Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates
Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisf...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 44; pp. 18006 - 18011 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
30.10.2012
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1212181109 |
Cover
Abstract | Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brain–body relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain–body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity. |
---|---|
AbstractList | Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brain–body relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain–body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity. Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brainbody relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain-body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity. Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brain-body relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain-body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity. [PUBLICATION ABSTRACT] Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brain-body relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain-body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity.Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain size is also linked to another highly adaptive variable: body size. Considering that one-way tradeoff mechanisms are unlikely to provide satisfactory evolutionary explanations, we introduce an analytical framework that describes and quantifies all possible evolutionary scenarios between two traits. To investigate the effects of body mass changes on the interpretation of relative brain size evolution, we analyze three mammalian orders that are expected to be subject to different selective pressures on body size due to differences in locomotor adaptation: bats (powered flight), primates (primarily arboreal), and carnivorans (primarily terrestrial). We quantify rates of brain and body mass changes along individual branches of phylogenetic trees using an adaptive peak model of evolution. We find that the magnitude and variance of the level of integration of brain and body mass rates, and the subsequent relative influence of either brain or body size evolution on the brain-body relationship, differ significantly between orders and subgroups within orders. Importantly, we find that variation in brain-body relationships was driven primarily by variability in body mass. Our approach allows a more detailed interpretation of correlated trait evolution and variation in the underlying evolutionary pathways. Results demonstrate that a principal focus on interpreting relative brain size evolution as selection on neuronal capacity confounds the effects of body mass changes, thereby hiding important aspects that may contribute to explaining animal diversity. |
Author | Safi, Kamran Smaers, Jeroen B Dechmann, Dina K. N Soligo, Christophe Goswami, Anjali |
Author_xml | – sequence: 1 fullname: Smaers, Jeroen B – sequence: 2 fullname: Dechmann, Dina K. N – sequence: 3 fullname: Goswami, Anjali – sequence: 4 fullname: Soligo, Christophe – sequence: 5 fullname: Safi, Kamran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23071335$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhleoiKaFMyfAUi8cSDter3ftCxKKyodUiQP0bE12ZxtHG3uxN0Hpr8ebhBR6AFmyZb_PjF975iw7cd5Rlr3kcMmhEle9w3jJ8zQU56CfZJM082lZaDjJJgB5NVVFXpxmZzEuAUBLBc-y01xAxYWQk-x-5lc9Bhzshhg67LaRIvMto43v1oP1DsOWJT2dBtoQdqyxbUuB3MB6HBY_cRvZ4Bm5mvoFdvYexyhmHZvjEN-xGoOzGx_QpQ26hvXBrsZ8z7OnLXaRXhzW8-z24_X32efpzddPX2Yfbqa1zOUwRShyzkmKHAQWKCtRzbloayg1UtOSIFk22Io5Eqi2KZWQEiriVVlJUtCK8-z9Pm-_nq-oqZPzgJ3Z2Qhb49GavxVnF-bOb4wodKUEpARvDwmC_7GmOJiVjTV1HTry62i4AsFFBVL-H-V5KbWWMKIXj9ClX4dUgR2lRCmV5ol6_af5o-vfFUzA1R6og48xUHtEOJixR8zYI-ahR1KEfBRR22FXtPR62_0jjh2sjMLDLdoUxfgHUCbk1R5ZxsGHI1NwletKq6S_2esteoN3wUZz-y0HXgJwATy99xdBkN_S |
CitedBy_id | crossref_primary_10_1111_joa_13657 crossref_primary_10_1159_000447254 crossref_primary_10_1371_journal_pone_0261185 crossref_primary_10_1139_cjfas_2013_0624 crossref_primary_10_1371_journal_pbio_3000764 crossref_primary_10_1098_rspb_2013_0269 crossref_primary_10_1111_joa_12441 crossref_primary_10_1016_j_jhevol_2015_05_009 crossref_primary_10_1002_ece3_4513 crossref_primary_10_1098_rsos_230463 crossref_primary_10_1098_rstb_2013_0254 crossref_primary_10_1038_s42003_022_03748_4 crossref_primary_10_1098_rspb_2021_0394 crossref_primary_10_1111_evo_12222 crossref_primary_10_1007_s10682_014_9715_x crossref_primary_10_1038_nature12424 crossref_primary_10_1002_ece3_8684 crossref_primary_10_1038_s41598_024_69199_5 crossref_primary_10_19052_mv_vol1_iss49_10 crossref_primary_10_1523_JNEUROSCI_5746_12_2013 crossref_primary_10_1038_s41559_022_01815_x crossref_primary_10_1111_joa_12476 crossref_primary_10_1098_rstb_2020_0523 crossref_primary_10_1159_000377666 crossref_primary_10_1371_journal_pone_0078781 crossref_primary_10_3389_fnins_2014_00090 crossref_primary_10_1186_1471_2148_13_229 crossref_primary_10_1159_000509383 crossref_primary_10_1016_j_cbpa_2017_06_017 crossref_primary_10_1111_nyas_12047 crossref_primary_10_3389_fpsyg_2023_1197378 crossref_primary_10_1086_685655 crossref_primary_10_1016_j_cub_2020_03_060 crossref_primary_10_1098_rsos_240765 crossref_primary_10_1371_journal_pone_0218655 crossref_primary_10_1159_000488136 crossref_primary_10_1093_jmammal_gyz043 crossref_primary_10_1098_rspb_2013_2312 crossref_primary_10_1098_rstb_2022_0083 crossref_primary_10_1186_s12862_017_0976_1 crossref_primary_10_1159_000523787 crossref_primary_10_1371_journal_pone_0144147 crossref_primary_10_1098_rstb_2022_0086 crossref_primary_10_1111_evo_12965 crossref_primary_10_1186_s12862_015_0285_5 crossref_primary_10_1016_j_zool_2021_125926 crossref_primary_10_1146_annurev_animal_022513_114217 crossref_primary_10_1073_pnas_1514473113 crossref_primary_10_1002_evl3_151 crossref_primary_10_1111_nyas_15267 crossref_primary_10_1093_jmammal_gyae084 crossref_primary_10_3390_d14110942 crossref_primary_10_1093_icb_icw041 crossref_primary_10_1038_srep34031 crossref_primary_10_1016_j_physbeh_2018_01_013 crossref_primary_10_1111_evo_14310 crossref_primary_10_1111_brv_12953 crossref_primary_10_1186_1742_9994_11_20 crossref_primary_10_1159_000501161 crossref_primary_10_3389_fnana_2016_00099 crossref_primary_10_1111_nph_16706 crossref_primary_10_1126_science_abl5584 |
Cites_doi | 10.1006/jhev.1998.0263 10.1023/B:IJOP.0000043355.96393.8b 10.1016/j.jhevol.2006.07.010 10.1111/j.1469-7580.2011.01347.x 10.1159/000073759 10.1159/000076784 10.1073/pnas.0608522103 10.1186/1741-7007-8-9 10.1111/j.1469-185X.2008.00067.x 10.1111/j.1420-9101.2012.02520.x 10.1016/0160-2896(91)90031-8 10.1098/rstb.2006.2001 10.1186/1741-7007-10-12 10.1159/000006641 10.1242/jeb.01566 10.1073/pnas.0901780106 10.1159/000102973 10.1086/284325 10.1111/j.0014-3820.2002.tb01438.x 10.1002/ajpa.21465 10.1002/evan.20251 10.1038/293057a0 10.1098/rsbl.2005.0333 10.1086/283874 10.1006/jhev.1996.0021 10.1038/nature10629 10.1126/science.178.4065.1096 10.1002/ajpa.1330400314 10.1126/science.2196673 10.1073/pnas.0707725104 10.1093/bioinformatics/btg412 10.1086/284907 10.1073/pnas.0906486107 10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8 10.1046/j.1420-9101.2003.00664.x 10.1098/rspb.2005.3099 10.1016/j.tics.2005.03.005 10.1002/ajpa.20298 10.1671/0272-4634(2001)021[0322:DROSBO]2.0.CO;2 10.1073/pnas.77.7.4387 10.1016/j.jhevol.2005.11.001 10.1038/nature07347 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Oct 30, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Oct 30, 2012 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1212181109 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Pathways in relative brain size evolution |
EISSN | 1091-6490 |
EndPage | 18011 |
ExternalDocumentID | PMC3497830 2807066141 23071335 10_1073_pnas_1212181109 109_44_18006 41829798 US201600130191 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c525t-a04211e53203a4a5737b13fc069aedfe3e56daf3bae08fd6835507e17675e80f3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:29:50 EDT 2025 Fri Sep 05 03:10:24 EDT 2025 Thu Sep 04 22:43:43 EDT 2025 Mon Jun 30 08:04:43 EDT 2025 Mon Jul 21 05:58:12 EDT 2025 Thu Apr 24 23:04:19 EDT 2025 Tue Jul 01 03:39:29 EDT 2025 Wed Nov 11 00:30:06 EST 2020 Thu May 29 08:40:47 EDT 2025 Wed Dec 27 19:03:53 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c525t-a04211e53203a4a5737b13fc069aedfe3e56daf3bae08fd6835507e17675e80f3 |
Notes | http://dx.doi.org/10.1073/pnas.1212181109 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Edited by James H. Brown, University of New Mexico, Albuquerque, NM, and approved September 11, 2012 (received for review July 18, 2012) Author contributions: J.B.S., D.K.N.D., and K.S. designed research; J.B.S., D.K.N.D., A.G., C.S., and K.S. performed research; J.B.S. contributed new reagents/analytic tools; J.B.S., C.S., and K.S. analyzed data; and J.B.S., D.K.N.D., A.G., C.S., and K.S. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/109/44/18006.full.pdf |
PMID | 23071335 |
PQID | 1128365891 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_1212181109 fao_agris_US201600130191 pubmed_primary_23071335 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3497830 proquest_miscellaneous_1803137055 crossref_citationtrail_10_1073_pnas_1212181109 proquest_miscellaneous_1126599505 jstor_primary_41829798 proquest_journals_1128365891 pnas_primary_109_44_18006 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-30 |
PublicationDateYYYYMMDD | 2012-10-30 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Smaers JB (e_1_3_3_25_2) 2009; 11 Rowe N (e_1_3_3_45_2) 1996 Norberg UM (e_1_3_3_27_2) 1994 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 Simpson GG (e_1_3_3_37_2) 1944 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 Hansen TF (e_1_3_3_46_2) 2005; 59 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – volume: 59 start-page: 2063 year: 2005 ident: e_1_3_3_46_2 article-title: Assessing current adaptation and phylogenetic inertia as explanations of trait evolution: The need for controlled comparisons publication-title: Evolution – ident: e_1_3_3_31_2 doi: 10.1006/jhev.1998.0263 – ident: e_1_3_3_10_2 doi: 10.1023/B:IJOP.0000043355.96393.8b – ident: e_1_3_3_13_2 doi: 10.1016/j.jhevol.2006.07.010 – ident: e_1_3_3_39_2 doi: 10.1111/j.1469-7580.2011.01347.x – ident: e_1_3_3_2_2 doi: 10.1159/000073759 – ident: e_1_3_3_7_2 doi: 10.1159/000076784 – ident: e_1_3_3_24_2 doi: 10.1073/pnas.0608522103 – ident: e_1_3_3_40_2 doi: 10.1186/1741-7007-8-9 – ident: e_1_3_3_14_2 doi: 10.1111/j.1469-185X.2008.00067.x – ident: e_1_3_3_35_2 doi: 10.1111/j.1420-9101.2012.02520.x – ident: e_1_3_3_6_2 doi: 10.1016/0160-2896(91)90031-8 – ident: e_1_3_3_12_2 doi: 10.1098/rstb.2006.2001 – ident: e_1_3_3_43_2 doi: 10.1186/1741-7007-10-12 – ident: e_1_3_3_16_2 doi: 10.1159/000006641 – ident: e_1_3_3_17_2 doi: 10.1242/jeb.01566 – ident: e_1_3_3_18_2 doi: 10.1073/pnas.0901780106 – ident: e_1_3_3_15_2 doi: 10.1159/000102973 – ident: e_1_3_3_47_2 doi: 10.1086/284325 – ident: e_1_3_3_21_2 doi: 10.1111/j.0014-3820.2002.tb01438.x – ident: e_1_3_3_33_2 doi: 10.1002/ajpa.21465 – ident: e_1_3_3_42_2 doi: 10.1002/evan.20251 – ident: e_1_3_3_4_2 doi: 10.1038/293057a0 – ident: e_1_3_3_28_2 doi: 10.1098/rsbl.2005.0333 – ident: e_1_3_3_26_2 doi: 10.1086/283874 – ident: e_1_3_3_20_2 doi: 10.1006/jhev.1996.0021 – ident: e_1_3_3_22_2 doi: 10.1038/nature10629 – volume-title: The Pictorial Guide to the Living Primates year: 1996 ident: e_1_3_3_45_2 – ident: e_1_3_3_34_2 doi: 10.1126/science.178.4065.1096 – ident: e_1_3_3_5_2 doi: 10.1002/ajpa.1330400314 – volume-title: Tempo and Mode in Evolution year: 1944 ident: e_1_3_3_37_2 – ident: e_1_3_3_3_2 doi: 10.1126/science.2196673 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.0707725104 – ident: e_1_3_3_44_2 doi: 10.1093/bioinformatics/btg412 – ident: e_1_3_3_29_2 doi: 10.1086/284907 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.0906486107 – ident: e_1_3_3_9_2 doi: 10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8 – volume: 11 start-page: 991 year: 2009 ident: e_1_3_3_25_2 article-title: Inferring macro-evolutionary patterns using an adaptive peak model of evolution publication-title: Evol Ecol Res – ident: e_1_3_3_36_2 doi: 10.1046/j.1420-9101.2003.00664.x – ident: e_1_3_3_11_2 doi: 10.1098/rspb.2005.3099 – start-page: 205 volume-title: Ecological Morphology, Integrative Organismal Biology year: 1994 ident: e_1_3_3_27_2 – ident: e_1_3_3_1_2 doi: 10.1016/j.tics.2005.03.005 – ident: e_1_3_3_32_2 doi: 10.1002/ajpa.20298 – ident: e_1_3_3_38_2 doi: 10.1671/0272-4634(2001)021[0322:DROSBO]2.0.CO;2 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.77.7.4387 – ident: e_1_3_3_30_2 doi: 10.1016/j.jhevol.2005.11.001 – ident: e_1_3_3_41_2 doi: 10.1038/nature07347 |
SSID | ssj0009580 |
Score | 2.3508546 |
Snippet | Variation in relative brain size is commonly interpreted as the result of selection on neuronal capacity. However, this approach ignores that relative brain... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18006 |
SubjectTerms | Allometry Animals Bats Biological Evolution Biological Sciences Body mass Body size Brain Brain - physiology Branches Carnivora - physiology Chiroptera Chiroptera - physiology Comparative analysis Evolution flight Fossils Locomotion Mammals Mass Phylogenetics Phylogeny Primates Primates - physiology variance |
Title | Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates |
URI | https://www.jstor.org/stable/41829798 http://www.pnas.org/content/109/44/18006.abstract https://www.ncbi.nlm.nih.gov/pubmed/23071335 https://www.proquest.com/docview/1128365891 https://www.proquest.com/docview/1126599505 https://www.proquest.com/docview/1803137055 https://pubmed.ncbi.nlm.nih.gov/PMC3497830 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAsMJCReBjqUpLY-ejjtE-NUSatlfoWOY2zBrXJ1Kad2L_MP8Gd89mqVMBLFMWu7eZ-OZ_tu98R8kmyMAA7lOm4NtA544HuBZGEO9cIhcejkGNw8reeczngV0N72Gr9angtLbKgM3rcGFfyP1KFZyBXjJL9B8lWjcIDuAf5whUkDNe_kvFJg7pbKHaRnEJWLotu0SUOuSDwbGAp1XlMng8lQ0LV8YP4qQge8Ou-H4tJEZOJeyCByJSER7hzskxnhb2d0wrEU2yzadfeVPPgvPQ66JXbjMd10EqhSeZtvX3Tq1Mg305FkartSs5SmdSpoE_laDwt8jifxolof63Pji7S-YOYxrlb5g8YfdVcOonv0lXqhObuhmmpacGonT-2DLWp1i2YankejN2RuSYHQ0h3eJ6LtFL1RreBac4bmtsEy9nZOKeAEsREyImYIxUHmkRlMyvs3b3v_vng-trvnw37q6XKWkDWIQONIViqP7VcV_kUXAzNBkO0l8dLFf-l5KFy2Ze1vldMqCeRSEtfWiTohaqbFkvrPr8NI6r_gjwvVj_0OIfyLmnJ5CXZLV81PSxI0D-_Io8NbNMS2zSNaBPbVGGb5timFbZpiW2apXQN2zROKGL7iDaQfQQ9hLTE9WsyOD_rn1zqRZ4QfWRbdqYLmHhMU2KKEya4sF3mBiaLRobTFTKMJJO2E4qIBUIaXhQ6sOiAVZA0kcdIekbE9shOkiZyn1BQT10DPZYsz-Qh50LYNhMWd0TIPOkFGumUr94fFST6mMtl4itnDpf5KAC_lpVGDqsf3Of8MX-uug-y9MUdfBn-4NZC7kf0KzC7pkb2lICrJriJIfFdTyOaaqVuuutz7iswa-SghIFfKC3oDuxR5mAqUY18rIphSsFzQpHIdKHqOMhDaNhb6nhI-opUXBp5kyOrGgTGlpiMQYm7grmqAlLar5Yk8VhR2zNMeMmMt9uH_o48q3XFAdnJZgv5HtYGWfBBfVO_AQZkEWk |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analyses+of+evolutionary+rates+reveal+different+pathways+to+encephalization+in+bats%2C+carnivorans%2C+and+primates&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Smaers%2C+Jeroen+B&rft.au=Dechmann%2C+Dina+K+N&rft.au=Goswami%2C+Anjali&rft.au=Soligo%2C+Christophe&rft.date=2012-10-30&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=44&rft.spage=18006&rft_id=info:doi/10.1073%2Fpnas.1212181109&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2807066141 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F44.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F44.cover.gif |