Deep learning evaluation of biomarkers from echocardiogram videos

Laboratory testing is routinely used to assay blood biomarkers to provide information on physiologic state beyond what clinicians can evaluate from interpreting medical imaging. We hypothesized that deep learning interpretation of echocardiogram videos can provide additional value in understanding d...

Full description

Saved in:
Bibliographic Details
Published inEBioMedicine Vol. 73; p. 103613
Main Authors Hughes, J Weston, Yuan, Neal, He, Bryan, Ouyang, Jiahong, Ebinger, Joseph, Botting, Patrick, Lee, Jasper, Theurer, John, Tooley, James E., Nieman, Koen, Lungren, Matthew P., Liang, David H., Schnittger, Ingela, Chen, Jonathan H., Ashley, Euan A., Cheng, Susan, Ouyang, David, Zou, James Y.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Laboratory testing is routinely used to assay blood biomarkers to provide information on physiologic state beyond what clinicians can evaluate from interpreting medical imaging. We hypothesized that deep learning interpretation of echocardiogram videos can provide additional value in understanding disease states and can evaluate common biomarkers results. We developed EchoNet-Labs, a video-based deep learning algorithm to detect evidence of anemia, elevated B-type natriuretic peptide (BNP), troponin I, and blood urea nitrogen (BUN), as well as values of ten additional lab tests directly from echocardiograms. We included patients (n = 39,460) aged 18 years or older with one or more apical-4-chamber echocardiogram videos (n = 70,066) from Stanford Healthcare for training and internal testing of EchoNet-Lab's performance in estimating the most proximal biomarker result. Without fine-tuning, the performance of EchoNet-Labs was further evaluated on an additional external test dataset (n = 1,301) from Cedars-Sinai Medical Center. We calculated the area under the curve (AUC) of the receiver operating characteristic curve for the internal and external test datasets. On the held-out test set of Stanford patients not previously seen during model training, EchoNet-Labs achieved an AUC of 0.80 (0.79-0.81) in detecting anemia (low hemoglobin), 0.86 (0.85-0.88) in detecting elevated BNP, 0.75 (0.73-0.78) in detecting elevated troponin I, and 0.74 (0.72-0.76) in detecting elevated BUN. On the external test dataset from Cedars-Sinai, EchoNet-Labs achieved an AUC of 0.80 (0.77-0.82) in detecting anemia, of 0.82 (0.79-0.84) in detecting elevated BNP, of 0.75 (0.72-0.78) in detecting elevated troponin I, and of 0.69 (0.66-0.71) in detecting elevated BUN. We further demonstrate the utility of the model in detecting abnormalities in 10 additional lab tests. We investigate the features necessary for EchoNet-Labs to make successful detection and identify potential mechanisms for each biomarker using well-known and novel explainability techniques. These results show that deep learning applied to diagnostic imaging can provide additional clinical value and identify phenotypic information beyond current imaging interpretation methods. J.W.H. and B.H. are supported by the NSF Graduate Research Fellowship. D.O. is supported by NIH K99 HL157421-01. J.Y.Z. is supported by NSF CAREER 1942926, NIH R21 MD012867-01, NIH P30AG059307 and by a Chan-Zuckerberg Biohub Fellowship.
AbstractList BACKGROUNDLaboratory testing is routinely used to assay blood biomarkers to provide information on physiologic state beyond what clinicians can evaluate from interpreting medical imaging. We hypothesized that deep learning interpretation of echocardiogram videos can provide additional value in understanding disease states and can evaluate common biomarkers results. METHODSWe developed EchoNet-Labs, a video-based deep learning algorithm to detect evidence of anemia, elevated B-type natriuretic peptide (BNP), troponin I, and blood urea nitrogen (BUN), as well as values of ten additional lab tests directly from echocardiograms. We included patients (n = 39,460) aged 18 years or older with one or more apical-4-chamber echocardiogram videos (n = 70,066) from Stanford Healthcare for training and internal testing of EchoNet-Lab's performance in estimating the most proximal biomarker result. Without fine-tuning, the performance of EchoNet-Labs was further evaluated on an additional external test dataset (n = 1,301) from Cedars-Sinai Medical Center. We calculated the area under the curve (AUC) of the receiver operating characteristic curve for the internal and external test datasets. FINDINGSOn the held-out test set of Stanford patients not previously seen during model training, EchoNet-Labs achieved an AUC of 0.80 (0.79-0.81) in detecting anemia (low hemoglobin), 0.86 (0.85-0.88) in detecting elevated BNP, 0.75 (0.73-0.78) in detecting elevated troponin I, and 0.74 (0.72-0.76) in detecting elevated BUN. On the external test dataset from Cedars-Sinai, EchoNet-Labs achieved an AUC of 0.80 (0.77-0.82) in detecting anemia, of 0.82 (0.79-0.84) in detecting elevated BNP, of 0.75 (0.72-0.78) in detecting elevated troponin I, and of 0.69 (0.66-0.71) in detecting elevated BUN. We further demonstrate the utility of the model in detecting abnormalities in 10 additional lab tests. We investigate the features necessary for EchoNet-Labs to make successful detection and identify potential mechanisms for each biomarker using well-known and novel explainability techniques. INTERPRETATIONThese results show that deep learning applied to diagnostic imaging can provide additional clinical value and identify phenotypic information beyond current imaging interpretation methods. FUNDINGJ.W.H. and B.H. are supported by the NSF Graduate Research Fellowship. D.O. is supported by NIH K99 HL157421-01. J.Y.Z. is supported by NSF CAREER 1942926, NIH R21 MD012867-01, NIH P30AG059307 and by a Chan-Zuckerberg Biohub Fellowship.
Laboratory testing is routinely used to assay blood biomarkers to provide information on physiologic state beyond what clinicians can evaluate from interpreting medical imaging. We hypothesized that deep learning interpretation of echocardiogram videos can provide additional value in understanding disease states and can evaluate common biomarkers results. We developed EchoNet-Labs, a video-based deep learning algorithm to detect evidence of anemia, elevated B-type natriuretic peptide (BNP), troponin I, and blood urea nitrogen (BUN), as well as values of ten additional lab tests directly from echocardiograms. We included patients (n = 39,460) aged 18 years or older with one or more apical-4-chamber echocardiogram videos (n = 70,066) from Stanford Healthcare for training and internal testing of EchoNet-Lab's performance in estimating the most proximal biomarker result. Without fine-tuning, the performance of EchoNet-Labs was further evaluated on an additional external test dataset (n = 1,301) from Cedars-Sinai Medical Center. We calculated the area under the curve (AUC) of the receiver operating characteristic curve for the internal and external test datasets. On the held-out test set of Stanford patients not previously seen during model training, EchoNet-Labs achieved an AUC of 0.80 (0.79-0.81) in detecting anemia (low hemoglobin), 0.86 (0.85-0.88) in detecting elevated BNP, 0.75 (0.73-0.78) in detecting elevated troponin I, and 0.74 (0.72-0.76) in detecting elevated BUN. On the external test dataset from Cedars-Sinai, EchoNet-Labs achieved an AUC of 0.80 (0.77-0.82) in detecting anemia, of 0.82 (0.79-0.84) in detecting elevated BNP, of 0.75 (0.72-0.78) in detecting elevated troponin I, and of 0.69 (0.66-0.71) in detecting elevated BUN. We further demonstrate the utility of the model in detecting abnormalities in 10 additional lab tests. We investigate the features necessary for EchoNet-Labs to make successful detection and identify potential mechanisms for each biomarker using well-known and novel explainability techniques. These results show that deep learning applied to diagnostic imaging can provide additional clinical value and identify phenotypic information beyond current imaging interpretation methods. J.W.H. and B.H. are supported by the NSF Graduate Research Fellowship. D.O. is supported by NIH K99 HL157421-01. J.Y.Z. is supported by NSF CAREER 1942926, NIH R21 MD012867-01, NIH P30AG059307 and by a Chan-Zuckerberg Biohub Fellowship.
Background: Laboratory testing is routinely used to assay blood biomarkers to provide information on physiologic state beyond what clinicians can evaluate from interpreting medical imaging. We hypothesized that deep learning interpretation of echocardiogram videos can provide additional value in understanding disease states and can evaluate common biomarkers results. Methods: We developed EchoNet-Labs, a video-based deep learning algorithm to detect evidence of anemia, elevated B-type natriuretic peptide (BNP), troponin I, and blood urea nitrogen (BUN), as well as values of ten additional lab tests directly from echocardiograms. We included patients (n = 39,460) aged 18 years or older with one or more apical-4-chamber echocardiogram videos (n = 70,066) from Stanford Healthcare for training and internal testing of EchoNet-Lab's performance in estimating the most proximal biomarker result. Without fine-tuning, the performance of EchoNet-Labs was further evaluated on an additional external test dataset (n = 1,301) from Cedars-Sinai Medical Center. We calculated the area under the curve (AUC) of the receiver operating characteristic curve for the internal and external test datasets. Findings: On the held-out test set of Stanford patients not previously seen during model training, EchoNet-Labs achieved an AUC of 0.80 (0.79-0.81) in detecting anemia (low hemoglobin), 0.86 (0.85-0.88) in detecting elevated BNP, 0.75 (0.73-0.78) in detecting elevated troponin I, and 0.74 (0.72-0.76) in detecting elevated BUN. On the external test dataset from Cedars-Sinai, EchoNet-Labs achieved an AUC of 0.80 (0.77-0.82) in detecting anemia, of 0.82 (0.79-0.84) in detecting elevated BNP, of 0.75 (0.72-0.78) in detecting elevated troponin I, and of 0.69 (0.66-0.71) in detecting elevated BUN. We further demonstrate the utility of the model in detecting abnormalities in 10 additional lab tests. We investigate the features necessary for EchoNet-Labs to make successful detection and identify potential mechanisms for each biomarker using well-known and novel explainability techniques. Interpretation: These results show that deep learning applied to diagnostic imaging can provide additional clinical value and identify phenotypic information beyond current imaging interpretation methods. Funding: J.W.H. and B.H. are supported by the NSF Graduate Research Fellowship. D.O. is supported by NIH K99 HL157421-01. J.Y.Z. is supported by NSF CAREER 1942926, NIH R21 MD012867-01, NIH P30AG059307 and by a Chan-Zuckerberg Biohub Fellowship.
ArticleNumber 103613
Author Tooley, James E.
Zou, James Y.
Cheng, Susan
Liang, David H.
Hughes, J Weston
Ouyang, Jiahong
Lungren, Matthew P.
Lee, Jasper
Ashley, Euan A.
Schnittger, Ingela
Yuan, Neal
Nieman, Koen
Chen, Jonathan H.
Theurer, John
Ebinger, Joseph
Botting, Patrick
He, Bryan
Ouyang, David
Author_xml – sequence: 1
  givenname: J Weston
  surname: Hughes
  fullname: Hughes, J Weston
  organization: Department of Computer Science, Stanford University, Palo Alto, CA 94025
– sequence: 2
  givenname: Neal
  surname: Yuan
  fullname: Yuan, Neal
  organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
– sequence: 3
  givenname: Bryan
  surname: He
  fullname: He, Bryan
  organization: Department of Computer Science, Stanford University, Palo Alto, CA 94025
– sequence: 4
  givenname: Jiahong
  surname: Ouyang
  fullname: Ouyang, Jiahong
  organization: Department of Electrical Engineering, Stanford University, Palo Alto, CA, 94025
– sequence: 5
  givenname: Joseph
  surname: Ebinger
  fullname: Ebinger, Joseph
  organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
– sequence: 6
  givenname: Patrick
  surname: Botting
  fullname: Botting, Patrick
  organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
– sequence: 7
  givenname: Jasper
  surname: Lee
  fullname: Lee, Jasper
  organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
– sequence: 8
  givenname: John
  surname: Theurer
  fullname: Theurer, John
  organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
– sequence: 9
  givenname: James E.
  surname: Tooley
  fullname: Tooley, James E.
  organization: Department of Medicine, Stanford University, Palo Alto, CA, 94025
– sequence: 10
  givenname: Koen
  surname: Nieman
  fullname: Nieman, Koen
  organization: Department of Medicine, Stanford University, Palo Alto, CA, 94025
– sequence: 11
  givenname: Matthew P.
  surname: Lungren
  fullname: Lungren, Matthew P.
  organization: Department of Radiology, Stanford University, Palo Alto, CA, 94025
– sequence: 12
  givenname: David H.
  orcidid: 0000-0002-7343-7583
  surname: Liang
  fullname: Liang, David H.
  organization: Department of Medicine, Stanford University, Palo Alto, CA, 94025
– sequence: 13
  givenname: Ingela
  surname: Schnittger
  fullname: Schnittger, Ingela
  organization: Department of Medicine, Stanford University, Palo Alto, CA, 94025
– sequence: 14
  givenname: Jonathan H.
  surname: Chen
  fullname: Chen, Jonathan H.
  organization: Department of Medicine, Stanford University, Palo Alto, CA, 94025
– sequence: 15
  givenname: Euan A.
  surname: Ashley
  fullname: Ashley, Euan A.
  organization: Department of Medicine, Stanford University, Palo Alto, CA, 94025
– sequence: 16
  givenname: Susan
  surname: Cheng
  fullname: Cheng, Susan
  organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
– sequence: 17
  givenname: David
  orcidid: 0000-0002-3813-7518
  surname: Ouyang
  fullname: Ouyang, David
  email: david.ouyang@cshs.org
  organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
– sequence: 18
  givenname: James Y.
  surname: Zou
  fullname: Zou, James Y.
  email: jamesz@stanford.edu
  organization: Department of Computer Science, Stanford University, Palo Alto, CA 94025
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34656880$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu1DAUtVARLaVfgISyZDOD304WIFXlVakSG1hbN_b11EMSD3ZmpP49nqZU7YaVrXvP4-qc1-RkShMS8pbRNaNMf9iusY9pXHPKWZ0IzcQLcsaF4ivRaXny5H9KLkrZUkqZknXYviKnQmql25aekcvPiLtmQMhTnDYNHmDYwxzT1KTQHB0g_8ZcmpDT2KC7TQ6yj2mTYWwO0WMqb8jLAEPBi4f3nPz6-uXn1ffVzY9v11eXNyunuJpXneyCAN3S0BvvoeMoETsMijLDW-5YMMZIMKYXzINzvVZcg5Gd5Fx6dOKcXC-6PsHW7nKsp93ZBNHeD1LeWMhzdANar4Vj2B9ZnaTVrFOmB48qeMpbaarWp0Vrt-9H9A6nOcPwTPT5Zoq3dpMOtlVc1rSrwPsHgZz-7LHMdozF4TDAhGlfLFetENxIzStULFCXUykZw6MNo_bYpd3a-y7tsUu7dFlZ755e-Mj511wFfFwAWDM_RMy2uIiTQx8zurmGEv9r8BcRLLOY
CitedBy_id crossref_primary_10_1038_s41598_023_50735_8
crossref_primary_10_1007_s40119_024_00368_3
crossref_primary_10_3390_electronics11111800
crossref_primary_10_1053_j_jvca_2024_02_004
crossref_primary_10_1093_ehjdh_ztad077
crossref_primary_10_1161_CIRCOUTCOMES_122_009055
crossref_primary_10_1016_j_jemermed_2023_02_005
crossref_primary_10_1038_s41746_022_00720_8
crossref_primary_10_1039_D3SM01337E
crossref_primary_10_3389_fcvm_2022_941148
crossref_primary_10_1109_TMI_2022_3229136
crossref_primary_10_15420_aer_2022_42
crossref_primary_10_1016_j_athoracsur_2022_05_023
crossref_primary_10_1063_5_0176850
crossref_primary_10_3389_fdgth_2023_1201392
crossref_primary_10_1016_j_mayocp_2023_01_012
crossref_primary_10_1016_S2589_7500_23_00022_5
crossref_primary_10_1038_s42256_022_00516_1
crossref_primary_10_1038_s43018_022_00436_4
crossref_primary_10_1016_j_xcrm_2022_100869
crossref_primary_10_1161_CIRCIMAGING_123_015495
crossref_primary_10_1038_s41591_022_01981_2
crossref_primary_10_1109_ACCESS_2023_3260652
Cites_doi 10.1016/j.echo.2010.12.008
10.1038/s41551-020-0578-x
10.1016/S0140-6736(10)60452-7
10.1038/s41746-019-0192-z
10.1093/ndt/gfz206
10.1148/radiol.2020200642
10.1016/j.jacc.2015.10.090
10.1016/S2589-7500(20)30108-4
10.1016/S0140-6736(19)31721-0
10.1161/CIRCULATIONAHA.118.034338
10.1038/s41586-020-2145-8
10.1038/s41586-019-1876-x
10.1038/s41551-018-0195-0
10.1161/CIRCEP.119.007284
10.1038/s41591-020-1010-5
10.1016/j.cell.2012.02.009
10.1016/j.jacc.2019.12.030
10.1038/s41746-019-0216-8
10.1038/s41591-020-0870-z
10.1016/j.jelectrocard.2020.02.008
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.ebiom.2021.103613
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2352-3964
EndPage 103613
ExternalDocumentID oai_doaj_org_article_d63c1ebdec3940da9957bade5fd02847
10_1016_j_ebiom_2021_103613
34656880
S2352396421004060
Genre Journal Article
GrantInformation J.W.H. and B.H. are supported by the NSF Graduate Research Fellowship. D.O. is supported by NIH K99 HL157421-01. J.Y.Z. is supported by NSF CAREER 1942926, NIH R21 MD012867-01, NIH P30AG059307 and by a Chan-Zuckerberg Biohub Fellowship.
GrantInformation_xml – fundername: NIMHD NIH HHS
  grantid: R21 MD012867
– fundername: NIA NIH HHS
  grantid: P30 AG059307
– fundername: NHLBI NIH HHS
  grantid: K99 HL157421
GroupedDBID .1-
.FO
0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AEXQZ
AFCTW
AFRHN
AFTJW
AGHFR
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M48
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
AAMRU
ADVLN
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c525t-949f3a680fb7dda92e4ee9ef5017282c1f7774a77b31daccb6526a7494224dec3
IEDL.DBID RPM
ISSN 2352-3964
IngestDate Tue Oct 22 15:12:35 EDT 2024
Tue Sep 17 21:33:25 EDT 2024
Fri Oct 25 23:33:13 EDT 2024
Thu Sep 26 16:14:19 EDT 2024
Sat Sep 28 08:21:44 EDT 2024
Tue Jul 25 20:58:58 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Artificial intelligence
Echocardiography
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-949f3a680fb7dda92e4ee9ef5017282c1f7774a77b31daccb6526a7494224dec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
To whom correspondence should be addressed.
Co-senior author
ORCID 0000-0002-7343-7583
0000-0002-3813-7518
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8524103/
PMID 34656880
PQID 2583327462
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_d63c1ebdec3940da9957bade5fd02847
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8524103
proquest_miscellaneous_2583327462
crossref_primary_10_1016_j_ebiom_2021_103613
pubmed_primary_34656880
elsevier_sciencedirect_doi_10_1016_j_ebiom_2021_103613
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle EBioMedicine
PublicationTitleAlternate EBioMedicine
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Grossman (bib0005) 2018
Poplin (bib0008) 2018; 2
Owens (bib0007) 2019; 321
Ghorbani (bib0009) 2020; 3
He (bib0013) 2020; 4
Hunter, Bailey (bib0020) 2019; 34
Ashley (bib0001) 2010; 375
Dauvin (bib0010) 2019; 2
Bibbins-Domingo (bib0006) 2016
Kwon (bib0014) 2020; 59
Chen (bib0002) 2012; 148
Papolos, Narula, Bavishi, Chaudhry, Sengupta (bib0016) 2016; 67
Jackson (bib0003) 2020; 578
Attia (bib0012) 2019; 394
Ouyang (bib0019) 2020; 580
Carreira, Zissmerman (bib0025) 2017
Avram (bib0011) 2020; 26
Douglas (bib0017) 2011; 24
Ai (bib0004) 2020; 296
Attia (bib0021) 2019; 12
Raghunath (bib0022) 2020
Zhang (bib0018) 2018; 138
Kwon (bib0023) 2020; 2
Ko (bib0015) 2020; 75
Tran (bib0024) 2018
Zhang (10.1016/j.ebiom.2021.103613_bib0018) 2018; 138
Ashley (10.1016/j.ebiom.2021.103613_bib0001) 2010; 375
Kwon (10.1016/j.ebiom.2021.103613_bib0014) 2020; 59
Hunter (10.1016/j.ebiom.2021.103613_bib0020) 2019; 34
Attia (10.1016/j.ebiom.2021.103613_bib0021) 2019; 12
Grossman (10.1016/j.ebiom.2021.103613_bib0005) 2018
Ko (10.1016/j.ebiom.2021.103613_bib0015) 2020; 75
Ouyang (10.1016/j.ebiom.2021.103613_bib0019) 2020; 580
Jackson (10.1016/j.ebiom.2021.103613_bib0003) 2020; 578
Bibbins-Domingo (10.1016/j.ebiom.2021.103613_bib0006) 2016
Ai (10.1016/j.ebiom.2021.103613_bib0004) 2020; 296
Dauvin (10.1016/j.ebiom.2021.103613_bib0010) 2019; 2
Owens (10.1016/j.ebiom.2021.103613_bib0007) 2019; 321
He (10.1016/j.ebiom.2021.103613_bib0013) 2020; 4
Avram (10.1016/j.ebiom.2021.103613_bib0011) 2020; 26
Papolos (10.1016/j.ebiom.2021.103613_bib0016) 2016; 67
Attia (10.1016/j.ebiom.2021.103613_bib0012) 2019; 394
Tran (10.1016/j.ebiom.2021.103613_bib0024) 2018
Poplin (10.1016/j.ebiom.2021.103613_bib0008) 2018; 2
Kwon (10.1016/j.ebiom.2021.103613_bib0023) 2020; 2
Raghunath (10.1016/j.ebiom.2021.103613_bib0022) 2020
Carreira (10.1016/j.ebiom.2021.103613_bib0025) 2017
Douglas (10.1016/j.ebiom.2021.103613_bib0017) 2011; 24
Chen (10.1016/j.ebiom.2021.103613_bib0002) 2012; 148
Ghorbani (10.1016/j.ebiom.2021.103613_bib0009) 2020; 3
References_xml – volume: 26
  start-page: 1576
  year: 2020
  end-page: 1582
  ident: bib0011
  article-title: A digital biomarker of diabetes from smartphone-based vascular signals
  publication-title: Nat. Med.
  contributor:
    fullname: Avram
– start-page: 315
  year: 2016
  ident: bib0006
  article-title: Screening for colorectal cancer: US preventive services task force recommendation statement
  publication-title: JAMA
  contributor:
    fullname: Bibbins-Domingo
– volume: 2
  start-page: 158
  year: 2018
  end-page: 164
  ident: bib0008
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat. Biomed. Eng.
  contributor:
    fullname: Poplin
– volume: 75
  year: 2020
  ident: bib0015
  article-title: Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram
  publication-title: J. Am. Coll. Cardiol.
  contributor:
    fullname: Ko
– volume: 148
  start-page: 1293
  year: 2012
  end-page: 1307
  ident: bib0002
  article-title: Personal omics profiling reveals dynamic molecular and medical phenotypes
  publication-title: Cell
  contributor:
    fullname: Chen
– volume: 375
  start-page: 1525
  year: 2010
  end-page: 1535
  ident: bib0001
  article-title: Clinical assessment incorporating a personal genome
  publication-title: Lancet
  contributor:
    fullname: Ashley
– volume: 4
  start-page: 827
  year: 2020
  end-page: 834
  ident: bib0013
  article-title: Integrating spatial gene expression and breast tumour morphology via deep learning
  publication-title: Nat. Biomed. Eng.
  contributor:
    fullname: He
– volume: 578
  year: 2020
  ident: bib0003
  article-title: The single-cell pathology landscape of breast cancer
  publication-title: Nature
  contributor:
    fullname: Jackson
– volume: 296
  start-page: E32
  year: 2020
  end-page: E40
  ident: bib0004
  article-title: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases
  publication-title: Radiology
  contributor:
    fullname: Ai
– volume: 2
  start-page: 116
  year: 2019
  ident: bib0010
  article-title: Machine learning can accurately predict pre-admission baseline hemoglobin and creatinine in intensive care patients
  publication-title: NPJ Digit. Med.
  contributor:
    fullname: Dauvin
– year: 2020
  ident: bib0022
  article-title: Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network
  publication-title: Nat. Med.
  contributor:
    fullname: Raghunath
– volume: 321
  year: 2019
  ident: bib0007
  article-title: Screening for HIV infection: US preventive services task force recommendation statement
  publication-title: JAMA
  contributor:
    fullname: Owens
– volume: 12
  year: 2019
  ident: bib0021
  article-title: Age and sex estimation using artificial intelligence from standard 12-lead ECGs
  publication-title: Circ. Arrhythm. Electrophysiol.
  contributor:
    fullname: Attia
– volume: 2
  start-page: e358
  year: 2020
  end-page: e367
  ident: bib0023
  article-title: A deep learning algorithm to detect anaemia with ECGs: a retrospective, multicentre study
  publication-title: Lancet Digit Health
  contributor:
    fullname: Kwon
– year: 2018
  ident: bib0024
  article-title: A closer look at spatiotemporal convolutions for action recognition
  publication-title: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition
  contributor:
    fullname: Tran
– volume: 394
  start-page: 861
  year: 2019
  end-page: 867
  ident: bib0012
  article-title: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
  publication-title: Lancet
  contributor:
    fullname: Attia
– start-page: 319
  year: 2018
  ident: bib0005
  article-title: Screening for prostate cancer: US preventive services task force recommendation statement
  publication-title: JAMA
  contributor:
    fullname: Grossman
– volume: 580
  start-page: 252
  year: 2020
  end-page: 256
  ident: bib0019
  article-title: Video-based AI for beat-to-beat assessment of cardiac function
  publication-title: Nature
  contributor:
    fullname: Ouyang
– volume: 34
  year: 2019
  ident: bib0020
  article-title: Hyperkalemia: pathophysiology, risk factors and consequences
  publication-title: Nephrol. Dial. Transplant
  contributor:
    fullname: Bailey
– year: 2017
  ident: bib0025
  article-title: Action recognition?
  publication-title: A New Model and the Kinetics Dataset.
  contributor:
    fullname: Zissmerman
– volume: 59
  start-page: 151
  year: 2020
  end-page: 157
  ident: bib0014
  article-title: Artificial intelligence for detecting mitral regurgitation using electrocardiography
  publication-title: J. Electrocardiol.
  contributor:
    fullname: Kwon
– volume: 24
  start-page: 229
  year: 2011
  end-page: 267
  ident: bib0017
  article-title: ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography. A report of the American college of cardiology foundation appropriate use criteria task force, American society of echocardiography, American heart association, American society of nuclear cardiology, heart failure society of America, heart rhythm society, society for cardiovascular angiography and interventions, society of critical care medicine, society of cardiovascular computed tomography, society for cardiovascular magnetic resonance American college of chest physicians
  publication-title: J. Am. Soc. Echocardiogr.
  contributor:
    fullname: Douglas
– volume: 3
  start-page: 10
  year: 2020
  ident: bib0009
  article-title: Deep learning interpretation of echocardiograms
  publication-title: NPJ Digit. Med.
  contributor:
    fullname: Ghorbani
– volume: 67
  start-page: 502
  year: 2016
  end-page: 511
  ident: bib0016
  article-title: US hospital use of echocardiography: insights from the nationwide inpatient sample
  publication-title: J. Am. Coll. Cardiol.
  contributor:
    fullname: Sengupta
– volume: 138
  start-page: 1623
  year: 2018
  end-page: 1635
  ident: bib0018
  article-title: Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy
  publication-title: Circulation
  contributor:
    fullname: Zhang
– volume: 24
  start-page: 229
  year: 2011
  ident: 10.1016/j.ebiom.2021.103613_bib0017
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2010.12.008
  contributor:
    fullname: Douglas
– volume: 4
  start-page: 827
  year: 2020
  ident: 10.1016/j.ebiom.2021.103613_bib0013
  article-title: Integrating spatial gene expression and breast tumour morphology via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-020-0578-x
  contributor:
    fullname: He
– volume: 375
  start-page: 1525
  year: 2010
  ident: 10.1016/j.ebiom.2021.103613_bib0001
  article-title: Clinical assessment incorporating a personal genome
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60452-7
  contributor:
    fullname: Ashley
– volume: 2
  start-page: 116
  year: 2019
  ident: 10.1016/j.ebiom.2021.103613_bib0010
  article-title: Machine learning can accurately predict pre-admission baseline hemoglobin and creatinine in intensive care patients
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0192-z
  contributor:
    fullname: Dauvin
– volume: 34
  year: 2019
  ident: 10.1016/j.ebiom.2021.103613_bib0020
  article-title: Hyperkalemia: pathophysiology, risk factors and consequences
  publication-title: Nephrol. Dial. Transplant
  doi: 10.1093/ndt/gfz206
  contributor:
    fullname: Hunter
– start-page: 315
  year: 2016
  ident: 10.1016/j.ebiom.2021.103613_bib0006
  article-title: Screening for colorectal cancer: US preventive services task force recommendation statement
  publication-title: JAMA
  contributor:
    fullname: Bibbins-Domingo
– volume: 296
  start-page: E32
  year: 2020
  ident: 10.1016/j.ebiom.2021.103613_bib0004
  article-title: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases
  publication-title: Radiology
  doi: 10.1148/radiol.2020200642
  contributor:
    fullname: Ai
– start-page: 319
  year: 2018
  ident: 10.1016/j.ebiom.2021.103613_bib0005
  article-title: Screening for prostate cancer: US preventive services task force recommendation statement
  publication-title: JAMA
  contributor:
    fullname: Grossman
– year: 2017
  ident: 10.1016/j.ebiom.2021.103613_bib0025
  article-title: Action recognition?
  contributor:
    fullname: Carreira
– volume: 67
  start-page: 502
  year: 2016
  ident: 10.1016/j.ebiom.2021.103613_bib0016
  article-title: US hospital use of echocardiography: insights from the nationwide inpatient sample
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2015.10.090
  contributor:
    fullname: Papolos
– volume: 2
  start-page: e358
  year: 2020
  ident: 10.1016/j.ebiom.2021.103613_bib0023
  article-title: A deep learning algorithm to detect anaemia with ECGs: a retrospective, multicentre study
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30108-4
  contributor:
    fullname: Kwon
– volume: 394
  start-page: 861
  year: 2019
  ident: 10.1016/j.ebiom.2021.103613_bib0012
  article-title: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)31721-0
  contributor:
    fullname: Attia
– volume: 138
  start-page: 1623
  year: 2018
  ident: 10.1016/j.ebiom.2021.103613_bib0018
  article-title: Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.034338
  contributor:
    fullname: Zhang
– year: 2018
  ident: 10.1016/j.ebiom.2021.103613_bib0024
  article-title: A closer look at spatiotemporal convolutions for action recognition
  contributor:
    fullname: Tran
– volume: 321
  year: 2019
  ident: 10.1016/j.ebiom.2021.103613_bib0007
  article-title: Screening for HIV infection: US preventive services task force recommendation statement
  publication-title: JAMA
  contributor:
    fullname: Owens
– volume: 580
  start-page: 252
  year: 2020
  ident: 10.1016/j.ebiom.2021.103613_bib0019
  article-title: Video-based AI for beat-to-beat assessment of cardiac function
  publication-title: Nature
  doi: 10.1038/s41586-020-2145-8
  contributor:
    fullname: Ouyang
– volume: 578
  year: 2020
  ident: 10.1016/j.ebiom.2021.103613_bib0003
  article-title: The single-cell pathology landscape of breast cancer
  publication-title: Nature
  doi: 10.1038/s41586-019-1876-x
  contributor:
    fullname: Jackson
– volume: 2
  start-page: 158
  year: 2018
  ident: 10.1016/j.ebiom.2021.103613_bib0008
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
  contributor:
    fullname: Poplin
– volume: 12
  year: 2019
  ident: 10.1016/j.ebiom.2021.103613_bib0021
  article-title: Age and sex estimation using artificial intelligence from standard 12-lead ECGs
  publication-title: Circ. Arrhythm. Electrophysiol.
  doi: 10.1161/CIRCEP.119.007284
  contributor:
    fullname: Attia
– volume: 26
  start-page: 1576
  year: 2020
  ident: 10.1016/j.ebiom.2021.103613_bib0011
  article-title: A digital biomarker of diabetes from smartphone-based vascular signals
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-1010-5
  contributor:
    fullname: Avram
– volume: 148
  start-page: 1293
  year: 2012
  ident: 10.1016/j.ebiom.2021.103613_bib0002
  article-title: Personal omics profiling reveals dynamic molecular and medical phenotypes
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.009
  contributor:
    fullname: Chen
– volume: 75
  year: 2020
  ident: 10.1016/j.ebiom.2021.103613_bib0015
  article-title: Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2019.12.030
  contributor:
    fullname: Ko
– volume: 3
  start-page: 10
  year: 2020
  ident: 10.1016/j.ebiom.2021.103613_bib0009
  article-title: Deep learning interpretation of echocardiograms
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0216-8
  contributor:
    fullname: Ghorbani
– year: 2020
  ident: 10.1016/j.ebiom.2021.103613_bib0022
  article-title: Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0870-z
  contributor:
    fullname: Raghunath
– volume: 59
  start-page: 151
  year: 2020
  ident: 10.1016/j.ebiom.2021.103613_bib0014
  article-title: Artificial intelligence for detecting mitral regurgitation using electrocardiography
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2020.02.008
  contributor:
    fullname: Kwon
SSID ssj0001542358
Score 2.398871
Snippet Laboratory testing is routinely used to assay blood biomarkers to provide information on physiologic state beyond what clinicians can evaluate from...
BACKGROUNDLaboratory testing is routinely used to assay blood biomarkers to provide information on physiologic state beyond what clinicians can evaluate from...
Background: Laboratory testing is routinely used to assay blood biomarkers to provide information on physiologic state beyond what clinicians can evaluate from...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103613
SubjectTerms Algorithms
Artificial intelligence
Biomarkers
Deep Learning
Echocardiography
Humans
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Research Paper
ROC Curve
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQEhKXqh_QpqXIlTgSNfFncoQCQpXaE0jcrNget_SQRexy6L_vjJ3Abiu1l16TKPG8sT1jZd4bxo7AQNvZEOrYN7JWNmlcc72tDWA6miLglCE28pev5vJafb7RN2utvqgmrMgDF-A-RiNDCz5CoB7eceh7bf0QQafY0Naad99GrB2mCj9YEQc0d5bTopa9UbPkUC7uAiK34-lQtMQ6z80N1sJSVu_fiE5_Zp-_F1GuRaWL5-zZlE7yk2LGC7YF40u2UxpM_nzFTs4A7vjUGeIbf5L25ovEaXBUnHO_5EQy4YA7YcjlqVSxxYmgt1juseuL86tPl_XUNKEOWuhV3SPEcjBdk7yNCJcABdBD0nTY60Rok8WMb7DWyzYOIXijhRms6hUGc0J5n22PixHeMI6ZUdNEoaCDqDrZ-cYr6aVOIkiRvKrY8YyZuyvaGG4uGvvhMsSOIHYF4oqdEq6Pj5Kwdb6A7naTu92_3F0xM3vFTTlCif34qtu_f_3D7EOHK4h-iwwjLB6WThDxDA_nRlTsdfHp4xglycnhfK2Y3fD2hhGbd8bb71mlu9OYHDXy7f-w-h3bJVMKB_KAba_uH-A9JkMrf5jn_S9JbweM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF5KRfBFvBtvrOCjkWSv2QeReilFqE8e6NuS3Z2tlZLUc07B_ntncmmNFsHHXEg238ww35L5Zhh7BQbqxsZYJlfJUtmsMeacLQ0gHc0J0GVIjXz4xRys1OcjfbTD5qmoE4Cba7d2NE9qtT598_PHxTsM-LdXtVpAWnXc7ImaROSGptjeEJgaqcbrcOL7o2xYkTR0GDinRSmdUXMnouufs8hWQ1P_RdL6m5T-WVv5W7Lav8NuTyyT741ucZftQHeP3RznTl7cZ3sfAc74NDDimF91_OZ95rQ4qtlZbzhpTzggRnGoWqVCLk66vX7zgK32P339cFBOsxTKqIXelg6Rl61pqhxsSq0ToAAcZE17wEbEOlskgq21QdapjTEYLUxrlVOY4xNE-ZDtdn0HjxlHwlRVSShoIKlGNqEKSgaps4hS5KAK9nrGzJ-NLTP8XEv23Q8Qe4LYjxAX7D3henkr9bseTvTrYz-Fj09GxhoCLcSpCtfvtA1tAp1TRQm2YGa2ip-ow0gJ8FEn_377y9mGHgOL_pa0HfTnGy9Ij4Z7diMK9mi06eUaJXWZQzcumF1Ye_ERyyvdybeheXejkTNV8sn_gfSU3aKjUQT5jO1u1-fwHNnQNrwYPPwXPxIHEA
  priority: 102
  providerName: Scholars Portal
Title Deep learning evaluation of biomarkers from echocardiogram videos
URI https://dx.doi.org/10.1016/j.ebiom.2021.103613
https://www.ncbi.nlm.nih.gov/pubmed/34656880
https://search.proquest.com/docview/2583327462
https://pubmed.ncbi.nlm.nih.gov/PMC8524103
https://doaj.org/article/d63c1ebdec3940da9957bade5fd02847
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLbaSqBeEG_CowoSR9JN5pFJjqVQVUiLOFCpt1Fmxilb0WS1uz3w77EnSdkFiQOXHPJ0bCefJ_k-D8A7LLGojPdZqHOZKdNqeuZqk5VI5WgbkFKG1cjzL-X5hfp8qS_3QE9amEja925x3P24Oe4W3yO3cnnjZxNPbPZ1flppwp1czvZhn-B3a4g-SIMVyz-nDkORy4WsZafBoChYZE4Idgj3JXcKq7gd5BYgxb79O7j0d935J31yC4_OHsKDsZBMTwaDH8Eedo_h3jC15M8ncPIRcZmOc0Jcpb-beqd9m7KdTMtZrVOWl6RI70AfianM1UpZmtevn8LF2advp-fZOF1C5rXQm6wm58qmrPLWmRCaWqBCrLHVPMyrhC9aQ7VeY4yTRWi8d6UWZWNUrQjGA3r5DA66vsMXkFJNlOdBKKwwqEpWLndKOqlb4aVonUrg_eQzuxy6YtiJLnZto7cte9sO3k7gA_v1blduaR1X9KsrOwbWhlL6Ah0bUquc7K-1cU1A3YacMTSBcoqKHauDAfXpVIt_X_3tFENLzw7_EGk67G_XVrDkjIblpUjg-RDTOxun9EjA7ER75yZ2t1C6xv7cY3q-_O8jX8Eh2z9IHl_DwWZ1i2-o9tm4o_jNgJZzVR3FvP8FpV0Grw
link.rule.ids 230,314,727,780,784,864,885,2102,24318,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIqAXxJvwDBJH0k38iONjKVQLdCsOrdSbFduTsogmq93tgX-Px0nKLkgcuOY5nhnnGyvfNwZ4iyUWlXIu8zrnmVCNDHNOq6zEUI42HkPKkBp5dlJOz8Tnc3m-A3LUwkTSvrPz_fbH5X47_xa5lYtLNxl5YpOvs8NKBtzJ-eQG3JRc6WJjkd6LgwUJQMceQ5HNhaRmD8tBVpDMPGDYHtzm1CusooaQG5AUO_dvIdPfleefBMoNRDq6B3eHUjI96E2-DzvYPoBb_eaSPx_CwQfERTrsCnGR_m7rnXZNSnYSMWe5SklgkmL4CrpITSW2VkrivG71CM6OPp4eTrNhw4TMSSbXmQ7u5XVZ5Y1V3teaoUDU2Eha6FXMFY0K1V6tlOWFr52zpWRlrYQWAcg9Ov4YdtuuxaeQhqoozz0TWKEXFa9sbgW3XDbMcdZYkcC70Wdm0ffFMCNh7LuJ3jbkbdN7O4H35NfrS6mpdTzQLS_MEFrjS-4KtGSIFnmwX0tla4-y8TmhaALlGBUz1Ac97odHzf_99jdjDE2YPfRLpG6xu1oZRqKzsDAvWQJP-phe2zimRwJqK9pbg9g-ExI2dugeEvTZf9_5Gu5MT2fH5vjTyZfnsEdj6QWQL2B3vbzCl6ESWttXMe9_ATx-CDU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLagiKoXxJuUV5A4km4yz-RYWlbl0aoHKvU2ysx42kU0We1uD_33jPMouyBx4Jqnx_bEtvJ9NsB7VFiU2rnMVznPhA4y7rlKZwpjOho8RpchNvLxiTo6E1_O5fnaqK8OtO_sbK_5ebXXzC47bOX8yk1GnNjk9PiglDHu5Hwy92FyF-5JHp1srVDvCcKCSKBjn6EO0YXEaI8lISuIah7j2A5sc-oXVlJTyLWw1HXv34hOf2eff4Io16LS9CE8GNLJdL8X-xHcweYx3O8HTN48gf1DxHk6TIa4SH-39k7bkJKcBM5ZLFMimaQYv4Sug6cSYislgl67fApn00_fD46yYWhC5iSTq6yKKua1KvNgtfd1xVAgVhgkFXslc0XQMeOrtba88LVzVkmmai0qEYO5R8efwVbTNvgC0pgZ5blnAkv0ouSlza3glsvAHGfBigQ-jDoz8743hhlBYz9Mp21D2ja9thP4SHq9vZQaW3cH2sWFGcxrvOKuQEuCVCKP8ldS29qjDD6nSJqAGq1ihhyhj_3xUbN_v_3daEMTdxD9FqkbbK-XhhHxLBbniiXwvLfprYyjeySgN6y9sYjNM9Fpuy7dg5Pu_vedb2H79HBqvn0--foSdmgpPQfyFWytFtf4OiZDK_umc_tfAlAJSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+evaluation+of+biomarkers+from+echocardiogram+videos&rft.jtitle=EBioMedicine&rft.au=Hughes%2C+J+Weston&rft.au=Yuan%2C+Neal&rft.au=He%2C+Bryan&rft.au=Ouyang%2C+Jiahong&rft.date=2021-11-01&rft.issn=2352-3964&rft.eissn=2352-3964&rft.volume=73&rft.spage=103613&rft_id=info:doi/10.1016%2Fj.ebiom.2021.103613&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ebiom_2021_103613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3964&client=summon