Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates

Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisf...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 44; pp. 18006 - 18011
Main Authors Smaers, Jeroen B, Dechmann, Dina K. N, Goswami, Anjali, Soligo, Christophe, Safi, Kamran
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 30.10.2012
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1212181109

Cover

Abstract Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brain–body relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain–body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity.
AbstractList Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brain–body relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain–body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity.
Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brainbody relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain-body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity.
Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brain-body relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain-body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity. [PUBLICATION ABSTRACT]
Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brain-body relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain-body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity.Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brain-body relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain-body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity.
Author Safi, Kamran
Smaers, Jeroen B
Dechmann, Dina K. N
Soligo, Christophe
Goswami, Anjali
Author_xml – sequence: 1
  fullname: Smaers, Jeroen B
– sequence: 2
  fullname: Dechmann, Dina K. N
– sequence: 3
  fullname: Goswami, Anjali
– sequence: 4
  fullname: Soligo, Christophe
– sequence: 5
  fullname: Safi, Kamran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23071335$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhleoiKaFMyfAUi8cSDter3ftCxKKyodUiQP0bE12ZxtHG3uxN0Hpr8ebhBR6AFmyZb_PjF975iw7cd5Rlr3kcMmhEle9w3jJ8zQU56CfZJM082lZaDjJJgB5NVVFXpxmZzEuAUBLBc-y01xAxYWQk-x-5lc9Bhzshhg67LaRIvMto43v1oP1DsOWJT2dBtoQdqyxbUuB3MB6HBY_cRvZ4Bm5mvoFdvYexyhmHZvjEN-xGoOzGx_QpQ26hvXBrsZ8z7OnLXaRXhzW8-z24_X32efpzddPX2Yfbqa1zOUwRShyzkmKHAQWKCtRzbloayg1UtOSIFk22Io5Eqi2KZWQEiriVVlJUtCK8-z9Pm-_nq-oqZPzgJ3Z2Qhb49GavxVnF-bOb4wodKUEpARvDwmC_7GmOJiVjTV1HTry62i4AsFFBVL-H-V5KbWWMKIXj9ClX4dUgR2lRCmV5ol6_af5o-vfFUzA1R6og48xUHtEOJixR8zYI-ahR1KEfBRR22FXtPR62_0jjh2sjMLDLdoUxfgHUCbk1R5ZxsGHI1NwletKq6S_2esteoN3wUZz-y0HXgJwATy99xdBkN_S
CitedBy_id crossref_primary_10_1111_joa_13657
crossref_primary_10_1159_000447254
crossref_primary_10_1371_journal_pone_0261185
crossref_primary_10_1139_cjfas_2013_0624
crossref_primary_10_1371_journal_pbio_3000764
crossref_primary_10_1098_rspb_2013_0269
crossref_primary_10_1111_joa_12441
crossref_primary_10_1016_j_jhevol_2015_05_009
crossref_primary_10_1002_ece3_4513
crossref_primary_10_1098_rsos_230463
crossref_primary_10_1098_rstb_2013_0254
crossref_primary_10_1038_s42003_022_03748_4
crossref_primary_10_1098_rspb_2021_0394
crossref_primary_10_1111_evo_12222
crossref_primary_10_1007_s10682_014_9715_x
crossref_primary_10_1038_nature12424
crossref_primary_10_1002_ece3_8684
crossref_primary_10_1038_s41598_024_69199_5
crossref_primary_10_19052_mv_vol1_iss49_10
crossref_primary_10_1523_JNEUROSCI_5746_12_2013
crossref_primary_10_1038_s41559_022_01815_x
crossref_primary_10_1111_joa_12476
crossref_primary_10_1098_rstb_2020_0523
crossref_primary_10_1159_000377666
crossref_primary_10_1371_journal_pone_0078781
crossref_primary_10_3389_fnins_2014_00090
crossref_primary_10_1186_1471_2148_13_229
crossref_primary_10_1159_000509383
crossref_primary_10_1016_j_cbpa_2017_06_017
crossref_primary_10_1111_nyas_12047
crossref_primary_10_3389_fpsyg_2023_1197378
crossref_primary_10_1086_685655
crossref_primary_10_1016_j_cub_2020_03_060
crossref_primary_10_1098_rsos_240765
crossref_primary_10_1371_journal_pone_0218655
crossref_primary_10_1159_000488136
crossref_primary_10_1093_jmammal_gyz043
crossref_primary_10_1098_rspb_2013_2312
crossref_primary_10_1098_rstb_2022_0083
crossref_primary_10_1186_s12862_017_0976_1
crossref_primary_10_1159_000523787
crossref_primary_10_1371_journal_pone_0144147
crossref_primary_10_1098_rstb_2022_0086
crossref_primary_10_1111_evo_12965
crossref_primary_10_1186_s12862_015_0285_5
crossref_primary_10_1016_j_zool_2021_125926
crossref_primary_10_1146_annurev_animal_022513_114217
crossref_primary_10_1073_pnas_1514473113
crossref_primary_10_1002_evl3_151
crossref_primary_10_1111_nyas_15267
crossref_primary_10_1093_jmammal_gyae084
crossref_primary_10_3390_d14110942
crossref_primary_10_1093_icb_icw041
crossref_primary_10_1038_srep34031
crossref_primary_10_1016_j_physbeh_2018_01_013
crossref_primary_10_1111_evo_14310
crossref_primary_10_1111_brv_12953
crossref_primary_10_1186_1742_9994_11_20
crossref_primary_10_1159_000501161
crossref_primary_10_3389_fnana_2016_00099
crossref_primary_10_1111_nph_16706
crossref_primary_10_1126_science_abl5584
Cites_doi 10.1006/jhev.1998.0263
10.1023/B:IJOP.0000043355.96393.8b
10.1016/j.jhevol.2006.07.010
10.1111/j.1469-7580.2011.01347.x
10.1159/000073759
10.1159/000076784
10.1073/pnas.0608522103
10.1186/1741-7007-8-9
10.1111/j.1469-185X.2008.00067.x
10.1111/j.1420-9101.2012.02520.x
10.1016/0160-2896(91)90031-8
10.1098/rstb.2006.2001
10.1186/1741-7007-10-12
10.1159/000006641
10.1242/jeb.01566
10.1073/pnas.0901780106
10.1159/000102973
10.1086/284325
10.1111/j.0014-3820.2002.tb01438.x
10.1002/ajpa.21465
10.1002/evan.20251
10.1038/293057a0
10.1098/rsbl.2005.0333
10.1086/283874
10.1006/jhev.1996.0021
10.1038/nature10629
10.1126/science.178.4065.1096
10.1002/ajpa.1330400314
10.1126/science.2196673
10.1073/pnas.0707725104
10.1093/bioinformatics/btg412
10.1086/284907
10.1073/pnas.0906486107
10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8
10.1046/j.1420-9101.2003.00664.x
10.1098/rspb.2005.3099
10.1016/j.tics.2005.03.005
10.1002/ajpa.20298
10.1671/0272-4634(2001)021[0322:DROSBO]2.0.CO;2
10.1073/pnas.77.7.4387
10.1016/j.jhevol.2005.11.001
10.1038/nature07347
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Oct 30, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Oct 30, 2012
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1212181109
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef



AGRICOLA
Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Pathways in relative brain size evolution
EISSN 1091-6490
EndPage 18011
ExternalDocumentID PMC3497830
2807066141
23071335
10_1073_pnas_1212181109
109_44_18006
41829798
US201600130191
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c525t-a04211e53203a4a5737b13fc069aedfe3e56daf3bae08fd6835507e17675e80f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:29:50 EDT 2025
Fri Sep 05 03:10:24 EDT 2025
Thu Sep 04 22:43:43 EDT 2025
Mon Jun 30 08:04:43 EDT 2025
Mon Jul 21 05:58:12 EDT 2025
Thu Apr 24 23:04:19 EDT 2025
Tue Jul 01 03:39:29 EDT 2025
Wed Nov 11 00:30:06 EST 2020
Thu May 29 08:40:47 EDT 2025
Wed Dec 27 19:03:53 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c525t-a04211e53203a4a5737b13fc069aedfe3e56daf3bae08fd6835507e17675e80f3
Notes http://dx.doi.org/10.1073/pnas.1212181109
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Edited by James H. Brown, University of New Mexico, Albuquerque, NM, and approved September 11, 2012 (received for review July 18, 2012)
Author contributions: J.B.S., D.K.N.D., and K.S. designed research; J.B.S., D.K.N.D., A.G., C.S., and K.S. performed research; J.B.S. contributed new reagents/analytic tools; J.B.S., C.S., and K.S. analyzed data; and J.B.S., D.K.N.D., A.G., C.S., and K.S. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/109/44/18006.full.pdf
PMID 23071335
PQID 1128365891
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1212181109
fao_agris_US201600130191
pubmed_primary_23071335
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3497830
proquest_miscellaneous_1803137055
crossref_citationtrail_10_1073_pnas_1212181109
proquest_miscellaneous_1126599505
jstor_primary_41829798
proquest_journals_1128365891
pnas_primary_109_44_18006
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-30
PublicationDateYYYYMMDD 2012-10-30
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Smaers JB (e_1_3_3_25_2) 2009; 11
Rowe N (e_1_3_3_45_2) 1996
Norberg UM (e_1_3_3_27_2) 1994
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
Simpson GG (e_1_3_3_37_2) 1944
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
Hansen TF (e_1_3_3_46_2) 2005; 59
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – volume: 59
  start-page: 2063
  year: 2005
  ident: e_1_3_3_46_2
  article-title: Assessing current adaptation and phylogenetic inertia as explanations of trait evolution: The need for controlled comparisons
  publication-title: Evolution
– ident: e_1_3_3_31_2
  doi: 10.1006/jhev.1998.0263
– ident: e_1_3_3_10_2
  doi: 10.1023/B:IJOP.0000043355.96393.8b
– ident: e_1_3_3_13_2
  doi: 10.1016/j.jhevol.2006.07.010
– ident: e_1_3_3_39_2
  doi: 10.1111/j.1469-7580.2011.01347.x
– ident: e_1_3_3_2_2
  doi: 10.1159/000073759
– ident: e_1_3_3_7_2
  doi: 10.1159/000076784
– ident: e_1_3_3_24_2
  doi: 10.1073/pnas.0608522103
– ident: e_1_3_3_40_2
  doi: 10.1186/1741-7007-8-9
– ident: e_1_3_3_14_2
  doi: 10.1111/j.1469-185X.2008.00067.x
– ident: e_1_3_3_35_2
  doi: 10.1111/j.1420-9101.2012.02520.x
– ident: e_1_3_3_6_2
  doi: 10.1016/0160-2896(91)90031-8
– ident: e_1_3_3_12_2
  doi: 10.1098/rstb.2006.2001
– ident: e_1_3_3_43_2
  doi: 10.1186/1741-7007-10-12
– ident: e_1_3_3_16_2
  doi: 10.1159/000006641
– ident: e_1_3_3_17_2
  doi: 10.1242/jeb.01566
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.0901780106
– ident: e_1_3_3_15_2
  doi: 10.1159/000102973
– ident: e_1_3_3_47_2
  doi: 10.1086/284325
– ident: e_1_3_3_21_2
  doi: 10.1111/j.0014-3820.2002.tb01438.x
– ident: e_1_3_3_33_2
  doi: 10.1002/ajpa.21465
– ident: e_1_3_3_42_2
  doi: 10.1002/evan.20251
– ident: e_1_3_3_4_2
  doi: 10.1038/293057a0
– ident: e_1_3_3_28_2
  doi: 10.1098/rsbl.2005.0333
– ident: e_1_3_3_26_2
  doi: 10.1086/283874
– ident: e_1_3_3_20_2
  doi: 10.1006/jhev.1996.0021
– ident: e_1_3_3_22_2
  doi: 10.1038/nature10629
– volume-title: The Pictorial Guide to the Living Primates
  year: 1996
  ident: e_1_3_3_45_2
– ident: e_1_3_3_34_2
  doi: 10.1126/science.178.4065.1096
– ident: e_1_3_3_5_2
  doi: 10.1002/ajpa.1330400314
– volume-title: Tempo and Mode in Evolution
  year: 1944
  ident: e_1_3_3_37_2
– ident: e_1_3_3_3_2
  doi: 10.1126/science.2196673
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.0707725104
– ident: e_1_3_3_44_2
  doi: 10.1093/bioinformatics/btg412
– ident: e_1_3_3_29_2
  doi: 10.1086/284907
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.0906486107
– ident: e_1_3_3_9_2
  doi: 10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8
– volume: 11
  start-page: 991
  year: 2009
  ident: e_1_3_3_25_2
  article-title: Inferring macro-evolutionary patterns using an adaptive peak model of evolution
  publication-title: Evol Ecol Res
– ident: e_1_3_3_36_2
  doi: 10.1046/j.1420-9101.2003.00664.x
– ident: e_1_3_3_11_2
  doi: 10.1098/rspb.2005.3099
– start-page: 205
  volume-title: Ecological Morphology, Integrative Organismal Biology
  year: 1994
  ident: e_1_3_3_27_2
– ident: e_1_3_3_1_2
  doi: 10.1016/j.tics.2005.03.005
– ident: e_1_3_3_32_2
  doi: 10.1002/ajpa.20298
– ident: e_1_3_3_38_2
  doi: 10.1671/0272-4634(2001)021[0322:DROSBO]2.0.CO;2
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.77.7.4387
– ident: e_1_3_3_30_2
  doi: 10.1016/j.jhevol.2005.11.001
– ident: e_1_3_3_41_2
  doi: 10.1038/nature07347
SSID ssj0009580
Score 2.3508546
Snippet Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18006
SubjectTerms Allometry
Animals
Bats
Biological Evolution
Biological Sciences
Body mass
Body size
Brain
Brain - physiology
Branches
Carnivora - physiology
Chiroptera
Chiroptera - physiology
Comparative analysis
Evolution
flight
Fossils
Locomotion
Mammals
Mass
Phylogenetics
Phylogeny
Primates
Primates - physiology
variance
Title Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates
URI https://www.jstor.org/stable/41829798
http://www.pnas.org/content/109/44/18006.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23071335
https://www.proquest.com/docview/1128365891
https://www.proquest.com/docview/1126599505
https://www.proquest.com/docview/1803137055
https://pubmed.ncbi.nlm.nih.gov/PMC3497830
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAsMJCReBjqUpLY-ejjtE-NUSatlfoWOY2zBrXJ1Kad2L_MP8Gd89mqVMBLFMWu7eZ-OZ_tu98R8kmyMAA7lOm4NtA544HuBZGEO9cIhcejkGNw8reeczngV0N72Gr9angtLbKgM3rcGFfyP1KFZyBXjJL9B8lWjcIDuAf5whUkDNe_kvFJg7pbKHaRnEJWLotu0SUOuSDwbGAp1XlMng8lQ0LV8YP4qQge8Ou-H4tJEZOJeyCByJSER7hzskxnhb2d0wrEU2yzadfeVPPgvPQ66JXbjMd10EqhSeZtvX3Tq1Mg305FkartSs5SmdSpoE_laDwt8jifxolof63Pji7S-YOYxrlb5g8YfdVcOonv0lXqhObuhmmpacGonT-2DLWp1i2YankejN2RuSYHQ0h3eJ6LtFL1RreBac4bmtsEy9nZOKeAEsREyImYIxUHmkRlMyvs3b3v_vng-trvnw37q6XKWkDWIQONIViqP7VcV_kUXAzNBkO0l8dLFf-l5KFy2Ze1vldMqCeRSEtfWiTohaqbFkvrPr8NI6r_gjwvVj_0OIfyLmnJ5CXZLV81PSxI0D-_Io8NbNMS2zSNaBPbVGGb5timFbZpiW2apXQN2zROKGL7iDaQfQQ9hLTE9WsyOD_rn1zqRZ4QfWRbdqYLmHhMU2KKEya4sF3mBiaLRobTFTKMJJO2E4qIBUIaXhQ6sOiAVZA0kcdIekbE9shOkiZyn1BQT10DPZYsz-Qh50LYNhMWd0TIPOkFGumUr94fFST6mMtl4itnDpf5KAC_lpVGDqsf3Of8MX-uug-y9MUdfBn-4NZC7kf0KzC7pkb2lICrJriJIfFdTyOaaqVuuutz7iswa-SghIFfKC3oDuxR5mAqUY18rIphSsFzQpHIdKHqOMhDaNhb6nhI-opUXBp5kyOrGgTGlpiMQYm7grmqAlLar5Yk8VhR2zNMeMmMt9uH_o48q3XFAdnJZgv5HtYGWfBBfVO_AQZkEWk
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analyses+of+evolutionary+rates+reveal+different+pathways+to+encephalization+in+bats%2C+carnivorans%2C+and+primates&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Smaers%2C+Jeroen+B&rft.au=Dechmann%2C+Dina+K+N&rft.au=Goswami%2C+Anjali&rft.au=Soligo%2C+Christophe&rft.date=2012-10-30&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=44&rft.spage=18006&rft_id=info:doi/10.1073%2Fpnas.1212181109&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2807066141
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F44.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F44.cover.gif