Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration
[Display omitted] •A formation mechanism of the porous bead-on-string PLA fibers was proposed.•Correlation between bead morphology and pore structure of membrane were put forward.•Moderate beads size and quantity were conducive to the low pressure drop.•Nanopores on beads and ultrafine nanofiber con...
Saved in:
Published in | Journal of colloid and interface science Vol. 441; pp. 121 - 129 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9797 1095-7103 1095-7103 |
DOI | 10.1016/j.jcis.2014.11.041 |
Cover
Loading…
Abstract | [Display omitted]
•A formation mechanism of the porous bead-on-string PLA fibers was proposed.•Correlation between bead morphology and pore structure of membrane were put forward.•Moderate beads size and quantity were conducive to the low pressure drop.•Nanopores on beads and ultrafine nanofiber contributed to high filtration efficiency.•Porous bead-on-string nanofibrous media showed excellent air filtration performance.
Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3Pa), which are promising characteristics for the membranes’ application as filters for respiratory protection, indoor air purification, and other filtration applications. |
---|---|
AbstractList | Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5 wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3 Pa), which are promising characteristics for the membranes' application as filters for respiratory protection, indoor air purification, and other filtration applications. [Display omitted] •A formation mechanism of the porous bead-on-string PLA fibers was proposed.•Correlation between bead morphology and pore structure of membrane were put forward.•Moderate beads size and quantity were conducive to the low pressure drop.•Nanopores on beads and ultrafine nanofiber contributed to high filtration efficiency.•Porous bead-on-string nanofibrous media showed excellent air filtration performance. Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3Pa), which are promising characteristics for the membranes’ application as filters for respiratory protection, indoor air purification, and other filtration applications. Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260 nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5 wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3 Pa), which are promising characteristics for the membranes' application as filters for respiratory protection, indoor air purification, and other filtration applications. Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5 wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3 Pa), which are promising characteristics for the membranes' application as filters for respiratory protection, indoor air purification, and other filtration applications.Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5 wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3 Pa), which are promising characteristics for the membranes' application as filters for respiratory protection, indoor air purification, and other filtration applications. Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3Pa), which are promising characteristics for the membranes’ application as filters for respiratory protection, indoor air purification, and other filtration applications. |
Author | Wang, Zhe Zhao, Chuchu Pan, Zhijuan |
Author_xml | – sequence: 1 givenname: Zhe surname: Wang fullname: Wang, Zhe organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China – sequence: 2 givenname: Chuchu surname: Zhao fullname: Zhao, Chuchu organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China – sequence: 3 givenname: Zhijuan surname: Pan fullname: Pan, Zhijuan email: zhjpan@suda.edu.cn organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25499733$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkT1vFDEURS0URDaBP0CBpgzFDH722DOWaFAECdJKUKS3_PGMvJoZL_YsUv59vNmkoQhULnzu09W5F-RsSQsS8h5oBxTkp123c7F0jELfAXS0h1dkA1SJdgDKz8iGUgatGtRwTi5K2VEKIIR6Q86Z6JUaON-Q7c-U06E0Fo1v09KWNcflV7NP0_3VZNwaXWNc9B-bEO0jOONss1mwNCHlxsRcf6Y1mzWm5S15HcxU8N3Te0nuvn29u75ttz9uvl9_2bZOMLG2KvBRgAfGpOE-0AAsOCHlGKzgyEc7UB4kcovMmzA4Okoq3GCtxdF45Jfk6nR2n9PvA5ZVz7E4nKZaq1bUrNrhUglg_0RBSlW71D7_gfa0H6v3saIfntCDndHrfY6zyff6WWsFxhPgciolY9Auro-Kqqk4aaD6uKDe6eOC-rigBtB1wRplf0Wfr78Y-nwKYbX-J2LWxUVcHPqY0a3ap_hS_AFiwrOu |
CitedBy_id | crossref_primary_10_1021_acsanm_4c04236 crossref_primary_10_1016_j_colsurfa_2022_130302 crossref_primary_10_1038_s43246_024_00668_0 crossref_primary_10_1016_j_seppur_2021_120146 crossref_primary_10_1016_j_coco_2022_101211 crossref_primary_10_1021_acs_langmuir_7b01193 crossref_primary_10_3390_polym11091490 crossref_primary_10_1002_adfm_201904108 crossref_primary_10_1016_j_enbuild_2017_10_073 crossref_primary_10_1007_s40843_018_9320_4 crossref_primary_10_3390_s22093281 crossref_primary_10_1002_admi_202400666 crossref_primary_10_1016_j_apsusc_2015_08_211 crossref_primary_10_1088_2053_1591_aab6ef crossref_primary_10_3389_fenrg_2019_00145 crossref_primary_10_1002_smll_201603306 crossref_primary_10_1080_25740881_2020_1759212 crossref_primary_10_1016_j_matdes_2022_111053 crossref_primary_10_1038_srep40550 crossref_primary_10_1016_j_cej_2020_126584 crossref_primary_10_1021_acssuschemeng_3c06327 crossref_primary_10_1007_s12221_022_4563_8 crossref_primary_10_1016_j_seppur_2021_119165 crossref_primary_10_1039_C5RA27913E crossref_primary_10_1007_s12221_021_0158_z crossref_primary_10_1016_j_seppur_2019_05_033 crossref_primary_10_1007_s00289_022_04135_z crossref_primary_10_1016_j_jece_2023_110561 crossref_primary_10_1016_j_jhazmat_2018_07_090 crossref_primary_10_1016_j_seppur_2015_08_005 crossref_primary_10_26599_PBM_2019_9260004 crossref_primary_10_1016_j_jpowsour_2019_03_097 crossref_primary_10_1007_s12274_021_3593_7 crossref_primary_10_1039_D2NJ02747J crossref_primary_10_1002_mame_202100278 crossref_primary_10_1016_j_pmatsci_2024_101376 crossref_primary_10_1002_mame_201600353 crossref_primary_10_1016_j_seppur_2024_126512 crossref_primary_10_1016_j_colcom_2020_100275 crossref_primary_10_1002_admi_202200786 crossref_primary_10_2115_fiberst_2020_0022 crossref_primary_10_1002_adfm_202214813 crossref_primary_10_1016_j_jcis_2021_08_079 crossref_primary_10_1016_j_polymer_2021_123797 crossref_primary_10_1002_app_52294 crossref_primary_10_1039_C7NJ03997B crossref_primary_10_1007_s12273_020_0622_5 crossref_primary_10_1080_09593330_2023_2213831 crossref_primary_10_1002_pen_25483 crossref_primary_10_3390_polym12010120 crossref_primary_10_1016_j_jiec_2025_01_002 crossref_primary_10_1016_j_seppur_2023_124405 crossref_primary_10_1016_j_jcis_2018_07_021 crossref_primary_10_1177_00405175241241237 crossref_primary_10_1111_ina_13103 crossref_primary_10_1016_j_seppur_2022_122175 crossref_primary_10_1088_1361_6528_abf8da crossref_primary_10_1016_j_matpr_2019_03_206 crossref_primary_10_1021_acsami_6b08262 crossref_primary_10_3390_polym10101085 crossref_primary_10_3390_polym14183787 crossref_primary_10_1088_2053_1591_ab1a23 crossref_primary_10_1016_j_compositesa_2020_106009 crossref_primary_10_1016_j_nanoen_2022_107237 crossref_primary_10_1088_1757_899X_409_1_012010 crossref_primary_10_1016_j_seppur_2019_116183 crossref_primary_10_1021_acs_est_0c02828 crossref_primary_10_1016_j_ijbiomac_2022_02_029 crossref_primary_10_1016_j_seppur_2022_121433 crossref_primary_10_3390_nano12010050 crossref_primary_10_1021_acsomega_8b00332 crossref_primary_10_1021_acsomega_8b00695 crossref_primary_10_1016_j_seppur_2022_122642 crossref_primary_10_3390_polym14193990 crossref_primary_10_1016_j_jhazmat_2021_125742 crossref_primary_10_1016_j_matlet_2019_127137 crossref_primary_10_3390_membranes13040380 crossref_primary_10_1007_s42247_023_00622_9 crossref_primary_10_1021_acs_iecr_4c02581 crossref_primary_10_1039_D4CC05437G crossref_primary_10_1007_s10853_015_9286_4 crossref_primary_10_1007_s12223_024_01137_4 crossref_primary_10_1016_j_ijbiomac_2019_10_088 crossref_primary_10_1002_pat_6542 crossref_primary_10_1155_2024_5055615 crossref_primary_10_1016_j_psep_2023_04_034 crossref_primary_10_3390_polym9120652 crossref_primary_10_1016_j_chemosphere_2022_137240 crossref_primary_10_1016_j_pecs_2021_100968 crossref_primary_10_1021_acs_iecr_1c03051 crossref_primary_10_1039_C5TA06543G crossref_primary_10_1016_j_envres_2023_116144 crossref_primary_10_1016_j_jhazmat_2020_124787 crossref_primary_10_1016_j_seppur_2020_118135 crossref_primary_10_1002_mame_202300375 crossref_primary_10_1038_s41598_022_12505_w crossref_primary_10_1016_j_seppur_2024_130417 crossref_primary_10_1016_j_polymer_2019_01_035 crossref_primary_10_1016_j_apmt_2022_101369 crossref_primary_10_1021_acsami_6b00359 crossref_primary_10_1016_j_powtec_2019_11_012 crossref_primary_10_1088_1361_6528_aae611 crossref_primary_10_1016_j_seppur_2019_01_049 crossref_primary_10_1007_s12221_016_6581_x crossref_primary_10_1021_acsami_9b13162 crossref_primary_10_3390_chemengineering3020054 crossref_primary_10_3390_polym13121998 crossref_primary_10_1016_j_jece_2024_114738 crossref_primary_10_1016_j_porgcoat_2020_105736 crossref_primary_10_1038_s41598_017_10995_7 crossref_primary_10_1038_srep35472 crossref_primary_10_1007_s40242_021_0010_4 crossref_primary_10_1016_j_jhazmat_2023_133232 crossref_primary_10_1155_2016_6272983 crossref_primary_10_1016_j_msec_2017_04_138 crossref_primary_10_1016_j_matlet_2021_129831 crossref_primary_10_1016_j_scs_2024_105884 crossref_primary_10_1051_e3sconf_20186703016 crossref_primary_10_1016_j_seppur_2023_125659 crossref_primary_10_1016_j_jece_2025_115435 crossref_primary_10_1021_acsami_9b01508 crossref_primary_10_1038_s41598_022_24739_9 crossref_primary_10_1016_j_cej_2021_131247 crossref_primary_10_1016_j_jhazmat_2019_121535 crossref_primary_10_1016_j_seppur_2021_119623 crossref_primary_10_1039_C7RA12879G crossref_primary_10_1039_C9NR09776G crossref_primary_10_1039_C9RA06022G crossref_primary_10_1002_app_46554 crossref_primary_10_1002_app_47643 crossref_primary_10_1063_5_0131947 crossref_primary_10_3390_nano11040900 crossref_primary_10_1016_j_cej_2018_01_025 crossref_primary_10_1016_j_seppur_2022_120913 crossref_primary_10_1021_acssuschemeng_9b00605 crossref_primary_10_1080_01496395_2022_2075757 crossref_primary_10_1039_C6EN00696E crossref_primary_10_1039_D4RA02064B crossref_primary_10_1103_PhysRevLett_131_218101 crossref_primary_10_1002_mame_202100891 crossref_primary_10_1177_0892705719859929 crossref_primary_10_3390_fib9080048 crossref_primary_10_3390_polym13152517 crossref_primary_10_1002_admi_202101848 crossref_primary_10_1016_j_colsurfa_2023_132043 crossref_primary_10_1007_s10570_018_1696_4 crossref_primary_10_3390_polym16040514 crossref_primary_10_1007_s11051_020_04965_w crossref_primary_10_1002_app_50139 crossref_primary_10_1002_adma_202419389 crossref_primary_10_1016_j_carbpol_2024_122606 crossref_primary_10_1016_j_jtice_2019_11_002 crossref_primary_10_1021_acsestengg_4c00460 crossref_primary_10_1039_C7EN00760D crossref_primary_10_3390_molecules30061214 crossref_primary_10_3390_nano13243150 crossref_primary_10_1021_acsapm_1c00697 crossref_primary_10_1021_acsami_7b00351 crossref_primary_10_1002_mame_202000370 crossref_primary_10_1021_acsami_9b18083 crossref_primary_10_1002_smll_202102051 crossref_primary_10_3390_membranes10090204 crossref_primary_10_1016_j_polymertesting_2019_106310 crossref_primary_10_1039_C7RA07694K crossref_primary_10_3390_polym14204387 crossref_primary_10_1002_app_43818 crossref_primary_10_1016_j_cej_2022_139168 crossref_primary_10_1038_s41598_018_23257_x crossref_primary_10_1007_s10661_023_11491_4 crossref_primary_10_3390_polym12081714 crossref_primary_10_1016_j_jcis_2017_12_032 crossref_primary_10_1016_j_jcis_2019_08_099 crossref_primary_10_1002_pat_4987 crossref_primary_10_1016_j_seppur_2024_128886 crossref_primary_10_1016_j_polymer_2018_08_015 crossref_primary_10_1142_S1793292021300048 crossref_primary_10_2174_1567201819666220525095844 crossref_primary_10_1177_24723444221081457 crossref_primary_10_1016_j_powtec_2023_118881 crossref_primary_10_1002_ejic_201500737 crossref_primary_10_1016_j_polymer_2021_124378 crossref_primary_10_1039_D3MA00010A crossref_primary_10_1002_pi_6021 crossref_primary_10_1002_smll_201603151 crossref_primary_10_1016_j_colsurfa_2022_128418 crossref_primary_10_1002_pat_6483 crossref_primary_10_1039_C9EN00816K crossref_primary_10_1177_24723444221084394 crossref_primary_10_3390_polym11060935 crossref_primary_10_1016_j_seppur_2015_11_046 crossref_primary_10_1177_1528083720923773 crossref_primary_10_1021_acsami_4c12239 crossref_primary_10_1016_j_seppur_2024_131004 crossref_primary_10_3390_polym15102237 crossref_primary_10_1021_acs_chemrev_5b00069 crossref_primary_10_1016_j_buildenv_2020_106725 crossref_primary_10_1016_j_susmat_2024_e00928 crossref_primary_10_1109_TNB_2022_3181745 crossref_primary_10_1002_smll_201702139 crossref_primary_10_3390_ijerph20021306 crossref_primary_10_1016_j_seppur_2018_03_053 crossref_primary_10_1021_acsanm_9b00806 crossref_primary_10_3390_membranes14060120 crossref_primary_10_1016_j_apsusc_2023_159062 crossref_primary_10_1515_epoly_2020_0034 crossref_primary_10_1080_09243046_2017_1405508 crossref_primary_10_1177_0263617418816200 crossref_primary_10_1016_j_surfin_2021_101147 crossref_primary_10_1039_C9RA04877D crossref_primary_10_1039_D3NJ00877K crossref_primary_10_1016_j_seppur_2023_124943 crossref_primary_10_1177_1528083716676812 crossref_primary_10_1016_j_envres_2023_115699 crossref_primary_10_1002_mame_201800336 crossref_primary_10_1080_23744731_2022_2075188 crossref_primary_10_1002_app_45766 crossref_primary_10_1002_mame_201800218 crossref_primary_10_1016_j_coco_2019_06_003 crossref_primary_10_1016_j_apsusc_2017_08_005 crossref_primary_10_1007_s12221_023_00112_z crossref_primary_10_3390_polym14214498 crossref_primary_10_1002_mame_202100115 crossref_primary_10_1155_2016_8921316 crossref_primary_10_1016_j_seppur_2019_116002 crossref_primary_10_3390_fib10020015 crossref_primary_10_1039_D3LP00201B crossref_primary_10_1177_1420326X18816353 crossref_primary_10_1016_j_seppur_2021_119570 crossref_primary_10_1016_j_msec_2021_112594 crossref_primary_10_1007_s00289_022_04459_w crossref_primary_10_1021_acs_iecr_1c00829 crossref_primary_10_1002_adfm_202113040 crossref_primary_10_1021_acsami_0c14958 crossref_primary_10_1016_j_jcis_2015_07_019 crossref_primary_10_1016_j_memsci_2019_117467 crossref_primary_10_3390_polym14235295 crossref_primary_10_1038_s41598_023_32765_4 crossref_primary_10_4209_aaqr_2019_07_0343 crossref_primary_10_1016_j_jmatprotec_2018_11_035 crossref_primary_10_1016_j_seppur_2019_116377 crossref_primary_10_1016_j_gee_2022_03_012 crossref_primary_10_1039_C6RA17097H crossref_primary_10_3390_macromol4010004 crossref_primary_10_1016_j_mtadv_2021_100134 crossref_primary_10_1021_acs_nanolett_0c01107 crossref_primary_10_1016_j_seppur_2022_121165 crossref_primary_10_1016_j_cej_2024_148722 crossref_primary_10_1002_aesr_202100005 crossref_primary_10_1002_adsu_202400898 crossref_primary_10_1016_j_memsci_2020_118094 crossref_primary_10_1016_j_jaerosci_2021_105754 crossref_primary_10_1016_j_jece_2023_111798 crossref_primary_10_1021_acssuschemeng_8b06567 crossref_primary_10_1021_acsami_6b10094 crossref_primary_10_3390_fib11080071 crossref_primary_10_1016_j_polymer_2017_10_033 crossref_primary_10_1016_S1872_2067_16_62545_7 crossref_primary_10_3390_app112311094 crossref_primary_10_3390_jcs4020079 crossref_primary_10_1039_C6TA00977H |
Cites_doi | 10.1016/j.polymer.2005.05.068 10.1039/c2ra22086e 10.1016/j.seppur.2011.03.008 10.1016/j.polymer.2010.01.031 10.1016/j.polymer.2009.08.011 10.1021/ma020444a 10.1016/j.memsci.2006.04.026 10.1021/ma0351975 10.1016/j.memsci.2007.03.038 10.1016/j.memsci.2014.01.045 10.1016/j.polymer.2013.02.034 10.1016/j.polymer.2009.05.058 10.1002/macp.200400225 10.1039/b804128h 10.1016/j.polymer.2009.06.062 10.1016/j.matdes.2009.02.017 10.1016/j.polymer.2005.04.021 10.1002/adfm.200600933 10.1016/S0032-3861(03)00345-8 10.1016/j.seppur.2009.10.017 10.1039/b809074m 10.1016/j.polymer.2005.03.011 10.1016/j.memsci.2011.12.005 10.1016/j.ces.2007.06.007 10.1002/pen.20304 10.1021/am900736h 10.1039/C1JM14299B 10.1016/j.jcis.2011.07.094 10.1016/j.memsci.2010.02.009 10.1039/c0ee00729c 10.1016/j.jcis.2013.11.009 10.1002/app.38296 10.1016/j.seppur.2010.09.002 10.1021/ma071418l 10.1016/S0032-3861(00)00250-0 10.1016/j.cap.2005.07.013 10.1088/0957-4484/15/9/044 10.1016/j.seppur.2014.02.017 10.1016/S0032-3861(99)00068-3 10.1016/j.memsci.2013.07.067 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7U5 8FD L7M 7S9 L.6 |
DOI | 10.1016/j.jcis.2014.11.041 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 129 |
ExternalDocumentID | 25499733 10_1016_j_jcis_2014_11_041 S0021979714008972 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- SCB SCE SEW SSH VH1 WUQ ZGI ZXP NPM 7X8 EFKBS 7U5 8FD L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c525t-9f3851d1226a3df0f12fc5668fb53e38b703f6e3be2daf7c08605c7bbbe8ade3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 04:00:29 EDT 2025 Fri Jul 11 08:59:22 EDT 2025 Tue Aug 05 11:15:40 EDT 2025 Thu Apr 03 07:01:34 EDT 2025 Thu Apr 24 23:03:47 EDT 2025 Tue Jul 01 01:18:19 EDT 2025 Fri Feb 23 02:33:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrospinning Poly(lactic acid) Porous bead-on-string fiber Filtration performance |
Language | English |
License | Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-9f3851d1226a3df0f12fc5668fb53e38b703f6e3be2daf7c08605c7bbbe8ade3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25499733 |
PQID | 1640480168 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2101369512 proquest_miscellaneous_1669851385 proquest_miscellaneous_1640480168 pubmed_primary_25499733 crossref_citationtrail_10_1016_j_jcis_2014_11_041 crossref_primary_10_1016_j_jcis_2014_11_041 elsevier_sciencedirect_doi_10_1016_j_jcis_2014_11_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Leea, Kim, Bang, Jungb, Lee (b0155) 2003; 44 Mao, Si, Chen, Yang, Zhao, Ding, Yu (b0200) 2012; 2 Zhang, Karki, Rutman, Young, Wang, Cocke, Ho, Guo (b0120) 2009; 50 Mikheev, Kanev, Morozova, Morozov (b0070) 2013; 448 Shenoy, Douglas Bates, Frisch, Wnek (b0190) 2005; 46 Mei, Wang, Li (b0195) 2013; 128 Laiva, Venugopal, Sridhar, Rangarajan, Navaneethan, Ramakrishna (b0170) 2014 Yu, Su, Cheng (b0180) 2007; 17 Fong, Chun, Reneker (b0115) 1999; 40 Wang, Si, Wang, Sun, El-Newehy, Al-Deyab, Ding, Wan (b0100) 2014; 126 Desai, Kit, Li, Michael Davidson, Zivanovic, Meyer (b0030) 2009; 50 Cho, Naydich, Frey, Joo (b0090) 2013; 54 Casper, Stephens, Tassi, Bruce Chase, Rabolt (b0145) 2004; 37 Zhang, Shim, Kim (b0035) 2009; 30 Wang, Wang, Ding, Yu, Sun (b0045) 2012; 22 Deitzel, Kleinmeyer, Harris, Beck Tan (b0160) 2001; 42 Casasolaa, Thomasb, Trybalaa, Georgiadou (b0185) 2014 Huang, Arena, Manickam, Jiang, Willis, McCutcheon (b0050) 2014; 460 Thavasi, Singh, Ramakrishna (b0005) 2008; 1 Dayal, Jing, Kumar (b0140) 2007; 40 Patanaik, Jacobs, Anandjiwala (b0055) 2010; 352 Yun, Suryamas, Iskandar, Bao, Niinuma, Okuyama (b0065) 2010; 75 Mit-Uppatham, Nithitanakul, Supaphol (b0085) 2004; 205 Kaur, Sundarrajan, Rana, Matsuura, Ramakrishna (b0020) 2012; 392–393 Luo, Nangrejo, Edirisinghe (b0150) 2010; 51 Leung, Hung, Yuen (b0205) 2010; 71 Yu, Ran (b0175) 2011; 4 Barhate, Ramakrishna (b0025) 2007; 296 Pant, Namc, Oh, Panthi, Kimd, Kime, Kimc (b0075) 2011; 364 Zuo, Zhu, Yang, Yu, Chen, Zhang (b0110) 2005; 45 Yun, Hogan, Matsubayashi, Kawabe, Iskandar, Okuyama (b0060) 2007; 62 Lin, Wang, Wang, Wang (b0125) 2004; 15 Hung, Leung (b0015) 2011; 79 Lin, Ding, Yu, Hsieh (b0105) 2010; 2 Tan, Inai, Kotaki, Ramakrishna (b0080) 2005; 46 Munir, Suryamas, Iskandar, Okuyama (b0130) 2009; 50 Gopal, Kaur, Ma, Chan, Ramakrishna, Matsuura (b0040) 2006; 281 Wan, Wang, Yang, Si, Chen, Ding, Sun, El-Newehy, Al-Deyab, Yu (b0095) 2014; 417 Ahn, Park, Kim, Hwang, Lee, Shin, Lee (b0210) 2006; 6 Gupta, Elkins, Long, Wilkes (b0165) 2005; 46 Yoon, Hsiao, Chu (b0010) 2008; 18 Megelski, Stephens, Bruce Chase (b0135) 2002; 35 Shenoy (10.1016/j.jcis.2014.11.041_b0190) 2005; 46 Mit-Uppatham (10.1016/j.jcis.2014.11.041_b0085) 2004; 205 Casper (10.1016/j.jcis.2014.11.041_b0145) 2004; 37 Casasolaa (10.1016/j.jcis.2014.11.041_b0185) 2014 Tan (10.1016/j.jcis.2014.11.041_b0080) 2005; 46 Megelski (10.1016/j.jcis.2014.11.041_b0135) 2002; 35 Ahn (10.1016/j.jcis.2014.11.041_b0210) 2006; 6 Desai (10.1016/j.jcis.2014.11.041_b0030) 2009; 50 Zhang (10.1016/j.jcis.2014.11.041_b0035) 2009; 30 Luo (10.1016/j.jcis.2014.11.041_b0150) 2010; 51 Huang (10.1016/j.jcis.2014.11.041_b0050) 2014; 460 Yun (10.1016/j.jcis.2014.11.041_b0060) 2007; 62 Lin (10.1016/j.jcis.2014.11.041_b0125) 2004; 15 Laiva (10.1016/j.jcis.2014.11.041_b0170) 2014 Yu (10.1016/j.jcis.2014.11.041_b0180) 2007; 17 Mei (10.1016/j.jcis.2014.11.041_b0195) 2013; 128 Hung (10.1016/j.jcis.2014.11.041_b0015) 2011; 79 Mikheev (10.1016/j.jcis.2014.11.041_b0070) 2013; 448 Leea (10.1016/j.jcis.2014.11.041_b0155) 2003; 44 Deitzel (10.1016/j.jcis.2014.11.041_b0160) 2001; 42 Yoon (10.1016/j.jcis.2014.11.041_b0010) 2008; 18 Mao (10.1016/j.jcis.2014.11.041_b0200) 2012; 2 Zhang (10.1016/j.jcis.2014.11.041_b0120) 2009; 50 Leung (10.1016/j.jcis.2014.11.041_b0205) 2010; 71 Lin (10.1016/j.jcis.2014.11.041_b0105) 2010; 2 Zuo (10.1016/j.jcis.2014.11.041_b0110) 2005; 45 Thavasi (10.1016/j.jcis.2014.11.041_b0005) 2008; 1 Gupta (10.1016/j.jcis.2014.11.041_b0165) 2005; 46 Barhate (10.1016/j.jcis.2014.11.041_b0025) 2007; 296 Patanaik (10.1016/j.jcis.2014.11.041_b0055) 2010; 352 Wang (10.1016/j.jcis.2014.11.041_b0100) 2014; 126 Cho (10.1016/j.jcis.2014.11.041_b0090) 2013; 54 Wan (10.1016/j.jcis.2014.11.041_b0095) 2014; 417 Yu (10.1016/j.jcis.2014.11.041_b0175) 2011; 4 Wang (10.1016/j.jcis.2014.11.041_b0045) 2012; 22 Fong (10.1016/j.jcis.2014.11.041_b0115) 1999; 40 Dayal (10.1016/j.jcis.2014.11.041_b0140) 2007; 40 Yun (10.1016/j.jcis.2014.11.041_b0065) 2010; 75 Munir (10.1016/j.jcis.2014.11.041_b0130) 2009; 50 Kaur (10.1016/j.jcis.2014.11.041_b0020) 2012; 392–393 Gopal (10.1016/j.jcis.2014.11.041_b0040) 2006; 281 Pant (10.1016/j.jcis.2014.11.041_b0075) 2011; 364 |
References_xml | – volume: 4 start-page: 1364 year: 2011 end-page: 1371 ident: b0175 publication-title: Energy Environ. Sci. – volume: 126 start-page: 44 year: 2014 end-page: 51 ident: b0100 publication-title: Sep. Purif. Technol. – volume: 45 start-page: 704 year: 2005 end-page: 709 ident: b0110 publication-title: Polym. Eng. Sci. – volume: 40 start-page: 7689 year: 2007 end-page: 7694 ident: b0140 publication-title: Macromolecules – volume: 392–393 start-page: 101 year: 2012 end-page: 111 ident: b0020 publication-title: J. Membr. Sci. – volume: 50 start-page: 3661 year: 2009 end-page: 3669 ident: b0030 publication-title: Polymer – year: 2014 ident: b0185 publication-title: Polymer – volume: 46 start-page: 3372 year: 2005 end-page: 3384 ident: b0190 publication-title: Polymer – volume: 6 start-page: 1030 year: 2006 end-page: 1035 ident: b0210 publication-title: Curr. Appl. Phys. – volume: 2 start-page: 12216 year: 2012 end-page: 12223 ident: b0200 publication-title: RSC Adv. – volume: 22 start-page: 1445 year: 2012 end-page: 1452 ident: b0045 publication-title: J. Mater. Chem. – volume: 54 start-page: 2364 year: 2013 end-page: 2372 ident: b0090 publication-title: Polymer – volume: 71 start-page: 30 year: 2010 end-page: 37 ident: b0205 publication-title: Sep. Purif. Technol. – volume: 281 start-page: 581 year: 2006 end-page: 586 ident: b0040 publication-title: J. Membr. Sci. – volume: 44 start-page: 4029 year: 2003 end-page: 4034 ident: b0155 publication-title: Polymer – volume: 30 start-page: 3659 year: 2009 end-page: 3666 ident: b0035 publication-title: Mater. Des. – volume: 296 start-page: 1 year: 2007 end-page: 8 ident: b0025 publication-title: J. Membr. Sci. – volume: 62 start-page: 4751 year: 2007 end-page: 4759 ident: b0060 publication-title: Chem. Eng. Sci. – year: 2014 ident: b0170 publication-title: Polymer – volume: 18 start-page: 5326 year: 2008 end-page: 5334 ident: b0010 publication-title: J. Mater. Chem. – volume: 460 start-page: 241 year: 2014 end-page: 249 ident: b0050 publication-title: J. Membr. Sci. – volume: 352 start-page: 136 year: 2010 end-page: 142 ident: b0055 publication-title: J. Membr. Sci. – volume: 50 start-page: 4935 year: 2009 end-page: 4943 ident: b0130 publication-title: Polymer – volume: 79 start-page: 34 year: 2011 end-page: 42 ident: b0015 publication-title: Sep. Purif. Technol. – volume: 17 start-page: 1984 year: 2007 end-page: 1990 ident: b0180 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 205 year: 2008 end-page: 221 ident: b0005 publication-title: Energy Environ. Sci. – volume: 42 start-page: 261 year: 2001 end-page: 272 ident: b0160 publication-title: Polymer – volume: 205 start-page: 2327 year: 2004 end-page: 2338 ident: b0085 publication-title: Macromol. Chem. Phys. – volume: 417 start-page: 18 year: 2014 end-page: 26 ident: b0095 publication-title: J. Colloid Interf. Sci. – volume: 2 start-page: 521 year: 2010 end-page: 528 ident: b0105 publication-title: Appl. Mater. Interf. – volume: 37 start-page: 573 year: 2004 end-page: 578 ident: b0145 publication-title: Macromolecules – volume: 46 start-page: 4799 year: 2005 end-page: 4810 ident: b0165 publication-title: Polymer – volume: 75 start-page: 340 year: 2010 end-page: 345 ident: b0065 publication-title: Sep. Purif. Technol. – volume: 15 start-page: 1375 year: 2004 end-page: 1381 ident: b0125 publication-title: Nanotechnology – volume: 448 start-page: 151 year: 2013 end-page: 159 ident: b0070 publication-title: J. Membr. Sci. – volume: 51 start-page: 1654 year: 2010 end-page: 1662 ident: b0150 publication-title: Polymer – volume: 40 start-page: 4585 year: 1999 end-page: 4592 ident: b0115 publication-title: Polymer – volume: 128 start-page: 1089 year: 2013 end-page: 1094 ident: b0195 publication-title: J. Appl. Polym. Sci. – volume: 50 start-page: 4189 year: 2009 end-page: 4198 ident: b0120 publication-title: Polymer – volume: 364 start-page: 107 year: 2011 end-page: 111 ident: b0075 publication-title: J. Colloid Interf. Sci. – volume: 35 start-page: 8456 year: 2002 end-page: 8466 ident: b0135 publication-title: Macromolecules – volume: 46 start-page: 6128 year: 2005 end-page: 6134 ident: b0080 publication-title: Polymer – volume: 46 start-page: 6128 issue: 16 year: 2005 ident: 10.1016/j.jcis.2014.11.041_b0080 publication-title: Polymer doi: 10.1016/j.polymer.2005.05.068 – volume: 2 start-page: 12216 issue: 32 year: 2012 ident: 10.1016/j.jcis.2014.11.041_b0200 publication-title: RSC Adv. doi: 10.1039/c2ra22086e – volume: 79 start-page: 34 year: 2011 ident: 10.1016/j.jcis.2014.11.041_b0015 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2011.03.008 – volume: 51 start-page: 1654 year: 2010 ident: 10.1016/j.jcis.2014.11.041_b0150 publication-title: Polymer doi: 10.1016/j.polymer.2010.01.031 – year: 2014 ident: 10.1016/j.jcis.2014.11.041_b0185 publication-title: Polymer – volume: 50 start-page: 4935 year: 2009 ident: 10.1016/j.jcis.2014.11.041_b0130 publication-title: Polymer doi: 10.1016/j.polymer.2009.08.011 – volume: 35 start-page: 8456 year: 2002 ident: 10.1016/j.jcis.2014.11.041_b0135 publication-title: Macromolecules doi: 10.1021/ma020444a – volume: 281 start-page: 581 year: 2006 ident: 10.1016/j.jcis.2014.11.041_b0040 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.04.026 – volume: 37 start-page: 573 year: 2004 ident: 10.1016/j.jcis.2014.11.041_b0145 publication-title: Macromolecules doi: 10.1021/ma0351975 – volume: 296 start-page: 1 year: 2007 ident: 10.1016/j.jcis.2014.11.041_b0025 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.03.038 – volume: 460 start-page: 241 year: 2014 ident: 10.1016/j.jcis.2014.11.041_b0050 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.01.045 – volume: 54 start-page: 2364 year: 2013 ident: 10.1016/j.jcis.2014.11.041_b0090 publication-title: Polymer doi: 10.1016/j.polymer.2013.02.034 – volume: 50 start-page: 3661 year: 2009 ident: 10.1016/j.jcis.2014.11.041_b0030 publication-title: Polymer doi: 10.1016/j.polymer.2009.05.058 – volume: 205 start-page: 2327 issue: 17 year: 2004 ident: 10.1016/j.jcis.2014.11.041_b0085 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200400225 – volume: 18 start-page: 5326 year: 2008 ident: 10.1016/j.jcis.2014.11.041_b0010 publication-title: J. Mater. Chem. doi: 10.1039/b804128h – volume: 50 start-page: 4189 year: 2009 ident: 10.1016/j.jcis.2014.11.041_b0120 publication-title: Polymer doi: 10.1016/j.polymer.2009.06.062 – volume: 30 start-page: 3659 year: 2009 ident: 10.1016/j.jcis.2014.11.041_b0035 publication-title: Mater. Des. doi: 10.1016/j.matdes.2009.02.017 – volume: 46 start-page: 4799 issue: 13 year: 2005 ident: 10.1016/j.jcis.2014.11.041_b0165 publication-title: Polymer doi: 10.1016/j.polymer.2005.04.021 – volume: 17 start-page: 1984 issue: 12 year: 2007 ident: 10.1016/j.jcis.2014.11.041_b0180 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200600933 – volume: 44 start-page: 4029 issue: 14 year: 2003 ident: 10.1016/j.jcis.2014.11.041_b0155 publication-title: Polymer doi: 10.1016/S0032-3861(03)00345-8 – volume: 71 start-page: 30 issue: 1 year: 2010 ident: 10.1016/j.jcis.2014.11.041_b0205 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2009.10.017 – volume: 1 start-page: 205 year: 2008 ident: 10.1016/j.jcis.2014.11.041_b0005 publication-title: Energy Environ. Sci. doi: 10.1039/b809074m – volume: 46 start-page: 3372 issue: 10 year: 2005 ident: 10.1016/j.jcis.2014.11.041_b0190 publication-title: Polymer doi: 10.1016/j.polymer.2005.03.011 – volume: 392–393 start-page: 101 year: 2012 ident: 10.1016/j.jcis.2014.11.041_b0020 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.12.005 – volume: 62 start-page: 4751 year: 2007 ident: 10.1016/j.jcis.2014.11.041_b0060 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2007.06.007 – volume: 45 start-page: 704 issue: 5 year: 2005 ident: 10.1016/j.jcis.2014.11.041_b0110 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.20304 – volume: 2 start-page: 521 year: 2010 ident: 10.1016/j.jcis.2014.11.041_b0105 publication-title: Appl. Mater. Interf. doi: 10.1021/am900736h – volume: 22 start-page: 1445 year: 2012 ident: 10.1016/j.jcis.2014.11.041_b0045 publication-title: J. Mater. Chem. doi: 10.1039/C1JM14299B – volume: 364 start-page: 107 year: 2011 ident: 10.1016/j.jcis.2014.11.041_b0075 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2011.07.094 – year: 2014 ident: 10.1016/j.jcis.2014.11.041_b0170 publication-title: Polymer – volume: 352 start-page: 136 year: 2010 ident: 10.1016/j.jcis.2014.11.041_b0055 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.02.009 – volume: 4 start-page: 1364 issue: 4 year: 2011 ident: 10.1016/j.jcis.2014.11.041_b0175 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00729c – volume: 417 start-page: 18 year: 2014 ident: 10.1016/j.jcis.2014.11.041_b0095 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2013.11.009 – volume: 128 start-page: 1089 issue: 2 year: 2013 ident: 10.1016/j.jcis.2014.11.041_b0195 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.38296 – volume: 75 start-page: 340 year: 2010 ident: 10.1016/j.jcis.2014.11.041_b0065 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2010.09.002 – volume: 40 start-page: 7689 year: 2007 ident: 10.1016/j.jcis.2014.11.041_b0140 publication-title: Macromolecules doi: 10.1021/ma071418l – volume: 42 start-page: 261 issue: 1 year: 2001 ident: 10.1016/j.jcis.2014.11.041_b0160 publication-title: Polymer doi: 10.1016/S0032-3861(00)00250-0 – volume: 6 start-page: 1030 issue: 6 year: 2006 ident: 10.1016/j.jcis.2014.11.041_b0210 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2005.07.013 – volume: 15 start-page: 1375 year: 2004 ident: 10.1016/j.jcis.2014.11.041_b0125 publication-title: Nanotechnology doi: 10.1088/0957-4484/15/9/044 – volume: 126 start-page: 44 year: 2014 ident: 10.1016/j.jcis.2014.11.041_b0100 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2014.02.017 – volume: 40 start-page: 4585 year: 1999 ident: 10.1016/j.jcis.2014.11.041_b0115 publication-title: Polymer doi: 10.1016/S0032-3861(99)00068-3 – volume: 448 start-page: 151 year: 2013 ident: 10.1016/j.jcis.2014.11.041_b0070 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.07.067 |
SSID | ssj0011559 |
Score | 2.5941534 |
Snippet | [Display omitted]
•A formation mechanism of the porous bead-on-string PLA fibers was proposed.•Correlation between bead morphology and pore structure of... Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121 |
SubjectTerms | aerosols air Beads Electrospinning Fibers filters Filtration Filtration performance Low pressure Membranes methylene chloride Morphology nanofibers nanopores Nanostructure Poly(lactic acid) polylactic acid Porous bead-on-string fiber sodium chloride Solvents |
Title | Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration |
URI | https://dx.doi.org/10.1016/j.jcis.2014.11.041 https://www.ncbi.nlm.nih.gov/pubmed/25499733 https://www.proquest.com/docview/1640480168 https://www.proquest.com/docview/1669851385 https://www.proquest.com/docview/2101369512 |
Volume | 441 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-pBfLu-qOBBkWjbNE17lEVZn3hQ8BaaNJHK2l2W9eDF3-5MH4sedg8e204h_TKdfB-ZmQAcS-T4zjifofugQInTnGWJtiyzUmRhLJ3lVO_88Bj3XqLbV_E6B922FobSKpvYX8f0Klo3dy4aNC-GRUE1vvi3yZQ6zvlJKikOR5EkLz__nqR5BLTtVqd5BIysm8KZOsfr3RTUsjuIzqmTZxRMW5ymkc9qEbpehZWGPXqX9QDXYM6W67DYbQ9tW4flX_0FN-D-aTBCZe9pnEg2KBmd0VG-ecNB_-ukX1VHeZkp8lPPoWgmww_7geoZo5-HXNbLihE-6TeNdTfh-frqudtjzfEJzIhQjFnqONKpPECClfHc-S4InUH2ljgtuOWJxp_dxZZrG-aZkwbFjS-M1FrbJMst34L5clDaHfASqU1irc9zP4-Qb2jUdI7q94wTXEe8A0ELmzJNa3E64aKv2hyyd0VQK4IaNYdCqDtwNnlnWDfWmGkt2tlQf9xDYeSf-d5RO3UKZ4I2QxBEBFShTKxa58TJLJs4RQgRxuk2KJkDHiNPDTuwXfvG5Hsq8S053_3n6PdgCa9EnfK2D_Pj0ac9QA401oeVkx_CwuXNXe_xByXTBbk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2hMgAD4pvyGSQGEDIkcRwnI6pABUrFUCQ2K3ZsFFTSqioD_55z4lQwtANrbEvJs3N-T757BjjnyPGNMj7B5YMCJU5zkiVSk0xzloUxN5raeufnftx9jR7f2NsSdJpaGJtW6WJ_HdOraO2e3Dg0b8ZFYWt88W_jqXWc85OUYxxetu5UrAXLtw9P3f7sMMGevNWZHgGxA1ztTJ3m9aEK69odRNfWzDMK5u1P8_hntQ_db8C6I5Debf2Om7Ckyy1Y6TT3tm3B2i-LwW3ovYwmKO49iXNJRiWx13SU7954NPy-GFYFUl6mivzSM6ibbcdP_YkCGgOgh3TWy4oJtgydt-4ODO7vBp0ucTcoEMVCNiWpocio8gA5VkZz45sgNAoJXGIko5omEv93E2sqdZhnhivUNz5TXEqpkyzXdBda5ajU--AlXKpEa5_mfh4h5ZAo64wt4VOGURnRNgQNbEI5d3F7ycVQNGlkH8JCLSzUKDsEQt2Gq9mYce2tsbA3a2ZD_FkhAoP_wnFnzdQJnAl7HoIgIqAClWLlnhMni_rEKUKIMM7vg6o5oDFS1bANe_XamH1Ppb85pQf_fPtTWOkOnnui99B_OoRVbGF1BtwRtKaTL32MlGgqT9yS_wEXXwhq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+bead-on-string+poly%28lactic+acid%29+fibrous+membranes+for+air+filtration&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Wang%2C+Zhe&rft.au=Zhao%2C+Chuchu&rft.au=Pan%2C+Zhijuan&rft.date=2015-03-01&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=441&rft.spage=121&rft_id=info:doi/10.1016%2Fj.jcis.2014.11.041&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |