neutrophils escort circulating tumour cells to enable cell cycle progression
  publication-title: Nature
– volume: 39
  start-page: 272
  year: 2018
  end-page: 282
  ident: bib41
  article-title: CD177+ neutrophils suppress epithelial cell tumourigenesis in colitis-associated cancer and predict good prognosis in colorectal cancer
  publication-title: Carcinogenesis
– volume: 120
  start-page: 3545
  year: 2010
  end-page: 3554
  ident: bib67
  article-title: Genetic and therapeutic targeting of properdin in mice prevents complement-mediated tissue injury
  publication-title: J. Clin. Invest.
– volume: 7
  start-page: 694
  year: 2017
  end-page: 703
  ident: bib52
  article-title: A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis
  publication-title: Cancer Discov.
– volume: 29
  start-page: 832
  year: 2016
  end-page: 845
  ident: bib28
  article-title: CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma
  publication-title: Cancer Cell
– volume: 120
  start-page: 3444
  year: 2012
  end-page: 3454
  ident: bib58
  article-title: Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems
  publication-title: Blood
– volume: 10
  start-page: 1510
  year: 2021
  ident: bib44
  article-title: The PD-L1/PD-1 Axis blocks neutrophil cytotoxicity in cancer
  publication-title: Cells
– volume: 61
  start-page: 4756
  year: 2001
  ident: 10.1016/j.ccell.2023.01.002_bib12
  article-title: Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients
  publication-title: Cancer Res.
– volume: 8
  start-page: 2281
  year: 2013
  ident: 10.1016/j.ccell.2023.01.002_bib76
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 120
  start-page: 1151
  year: 2010
  ident: 10.1016/j.ccell.2023.01.002_bib7
  article-title: Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI37223
– volume: 177
  start-page: 541
  year: 2019
  ident: 10.1016/j.ccell.2023.01.002_bib64
  article-title: Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.028
– volume: 120
  start-page: 3444
  year: 2012
  ident: 10.1016/j.ccell.2023.01.002_bib58
  article-title: Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems
  publication-title: Blood
  doi: 10.1182/blood-2011-10-383240
– volume: 114
  start-page: 629
  year: 2019
  ident: 10.1016/j.ccell.2023.01.002_bib60
  article-title: Complement activation on neutrophils initiates endothelial adhesion and extravasation
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2019.09.011
– volume: 69
  start-page: 1113
  year: 2020
  ident: 10.1016/j.ccell.2023.01.002_bib22
  article-title: Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer immunology, immunotherapy
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-020-02527-6
– volume: 23
  start-page: 121
  year: 2018
  ident: 10.1016/j.ccell.2023.01.002_bib63
  article-title: Leukotriene B4-mediated neutrophil recruitment causes pulmonary capillaritis during lethal fungal sepsis
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.11.009
– volume: 103
  start-page: 12493
  year: 2006
  ident: 10.1016/j.ccell.2023.01.002_bib8
  article-title: Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0601807103
– volume: 5
  start-page: 546
  year: 2016
  ident: 10.1016/j.ccell.2023.01.002_bib50
  article-title: Xanthine oxidoreductase in cancer: more than a differentiation marker
  publication-title: Cancer Med.
  doi: 10.1002/cam4.601
– volume: 28
  start-page: 785
  year: 2015
  ident: 10.1016/j.ccell.2023.01.002_bib18
  article-title: Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.11.005
– volume: 90
  start-page: 1155
  year: 2015
  ident: 10.1016/j.ccell.2023.01.002_bib45
  article-title: Flow cytometric assay for direct quantification of neutrophil extracellular traps in blood samples
  publication-title: Am. J. Hematol.
  doi: 10.1002/ajh.24185
– volume: 96
  start-page: 67
  year: 2019
  ident: 10.1016/j.ccell.2023.01.002_bib75
  article-title: Differential contribution of C5aR and C5b-9 pathways to renal thrombic microangiopathy and macrovascular thrombosis in mice carrying an atypical hemolytic syndrome-related factor H mutation
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2019.01.009
– volume: 178
  start-page: 346
  year: 2019
  ident: 10.1016/j.ccell.2023.01.002_bib21
  article-title: Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.047
– volume: 168
  start-page: 487
  year: 2017
  ident: 10.1016/j.ccell.2023.01.002_bib70
  article-title: Systemic immunity is required for effective cancer immunotherapy
  publication-title: Cell
  doi: 10.1016/j.cell.2016.12.022
– volume: 19
  start-page: 698
  year: 2019
  ident: 10.1016/j.ccell.2023.01.002_bib49
  article-title: Context-dependent roles of complement in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-019-0210-0
– volume: 74
  start-page: 3454
  year: 2014
  ident: 10.1016/j.ccell.2023.01.002_bib54
  article-title: Complement c5a receptor facilitates cancer metastasis by altering T-cell responses in the metastatic niche
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-0157
– volume: 528
  start-page: 413
  year: 2015
  ident: 10.1016/j.ccell.2023.01.002_bib10
  article-title: Neutrophils support lung colonization of metastasis-initiating breast cancer cells
  publication-title: Nature
  doi: 10.1038/nature16140
– volume: 569
  start-page: 73
  year: 2019
  ident: 10.1016/j.ccell.2023.01.002_bib25
  article-title: Fatty acid transport protein 2 reprograms neutrophils in cancer
  publication-title: Nature
  doi: 10.1038/s41586-019-1118-2
– volume: 23
  start-page: 3946
  year: 2018
  ident: 10.1016/j.ccell.2023.01.002_bib32
  article-title: Neutrophils kill antibody-opsonized cancer cells by trogoptosis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.05.082
– volume: 53
  start-page: 303
  year: 2020
  ident: 10.1016/j.ccell.2023.01.002_bib39
  article-title: Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.06.005
– volume: 20
  start-page: 34
  year: 2010
  ident: 10.1016/j.ccell.2023.01.002_bib47
  article-title: Complement and its role in innate and adaptive immune responses
  publication-title: Cell Res.
  doi: 10.1038/cr.2009.139
– volume: 1833
  start-page: 680
  year: 2013
  ident: 10.1016/j.ccell.2023.01.002_bib51
  article-title: ADAM17 cleaves CD16b (FcγRIIIb) in human neutrophils
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2012.11.027
– volume: 75
  start-page: 14
  year: 2009
  ident: 10.1016/j.ccell.2023.01.002_bib40
  article-title: Mouse hematopoietic stem cell identification and analysis
  publication-title: Cytometry A.
  doi: 10.1002/cyto.a.20674
– volume: 39
  start-page: 272
  year: 2018
  ident: 10.1016/j.ccell.2023.01.002_bib41
  article-title: CD177+ neutrophils suppress epithelial cell tumourigenesis in colitis-associated cancer and predict good prognosis in colorectal cancer
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgx142
– volume: 144
  start-page: 136
  year: 2019
  ident: 10.1016/j.ccell.2023.01.002_bib30
  article-title: NAMPT signaling is critical for the proangiogenic activity of tumor-associated neutrophils
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31808
– volume: 11
  start-page: 1289
  year: 2020
  ident: 10.1016/j.ccell.2023.01.002_bib59
  article-title: Leukotrienes in tumor-associated inflammation
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.01289
– volume: 30
  start-page: 120
  year: 2016
  ident: 10.1016/j.ccell.2023.01.002_bib20
  article-title: Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.06.001
– volume: 9
  start-page: 1225
  year: 2008
  ident: 10.1016/j.ccell.2023.01.002_bib56
  article-title: Modulation of the antitumor immune response by complement
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1655
– volume: 16
  start-page: 183
  year: 2009
  ident: 10.1016/j.ccell.2023.01.002_bib24
  article-title: Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.06.017
– volume: 7
  start-page: 217
  year: 2017
  ident: 10.1016/j.ccell.2023.01.002_bib34
  article-title: Multiple phenotypic changes define neutrophil priming
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2017.00217
– volume: 566
  start-page: 553
  year: 2019
  ident: 10.1016/j.ccell.2023.01.002_bib11
  article-title: Neutrophils escort circulating tumour cells to enable cell cycle progression
  publication-title: Nature
  doi: 10.1038/s41586-019-0915-y
– volume: 145
  start-page: 2267
  year: 2019
  ident: 10.1016/j.ccell.2023.01.002_bib72
  article-title: Characterization of triple-negative breast cancer preclinical models provides functional evidence of metastatic progression
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.32270
– year: 2016
  ident: 10.1016/j.ccell.2023.01.002_bib80
  article-title: An orthotopic mouse model of spontaneous breast cancer metastasis
  publication-title: J. Vis. Exp.
  doi: 10.3791/54040-v
– volume: 11
  start-page: 519
  year: 2011
  ident: 10.1016/j.ccell.2023.01.002_bib3
  article-title: Neutrophils in the activation and regulation of innate and adaptive immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3024
– volume: 127
  start-page: 898
  year: 2016
  ident: 10.1016/j.ccell.2023.01.002_bib35
  article-title: ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia
  publication-title: Blood
  doi: 10.1182/blood-2015-08-664995
– volume: 48
  start-page: 364
  year: 2018
  ident: 10.1016/j.ccell.2023.01.002_bib38
  article-title: Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.02.002
– volume: 190
  start-page: 3552
  year: 2013
  ident: 10.1016/j.ccell.2023.01.002_bib74
  article-title: Blocking properdin, the alternative pathway, and anaphylatoxin receptors ameliorates renal ischemia-reperfusion injury in decay-accelerating factor and CD59 double-knockout mice
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1202275
– volume: 135
  start-page: 1178
  year: 2014
  ident: 10.1016/j.ccell.2023.01.002_bib13
  article-title: Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17—a new mechanism of impaired antitumor immunity
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.28770
– volume: 124
  start-page: 5466
  year: 2014
  ident: 10.1016/j.ccell.2023.01.002_bib19
  article-title: Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI77053
– volume: 120
  start-page: 3545
  year: 2010
  ident: 10.1016/j.ccell.2023.01.002_bib67
  article-title: Genetic and therapeutic targeting of properdin in mice prevents complement-mediated tissue injury
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI41782
– volume: 30
  start-page: 254
  year: 2020
  ident: 10.1016/j.ccell.2023.01.002_bib78
  article-title: On enzymatic remodeling of IgG glycosylation; unique tools with broad applications
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwz085
– volume: 29
  start-page: 832
  year: 2016
  ident: 10.1016/j.ccell.2023.01.002_bib28
  article-title: CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.04.014
– volume: 498
  start-page: 371
  year: 2013
  ident: 10.1016/j.ccell.2023.01.002_bib62
  article-title: Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo
  publication-title: Nature
  doi: 10.1038/nature12175
– volume: 10
  start-page: 562
  year: 2015
  ident: 10.1016/j.ccell.2023.01.002_bib27
  article-title: Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.12.039
– volume: 34
  start-page: 184
  year: 2016
  ident: 10.1016/j.ccell.2023.01.002_bib81
  article-title: Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3437
– volume: 20
  start-page: 300
  year: 2011
  ident: 10.1016/j.ccell.2023.01.002_bib23
  article-title: Tumor entrained neutrophils inhibit seeding in the premetastatic lung
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.08.012
– volume: 2
  start-page: 739
  year: 2011
  ident: 10.1016/j.ccell.2023.01.002_bib73
  article-title: Systemic use of tumor necrosis factor alpha as an anticancer agent
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.344
– volume: 16
  start-page: 601
  year: 2019
  ident: 10.1016/j.ccell.2023.01.002_bib5
  article-title: Tumour-associated neutrophils in patients with cancer
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-019-0222-4
– volume: 181
  start-page: 435
  year: 1995
  ident: 10.1016/j.ccell.2023.01.002_bib6
  article-title: Inhibition of tumor growth by elimination of granulocytes
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.181.1.435
– volume: 16
  start-page: 431
  year: 2016
  ident: 10.1016/j.ccell.2023.01.002_bib1
  article-title: Neutrophils in cancer: neutral no more
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.52
– volume: 189
  start-page: 4674
  year: 2012
  ident: 10.1016/j.ccell.2023.01.002_bib53
  article-title: Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1201654
– volume: 150
  start-page: 165
  year: 2012
  ident: 10.1016/j.ccell.2023.01.002_bib29
  article-title: A CXCL1 paracrine network links cancer chemoresistance and metastasis
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.042
– volume: 141
  start-page: 1442
  year: 1975
  ident: 10.1016/j.ccell.2023.01.002_bib17
  article-title: Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.141.6.1442
– volume: 358
  start-page: eaal5081
  year: 2017
  ident: 10.1016/j.ccell.2023.01.002_bib42
  article-title: Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils
  publication-title: Science
  doi: 10.1126/science.aal5081
– volume: 20
  start-page: 485
  year: 2020
  ident: 10.1016/j.ccell.2023.01.002_bib2
  article-title: Neutrophil diversity and plasticity in tumour progression and therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-020-0281-y
– volume: 10
  start-page: 1510
  year: 2021
  ident: 10.1016/j.ccell.2023.01.002_bib44
  article-title: The PD-L1/PD-1 Axis blocks neutrophil cytotoxicity in cancer
  publication-title: Cells
  doi: 10.3390/cells10061510
– volume: 33
  start-page: 37
  year: 2017
  ident: 10.1016/j.ccell.2023.01.002_bib48
  article-title: Too much of a good thing: how modulating LTB(4) actions restore host defense in homeostasis or disease
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2017.08.006
– volume: 48
  start-page: 716
  year: 2018
  ident: 10.1016/j.ccell.2023.01.002_bib46
  article-title: KLRG1+ effector CD8+ T cells lose KLRG1, differentiate into all memory T cell lineages, and convey enhanced protective immunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.03.015
– volume: 218
  start-page: e20201803
  year: 2021
  ident: 10.1016/j.ccell.2023.01.002_bib43
  article-title: Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20201803
– volume: 109
  start-page: E3177
  year: 2012
  ident: 10.1016/j.ccell.2023.01.002_bib65
  article-title: Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and FcγR signaling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1213797109
– volume: 21
  start-page: 485
  year: 2021
  ident: 10.1016/j.ccell.2023.01.002_bib14
  article-title: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-00490-y
– volume: 6
  start-page: 7064
  year: 2015
  ident: 10.1016/j.ccell.2023.01.002_bib57
  article-title: Crystalline silica-induced leukotriene B4-dependent inflammation promotes lung tumour growth
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8064
– volume: 122
  start-page: 3160
  year: 2013
  ident: 10.1016/j.ccell.2023.01.002_bib33
  article-title: Neutrophils mediate antibody-induced antitumor effects in mice
  publication-title: Blood
  doi: 10.1182/blood-2013-04-497446
– volume: 7
  start-page: 694
  year: 2017
  ident: 10.1016/j.ccell.2023.01.002_bib52
  article-title: A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-16-1184
– volume: 5
  start-page: e1067744
  year: 2016
  ident: 10.1016/j.ccell.2023.01.002_bib31
  article-title: Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2015.1067744
– volume: 521
  start-page: 99
  year: 2015
  ident: 10.1016/j.ccell.2023.01.002_bib69
  article-title: Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity
  publication-title: Nature
  doi: 10.1038/nature14424
– volume: 203
  start-page: 829
  year: 2006
  ident: 10.1016/j.ccell.2023.01.002_bib66
  article-title: A unique requirement for the leukotriene B4 receptor BLT1 for neutrophil recruitment in inflammatory arthritis
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20052349
– volume: 89
  start-page: 105
  year: 1996
  ident: 10.1016/j.ccell.2023.01.002_bib36
  article-title: Priming differentially regulates neutrophil adhesion molecule expression/function
  publication-title: Immunology
  doi: 10.1046/j.1365-2567.1996.d01-711.x
– volume: 181
  start-page: 5791
  year: 2008
  ident: 10.1016/j.ccell.2023.01.002_bib16
  article-title: Subsets of myeloid-derived suppressor cells in tumor-bearing mice
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.8.5791
– volume: 117
  start-page: 1340
  year: 2011
  ident: 10.1016/j.ccell.2023.01.002_bib61
  article-title: Complement alternative pathway acts as a positive feedback amplification of neutrophil activation
  publication-title: Blood
  doi: 10.1182/blood-2010-05-283564
– volume: 10
  start-page: 168
  year: 2019
  ident: 10.1016/j.ccell.2023.01.002_bib71
  article-title: Cold tumors: a therapeutic challenge for immunotherapy
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00168
– volume: 290
  start-page: 10667
  year: 2015
  ident: 10.1016/j.ccell.2023.01.002_bib55
  article-title: Complement 5a enhances hepatic metastases of colon cancer via monocyte chemoattractant protein-1-mediated inflammatory cell infiltration
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.612622
– volume: 172
  start-page: 989
  year: 2004
  ident: 10.1016/j.ccell.2023.01.002_bib15
  article-title: Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.172.2.989
– volume: 97
  start-page: 2680
  year: 1996
  ident: 10.1016/j.ccell.2023.01.002_bib68
  article-title: Preservation of complement-induced lung injury in mice with deficiency of NADPH oxidase
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI118718
– volume: 21
  start-page: 938
  year: 2015
  ident: 10.1016/j.ccell.2023.01.002_bib4
  article-title: The prognostic landscape of genes and infiltrating immune cells across human cancers
  publication-title: Nat. Med.
  doi: 10.1038/nm.3909
– volume: 459
  start-page: 262
  year: 2009
  ident: 10.1016/j.ccell.2023.01.002_bib77
  article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
  publication-title: Nature
  doi: 10.1038/nature07935
– volume: 136
  start-page: 287
  year: 1991
  ident: 10.1016/j.ccell.2023.01.002_bib79
  article-title: In vivo anti-complementary activities of the cobra venom factors from Naja naja and Naja haje
  publication-title: J. Immunol. Methods
  doi: 10.1016/0022-1759(91)90015-8
– volume: 6
  start-page: 1186
  year: 2018
  ident: 10.1016/j.ccell.2023.01.002_bib26
  article-title: Loss of CXCR4 in myeloid cells enhances antitumor immunity and reduces melanoma growth through NK cell and FASL mechanisms
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0045
– volume: 522
  start-page: 345
  year: 2015
  ident: 10.1016/j.ccell.2023.01.002_bib9
  article-title: IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis
  publication-title: Nature
  doi: 10.1038/nature14282
– volume: 108
  start-page: 2455
  year: 2006
  ident: 10.1016/j.ccell.2023.01.002_bib37
  article-title: Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury
  publication-title: Blood
  doi: 10.1182/blood-2006-04-017251
– reference: 36864183 - Nat Rev Cancer. 2023 Apr;23(4):190. doi: 10.1038/s41568-023-00555-9.
– reference: 36787693 - Cancer Cell. 2023 Feb 13;41(2):227-229. doi: 10.1016/j.ccell.2023.01.005.
SSID ssj0016179
Score 2.6676564
Snippet Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 356
SubjectTerms Animals
Antineoplastic Agents
C5a
cancer immunotherapy
CD40
complement
Humans
leukotriene B4
Leukotriene B4 - metabolism
Leukotriene B4 - pharmacology
Mice
Neoplasms - drug therapy
Neoplasms - metabolism
neutrophil
Neutrophils
reactive oxygen species
tumor immunology
tumor necrosis factor
Tumor Necrosis Factor-alpha - metabolism
xanthine oxidase
Title Neutrophil-activating therapy for the treatment of cancer
URI https://dx.doi.org/10.1016/j.ccell.2023.01.002
https://www.ncbi.nlm.nih.gov/pubmed/36706760
https://www.proquest.com/docview/2770477695
https://pubmed.ncbi.nlm.nih.gov/PMC9968410
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iQbyIb9cXFTxat2nSpDmquIigFxX2Fpo2dSvSLmv34L93Jn3gquzBW9okECbJfJPMzBdCzlUSxMZw5VOr4ICSR6kfm9z6IoAKK2mSu0Tah0dx98Lvx9F4hdx0uTAYVtnq_kanO23d_hm20hxOi2L4BHsVwR89Re6SCPQw47FL4htf954EQGjVcKZGPrbumIdcjFeKt-OX-IK44-5s71b-QKff1ufPIMpvqDTaJButOeldNSPeIiu23CZrD63DfIeoRzuvZ9V0Urz7mMKAF7Dlq9dkXX16YLFi2evDzb0q91JcCLNd8jy6fb6589vXEvw0CqPaT4QBKBc8ykSYKZlwbgWCb87ApIpllgH0K8upAStHUWVpImgKRalSC7DN9shqWZX2gHjChMzY0Oacp1yaJGGG5pZljBn0H6sBCTsh6bRlEscHLd51FzL2pp1kNUpWB1SDZAfkou80bYg0ljcXnfT1wnrQoOqXdzzr5krDTsHqpLTV_EOHUgZcSqGiAdlv5q4fCdLYCSmCAZELs9o3QBbuxZqymDg2bjgwxpwGh_8d8BFZxy-MBKfsmKzWs7k9AUOnNqduJX8BvOT60A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SMAF8WY8i8SRsqZNk-UICDQe24Uh7RY1bQpDqJvGduDfY_clBogDt6hOpMhJ_Lmx_QXgVEVeyxiuXGYV_qCkYey2TGpd4aHAShaleSFtpyvaT_yuH_bn4KqqhaG0ytL2FzY9t9bll2apzeZoMGg-4lkl8KdIUX5JNA-L6A1IOp23_cs6lIAQrQrS1NCl7hX1UJ7kFdP1-Dk9IZ6Td5aXK7_A00_383sW5RdYulmD1dKfdC6KKa_DnM02YKlTRsw3QXXtdDIejl4Gby7VMNANbPbsFGVXHw66rNR26nxzZ5g6Me2E8Rb0bq57V223fC7BjUM_nLiRMIjlgoeJ8BMlI86tIPRNA_SpWjJJEPuV5cygm6OYsiwSLMamVLFF3A62YSEbZnYXHGH8wFjfppzHXJooCgxLbZAEgaEAsmqAXylJxyWVOL1o8aarnLFXnWtWk2a1xzRqtgFn9aBRwaTxd3dRaV_PbAiNtv7vgSfVWmk8KiSOMjucvmtfSo9LKVTYgJ1i7eqZEI-dkMJrgJxZ1boD0XDPSrLBS07HjX-MLc68vf9O-BiW273Og3647d7vwwpJKC2cBQewMBlP7SF6PRNzlO_qT17T_fA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutrophil-activating+therapy+for+the+treatment+of+cancer&rft.jtitle=Cancer+cell&rft.au=Linde%2C+Ian+L&rft.au=Prestwood%2C+Tyler+R&rft.au=Qiu%2C+Jingtao&rft.au=Pilarowski%2C+Genay&rft.date=2023-02-13&rft.issn=1878-3686&rft.eissn=1878-3686&rft.volume=41&rft.issue=2&rft.spage=356&rft_id=info:doi/10.1016%2Fj.ccell.2023.01.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-6108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-6108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-6108&client=summon