Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration

[Display omitted] •A formation mechanism of the porous bead-on-string PLA fibers was proposed.•Correlation between bead morphology and pore structure of membrane were put forward.•Moderate beads size and quantity were conducive to the low pressure drop.•Nanopores on beads and ultrafine nanofiber con...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 441; pp. 121 - 129
Main Authors Wang, Zhe, Zhao, Chuchu, Pan, Zhijuan
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2015
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2014.11.041

Cover

Loading…
Abstract [Display omitted] •A formation mechanism of the porous bead-on-string PLA fibers was proposed.•Correlation between bead morphology and pore structure of membrane were put forward.•Moderate beads size and quantity were conducive to the low pressure drop.•Nanopores on beads and ultrafine nanofiber contributed to high filtration efficiency.•Porous bead-on-string nanofibrous media showed excellent air filtration performance. Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3Pa), which are promising characteristics for the membranes’ application as filters for respiratory protection, indoor air purification, and other filtration applications.
AbstractList Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5 wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3 Pa), which are promising characteristics for the membranes' application as filters for respiratory protection, indoor air purification, and other filtration applications.
[Display omitted] •A formation mechanism of the porous bead-on-string PLA fibers was proposed.•Correlation between bead morphology and pore structure of membrane were put forward.•Moderate beads size and quantity were conducive to the low pressure drop.•Nanopores on beads and ultrafine nanofiber contributed to high filtration efficiency.•Porous bead-on-string nanofibrous media showed excellent air filtration performance. Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3Pa), which are promising characteristics for the membranes’ application as filters for respiratory protection, indoor air purification, and other filtration applications.
Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260 nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5 wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3 Pa), which are promising characteristics for the membranes' application as filters for respiratory protection, indoor air purification, and other filtration applications.
Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5 wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3 Pa), which are promising characteristics for the membranes' application as filters for respiratory protection, indoor air purification, and other filtration applications.Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5 wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3 Pa), which are promising characteristics for the membranes' application as filters for respiratory protection, indoor air purification, and other filtration applications.
Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was determined in this study. The PLA fibrous morphology, including the fiber diameter, bead size, number of beads, and surface structure of the beads, could be closely controlled by regulating the solvent compositions and the concentrations of the PLA solutions. The filtration performance, which was evaluated by measuring the penetration of sodium chloride (NaCl) aerosol particles with an average diameter of 260nm, indicated that the filtration efficiency and pressure drop for the resultant PLA membranes could be manipulated by modifying the morphology of the fibers. Moderate bead size and quantity contribute to the low pressure drop, and small fiber diameters and nanopores on the beads were conducive to high filtration efficiency. Furthermore, the NM formed from a 5wt% solution and a solvent mixture containing dichloromethane (DCM)/N,N-dimethylacetamide (DMAC) in a 10/1 ratio of PLA by weight exhibited excellent filtration efficiency (99.997%) and a low pressure drop (165.3Pa), which are promising characteristics for the membranes’ application as filters for respiratory protection, indoor air purification, and other filtration applications.
Author Wang, Zhe
Zhao, Chuchu
Pan, Zhijuan
Author_xml – sequence: 1
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China
– sequence: 2
  givenname: Chuchu
  surname: Zhao
  fullname: Zhao, Chuchu
  organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China
– sequence: 3
  givenname: Zhijuan
  surname: Pan
  fullname: Pan, Zhijuan
  email: zhjpan@suda.edu.cn
  organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25499733$$D View this record in MEDLINE/PubMed
BookMark eNqNkT1vFDEURS0URDaBP0CBpgzFDH722DOWaFAECdJKUKS3_PGMvJoZL_YsUv59vNmkoQhULnzu09W5F-RsSQsS8h5oBxTkp123c7F0jELfAXS0h1dkA1SJdgDKz8iGUgatGtRwTi5K2VEKIIR6Q86Z6JUaON-Q7c-U06E0Fo1v09KWNcflV7NP0_3VZNwaXWNc9B-bEO0jOONss1mwNCHlxsRcf6Y1mzWm5S15HcxU8N3Te0nuvn29u75ttz9uvl9_2bZOMLG2KvBRgAfGpOE-0AAsOCHlGKzgyEc7UB4kcovMmzA4Okoq3GCtxdF45Jfk6nR2n9PvA5ZVz7E4nKZaq1bUrNrhUglg_0RBSlW71D7_gfa0H6v3saIfntCDndHrfY6zyff6WWsFxhPgciolY9Auro-Kqqk4aaD6uKDe6eOC-rigBtB1wRplf0Wfr78Y-nwKYbX-J2LWxUVcHPqY0a3ap_hS_AFiwrOu
CitedBy_id crossref_primary_10_1021_acsanm_4c04236
crossref_primary_10_1016_j_colsurfa_2022_130302
crossref_primary_10_1038_s43246_024_00668_0
crossref_primary_10_1016_j_seppur_2021_120146
crossref_primary_10_1016_j_coco_2022_101211
crossref_primary_10_1021_acs_langmuir_7b01193
crossref_primary_10_3390_polym11091490
crossref_primary_10_1002_adfm_201904108
crossref_primary_10_1016_j_enbuild_2017_10_073
crossref_primary_10_1007_s40843_018_9320_4
crossref_primary_10_3390_s22093281
crossref_primary_10_1002_admi_202400666
crossref_primary_10_1016_j_apsusc_2015_08_211
crossref_primary_10_1088_2053_1591_aab6ef
crossref_primary_10_3389_fenrg_2019_00145
crossref_primary_10_1002_smll_201603306
crossref_primary_10_1080_25740881_2020_1759212
crossref_primary_10_1016_j_matdes_2022_111053
crossref_primary_10_1038_srep40550
crossref_primary_10_1016_j_cej_2020_126584
crossref_primary_10_1021_acssuschemeng_3c06327
crossref_primary_10_1007_s12221_022_4563_8
crossref_primary_10_1016_j_seppur_2021_119165
crossref_primary_10_1039_C5RA27913E
crossref_primary_10_1007_s12221_021_0158_z
crossref_primary_10_1016_j_seppur_2019_05_033
crossref_primary_10_1007_s00289_022_04135_z
crossref_primary_10_1016_j_jece_2023_110561
crossref_primary_10_1016_j_jhazmat_2018_07_090
crossref_primary_10_1016_j_seppur_2015_08_005
crossref_primary_10_26599_PBM_2019_9260004
crossref_primary_10_1016_j_jpowsour_2019_03_097
crossref_primary_10_1007_s12274_021_3593_7
crossref_primary_10_1039_D2NJ02747J
crossref_primary_10_1002_mame_202100278
crossref_primary_10_1016_j_pmatsci_2024_101376
crossref_primary_10_1002_mame_201600353
crossref_primary_10_1016_j_seppur_2024_126512
crossref_primary_10_1016_j_colcom_2020_100275
crossref_primary_10_1002_admi_202200786
crossref_primary_10_2115_fiberst_2020_0022
crossref_primary_10_1002_adfm_202214813
crossref_primary_10_1016_j_jcis_2021_08_079
crossref_primary_10_1016_j_polymer_2021_123797
crossref_primary_10_1002_app_52294
crossref_primary_10_1039_C7NJ03997B
crossref_primary_10_1007_s12273_020_0622_5
crossref_primary_10_1080_09593330_2023_2213831
crossref_primary_10_1002_pen_25483
crossref_primary_10_3390_polym12010120
crossref_primary_10_1016_j_jiec_2025_01_002
crossref_primary_10_1016_j_seppur_2023_124405
crossref_primary_10_1016_j_jcis_2018_07_021
crossref_primary_10_1177_00405175241241237
crossref_primary_10_1111_ina_13103
crossref_primary_10_1016_j_seppur_2022_122175
crossref_primary_10_1088_1361_6528_abf8da
crossref_primary_10_1016_j_matpr_2019_03_206
crossref_primary_10_1021_acsami_6b08262
crossref_primary_10_3390_polym10101085
crossref_primary_10_3390_polym14183787
crossref_primary_10_1088_2053_1591_ab1a23
crossref_primary_10_1016_j_compositesa_2020_106009
crossref_primary_10_1016_j_nanoen_2022_107237
crossref_primary_10_1088_1757_899X_409_1_012010
crossref_primary_10_1016_j_seppur_2019_116183
crossref_primary_10_1021_acs_est_0c02828
crossref_primary_10_1016_j_ijbiomac_2022_02_029
crossref_primary_10_1016_j_seppur_2022_121433
crossref_primary_10_3390_nano12010050
crossref_primary_10_1021_acsomega_8b00332
crossref_primary_10_1021_acsomega_8b00695
crossref_primary_10_1016_j_seppur_2022_122642
crossref_primary_10_3390_polym14193990
crossref_primary_10_1016_j_jhazmat_2021_125742
crossref_primary_10_1016_j_matlet_2019_127137
crossref_primary_10_3390_membranes13040380
crossref_primary_10_1007_s42247_023_00622_9
crossref_primary_10_1021_acs_iecr_4c02581
crossref_primary_10_1039_D4CC05437G
crossref_primary_10_1007_s10853_015_9286_4
crossref_primary_10_1007_s12223_024_01137_4
crossref_primary_10_1016_j_ijbiomac_2019_10_088
crossref_primary_10_1002_pat_6542
crossref_primary_10_1155_2024_5055615
crossref_primary_10_1016_j_psep_2023_04_034
crossref_primary_10_3390_polym9120652
crossref_primary_10_1016_j_chemosphere_2022_137240
crossref_primary_10_1016_j_pecs_2021_100968
crossref_primary_10_1021_acs_iecr_1c03051
crossref_primary_10_1039_C5TA06543G
crossref_primary_10_1016_j_envres_2023_116144
crossref_primary_10_1016_j_jhazmat_2020_124787
crossref_primary_10_1016_j_seppur_2020_118135
crossref_primary_10_1002_mame_202300375
crossref_primary_10_1038_s41598_022_12505_w
crossref_primary_10_1016_j_seppur_2024_130417
crossref_primary_10_1016_j_polymer_2019_01_035
crossref_primary_10_1016_j_apmt_2022_101369
crossref_primary_10_1021_acsami_6b00359
crossref_primary_10_1016_j_powtec_2019_11_012
crossref_primary_10_1088_1361_6528_aae611
crossref_primary_10_1016_j_seppur_2019_01_049
crossref_primary_10_1007_s12221_016_6581_x
crossref_primary_10_1021_acsami_9b13162
crossref_primary_10_3390_chemengineering3020054
crossref_primary_10_3390_polym13121998
crossref_primary_10_1016_j_jece_2024_114738
crossref_primary_10_1016_j_porgcoat_2020_105736
crossref_primary_10_1038_s41598_017_10995_7
crossref_primary_10_1038_srep35472
crossref_primary_10_1007_s40242_021_0010_4
crossref_primary_10_1016_j_jhazmat_2023_133232
crossref_primary_10_1155_2016_6272983
crossref_primary_10_1016_j_msec_2017_04_138
crossref_primary_10_1016_j_matlet_2021_129831
crossref_primary_10_1016_j_scs_2024_105884
crossref_primary_10_1051_e3sconf_20186703016
crossref_primary_10_1016_j_seppur_2023_125659
crossref_primary_10_1016_j_jece_2025_115435
crossref_primary_10_1021_acsami_9b01508
crossref_primary_10_1038_s41598_022_24739_9
crossref_primary_10_1016_j_cej_2021_131247
crossref_primary_10_1016_j_jhazmat_2019_121535
crossref_primary_10_1016_j_seppur_2021_119623
crossref_primary_10_1039_C7RA12879G
crossref_primary_10_1039_C9NR09776G
crossref_primary_10_1039_C9RA06022G
crossref_primary_10_1002_app_46554
crossref_primary_10_1002_app_47643
crossref_primary_10_1063_5_0131947
crossref_primary_10_3390_nano11040900
crossref_primary_10_1016_j_cej_2018_01_025
crossref_primary_10_1016_j_seppur_2022_120913
crossref_primary_10_1021_acssuschemeng_9b00605
crossref_primary_10_1080_01496395_2022_2075757
crossref_primary_10_1039_C6EN00696E
crossref_primary_10_1039_D4RA02064B
crossref_primary_10_1103_PhysRevLett_131_218101
crossref_primary_10_1002_mame_202100891
crossref_primary_10_1177_0892705719859929
crossref_primary_10_3390_fib9080048
crossref_primary_10_3390_polym13152517
crossref_primary_10_1002_admi_202101848
crossref_primary_10_1016_j_colsurfa_2023_132043
crossref_primary_10_1007_s10570_018_1696_4
crossref_primary_10_3390_polym16040514
crossref_primary_10_1007_s11051_020_04965_w
crossref_primary_10_1002_app_50139
crossref_primary_10_1002_adma_202419389
crossref_primary_10_1016_j_carbpol_2024_122606
crossref_primary_10_1016_j_jtice_2019_11_002
crossref_primary_10_1021_acsestengg_4c00460
crossref_primary_10_1039_C7EN00760D
crossref_primary_10_3390_molecules30061214
crossref_primary_10_3390_nano13243150
crossref_primary_10_1021_acsapm_1c00697
crossref_primary_10_1021_acsami_7b00351
crossref_primary_10_1002_mame_202000370
crossref_primary_10_1021_acsami_9b18083
crossref_primary_10_1002_smll_202102051
crossref_primary_10_3390_membranes10090204
crossref_primary_10_1016_j_polymertesting_2019_106310
crossref_primary_10_1039_C7RA07694K
crossref_primary_10_3390_polym14204387
crossref_primary_10_1002_app_43818
crossref_primary_10_1016_j_cej_2022_139168
crossref_primary_10_1038_s41598_018_23257_x
crossref_primary_10_1007_s10661_023_11491_4
crossref_primary_10_3390_polym12081714
crossref_primary_10_1016_j_jcis_2017_12_032
crossref_primary_10_1016_j_jcis_2019_08_099
crossref_primary_10_1002_pat_4987
crossref_primary_10_1016_j_seppur_2024_128886
crossref_primary_10_1016_j_polymer_2018_08_015
crossref_primary_10_1142_S1793292021300048
crossref_primary_10_2174_1567201819666220525095844
crossref_primary_10_1177_24723444221081457
crossref_primary_10_1016_j_powtec_2023_118881
crossref_primary_10_1002_ejic_201500737
crossref_primary_10_1016_j_polymer_2021_124378
crossref_primary_10_1039_D3MA00010A
crossref_primary_10_1002_pi_6021
crossref_primary_10_1002_smll_201603151
crossref_primary_10_1016_j_colsurfa_2022_128418
crossref_primary_10_1002_pat_6483
crossref_primary_10_1039_C9EN00816K
crossref_primary_10_1177_24723444221084394
crossref_primary_10_3390_polym11060935
crossref_primary_10_1016_j_seppur_2015_11_046
crossref_primary_10_1177_1528083720923773
crossref_primary_10_1021_acsami_4c12239
crossref_primary_10_1016_j_seppur_2024_131004
crossref_primary_10_3390_polym15102237
crossref_primary_10_1021_acs_chemrev_5b00069
crossref_primary_10_1016_j_buildenv_2020_106725
crossref_primary_10_1016_j_susmat_2024_e00928
crossref_primary_10_1109_TNB_2022_3181745
crossref_primary_10_1002_smll_201702139
crossref_primary_10_3390_ijerph20021306
crossref_primary_10_1016_j_seppur_2018_03_053
crossref_primary_10_1021_acsanm_9b00806
crossref_primary_10_3390_membranes14060120
crossref_primary_10_1016_j_apsusc_2023_159062
crossref_primary_10_1515_epoly_2020_0034
crossref_primary_10_1080_09243046_2017_1405508
crossref_primary_10_1177_0263617418816200
crossref_primary_10_1016_j_surfin_2021_101147
crossref_primary_10_1039_C9RA04877D
crossref_primary_10_1039_D3NJ00877K
crossref_primary_10_1016_j_seppur_2023_124943
crossref_primary_10_1177_1528083716676812
crossref_primary_10_1016_j_envres_2023_115699
crossref_primary_10_1002_mame_201800336
crossref_primary_10_1080_23744731_2022_2075188
crossref_primary_10_1002_app_45766
crossref_primary_10_1002_mame_201800218
crossref_primary_10_1016_j_coco_2019_06_003
crossref_primary_10_1016_j_apsusc_2017_08_005
crossref_primary_10_1007_s12221_023_00112_z
crossref_primary_10_3390_polym14214498
crossref_primary_10_1002_mame_202100115
crossref_primary_10_1155_2016_8921316
crossref_primary_10_1016_j_seppur_2019_116002
crossref_primary_10_3390_fib10020015
crossref_primary_10_1039_D3LP00201B
crossref_primary_10_1177_1420326X18816353
crossref_primary_10_1016_j_seppur_2021_119570
crossref_primary_10_1016_j_msec_2021_112594
crossref_primary_10_1007_s00289_022_04459_w
crossref_primary_10_1021_acs_iecr_1c00829
crossref_primary_10_1002_adfm_202113040
crossref_primary_10_1021_acsami_0c14958
crossref_primary_10_1016_j_jcis_2015_07_019
crossref_primary_10_1016_j_memsci_2019_117467
crossref_primary_10_3390_polym14235295
crossref_primary_10_1038_s41598_023_32765_4
crossref_primary_10_4209_aaqr_2019_07_0343
crossref_primary_10_1016_j_jmatprotec_2018_11_035
crossref_primary_10_1016_j_seppur_2019_116377
crossref_primary_10_1016_j_gee_2022_03_012
crossref_primary_10_1039_C6RA17097H
crossref_primary_10_3390_macromol4010004
crossref_primary_10_1016_j_mtadv_2021_100134
crossref_primary_10_1021_acs_nanolett_0c01107
crossref_primary_10_1016_j_seppur_2022_121165
crossref_primary_10_1016_j_cej_2024_148722
crossref_primary_10_1002_aesr_202100005
crossref_primary_10_1002_adsu_202400898
crossref_primary_10_1016_j_memsci_2020_118094
crossref_primary_10_1016_j_jaerosci_2021_105754
crossref_primary_10_1016_j_jece_2023_111798
crossref_primary_10_1021_acssuschemeng_8b06567
crossref_primary_10_1021_acsami_6b10094
crossref_primary_10_3390_fib11080071
crossref_primary_10_1016_j_polymer_2017_10_033
crossref_primary_10_1016_S1872_2067_16_62545_7
crossref_primary_10_3390_app112311094
crossref_primary_10_3390_jcs4020079
crossref_primary_10_1039_C6TA00977H
Cites_doi 10.1016/j.polymer.2005.05.068
10.1039/c2ra22086e
10.1016/j.seppur.2011.03.008
10.1016/j.polymer.2010.01.031
10.1016/j.polymer.2009.08.011
10.1021/ma020444a
10.1016/j.memsci.2006.04.026
10.1021/ma0351975
10.1016/j.memsci.2007.03.038
10.1016/j.memsci.2014.01.045
10.1016/j.polymer.2013.02.034
10.1016/j.polymer.2009.05.058
10.1002/macp.200400225
10.1039/b804128h
10.1016/j.polymer.2009.06.062
10.1016/j.matdes.2009.02.017
10.1016/j.polymer.2005.04.021
10.1002/adfm.200600933
10.1016/S0032-3861(03)00345-8
10.1016/j.seppur.2009.10.017
10.1039/b809074m
10.1016/j.polymer.2005.03.011
10.1016/j.memsci.2011.12.005
10.1016/j.ces.2007.06.007
10.1002/pen.20304
10.1021/am900736h
10.1039/C1JM14299B
10.1016/j.jcis.2011.07.094
10.1016/j.memsci.2010.02.009
10.1039/c0ee00729c
10.1016/j.jcis.2013.11.009
10.1002/app.38296
10.1016/j.seppur.2010.09.002
10.1021/ma071418l
10.1016/S0032-3861(00)00250-0
10.1016/j.cap.2005.07.013
10.1088/0957-4484/15/9/044
10.1016/j.seppur.2014.02.017
10.1016/S0032-3861(99)00068-3
10.1016/j.memsci.2013.07.067
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7U5
8FD
L7M
7S9
L.6
DOI 10.1016/j.jcis.2014.11.041
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

Technology Research Database
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 129
ExternalDocumentID 25499733
10_1016_j_jcis_2014_11_041
S0021979714008972
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
NPM
7X8
EFKBS
7U5
8FD
L7M
7S9
L.6
ID FETCH-LOGICAL-c525t-9f3851d1226a3df0f12fc5668fb53e38b703f6e3be2daf7c08605c7bbbe8ade3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 04:00:29 EDT 2025
Fri Jul 11 08:59:22 EDT 2025
Tue Aug 05 11:15:40 EDT 2025
Thu Apr 03 07:01:34 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
Tue Jul 01 01:18:19 EDT 2025
Fri Feb 23 02:33:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrospinning
Poly(lactic acid)
Porous bead-on-string fiber
Filtration performance
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-9f3851d1226a3df0f12fc5668fb53e38b703f6e3be2daf7c08605c7bbbe8ade3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25499733
PQID 1640480168
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2101369512
proquest_miscellaneous_1669851385
proquest_miscellaneous_1640480168
pubmed_primary_25499733
crossref_citationtrail_10_1016_j_jcis_2014_11_041
crossref_primary_10_1016_j_jcis_2014_11_041
elsevier_sciencedirect_doi_10_1016_j_jcis_2014_11_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Leea, Kim, Bang, Jungb, Lee (b0155) 2003; 44
Mao, Si, Chen, Yang, Zhao, Ding, Yu (b0200) 2012; 2
Zhang, Karki, Rutman, Young, Wang, Cocke, Ho, Guo (b0120) 2009; 50
Mikheev, Kanev, Morozova, Morozov (b0070) 2013; 448
Shenoy, Douglas Bates, Frisch, Wnek (b0190) 2005; 46
Mei, Wang, Li (b0195) 2013; 128
Laiva, Venugopal, Sridhar, Rangarajan, Navaneethan, Ramakrishna (b0170) 2014
Yu, Su, Cheng (b0180) 2007; 17
Fong, Chun, Reneker (b0115) 1999; 40
Wang, Si, Wang, Sun, El-Newehy, Al-Deyab, Ding, Wan (b0100) 2014; 126
Desai, Kit, Li, Michael Davidson, Zivanovic, Meyer (b0030) 2009; 50
Cho, Naydich, Frey, Joo (b0090) 2013; 54
Casper, Stephens, Tassi, Bruce Chase, Rabolt (b0145) 2004; 37
Zhang, Shim, Kim (b0035) 2009; 30
Wang, Wang, Ding, Yu, Sun (b0045) 2012; 22
Deitzel, Kleinmeyer, Harris, Beck Tan (b0160) 2001; 42
Casasolaa, Thomasb, Trybalaa, Georgiadou (b0185) 2014
Huang, Arena, Manickam, Jiang, Willis, McCutcheon (b0050) 2014; 460
Thavasi, Singh, Ramakrishna (b0005) 2008; 1
Dayal, Jing, Kumar (b0140) 2007; 40
Patanaik, Jacobs, Anandjiwala (b0055) 2010; 352
Yun, Suryamas, Iskandar, Bao, Niinuma, Okuyama (b0065) 2010; 75
Mit-Uppatham, Nithitanakul, Supaphol (b0085) 2004; 205
Kaur, Sundarrajan, Rana, Matsuura, Ramakrishna (b0020) 2012; 392–393
Luo, Nangrejo, Edirisinghe (b0150) 2010; 51
Leung, Hung, Yuen (b0205) 2010; 71
Yu, Ran (b0175) 2011; 4
Barhate, Ramakrishna (b0025) 2007; 296
Pant, Namc, Oh, Panthi, Kimd, Kime, Kimc (b0075) 2011; 364
Zuo, Zhu, Yang, Yu, Chen, Zhang (b0110) 2005; 45
Yun, Hogan, Matsubayashi, Kawabe, Iskandar, Okuyama (b0060) 2007; 62
Lin, Wang, Wang, Wang (b0125) 2004; 15
Hung, Leung (b0015) 2011; 79
Lin, Ding, Yu, Hsieh (b0105) 2010; 2
Tan, Inai, Kotaki, Ramakrishna (b0080) 2005; 46
Munir, Suryamas, Iskandar, Okuyama (b0130) 2009; 50
Gopal, Kaur, Ma, Chan, Ramakrishna, Matsuura (b0040) 2006; 281
Wan, Wang, Yang, Si, Chen, Ding, Sun, El-Newehy, Al-Deyab, Yu (b0095) 2014; 417
Ahn, Park, Kim, Hwang, Lee, Shin, Lee (b0210) 2006; 6
Gupta, Elkins, Long, Wilkes (b0165) 2005; 46
Yoon, Hsiao, Chu (b0010) 2008; 18
Megelski, Stephens, Bruce Chase (b0135) 2002; 35
Shenoy (10.1016/j.jcis.2014.11.041_b0190) 2005; 46
Mit-Uppatham (10.1016/j.jcis.2014.11.041_b0085) 2004; 205
Casper (10.1016/j.jcis.2014.11.041_b0145) 2004; 37
Casasolaa (10.1016/j.jcis.2014.11.041_b0185) 2014
Tan (10.1016/j.jcis.2014.11.041_b0080) 2005; 46
Megelski (10.1016/j.jcis.2014.11.041_b0135) 2002; 35
Ahn (10.1016/j.jcis.2014.11.041_b0210) 2006; 6
Desai (10.1016/j.jcis.2014.11.041_b0030) 2009; 50
Zhang (10.1016/j.jcis.2014.11.041_b0035) 2009; 30
Luo (10.1016/j.jcis.2014.11.041_b0150) 2010; 51
Huang (10.1016/j.jcis.2014.11.041_b0050) 2014; 460
Yun (10.1016/j.jcis.2014.11.041_b0060) 2007; 62
Lin (10.1016/j.jcis.2014.11.041_b0125) 2004; 15
Laiva (10.1016/j.jcis.2014.11.041_b0170) 2014
Yu (10.1016/j.jcis.2014.11.041_b0180) 2007; 17
Mei (10.1016/j.jcis.2014.11.041_b0195) 2013; 128
Hung (10.1016/j.jcis.2014.11.041_b0015) 2011; 79
Mikheev (10.1016/j.jcis.2014.11.041_b0070) 2013; 448
Leea (10.1016/j.jcis.2014.11.041_b0155) 2003; 44
Deitzel (10.1016/j.jcis.2014.11.041_b0160) 2001; 42
Yoon (10.1016/j.jcis.2014.11.041_b0010) 2008; 18
Mao (10.1016/j.jcis.2014.11.041_b0200) 2012; 2
Zhang (10.1016/j.jcis.2014.11.041_b0120) 2009; 50
Leung (10.1016/j.jcis.2014.11.041_b0205) 2010; 71
Lin (10.1016/j.jcis.2014.11.041_b0105) 2010; 2
Zuo (10.1016/j.jcis.2014.11.041_b0110) 2005; 45
Thavasi (10.1016/j.jcis.2014.11.041_b0005) 2008; 1
Gupta (10.1016/j.jcis.2014.11.041_b0165) 2005; 46
Barhate (10.1016/j.jcis.2014.11.041_b0025) 2007; 296
Patanaik (10.1016/j.jcis.2014.11.041_b0055) 2010; 352
Wang (10.1016/j.jcis.2014.11.041_b0100) 2014; 126
Cho (10.1016/j.jcis.2014.11.041_b0090) 2013; 54
Wan (10.1016/j.jcis.2014.11.041_b0095) 2014; 417
Yu (10.1016/j.jcis.2014.11.041_b0175) 2011; 4
Wang (10.1016/j.jcis.2014.11.041_b0045) 2012; 22
Fong (10.1016/j.jcis.2014.11.041_b0115) 1999; 40
Dayal (10.1016/j.jcis.2014.11.041_b0140) 2007; 40
Yun (10.1016/j.jcis.2014.11.041_b0065) 2010; 75
Munir (10.1016/j.jcis.2014.11.041_b0130) 2009; 50
Kaur (10.1016/j.jcis.2014.11.041_b0020) 2012; 392–393
Gopal (10.1016/j.jcis.2014.11.041_b0040) 2006; 281
Pant (10.1016/j.jcis.2014.11.041_b0075) 2011; 364
References_xml – volume: 4
  start-page: 1364
  year: 2011
  end-page: 1371
  ident: b0175
  publication-title: Energy Environ. Sci.
– volume: 126
  start-page: 44
  year: 2014
  end-page: 51
  ident: b0100
  publication-title: Sep. Purif. Technol.
– volume: 45
  start-page: 704
  year: 2005
  end-page: 709
  ident: b0110
  publication-title: Polym. Eng. Sci.
– volume: 40
  start-page: 7689
  year: 2007
  end-page: 7694
  ident: b0140
  publication-title: Macromolecules
– volume: 392–393
  start-page: 101
  year: 2012
  end-page: 111
  ident: b0020
  publication-title: J. Membr. Sci.
– volume: 50
  start-page: 3661
  year: 2009
  end-page: 3669
  ident: b0030
  publication-title: Polymer
– year: 2014
  ident: b0185
  publication-title: Polymer
– volume: 46
  start-page: 3372
  year: 2005
  end-page: 3384
  ident: b0190
  publication-title: Polymer
– volume: 6
  start-page: 1030
  year: 2006
  end-page: 1035
  ident: b0210
  publication-title: Curr. Appl. Phys.
– volume: 2
  start-page: 12216
  year: 2012
  end-page: 12223
  ident: b0200
  publication-title: RSC Adv.
– volume: 22
  start-page: 1445
  year: 2012
  end-page: 1452
  ident: b0045
  publication-title: J. Mater. Chem.
– volume: 54
  start-page: 2364
  year: 2013
  end-page: 2372
  ident: b0090
  publication-title: Polymer
– volume: 71
  start-page: 30
  year: 2010
  end-page: 37
  ident: b0205
  publication-title: Sep. Purif. Technol.
– volume: 281
  start-page: 581
  year: 2006
  end-page: 586
  ident: b0040
  publication-title: J. Membr. Sci.
– volume: 44
  start-page: 4029
  year: 2003
  end-page: 4034
  ident: b0155
  publication-title: Polymer
– volume: 30
  start-page: 3659
  year: 2009
  end-page: 3666
  ident: b0035
  publication-title: Mater. Des.
– volume: 296
  start-page: 1
  year: 2007
  end-page: 8
  ident: b0025
  publication-title: J. Membr. Sci.
– volume: 62
  start-page: 4751
  year: 2007
  end-page: 4759
  ident: b0060
  publication-title: Chem. Eng. Sci.
– year: 2014
  ident: b0170
  publication-title: Polymer
– volume: 18
  start-page: 5326
  year: 2008
  end-page: 5334
  ident: b0010
  publication-title: J. Mater. Chem.
– volume: 460
  start-page: 241
  year: 2014
  end-page: 249
  ident: b0050
  publication-title: J. Membr. Sci.
– volume: 352
  start-page: 136
  year: 2010
  end-page: 142
  ident: b0055
  publication-title: J. Membr. Sci.
– volume: 50
  start-page: 4935
  year: 2009
  end-page: 4943
  ident: b0130
  publication-title: Polymer
– volume: 79
  start-page: 34
  year: 2011
  end-page: 42
  ident: b0015
  publication-title: Sep. Purif. Technol.
– volume: 17
  start-page: 1984
  year: 2007
  end-page: 1990
  ident: b0180
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 205
  year: 2008
  end-page: 221
  ident: b0005
  publication-title: Energy Environ. Sci.
– volume: 42
  start-page: 261
  year: 2001
  end-page: 272
  ident: b0160
  publication-title: Polymer
– volume: 205
  start-page: 2327
  year: 2004
  end-page: 2338
  ident: b0085
  publication-title: Macromol. Chem. Phys.
– volume: 417
  start-page: 18
  year: 2014
  end-page: 26
  ident: b0095
  publication-title: J. Colloid Interf. Sci.
– volume: 2
  start-page: 521
  year: 2010
  end-page: 528
  ident: b0105
  publication-title: Appl. Mater. Interf.
– volume: 37
  start-page: 573
  year: 2004
  end-page: 578
  ident: b0145
  publication-title: Macromolecules
– volume: 46
  start-page: 4799
  year: 2005
  end-page: 4810
  ident: b0165
  publication-title: Polymer
– volume: 75
  start-page: 340
  year: 2010
  end-page: 345
  ident: b0065
  publication-title: Sep. Purif. Technol.
– volume: 15
  start-page: 1375
  year: 2004
  end-page: 1381
  ident: b0125
  publication-title: Nanotechnology
– volume: 448
  start-page: 151
  year: 2013
  end-page: 159
  ident: b0070
  publication-title: J. Membr. Sci.
– volume: 51
  start-page: 1654
  year: 2010
  end-page: 1662
  ident: b0150
  publication-title: Polymer
– volume: 40
  start-page: 4585
  year: 1999
  end-page: 4592
  ident: b0115
  publication-title: Polymer
– volume: 128
  start-page: 1089
  year: 2013
  end-page: 1094
  ident: b0195
  publication-title: J. Appl. Polym. Sci.
– volume: 50
  start-page: 4189
  year: 2009
  end-page: 4198
  ident: b0120
  publication-title: Polymer
– volume: 364
  start-page: 107
  year: 2011
  end-page: 111
  ident: b0075
  publication-title: J. Colloid Interf. Sci.
– volume: 35
  start-page: 8456
  year: 2002
  end-page: 8466
  ident: b0135
  publication-title: Macromolecules
– volume: 46
  start-page: 6128
  year: 2005
  end-page: 6134
  ident: b0080
  publication-title: Polymer
– volume: 46
  start-page: 6128
  issue: 16
  year: 2005
  ident: 10.1016/j.jcis.2014.11.041_b0080
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.05.068
– volume: 2
  start-page: 12216
  issue: 32
  year: 2012
  ident: 10.1016/j.jcis.2014.11.041_b0200
  publication-title: RSC Adv.
  doi: 10.1039/c2ra22086e
– volume: 79
  start-page: 34
  year: 2011
  ident: 10.1016/j.jcis.2014.11.041_b0015
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2011.03.008
– volume: 51
  start-page: 1654
  year: 2010
  ident: 10.1016/j.jcis.2014.11.041_b0150
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.01.031
– year: 2014
  ident: 10.1016/j.jcis.2014.11.041_b0185
  publication-title: Polymer
– volume: 50
  start-page: 4935
  year: 2009
  ident: 10.1016/j.jcis.2014.11.041_b0130
  publication-title: Polymer
  doi: 10.1016/j.polymer.2009.08.011
– volume: 35
  start-page: 8456
  year: 2002
  ident: 10.1016/j.jcis.2014.11.041_b0135
  publication-title: Macromolecules
  doi: 10.1021/ma020444a
– volume: 281
  start-page: 581
  year: 2006
  ident: 10.1016/j.jcis.2014.11.041_b0040
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.04.026
– volume: 37
  start-page: 573
  year: 2004
  ident: 10.1016/j.jcis.2014.11.041_b0145
  publication-title: Macromolecules
  doi: 10.1021/ma0351975
– volume: 296
  start-page: 1
  year: 2007
  ident: 10.1016/j.jcis.2014.11.041_b0025
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.03.038
– volume: 460
  start-page: 241
  year: 2014
  ident: 10.1016/j.jcis.2014.11.041_b0050
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.01.045
– volume: 54
  start-page: 2364
  year: 2013
  ident: 10.1016/j.jcis.2014.11.041_b0090
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.02.034
– volume: 50
  start-page: 3661
  year: 2009
  ident: 10.1016/j.jcis.2014.11.041_b0030
  publication-title: Polymer
  doi: 10.1016/j.polymer.2009.05.058
– volume: 205
  start-page: 2327
  issue: 17
  year: 2004
  ident: 10.1016/j.jcis.2014.11.041_b0085
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.200400225
– volume: 18
  start-page: 5326
  year: 2008
  ident: 10.1016/j.jcis.2014.11.041_b0010
  publication-title: J. Mater. Chem.
  doi: 10.1039/b804128h
– volume: 50
  start-page: 4189
  year: 2009
  ident: 10.1016/j.jcis.2014.11.041_b0120
  publication-title: Polymer
  doi: 10.1016/j.polymer.2009.06.062
– volume: 30
  start-page: 3659
  year: 2009
  ident: 10.1016/j.jcis.2014.11.041_b0035
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2009.02.017
– volume: 46
  start-page: 4799
  issue: 13
  year: 2005
  ident: 10.1016/j.jcis.2014.11.041_b0165
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.04.021
– volume: 17
  start-page: 1984
  issue: 12
  year: 2007
  ident: 10.1016/j.jcis.2014.11.041_b0180
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200600933
– volume: 44
  start-page: 4029
  issue: 14
  year: 2003
  ident: 10.1016/j.jcis.2014.11.041_b0155
  publication-title: Polymer
  doi: 10.1016/S0032-3861(03)00345-8
– volume: 71
  start-page: 30
  issue: 1
  year: 2010
  ident: 10.1016/j.jcis.2014.11.041_b0205
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2009.10.017
– volume: 1
  start-page: 205
  year: 2008
  ident: 10.1016/j.jcis.2014.11.041_b0005
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b809074m
– volume: 46
  start-page: 3372
  issue: 10
  year: 2005
  ident: 10.1016/j.jcis.2014.11.041_b0190
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.03.011
– volume: 392–393
  start-page: 101
  year: 2012
  ident: 10.1016/j.jcis.2014.11.041_b0020
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.12.005
– volume: 62
  start-page: 4751
  year: 2007
  ident: 10.1016/j.jcis.2014.11.041_b0060
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.06.007
– volume: 45
  start-page: 704
  issue: 5
  year: 2005
  ident: 10.1016/j.jcis.2014.11.041_b0110
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.20304
– volume: 2
  start-page: 521
  year: 2010
  ident: 10.1016/j.jcis.2014.11.041_b0105
  publication-title: Appl. Mater. Interf.
  doi: 10.1021/am900736h
– volume: 22
  start-page: 1445
  year: 2012
  ident: 10.1016/j.jcis.2014.11.041_b0045
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM14299B
– volume: 364
  start-page: 107
  year: 2011
  ident: 10.1016/j.jcis.2014.11.041_b0075
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2011.07.094
– year: 2014
  ident: 10.1016/j.jcis.2014.11.041_b0170
  publication-title: Polymer
– volume: 352
  start-page: 136
  year: 2010
  ident: 10.1016/j.jcis.2014.11.041_b0055
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.02.009
– volume: 4
  start-page: 1364
  issue: 4
  year: 2011
  ident: 10.1016/j.jcis.2014.11.041_b0175
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00729c
– volume: 417
  start-page: 18
  year: 2014
  ident: 10.1016/j.jcis.2014.11.041_b0095
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2013.11.009
– volume: 128
  start-page: 1089
  issue: 2
  year: 2013
  ident: 10.1016/j.jcis.2014.11.041_b0195
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.38296
– volume: 75
  start-page: 340
  year: 2010
  ident: 10.1016/j.jcis.2014.11.041_b0065
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2010.09.002
– volume: 40
  start-page: 7689
  year: 2007
  ident: 10.1016/j.jcis.2014.11.041_b0140
  publication-title: Macromolecules
  doi: 10.1021/ma071418l
– volume: 42
  start-page: 261
  issue: 1
  year: 2001
  ident: 10.1016/j.jcis.2014.11.041_b0160
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00250-0
– volume: 6
  start-page: 1030
  issue: 6
  year: 2006
  ident: 10.1016/j.jcis.2014.11.041_b0210
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2005.07.013
– volume: 15
  start-page: 1375
  year: 2004
  ident: 10.1016/j.jcis.2014.11.041_b0125
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/15/9/044
– volume: 126
  start-page: 44
  year: 2014
  ident: 10.1016/j.jcis.2014.11.041_b0100
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2014.02.017
– volume: 40
  start-page: 4585
  year: 1999
  ident: 10.1016/j.jcis.2014.11.041_b0115
  publication-title: Polymer
  doi: 10.1016/S0032-3861(99)00068-3
– volume: 448
  start-page: 151
  year: 2013
  ident: 10.1016/j.jcis.2014.11.041_b0070
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.07.067
SSID ssj0011559
Score 2.5941534
Snippet [Display omitted] •A formation mechanism of the porous bead-on-string PLA fibers was proposed.•Correlation between bead morphology and pore structure of...
Porous bead-on-string poly(lactic acid) (PLA) nanofibrous membranes (NMs) were fabricated by electrospinning, and the formation mechanism of the membranes was...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121
SubjectTerms aerosols
air
Beads
Electrospinning
Fibers
filters
Filtration
Filtration performance
Low pressure
Membranes
methylene chloride
Morphology
nanofibers
nanopores
Nanostructure
Poly(lactic acid)
polylactic acid
Porous bead-on-string fiber
sodium chloride
Solvents
Title Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration
URI https://dx.doi.org/10.1016/j.jcis.2014.11.041
https://www.ncbi.nlm.nih.gov/pubmed/25499733
https://www.proquest.com/docview/1640480168
https://www.proquest.com/docview/1669851385
https://www.proquest.com/docview/2101369512
Volume 441
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-pBfLu-qOBBkWjbNE17lEVZn3hQ8BaaNJHK2l2W9eDF3-5MH4sedg8e204h_TKdfB-ZmQAcS-T4zjifofugQInTnGWJtiyzUmRhLJ3lVO_88Bj3XqLbV_E6B922FobSKpvYX8f0Klo3dy4aNC-GRUE1vvi3yZQ6zvlJKikOR5EkLz__nqR5BLTtVqd5BIysm8KZOsfr3RTUsjuIzqmTZxRMW5ymkc9qEbpehZWGPXqX9QDXYM6W67DYbQ9tW4flX_0FN-D-aTBCZe9pnEg2KBmd0VG-ecNB_-ukX1VHeZkp8lPPoWgmww_7geoZo5-HXNbLihE-6TeNdTfh-frqudtjzfEJzIhQjFnqONKpPECClfHc-S4InUH2ljgtuOWJxp_dxZZrG-aZkwbFjS-M1FrbJMst34L5clDaHfASqU1irc9zP4-Qb2jUdI7q94wTXEe8A0ELmzJNa3E64aKv2hyyd0VQK4IaNYdCqDtwNnlnWDfWmGkt2tlQf9xDYeSf-d5RO3UKZ4I2QxBEBFShTKxa58TJLJs4RQgRxuk2KJkDHiNPDTuwXfvG5Hsq8S053_3n6PdgCa9EnfK2D_Pj0ac9QA401oeVkx_CwuXNXe_xByXTBbk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2hMgAD4pvyGSQGEDIkcRwnI6pABUrFUCQ2K3ZsFFTSqioD_55z4lQwtANrbEvJs3N-T757BjjnyPGNMj7B5YMCJU5zkiVSk0xzloUxN5raeufnftx9jR7f2NsSdJpaGJtW6WJ_HdOraO2e3Dg0b8ZFYWt88W_jqXWc85OUYxxetu5UrAXLtw9P3f7sMMGevNWZHgGxA1ztTJ3m9aEK69odRNfWzDMK5u1P8_hntQ_db8C6I5Debf2Om7Ckyy1Y6TT3tm3B2i-LwW3ovYwmKO49iXNJRiWx13SU7954NPy-GFYFUl6mivzSM6ibbcdP_YkCGgOgh3TWy4oJtgydt-4ODO7vBp0ucTcoEMVCNiWpocio8gA5VkZz45sgNAoJXGIko5omEv93E2sqdZhnhivUNz5TXEqpkyzXdBda5ajU--AlXKpEa5_mfh4h5ZAo64wt4VOGURnRNgQNbEI5d3F7ycVQNGlkH8JCLSzUKDsEQt2Gq9mYce2tsbA3a2ZD_FkhAoP_wnFnzdQJnAl7HoIgIqAClWLlnhMni_rEKUKIMM7vg6o5oDFS1bANe_XamH1Ppb85pQf_fPtTWOkOnnui99B_OoRVbGF1BtwRtKaTL32MlGgqT9yS_wEXXwhq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+bead-on-string+poly%28lactic+acid%29+fibrous+membranes+for+air+filtration&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Wang%2C+Zhe&rft.au=Zhao%2C+Chuchu&rft.au=Pan%2C+Zhijuan&rft.date=2015-03-01&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=441&rft.spage=121&rft_id=info:doi/10.1016%2Fj.jcis.2014.11.041&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon