Brain tumor classification using deep CNN features via transfer learning

Brain tumor classification is an important problem in computer-aided diagnosis (CAD) for medical applications. This paper focuses on a 3-class classification problem to differentiate among glioma, meningioma and pituitary tumors, which form three prominent types of brain tumor. The proposed classifi...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 111; p. 103345
Main Authors Deepak, S., Ameer, P.M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.08.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain tumor classification is an important problem in computer-aided diagnosis (CAD) for medical applications. This paper focuses on a 3-class classification problem to differentiate among glioma, meningioma and pituitary tumors, which form three prominent types of brain tumor. The proposed classification system adopts the concept of deep transfer learning and uses a pre-trained GoogLeNet to extract features from brain MRI images. Proven classifier models are integrated to classify the extracted features. The experiment follows a patient-level five-fold cross-validation process, on MRI dataset from figshare. The proposed system records a mean classification accuracy of 98%, outperforming all state-of-the-art methods. Other performance measures used in the study are the area under the curve (AUC), precision, recall, F-score and specificity. In addition, the paper addresses a practical aspect by evaluating the system with fewer training samples. The observations of the study imply that transfer learning is a useful technique when the availability of medical images is limited. The paper provides an analytical discussion on misclassifications also.
AbstractList Brain tumor classification is an important problem in computer-aided diagnosis (CAD) for medical applications. This paper focuses on a 3-class classification problem to differentiate among glioma, meningioma and pituitary tumors, which form three prominent types of brain tumor. The proposed classification system adopts the concept of deep transfer learning and uses a pre-trained GoogLeNet to extract features from brain MRI images. Proven classifier models are integrated to classify the extracted features. The experiment follows a patient-level five-fold cross-validation process, on MRI dataset from figshare. The proposed system records a mean classification accuracy of 98%, outperforming all state-of-the-art methods. Other performance measures used in the study are the area under the curve (AUC), precision, recall, F-score and specificity. In addition, the paper addresses a practical aspect by evaluating the system with fewer training samples. The observations of the study imply that transfer learning is a useful technique when the availability of medical images is limited. The paper provides an analytical discussion on misclassifications also.
Brain tumor classification is an important problem in computer-aided diagnosis (CAD) for medical applications. This paper focuses on a 3-class classification problem to differentiate among glioma, meningioma and pituitary tumors, which form three prominent types of brain tumor. The proposed classification system adopts the concept of deep transfer learning and uses a pre-trained GoogLeNet to extract features from brain MRI images. Proven classifier models are integrated to classify the extracted features. The experiment follows a patient-level five-fold cross-validation process, on MRI dataset from figshare. The proposed system records a mean classification accuracy of 98%, outperforming all state-of-the-art methods. Other performance measures used in the study are the area under the curve (AUC), precision, recall, F-score and specificity. In addition, the paper addresses a practical aspect by evaluating the system with fewer training samples. The observations of the study imply that transfer learning is a useful technique when the availability of medical images is limited. The paper provides an analytical discussion on misclassifications also.Brain tumor classification is an important problem in computer-aided diagnosis (CAD) for medical applications. This paper focuses on a 3-class classification problem to differentiate among glioma, meningioma and pituitary tumors, which form three prominent types of brain tumor. The proposed classification system adopts the concept of deep transfer learning and uses a pre-trained GoogLeNet to extract features from brain MRI images. Proven classifier models are integrated to classify the extracted features. The experiment follows a patient-level five-fold cross-validation process, on MRI dataset from figshare. The proposed system records a mean classification accuracy of 98%, outperforming all state-of-the-art methods. Other performance measures used in the study are the area under the curve (AUC), precision, recall, F-score and specificity. In addition, the paper addresses a practical aspect by evaluating the system with fewer training samples. The observations of the study imply that transfer learning is a useful technique when the availability of medical images is limited. The paper provides an analytical discussion on misclassifications also.
ArticleNumber 103345
Author Deepak, S.
Ameer, P.M.
Author_xml – sequence: 1
  givenname: S.
  surname: Deepak
  fullname: Deepak, S.
  email: deepak_p180039ec@nitc.ac.in
– sequence: 2
  givenname: P.M.
  surname: Ameer
  fullname: Ameer, P.M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31279167$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1LHDEUhkOx1FX7F0rAG29mm8-dzI1UF1sLYm_qdcgkJyXbmWSbzAj-e6OrFPZqrwKH5zwnvO8JOoopAkKYkiUldPV1s7Rp3PYhjeCWjNCujjkX8gNaUNV2DZFcHKEFIZQ0QjF5jE5K2RBCBOHkEzrmlLUdXbULdHudTYh4mseUsR1MKcEHa6aQIp5LiH-wA9ji9f099mCmOUPBj8HgKZtYPGQ8gMmxcmfoozdDgc9v7yl6-H7ze33b3P368XN9dddYyeTUKG-4BFCEW9_KVknLpHXKgnSUeMd8ZwSzhjphjBIr7x1RwpmuFX3Peyn5KbrYebc5_ZuhTHoMxcIwmAhpLpoxyZlqVccqer6HbtKcY_1dpRQRjK5kW6kvb9Tc1zj1NofR5Cf9nlEFLneAzamUDF7bML0mVEMIg6ZEv5SiN_p_KfqlFL0rpQrUnuD9xgGr17tVqJE-Bsi62ADRggsZ7KRdCodIvu1J7BBibXn4C0-HKZ4BTxjCTg
CitedBy_id crossref_primary_10_3390_diagnostics12102484
crossref_primary_10_32604_cmc_2023_038748
crossref_primary_10_1016_j_cmpb_2023_107387
crossref_primary_10_1016_j_compeleceng_2022_108386
crossref_primary_10_1016_j_jocmr_2024_101126
crossref_primary_10_3390_s22228999
crossref_primary_10_3390_diagnostics11101856
crossref_primary_10_3390_app12147282
crossref_primary_10_1007_s41060_024_00697_5
crossref_primary_10_3390_math10234566
crossref_primary_10_3390_biomedicines12071395
crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1302
crossref_primary_10_3390_life12122036
crossref_primary_10_1007_s11042_020_10335_4
crossref_primary_10_9728_dcs_2020_21_11_2033
crossref_primary_10_1109_ACCESS_2023_3326447
crossref_primary_10_1002_ima_22641
crossref_primary_10_3390_cancers13215546
crossref_primary_10_1002_ima_22763
crossref_primary_10_1007_s10462_024_11049_x
crossref_primary_10_3390_app13063680
crossref_primary_10_1007_s40998_022_00557_7
crossref_primary_10_54365_adyumbd_1391157
crossref_primary_10_1016_j_bspc_2023_104777
crossref_primary_10_1016_j_compeleceng_2022_108010
crossref_primary_10_1007_s40998_024_00726_w
crossref_primary_10_1007_s00530_021_00884_5
crossref_primary_10_1007_s11227_023_05549_w
crossref_primary_10_1016_j_atech_2023_100297
crossref_primary_10_3390_bioengineering11030266
crossref_primary_10_3390_cancers15154002
crossref_primary_10_1007_s11265_022_01757_4
crossref_primary_10_1007_s12652_021_03028_9
crossref_primary_10_1016_j_compmedimag_2024_102373
crossref_primary_10_1016_j_eswa_2021_115805
crossref_primary_10_1016_j_compag_2021_106285
crossref_primary_10_1016_j_compbiomed_2024_109531
crossref_primary_10_1016_j_bspc_2023_105620
crossref_primary_10_1016_j_wneu_2024_03_152
crossref_primary_10_3233_XST_230085
crossref_primary_10_1007_s42979_025_03683_1
crossref_primary_10_1177_20552076241311939
crossref_primary_10_1007_s11548_021_02326_z
crossref_primary_10_1007_s10462_021_10127_8
crossref_primary_10_1016_j_mlwa_2021_100212
crossref_primary_10_3233_JIFS_232493
crossref_primary_10_3390_s21062222
crossref_primary_10_1007_s00432_023_04754_7
crossref_primary_10_1016_j_asoc_2022_109631
crossref_primary_10_3390_diagnostics12081793
crossref_primary_10_1007_s11042_023_14828_w
crossref_primary_10_1155_2022_7882924
crossref_primary_10_3389_fonc_2022_908873
crossref_primary_10_1016_j_mehy_2019_109413
crossref_primary_10_3389_fonc_2021_762643
crossref_primary_10_1002_ima_22740
crossref_primary_10_7717_peerj_cs_1917
crossref_primary_10_1080_00051144_2024_2315405
crossref_primary_10_1007_s00371_023_02978_9
crossref_primary_10_3389_fonc_2022_835047
crossref_primary_10_1109_JBHI_2021_3100758
crossref_primary_10_1016_j_bspc_2023_104876
crossref_primary_10_1016_j_compbiomed_2021_104564
crossref_primary_10_3390_jimaging7090179
crossref_primary_10_4103_cmrp_cmrp_85_22
crossref_primary_10_1016_j_ejmp_2021_03_003
crossref_primary_10_4108_eetpht_10_5627
crossref_primary_10_3389_fonc_2022_844197
crossref_primary_10_1177_0954411920987964
crossref_primary_10_1177_10732748231169149
crossref_primary_10_1007_s00521_023_09164_x
crossref_primary_10_37394_23208_2024_21_17
crossref_primary_10_1080_21681163_2022_2068161
crossref_primary_10_1155_2022_3264367
crossref_primary_10_1002_ima_22975
crossref_primary_10_1155_2023_1224619
crossref_primary_10_1016_j_acra_2022_10_004
crossref_primary_10_1016_j_mineng_2021_107020
crossref_primary_10_1155_2021_5531585
crossref_primary_10_1002_ima_22619
crossref_primary_10_1155_2021_6438861
crossref_primary_10_1016_j_compeleceng_2023_108586
crossref_primary_10_1007_s42979_024_03558_x
crossref_primary_10_3390_diagnostics13030551
crossref_primary_10_1109_ACCESS_2022_3153306
crossref_primary_10_1016_j_future_2021_10_006
crossref_primary_10_1109_TITS_2022_3147845
crossref_primary_10_3390_curroncol29100590
crossref_primary_10_1016_j_eswa_2022_119261
crossref_primary_10_1016_j_mehy_2019_109433
crossref_primary_10_1016_j_compbiomed_2022_105857
crossref_primary_10_1007_s11042_023_17644_4
crossref_primary_10_1109_JBHI_2022_3216270
crossref_primary_10_3390_medicina58081090
crossref_primary_10_3389_fphys_2024_1342572
crossref_primary_10_3389_frai_2023_1232640
crossref_primary_10_1007_s00500_022_07163_z
crossref_primary_10_1145_3713077
crossref_primary_10_3390_asi3040043
crossref_primary_10_1007_s11227_022_04678_y
crossref_primary_10_1109_OJEMB_2022_3217186
crossref_primary_10_1007_s12539_021_00463_2
crossref_primary_10_21205_deufmd_2020226625
crossref_primary_10_1007_s11042_021_10538_3
crossref_primary_10_1142_S0218001423560013
crossref_primary_10_3390_diagnostics11122343
crossref_primary_10_3390_electronics11244178
crossref_primary_10_3389_fonc_2024_1395159
crossref_primary_10_1002_ima_22951
crossref_primary_10_1109_TAI_2024_3423813
crossref_primary_10_1177_09544070241232606
crossref_primary_10_1016_j_bspc_2023_105421
crossref_primary_10_1016_j_bspc_2023_105419
crossref_primary_10_1002_ima_22956
crossref_primary_10_1007_s41870_023_01259_x
crossref_primary_10_1007_s41870_024_01830_0
crossref_primary_10_1007_s11042_023_17215_7
crossref_primary_10_1016_j_jocs_2024_102324
crossref_primary_10_1007_s11042_024_19313_6
crossref_primary_10_3390_a17060221
crossref_primary_10_1002_ima_22839
crossref_primary_10_3390_computers12080167
crossref_primary_10_3103_S1060992X24700863
crossref_primary_10_32604_csse_2023_032488
crossref_primary_10_46300_9106_2022_16_70
crossref_primary_10_1002_jmri_29071
crossref_primary_10_1002_jmri_29072
crossref_primary_10_37394_23205_2024_23_25
crossref_primary_10_1016_j_jksuci_2020_08_006
crossref_primary_10_1002_ece3_7970
crossref_primary_10_1007_s00521_022_07099_3
crossref_primary_10_1109_ACCESS_2023_3294562
crossref_primary_10_1016_j_health_2023_100217
crossref_primary_10_1007_s11042_024_20141_x
crossref_primary_10_3390_bioengineering11060627
crossref_primary_10_46300_9106_2020_14_137
crossref_primary_10_3389_fonc_2021_668694
crossref_primary_10_1016_j_bspc_2022_104018
crossref_primary_10_1016_j_aei_2020_101055
crossref_primary_10_1109_ACCESS_2020_2978629
crossref_primary_10_1016_j_cmpb_2025_108615
crossref_primary_10_1080_15368378_2024_2401540
crossref_primary_10_4015_S1016237222500442
crossref_primary_10_1007_s12553_022_00648_9
crossref_primary_10_1016_j_asoc_2020_106859
crossref_primary_10_1002_brx2_23
crossref_primary_10_1016_j_compmedimag_2021_101940
crossref_primary_10_3390_info11030155
crossref_primary_10_1109_ACCESS_2023_3317796
crossref_primary_10_1080_03772063_2022_2088628
crossref_primary_10_31590_ejosat_963609
crossref_primary_10_1007_s11042_022_12362_9
crossref_primary_10_3389_fcell_2020_00683
crossref_primary_10_1007_s11042_024_20203_0
crossref_primary_10_1007_s42044_023_00137_w
crossref_primary_10_1155_2024_1622294
crossref_primary_10_3390_diagnostics12081850
crossref_primary_10_3390_diagnostics13122110
crossref_primary_10_17780_ksujes_1339884
crossref_primary_10_1007_s00521_024_10168_4
crossref_primary_10_1016_j_spinee_2021_01_022
crossref_primary_10_3389_fnagi_2021_764872
crossref_primary_10_1038_s41598_024_83031_0
crossref_primary_10_4018_IJSWIS_365910
crossref_primary_10_1007_s11102_019_01026_x
crossref_primary_10_1016_j_compbiomed_2020_103912
crossref_primary_10_1016_j_compbiomed_2022_105539
crossref_primary_10_1016_j_bspc_2022_104564
crossref_primary_10_1587_transinf_2022EDP7198
crossref_primary_10_7717_peerj_cs_1667
crossref_primary_10_1016_j_jrras_2022_05_014
crossref_primary_10_1016_j_knosys_2022_109370
crossref_primary_10_3390_jimaging9010010
crossref_primary_10_1088_1742_6596_1964_7_072021
crossref_primary_10_1007_s12553_023_00737_3
crossref_primary_10_1080_1206212X_2022_2047443
crossref_primary_10_3389_fmicb_2022_995323
crossref_primary_10_1007_s11831_025_10238_3
crossref_primary_10_3390_jpm11121276
crossref_primary_10_1007_s12652_023_04725_3
crossref_primary_10_3389_fonc_2021_639062
crossref_primary_10_3390_bioengineering10040475
crossref_primary_10_1007_s00521_024_09688_w
crossref_primary_10_3390_electronics11071146
crossref_primary_10_1155_2021_7804540
crossref_primary_10_3390_diagnostics12102541
crossref_primary_10_1007_s00521_021_06430_8
crossref_primary_10_1007_s42979_022_01167_0
crossref_primary_10_1155_2022_2092985
crossref_primary_10_1177_14604582221140975
crossref_primary_10_31466_kfbd_1455542
crossref_primary_10_1007_s00371_020_02005_1
crossref_primary_10_1007_s11042_023_17888_0
crossref_primary_10_1038_s41598_025_92020_w
crossref_primary_10_1371_journal_pone_0315631
crossref_primary_10_3390_technologies11020040
crossref_primary_10_1007_s11042_022_12482_2
crossref_primary_10_1016_j_ssci_2021_105479
crossref_primary_10_1016_j_bspc_2023_104926
crossref_primary_10_1109_ACCESS_2023_3288017
crossref_primary_10_1109_ACCESS_2023_3289224
crossref_primary_10_1016_j_bbe_2020_05_005
crossref_primary_10_1016_j_ibmed_2024_100168
crossref_primary_10_1016_j_bspc_2024_107250
crossref_primary_10_1007_s10278_020_00347_9
crossref_primary_10_1088_1742_6596_1804_1_012110
crossref_primary_10_3390_jimaging10040081
crossref_primary_10_1007_s00521_024_10629_w
crossref_primary_10_2139_ssrn_4607794
crossref_primary_10_1016_j_heliyon_2023_e22203
crossref_primary_10_1007_s00138_020_01069_2
crossref_primary_10_1016_j_compbiomed_2021_105014
crossref_primary_10_1038_s41699_020_00186_w
crossref_primary_10_1166_jmihi_2021_3855
crossref_primary_10_1007_s13735_020_00199_7
crossref_primary_10_1007_s11831_023_10041_y
crossref_primary_10_3233_JIFS_220308
crossref_primary_10_1049_ipr2_12358
crossref_primary_10_3390_s22093439
crossref_primary_10_1109_TETCI_2024_3448490
crossref_primary_10_1007_s11042_020_10114_1
crossref_primary_10_1007_s00521_021_05841_x
crossref_primary_10_1007_s10278_024_01368_4
crossref_primary_10_1016_j_bspc_2023_104988
crossref_primary_10_1038_s41598_024_76445_3
crossref_primary_10_1155_2022_1078056
crossref_primary_10_3390_s22051960
crossref_primary_10_3233_JIFS_223996
crossref_primary_10_1016_j_seta_2022_102990
crossref_primary_10_3389_feart_2023_1285138
crossref_primary_10_1007_s12652_021_03535_9
crossref_primary_10_1007_s11042_022_13545_0
crossref_primary_10_1007_s00500_023_08319_1
crossref_primary_10_1111_exsy_13226
crossref_primary_10_3389_fninf_2024_1403732
crossref_primary_10_4018_IJSSCI_304438
crossref_primary_10_1016_j_compbiomed_2023_106726
crossref_primary_10_1016_j_compbiomed_2023_106966
crossref_primary_10_1016_j_bspc_2022_103544
crossref_primary_10_3390_neuroglia5020008
crossref_primary_10_1007_s00500_022_07457_2
crossref_primary_10_1088_2632_2153_ad65b5
crossref_primary_10_1007_s44196_025_00772_0
crossref_primary_10_1016_j_engappai_2023_106700
crossref_primary_10_1007_s11042_022_13260_w
crossref_primary_10_1109_TFUZZ_2024_3372608
crossref_primary_10_32604_cmc_2021_016698
crossref_primary_10_1007_s11760_020_01793_2
crossref_primary_10_1109_TNNLS_2020_2995800
crossref_primary_10_1038_s41574_021_00543_9
crossref_primary_10_1590_1678_4324_2024230705
crossref_primary_10_1117_1_JMI_10_2_024004
crossref_primary_10_1007_s11042_025_20751_z
crossref_primary_10_1016_j_bspc_2023_105938
crossref_primary_10_3390_s22249875
crossref_primary_10_1038_s41598_024_68291_0
crossref_primary_10_1007_s11042_024_18454_y
crossref_primary_10_1016_j_eswa_2023_120368
crossref_primary_10_3390_diagnostics13122050
crossref_primary_10_1109_ACCESS_2020_3035803
crossref_primary_10_32604_cmc_2023_035584
crossref_primary_10_51583_IJLTEMAS_2024_130907
crossref_primary_10_1109_ACCESS_2023_3281546
crossref_primary_10_47164_ijngc_v14i1_1032
crossref_primary_10_1080_21681163_2022_2083019
crossref_primary_10_22630_MGV_2024_33_3_1
crossref_primary_10_1142_S0218001422510077
crossref_primary_10_1016_j_compbiomed_2020_103818
crossref_primary_10_1371_journal_pone_0306987
crossref_primary_10_3233_IDT_230216
crossref_primary_10_1093_braincomms_fcae372
crossref_primary_10_1016_j_ceh_2024_08_001
crossref_primary_10_1007_s00521_022_07742_z
crossref_primary_10_3390_diagnostics14232710
crossref_primary_10_1109_TCBB_2020_3033538
crossref_primary_10_1155_2021_5513500
crossref_primary_10_3390_healthcare11020212
crossref_primary_10_1002_cpe_7031
crossref_primary_10_3390_diagnostics14040383
crossref_primary_10_1016_j_bspc_2022_104542
crossref_primary_10_1016_j_bspc_2022_104536
crossref_primary_10_1080_15368378_2024_2375266
crossref_primary_10_1016_j_bspc_2023_104834
crossref_primary_10_1016_j_jksuci_2023_101810
crossref_primary_10_1108_ACI_09_2023_0022
crossref_primary_10_3390_cancers17010121
crossref_primary_10_1016_j_eij_2024_100565
crossref_primary_10_1007_s13755_022_00203_w
crossref_primary_10_1007_s11042_022_12403_3
crossref_primary_10_3934_mbe_2021292
crossref_primary_10_1007_s12553_020_00514_6
crossref_primary_10_1007_s10278_024_00988_0
crossref_primary_10_3390_diagnostics11050744
crossref_primary_10_4218_etrij_2022_0088
crossref_primary_10_1038_s41416_022_02134_5
crossref_primary_10_1016_j_compbiomed_2020_103882
crossref_primary_10_1002_nbm_5307
crossref_primary_10_1016_j_neucom_2023_127216
crossref_primary_10_26634_jaim_1_2_19281
crossref_primary_10_1111_coin_12451
crossref_primary_10_1002_ima_23170
crossref_primary_10_3390_cancers15061837
crossref_primary_10_1038_s41598_023_41407_8
crossref_primary_10_3390_diagnostics14141469
crossref_primary_10_3390_app13137583
crossref_primary_10_1142_S0218001424570088
crossref_primary_10_3390_info14120642
crossref_primary_10_1016_j_bspc_2022_103631
crossref_primary_10_1002_mp_15612
crossref_primary_10_3390_app142210154
crossref_primary_10_1016_j_jneumeth_2025_110424
crossref_primary_10_1007_s11042_023_14831_1
crossref_primary_10_1016_j_compbiomed_2020_103993
crossref_primary_10_3390_bioengineering11050410
crossref_primary_10_1155_2022_3236305
crossref_primary_10_17694_bajece_1346818
crossref_primary_10_3390_life13020349
crossref_primary_10_1111_coin_12687
crossref_primary_10_1109_ACCESS_2024_3446190
crossref_primary_10_32604_iasc_2023_035905
crossref_primary_10_1007_s00330_022_08783_7
crossref_primary_10_1038_s41467_024_54424_6
crossref_primary_10_1007_s00521_020_05671_3
crossref_primary_10_1109_ACCESS_2024_3413008
crossref_primary_10_1049_ipr2_12990
crossref_primary_10_1038_s43856_022_00199_0
crossref_primary_10_1007_s42979_023_02446_0
crossref_primary_10_1038_s41598_025_85874_7
crossref_primary_10_1051_e3sconf_202447700082
crossref_primary_10_1155_2022_4822235
crossref_primary_10_1007_s11042_024_20366_w
crossref_primary_10_1016_j_bspc_2024_106312
crossref_primary_10_1016_j_bspc_2021_103356
crossref_primary_10_3934_mbe_2021146
crossref_primary_10_3390_app12157554
crossref_primary_10_1016_j_asoc_2022_109197
crossref_primary_10_1016_j_bspc_2021_103359
crossref_primary_10_3390_diagnostics13122094
crossref_primary_10_32628_CSEIT2410326
crossref_primary_10_3389_fneur_2021_752119
crossref_primary_10_1007_s10462_022_10337_8
crossref_primary_10_1007_s40747_024_01530_z
crossref_primary_10_3389_fmolb_2023_1250596
crossref_primary_10_2174_1573405618666220415122843
crossref_primary_10_1007_s00500_021_05748_8
crossref_primary_10_1007_s11042_024_18129_8
crossref_primary_10_1007_s11042_024_18489_1
crossref_primary_10_3390_life12071084
crossref_primary_10_1016_j_bspc_2022_103644
crossref_primary_10_1016_j_enconman_2024_118718
crossref_primary_10_3389_fnins_2021_679847
crossref_primary_10_1109_ACCESS_2024_3460380
crossref_primary_10_1007_s00414_025_03453_x
crossref_primary_10_34248_bsengineering_938520
crossref_primary_10_1016_j_knosys_2024_111981
crossref_primary_10_1186_s40537_024_01050_0
crossref_primary_10_1002_cpe_7542
crossref_primary_10_1016_j_saa_2024_124454
crossref_primary_10_1002_cpe_7541
crossref_primary_10_1016_j_prime_2024_100723
crossref_primary_10_1007_s00500_024_09830_9
crossref_primary_10_1142_S0218001421570056
crossref_primary_10_1016_j_bspc_2024_106256
crossref_primary_10_3390_bdcc7010025
crossref_primary_10_1080_21681163_2022_2111719
crossref_primary_10_1080_13682199_2023_2211890
crossref_primary_10_1111_exsy_13294
crossref_primary_10_35377_saucis___1518139
crossref_primary_10_1155_2020_9673724
crossref_primary_10_3389_fonc_2020_590756
crossref_primary_10_1002_cbf_3870
crossref_primary_10_1080_21655979_2021_1930333
crossref_primary_10_4018_IJSI_293269
crossref_primary_10_1007_s11548_024_03107_0
crossref_primary_10_3390_app13010312
crossref_primary_10_1016_j_compbiomed_2021_104829
crossref_primary_10_3390_diagnostics13091562
crossref_primary_10_32604_iasc_2022_026601
crossref_primary_10_12720_jait_15_9_1035_1046
crossref_primary_10_32604_csse_2023_037050
crossref_primary_10_32628_IJSRST52310248
crossref_primary_10_1016_j_jneumeth_2024_110247
crossref_primary_10_1007_s42044_024_00220_w
crossref_primary_10_1109_ACCESS_2024_3425469
crossref_primary_10_32604_csse_2023_033927
crossref_primary_10_1016_j_compbiomed_2025_109790
crossref_primary_10_1007_s13246_022_01166_8
crossref_primary_10_2139_ssrn_4624936
crossref_primary_10_1016_j_jclepro_2023_139351
crossref_primary_10_1016_j_eswa_2024_124886
crossref_primary_10_1109_ACCESS_2025_3532354
crossref_primary_10_1007_s10845_024_02408_0
crossref_primary_10_3390_diagnostics10080565
crossref_primary_10_1007_s11517_020_02290_x
crossref_primary_10_1016_j_tics_2022_07_003
crossref_primary_10_1002_ima_23128
crossref_primary_10_1016_j_bspc_2020_102025
crossref_primary_10_32604_iasc_2022_024538
crossref_primary_10_1155_2021_4793293
crossref_primary_10_1109_ACCESS_2020_2985717
crossref_primary_10_37391_ijeer_100441
crossref_primary_10_1016_j_imavis_2025_105495
crossref_primary_10_3389_fonc_2022_990156
crossref_primary_10_1016_j_asoc_2021_107733
crossref_primary_10_1186_s12880_022_00793_7
crossref_primary_10_1007_s11517_024_03064_5
crossref_primary_10_1007_s00521_022_07953_4
crossref_primary_10_1016_j_heliyon_2023_e23610
crossref_primary_10_1038_s41598_025_87934_4
crossref_primary_10_1016_j_neuri_2021_100013
crossref_primary_10_1109_ACCESS_2020_3038909
crossref_primary_10_1007_s10103_025_04297_y
crossref_primary_10_1016_j_eswa_2023_122159
crossref_primary_10_3390_electronics12040964
crossref_primary_10_31796_ogummf_1158526
crossref_primary_10_1007_s42979_023_02360_5
crossref_primary_10_1016_j_asoc_2021_107666
crossref_primary_10_1155_int_6914757
crossref_primary_10_1016_j_bspc_2023_105006
crossref_primary_10_3389_fnins_2022_900519
crossref_primary_10_1016_j_compeleceng_2023_108700
crossref_primary_10_1007_s00234_021_02845_1
crossref_primary_10_1002_lary_30291
crossref_primary_10_1016_j_bspc_2023_105119
crossref_primary_10_3390_biology10090859
crossref_primary_10_3390_s22010372
crossref_primary_10_3390_biomedicines11010184
crossref_primary_10_1016_j_wneu_2022_11_091
crossref_primary_10_53941_ijndi_2023_100008
crossref_primary_10_3390_electronics12040955
crossref_primary_10_1177_02841851241292528
crossref_primary_10_1016_j_biosystemseng_2021_11_016
crossref_primary_10_1109_ACCESS_2023_3326841
crossref_primary_10_3390_cancers16020300
crossref_primary_10_32604_iasc_2024_047921
crossref_primary_10_3389_fonc_2025_1508451
crossref_primary_10_1007_s13369_024_09284_z
crossref_primary_10_1142_S1793005725500115
crossref_primary_10_1007_s00521_020_05082_4
crossref_primary_10_1016_j_bspc_2023_105596
crossref_primary_10_1016_j_engappai_2024_109869
crossref_primary_10_1016_j_eswa_2022_118776
crossref_primary_10_1080_21681163_2021_2021111
crossref_primary_10_1007_s12596_023_01485_3
crossref_primary_10_2139_ssrn_4055814
crossref_primary_10_1007_s11227_022_05033_x
crossref_primary_10_54097_hset_v4i_919
crossref_primary_10_1016_j_jfranklin_2023_07_015
crossref_primary_10_17341_gazimmfd_762056
crossref_primary_10_1016_j_compbiomed_2022_106183
crossref_primary_10_1016_j_ijin_2022_11_003
crossref_primary_10_1007_s11633_022_1382_8
crossref_primary_10_1007_s12161_022_02362_8
crossref_primary_10_1007_s13042_024_02110_w
crossref_primary_10_1016_j_wneu_2023_03_115
crossref_primary_10_3389_fnins_2022_933660
crossref_primary_10_37394_23203_2022_17_22
crossref_primary_10_1002_jmri_27378
crossref_primary_10_1007_s41870_023_01701_0
crossref_primary_10_3233_JIFS_222172
crossref_primary_10_14359_51738344
crossref_primary_10_1016_j_heliyon_2024_e25468
crossref_primary_10_1007_s11831_022_09758_z
crossref_primary_10_3389_fnhum_2023_1150120
crossref_primary_10_3390_ijerph20010796
crossref_primary_10_1007_s00521_024_10521_7
crossref_primary_10_1007_s11042_023_17213_9
crossref_primary_10_1016_j_iotcps_2022_05_001
crossref_primary_10_35940_ijsce_D3644_14040924
crossref_primary_10_3390_bioengineering10010018
crossref_primary_10_1089_cmb_2024_0483
crossref_primary_10_1097_AUD_0000000000000794
crossref_primary_10_1016_j_prime_2024_100498
crossref_primary_10_1002_cpe_6541
crossref_primary_10_1007_s40998_021_00426_9
crossref_primary_10_3390_pr11030679
crossref_primary_10_1016_j_patcog_2023_109871
crossref_primary_10_3390_jimaging6060037
crossref_primary_10_1016_j_neucom_2021_08_159
crossref_primary_10_1016_j_compbiomed_2024_108971
crossref_primary_10_1097_RCT_0000000000001565
crossref_primary_10_1109_ACCESS_2023_3347545
crossref_primary_10_1016_j_engappai_2022_104959
crossref_primary_10_32604_cmc_2022_030698
crossref_primary_10_1038_s41598_025_92776_1
crossref_primary_10_1016_j_neuri_2022_100084
crossref_primary_10_1016_j_bbe_2021_11_004
crossref_primary_10_1016_j_smhl_2023_100430
crossref_primary_10_1016_j_bspc_2023_105569
crossref_primary_10_1002_jmri_28695
crossref_primary_10_1016_j_csbj_2021_05_023
crossref_primary_10_1016_j_iswa_2025_200492
crossref_primary_10_1016_j_ultrasmedbio_2021_03_038
crossref_primary_10_1016_j_jii_2022_100366
crossref_primary_10_3390_axioms11010015
crossref_primary_10_1016_j_ecolind_2023_111246
crossref_primary_10_1142_S0129054122420047
crossref_primary_10_3390_brainsci13020348
crossref_primary_10_1016_j_bspc_2022_104075
crossref_primary_10_1016_j_compeleceng_2022_108105
crossref_primary_10_3390_jimaging10120296
crossref_primary_10_1007_s12539_023_00571_1
crossref_primary_10_1002_btm2_10553
crossref_primary_10_13005_bpj_2124
crossref_primary_10_1007_s00521_024_09757_0
crossref_primary_10_1016_j_brainres_2023_148300
crossref_primary_10_3390_tomography8040161
crossref_primary_10_1109_ACCESS_2024_3497346
crossref_primary_10_1016_j_neunet_2023_11_006
crossref_primary_10_1007_s00521_023_08281_x
crossref_primary_10_1016_j_compmedimag_2023_102313
crossref_primary_10_1007_s40747_021_00563_y
crossref_primary_10_1016_j_patrec_2020_10_017
crossref_primary_10_1016_j_knosys_2024_112003
crossref_primary_10_3390_app10144915
crossref_primary_10_1016_j_envpol_2021_117884
crossref_primary_10_1049_cit2_12276
crossref_primary_10_32604_cmc_2023_033920
crossref_primary_10_1007_s12204_023_2625_8
crossref_primary_10_31202_ecjse_1169424
crossref_primary_10_1007_s11227_020_03572_9
crossref_primary_10_1007_s11042_024_18315_8
crossref_primary_10_1177_20552076241286140
crossref_primary_10_32604_cmc_2022_029140
crossref_primary_10_2174_1573405617666210923144739
crossref_primary_10_1109_TITS_2021_3127681
crossref_primary_10_1016_j_compbiomed_2021_104543
crossref_primary_10_1002_jmri_28112
crossref_primary_10_1109_ACCESS_2023_3242666
crossref_primary_10_1007_s13369_023_08607_w
crossref_primary_10_1007_s10489_024_05688_4
crossref_primary_10_1007_s00405_022_07455_y
crossref_primary_10_3390_bioengineering10020147
crossref_primary_10_3389_fpubh_2022_959667
crossref_primary_10_1016_j_compbiomed_2020_104115
crossref_primary_10_59313_jsr_a_1293119
crossref_primary_10_1002_ima_22554
crossref_primary_10_1016_j_tust_2024_106085
crossref_primary_10_1002_ima_22558
crossref_primary_10_32604_iasc_2023_032391
crossref_primary_10_1007_s00521_022_07934_7
crossref_primary_10_1016_j_neunet_2023_10_010
crossref_primary_10_3389_fnins_2023_1269100
crossref_primary_10_1038_s41598_024_73803_z
crossref_primary_10_1016_j_softx_2025_102088
crossref_primary_10_3389_fonc_2023_1248452
crossref_primary_10_3390_mi13010015
crossref_primary_10_1186_s12911_022_01826_5
crossref_primary_10_1080_13682199_2023_2262259
crossref_primary_10_3390_diagnostics13050864
crossref_primary_10_1016_j_ijar_2021_04_010
crossref_primary_10_1155_2024_3819801
crossref_primary_10_32604_csse_2022_020810
crossref_primary_10_1016_j_eswa_2024_125443
crossref_primary_10_1007_s40846_024_00860_0
crossref_primary_10_1515_bmt_2021_0070
crossref_primary_10_1016_j_compbiomed_2024_109507
crossref_primary_10_3390_s25051397
crossref_primary_10_1007_s11042_022_12106_9
crossref_primary_10_1016_j_measen_2022_100426
crossref_primary_10_3390_bdcc8090097
crossref_primary_10_1016_j_future_2022_04_025
crossref_primary_10_3390_info16030188
crossref_primary_10_1007_s11042_023_17760_1
crossref_primary_10_4015_S1016237224500273
crossref_primary_10_36306_konjes_1078358
Cites_doi 10.1016/j.compbiomed.2018.04.004
10.1109/TMI.2019.2894349
10.1016/j.cogsys.2018.12.015
10.1371/journal.pone.0157112
10.1016/j.bspc.2017.07.007
10.1016/j.compbiomed.2018.10.011
10.3389/fnins.2018.00804
10.1007/s40846-016-0182-4
10.1016/j.procs.2017.11.400
10.1109/LSP.2017.2654803
10.1109/TKDE.2009.191
10.1007/s13755-018-0057-x
10.1016/j.compbiomed.2018.02.004
10.1109/TNNLS.2014.2330900
10.1016/j.cogsys.2018.12.007
10.1371/journal.pone.0140381
10.1109/ACCESS.2019.2892455
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
2019. Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: 2019. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2019.103345
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
ExternalDocumentID 31279167
10_1016_j_compbiomed_2019_103345
S0010482519302148
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
M0N
RIG
AAYXX
AFCTW
AGRNS
ALIPV
CITATION
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c525t-8fa35ee803cf75785c25cd8ce5d10fd2f9a42ca1d4aa846ffd084da974bb3b553
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Fri Jul 11 05:19:34 EDT 2025
Wed Aug 13 08:08:29 EDT 2025
Wed Feb 19 02:30:57 EST 2025
Tue Jul 01 03:28:33 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
Fri Feb 23 02:24:30 EST 2024
Tue Aug 26 16:33:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Brain tumor
Support vector machine
Transfer learning
Convolutional neural network
Computer-aided diagnosis
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-8fa35ee803cf75785c25cd8ce5d10fd2f9a42ca1d4aa846ffd084da974bb3b553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31279167
PQID 2280421657
PQPubID 1226355
ParticipantIDs proquest_miscellaneous_2253287892
proquest_journals_2280421657
pubmed_primary_31279167
crossref_citationtrail_10_1016_j_compbiomed_2019_103345
crossref_primary_10_1016_j_compbiomed_2019_103345
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103345
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Talo, Baloglu, Acharya (bib14) 2019; 54
Cheng, Yang, Huang, Huang, Jiang, Chen (bib18) 2016; 11
Shao, Zhu, Li (bib7) 2015; 26
Pashaei, Sajedi, Jazayeri (bib21) 2018
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Rabinovich (bib25) 2015
Deniz, Şengür, Kadiroğlu, Guo, Bajaj, Budak (bib9) 2018; 6
Swati, Zhao, Kabir, Ali, Zakir, Ahmad, Lu (bib16) 2019; 7
Zhou, Zhang, Chen, Zhao, Yin, Jiang (bib8) 2019; 12
Abiwinanda, Hanif, Hesaputra, Handayani, Mengko (bib20) 2018
Yang, Yan, Zhang, Han, Nan, Hu, Ge (bib13) 2018; 12
Cheng, Huang, Cao, Yang, Yang, Yun, Feng (bib17) 2015; 10
Liu, Hall, Goldgof, Zhou, Gatenby, Ahmed (bib11) 2016
bib26
Zuo, Fan, Blasch, Ling (bib5) 2017; 24
Kumar, Dabas, Godara (bib1) 2017; 122
Gu, Lu, Yang, Zhang, Yu, Zhao, Zhou (bib4) 2018; 103
Ismael, Abdel-Qader (bib19) 2018
Mohan, Subashini (bib2) 2018; 39
Charron, Lallement, Jarnet, Noblet, Clavier, Meyer (bib6) 2018; 95
Xue, Zhang, Feng, Wang (bib27) 2016; 36
Yousefi, Krzyz̀ak, Suen (bib3) 2018; 96
Tan, Sun, Kong, Zhang, Yang, Liu (bib23) 2018
Ahmed, Hall, Goldgof, Liu, Gatenby (bib12) 2017; 10134
Jain, Jain, Aggarwal, Hemanth (bib15) 2019
Hussein, Kandel, Bolan, Wallace, Bagci (bib10) 2019
Pan, Yang (bib24) 2010; 22
Afshar, Plataniotis, Mohammadi (bib22) 2019
Cheng (10.1016/j.compbiomed.2019.103345_bib18) 2016; 11
Ahmed (10.1016/j.compbiomed.2019.103345_bib12) 2017; 10134
Ismael (10.1016/j.compbiomed.2019.103345_bib19) 2018
Liu (10.1016/j.compbiomed.2019.103345_bib11) 2016
Szegedy (10.1016/j.compbiomed.2019.103345_bib25) 2015
Deniz (10.1016/j.compbiomed.2019.103345_bib9) 2018; 6
Shao (10.1016/j.compbiomed.2019.103345_bib7) 2015; 26
Swati (10.1016/j.compbiomed.2019.103345_bib16) 2019; 7
Zhou (10.1016/j.compbiomed.2019.103345_bib8) 2019; 12
Pan (10.1016/j.compbiomed.2019.103345_bib24) 2010; 22
Yang (10.1016/j.compbiomed.2019.103345_bib13) 2018; 12
Talo (10.1016/j.compbiomed.2019.103345_bib14) 2019; 54
Kumar (10.1016/j.compbiomed.2019.103345_bib1) 2017; 122
Hussein (10.1016/j.compbiomed.2019.103345_bib10) 2019
Xue (10.1016/j.compbiomed.2019.103345_bib27) 2016; 36
Charron (10.1016/j.compbiomed.2019.103345_bib6) 2018; 95
Mohan (10.1016/j.compbiomed.2019.103345_bib2) 2018; 39
Pashaei (10.1016/j.compbiomed.2019.103345_bib21) 2018
Jain (10.1016/j.compbiomed.2019.103345_bib15) 2019
Cheng (10.1016/j.compbiomed.2019.103345_bib17) 2015; 10
Yousefi (10.1016/j.compbiomed.2019.103345_bib3) 2018; 96
Tan (10.1016/j.compbiomed.2019.103345_bib23) 2018
Zuo (10.1016/j.compbiomed.2019.103345_bib5) 2017; 24
Afshar (10.1016/j.compbiomed.2019.103345_bib22) 2019
Gu (10.1016/j.compbiomed.2019.103345_bib4) 2018; 103
Abiwinanda (10.1016/j.compbiomed.2019.103345_bib20) 2018
References_xml – volume: 95
  start-page: 43
  year: 2018
  end-page: 54
  ident: bib6
  article-title: Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network
  publication-title: Comput. Biol. Med.
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: bib24
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 10134
  start-page: 101342E
  year: 2017
  ident: bib12
  article-title: Fine-tuning convolutional deep features for MRI based brain tumor classification
  publication-title: International Society for Optics and Photonics Medical Imaging 2017: Computer-Aided Diagnosis
– volume: 96
  start-page: 283
  year: 2018
  end-page: 293
  ident: bib3
  article-title: Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib25
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2019
  ident: bib15
  article-title: Convolutional neural network based Alzheimer's disease classification from magnetic resonance brain images
  publication-title: Cogn. Syst. Res.
– start-page: 1368
  year: 2019
  end-page: 1372
  ident: bib22
  article-title: Capsule networks for brain tumor classification based on MRI images and course tumor boundaries
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 26
  start-page: 1019
  year: 2015
  end-page: 1034
  ident: bib7
  article-title: Transfer learning for visual categorization: a survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 39
  start-page: 139
  year: 2018
  end-page: 161
  ident: bib2
  article-title: MRI based medical image analysis: survey on brain tumor grade classification
  publication-title: Biomed. Signal Proces.
– volume: 122
  start-page: 510
  year: 2017
  end-page: 517
  ident: bib1
  article-title: Classification of brain MRI tumor images: a hybrid approach
  publication-title: Procedia Comput. Sci.
– volume: 12
  start-page: 292
  year: 2019
  end-page: 300
  ident: bib8
  article-title: A deep learning-based radiomics model for differentiating benign and malignant renal tumors, Transl
  publication-title: Oncol.
– volume: 54
  start-page: 176
  year: 2019
  end-page: 188
  ident: bib14
  article-title: Application of deep transfer learning for automated brain abnormality classification using MR images
  publication-title: Cogn. Syst. Res.
– ident: bib26
  article-title: Figshare brain tumor dataset
– start-page: 183
  year: 2018
  end-page: 189
  ident: bib20
  article-title: Brain tumor classification using convolutional neural network
  publication-title: Springer World Congress on Medical Physics and Biomedical Engineering
– volume: 103
  start-page: 220
  year: 2018
  end-page: 231
  ident: bib4
  article-title: Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs
  publication-title: Comput. Biol. Med.
– volume: 24
  start-page: 289
  year: 2017
  end-page: 293
  ident: bib5
  article-title: Combining convolutional and recurrent neural networks for human skin detection
  publication-title: IEEE Signal Process. Lett.
– volume: 7
  start-page: 17809
  year: 2019
  end-page: 17822
  ident: bib16
  article-title: Content-based brain tumor retrieval for MR images using transfer learning
  publication-title: IEEE Access
– volume: 36
  start-page: 755
  year: 2016
  end-page: 764
  ident: bib27
  article-title: CNN-SVM for microvascular morphological type recognition with data augmentation
  publication-title: J. Med. Biol. Eng.
– volume: 6
  start-page: 18
  year: 2018
  ident: bib9
  article-title: Transfer learning based histopathologic image classification for breast cancer detection
  publication-title: Health Inf. Sci. Syst.
– start-page: 314
  year: 2018
  end-page: 319
  ident: bib21
  article-title: Brain tumor classification via convolutional neural network and extreme learning machines
  publication-title: IEEE 8th International Conference on Computer and Knowledge Engineering
– year: 2019
  ident: bib10
  article-title: Lung and pancreatic tumor characterization in the deep learning era: novel supervised and unsupervised learning approaches
  publication-title: IEEE Trans. Med. Imaging
– volume: 10
  year: 2015
  ident: bib17
  article-title: Enhanced performance of brain tumor classification via tumor region augmentation and partition
  publication-title: PLoS One
– volume: 12
  year: 2018
  ident: bib13
  article-title: Glioma grading on conventional MR images: a deep learning study with transfer learning
  publication-title: Front. Neurosci.
– volume: 11
  year: 2016
  ident: bib18
  article-title: Retrieval of brain tumors by adaptive spatial pooling and Fisher vector representation
  publication-title: PLoS One
– start-page: 235
  year: 2016
  end-page: 242
  ident: bib11
  article-title: Exploring deep features from brain tumor magnetic resonance images via transfer learning
  publication-title: IEEE International Joint Conference on Neural Networks
– start-page: 270
  year: 2018
  end-page: 279
  ident: bib23
  article-title: A survey on deep transfer learning
  publication-title: Springer International Conference on Artificial Neural Networks
– start-page: 0252
  year: 2018
  end-page: 0257
  ident: bib19
  article-title: Brain tumor classification via statistical features and back-propagation neural network
  publication-title: IEEE International Conference on Electro/Information Technology
– volume: 96
  start-page: 283
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103345_bib3
  article-title: Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.04.004
– year: 2019
  ident: 10.1016/j.compbiomed.2019.103345_bib10
  article-title: Lung and pancreatic tumor characterization in the deep learning era: novel supervised and unsupervised learning approaches
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2894349
– start-page: 0252
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103345_bib19
  article-title: Brain tumor classification via statistical features and back-propagation neural network
– year: 2019
  ident: 10.1016/j.compbiomed.2019.103345_bib15
  article-title: Convolutional neural network based Alzheimer's disease classification from magnetic resonance brain images
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.12.015
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103345_bib18
  article-title: Retrieval of brain tumors by adaptive spatial pooling and Fisher vector representation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0157112
– volume: 39
  start-page: 139
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103345_bib2
  article-title: MRI based medical image analysis: survey on brain tumor grade classification
  publication-title: Biomed. Signal Proces.
  doi: 10.1016/j.bspc.2017.07.007
– volume: 103
  start-page: 220
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103345_bib4
  article-title: Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.10.011
– start-page: 183
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103345_bib20
  article-title: Brain tumor classification using convolutional neural network
– volume: 12
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103345_bib13
  article-title: Glioma grading on conventional MR images: a deep learning study with transfer learning
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00804
– volume: 36
  start-page: 755
  issue: 6
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103345_bib27
  article-title: CNN-SVM for microvascular morphological type recognition with data augmentation
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-016-0182-4
– volume: 122
  start-page: 510
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103345_bib1
  article-title: Classification of brain MRI tumor images: a hybrid approach
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.400
– volume: 24
  start-page: 289
  issue: 3
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103345_bib5
  article-title: Combining convolutional and recurrent neural networks for human skin detection
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2017.2654803
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.compbiomed.2019.103345_bib24
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 10134
  start-page: 101342E
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103345_bib12
  article-title: Fine-tuning convolutional deep features for MRI based brain tumor classification
– volume: 6
  start-page: 18
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103345_bib9
  article-title: Transfer learning based histopathologic image classification for breast cancer detection
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1007/s13755-018-0057-x
– start-page: 235
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103345_bib11
  article-title: Exploring deep features from brain tumor magnetic resonance images via transfer learning
– volume: 95
  start-page: 43
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103345_bib6
  article-title: Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.02.004
– start-page: 270
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103345_bib23
  article-title: A survey on deep transfer learning
– volume: 26
  start-page: 1019
  issue: 5
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103345_bib7
  article-title: Transfer learning for visual categorization: a survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2330900
– volume: 12
  start-page: 292
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103345_bib8
  article-title: A deep learning-based radiomics model for differentiating benign and malignant renal tumors, Transl
  publication-title: Oncol.
– start-page: 1368
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103345_bib22
  article-title: Capsule networks for brain tumor classification based on MRI images and course tumor boundaries
– volume: 54
  start-page: 176
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103345_bib14
  article-title: Application of deep transfer learning for automated brain abnormality classification using MR images
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.12.007
– start-page: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103345_bib25
  article-title: Going deeper with convolutions
– volume: 10
  issue: 10
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103345_bib17
  article-title: Enhanced performance of brain tumor classification via tumor region augmentation and partition
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140381
– volume: 7
  start-page: 17809
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103345_bib16
  article-title: Content-based brain tumor retrieval for MR images using transfer learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2892455
– start-page: 314
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103345_bib21
  article-title: Brain tumor classification via convolutional neural network and extreme learning machines
SSID ssj0004030
Score 2.6681345
Snippet Brain tumor classification is an important problem in computer-aided diagnosis (CAD) for medical applications. This paper focuses on a 3-class classification...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103345
SubjectTerms Accuracy
Algorithms
Brain
Brain cancer
Brain research
Brain tumor
Brain tumors
Breast cancer
Classification
Computer-aided diagnosis
Concept learning
Conflicts of interest
Convolutional neural network
Datasets
Deep learning
Feature extraction
Glioma
Image classification
Image retrieval
Learning
Magnetic resonance imaging
Measurement methods
Medical diagnosis
Medical imaging
Meningioma
Neural networks
NMR
Nuclear magnetic resonance
Pituitary
Pituitary gland
Support vector machine
Transfer learning
Tumors
Wavelet transforms
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46QbyIv51OieC12DZJ0-JBdDiGsJ0c7BbSJB2KrnPr_PvNa9LtorJz-0r78vLypfm-9xC6hSgikpogpRkNqI55kCsiA0WS1GRccVrLxwbDpD-iL2M29j_cFp5W2eTEOlHrUsE_8jso20LjKGH8YfYVQNcoOF31LTS20Q6ULoOo5mO-1kWGxElQbK6hdivkmTyO3wWUbSdxB4JXBupzAqKm35env-BnvQz1DtC-x4_40Q34Idoy0yO0O_An5Meo_wQ9H3C1_CznWAE0Bi5Q7X4MHPcJ1sbMcHc4xIWpi3ou8PebxFUNYM0c-zYSkxM06j2_dvuB75YQKBazKkgLSZgxaUhUAUXqmYpr4b9hOgoLHReZpLGSkaZSWtBRFDpMqZZ2P5HnJGeMnKLWtJyac4Str1PKlCQR0TaRMknDIicW6CRRonOTtBFvnCSULyUOHS0-RMMZexdr9wpwr3DubaNoZTlz5TQ2sMmacRCNXNQmOGFz_ga29ytbDykcVNjQutMMu_BTeyHWgdhGN6vLdlLCSYucmnIJ9zBit6JpFrfRmQuX1eeSKOYWk_OL_x9-ifbgTRzXsINa1Xxpriz-qfLrOsh_AAbyAxg
  priority: 102
  providerName: ProQuest
Title Brain tumor classification using deep CNN features via transfer learning
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519302148
https://dx.doi.org/10.1016/j.compbiomed.2019.103345
https://www.ncbi.nlm.nih.gov/pubmed/31279167
https://www.proquest.com/docview/2280421657
https://www.proquest.com/docview/2253287892
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbKX0XZfWT_QYK9ebX1YMn1qQ7NspWaMFfImZEkuGVsSUqeP_durk-SUQgeBvdjY1oF8Op1O6Pe7Q-gzWBHVzGWSVSxjloisMVRnhpbSVcIIFuhj13U5vmHfJ3yyhYY9FwZglcn3R58evHV6c5q0ebqYToHj67cSgXlJIfEXEH4ZE2DlXx6eYB4sp5GG4v0NtE5onojxAth2pLkDyKsCBjoFYtPLS9S_QtCwFI320OsUQ-Lz2M19tOVmB2j3Op2Sv0HjC6j7gLvV3_kSGwiPAQ8UhgADzv0WW-cWeFjXuHUhsecdvp9q3IUg1i1xKiVx-xbdjC5_DcdZqpiQGU54l8lWU-6czKlpIVE9NySQ_x23Rd5a0laaEaMLy7T2gUfb2lwyq_2eomlowzl9h7Zn85n7gDAhUjJuNC2o9c6Ua5a3DfXBTlmUtnHlAIleScqkdOJQ1eKP6nFjv9WTehWoV0X1DlCxllzElBobyFT9OKieMuqdnPJ-fwPZs7XsM9PaUPqoH3aVpvedghxCjBQlFwP0af3ZT0w4bdEzN19BG079dlRWZIDeR3NZ_y4tiPBxufj4X107RK_gKcIRj9B2t1y5Yx8idc1JmAP-KibCX-Xo6wnaOf92Na79_eKy_vHzEY4VEzo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRSpcEOXVlAKLBEcLex9-CCFECyGlTU6t1Nuy3l1XrWgSEoeqf4rfyIzXTi5Q5dJzMlYyM5n5Nvt9MwBvKYuEkT7KZSEj6XgWlVaYyIo090VmM9nIx4ajdHAqv5-psw3402lhiFbZ1cSmULuJpf_I39PYFsmTVGWfpr8i2hpFt6vdCo2QFkf-5hqPbPOPh18wvu847389ORhE7VaByCqu6iivjFDe57GwFQ1zV5Y3AnmvXBJXjleFkdyaxEljsDlXlYtz6Qzi7rIUpaItEVjy70mBnZyU6f1vKx1mLILkBWubxKNXyxwKfDKiiAdJPRHKClK7CxJR_bsd_g_uNm2v_wgetniVfQ4Jtg0bfvwYtobtjfwTGOzTjglWL64mM2YJihP3qAk3I079OXPeT9nBaMQq3wwRnbPfF4bVDWD2M9aurTh_Cqd34sdnsDmejP0OMIxtLpU1IhEOC7cyMq5KgcAqTVJX-rQHWeckbdvR5bRB46fuOGqXeuVeTe7Vwb09SJaW0zC-Yw2boouD7uSpWFA19pg1bD8sbVsIE6DJmtZ7Xdh1W0rmepX4PXizfBmLAN3smLGfLOg9SuDRNy94D56HdFl-XZHwDM8A2e7tD38N9wcnw2N9fDg6egEP6FMFnuMebNazhX-J2KsuXzUJz-DHXf_C_gLMTEGs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqVRxQbwJLbBIcLSw9-GHEEL0EaWUWhWiUm_Leh9VEU1C4oD4a_w6drzr5AIol57tseyZ2dlvvN_MALxEL2KK26TkFU-4oUXSaKYSzfLSVoUueFc-dlrn43P-4UJcbMHvvhYGaZV9TOwCtZlq_Ef-Gtu2cJrlPoF3kRZxdjh6N_ue4AQpPGntx2kEFzmxv3769G3x9vjQ2_oVpaOjzwfjJE4YSLSgok1Kp5iwtkyZdtjYXWjaFctbYbLUGeoqxalWmeFK-Y3aOZOW3CiPwZuGNQInRvjwv11gVjSA7f2j-uzTuiozZaEAxkc67hOxyCMK7DIkjIcCe6SXVVj7zrCk6u-b47_Ab7cJju7A7Yheyfvgbndhy07uwc5pPJ-_D-N9nDhB2uX1dE40AnNkInXGJ8iwvyTG2hk5qGvibNdSdEF-XCnSdvDZzkkcYnH5AM5vRJMPYTCZTuxjIN7SJRdasYwZH8aF4qlrmIdZeZabxuZDKHolSR0bmeM8jW-yZ6x9lWv1SlSvDOodQraSnIVmHhvIVL0dZF-s6sOr9DvOBrJvVrIR0ASgsqH0Xm92GQPLQq6XwRBerC77kIDnPGpip0u8RzCfCJcVHcKj4C6rz2UZLXxGUDz5_8Ofw45fXfLjcX2yC7fwpQLpcQ8G7Xxpn3og1jbPoscT-HLTi-wPC25HPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+tumor+classification+using+deep+CNN+features+via+transfer+learning&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Deepak%2C+S&rft.au=Ameer%2C+P+M&rft.date=2019-08-01&rft.eissn=1879-0534&rft.volume=111&rft.spage=103345&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103345&rft_id=info%3Apmid%2F31279167&rft.externalDocID=31279167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon