Brain tumor classification using deep CNN features via transfer learning
Brain tumor classification is an important problem in computer-aided diagnosis (CAD) for medical applications. This paper focuses on a 3-class classification problem to differentiate among glioma, meningioma and pituitary tumors, which form three prominent types of brain tumor. The proposed classifi...
Saved in:
Published in | Computers in biology and medicine Vol. 111; p. 103345 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.08.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain tumor classification is an important problem in computer-aided diagnosis (CAD) for medical applications. This paper focuses on a 3-class classification problem to differentiate among glioma, meningioma and pituitary tumors, which form three prominent types of brain tumor. The proposed classification system adopts the concept of deep transfer learning and uses a pre-trained GoogLeNet to extract features from brain MRI images. Proven classifier models are integrated to classify the extracted features. The experiment follows a patient-level five-fold cross-validation process, on MRI dataset from figshare. The proposed system records a mean classification accuracy of 98%, outperforming all state-of-the-art methods. Other performance measures used in the study are the area under the curve (AUC), precision, recall, F-score and specificity. In addition, the paper addresses a practical aspect by evaluating the system with fewer training samples. The observations of the study imply that transfer learning is a useful technique when the availability of medical images is limited. The paper provides an analytical discussion on misclassifications also. |
---|---|
AbstractList | Brain tumor classification is an important problem in computer-aided diagnosis (CAD) for medical applications. This paper focuses on a 3-class classification problem to differentiate among glioma, meningioma and pituitary tumors, which form three prominent types of brain tumor. The proposed classification system adopts the concept of deep transfer learning and uses a pre-trained GoogLeNet to extract features from brain MRI images. Proven classifier models are integrated to classify the extracted features. The experiment follows a patient-level five-fold cross-validation process, on MRI dataset from figshare. The proposed system records a mean classification accuracy of 98%, outperforming all state-of-the-art methods. Other performance measures used in the study are the area under the curve (AUC), precision, recall, F-score and specificity. In addition, the paper addresses a practical aspect by evaluating the system with fewer training samples. The observations of the study imply that transfer learning is a useful technique when the availability of medical images is limited. The paper provides an analytical discussion on misclassifications also. Brain tumor classification is an important problem in computer-aided diagnosis (CAD) for medical applications. This paper focuses on a 3-class classification problem to differentiate among glioma, meningioma and pituitary tumors, which form three prominent types of brain tumor. The proposed classification system adopts the concept of deep transfer learning and uses a pre-trained GoogLeNet to extract features from brain MRI images. Proven classifier models are integrated to classify the extracted features. The experiment follows a patient-level five-fold cross-validation process, on MRI dataset from figshare. The proposed system records a mean classification accuracy of 98%, outperforming all state-of-the-art methods. Other performance measures used in the study are the area under the curve (AUC), precision, recall, F-score and specificity. In addition, the paper addresses a practical aspect by evaluating the system with fewer training samples. The observations of the study imply that transfer learning is a useful technique when the availability of medical images is limited. The paper provides an analytical discussion on misclassifications also.Brain tumor classification is an important problem in computer-aided diagnosis (CAD) for medical applications. This paper focuses on a 3-class classification problem to differentiate among glioma, meningioma and pituitary tumors, which form three prominent types of brain tumor. The proposed classification system adopts the concept of deep transfer learning and uses a pre-trained GoogLeNet to extract features from brain MRI images. Proven classifier models are integrated to classify the extracted features. The experiment follows a patient-level five-fold cross-validation process, on MRI dataset from figshare. The proposed system records a mean classification accuracy of 98%, outperforming all state-of-the-art methods. Other performance measures used in the study are the area under the curve (AUC), precision, recall, F-score and specificity. In addition, the paper addresses a practical aspect by evaluating the system with fewer training samples. The observations of the study imply that transfer learning is a useful technique when the availability of medical images is limited. The paper provides an analytical discussion on misclassifications also. |
ArticleNumber | 103345 |
Author | Deepak, S. Ameer, P.M. |
Author_xml | – sequence: 1 givenname: S. surname: Deepak fullname: Deepak, S. email: deepak_p180039ec@nitc.ac.in – sequence: 2 givenname: P.M. surname: Ameer fullname: Ameer, P.M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31279167$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1LHDEUhkOx1FX7F0rAG29mm8-dzI1UF1sLYm_qdcgkJyXbmWSbzAj-e6OrFPZqrwKH5zwnvO8JOoopAkKYkiUldPV1s7Rp3PYhjeCWjNCujjkX8gNaUNV2DZFcHKEFIZQ0QjF5jE5K2RBCBOHkEzrmlLUdXbULdHudTYh4mseUsR1MKcEHa6aQIp5LiH-wA9ji9f099mCmOUPBj8HgKZtYPGQ8gMmxcmfoozdDgc9v7yl6-H7ze33b3P368XN9dddYyeTUKG-4BFCEW9_KVknLpHXKgnSUeMd8ZwSzhjphjBIr7x1RwpmuFX3Peyn5KbrYebc5_ZuhTHoMxcIwmAhpLpoxyZlqVccqer6HbtKcY_1dpRQRjK5kW6kvb9Tc1zj1NofR5Cf9nlEFLneAzamUDF7bML0mVEMIg6ZEv5SiN_p_KfqlFL0rpQrUnuD9xgGr17tVqJE-Bsi62ADRggsZ7KRdCodIvu1J7BBibXn4C0-HKZ4BTxjCTg |
CitedBy_id | crossref_primary_10_3390_diagnostics12102484 crossref_primary_10_32604_cmc_2023_038748 crossref_primary_10_1016_j_cmpb_2023_107387 crossref_primary_10_1016_j_compeleceng_2022_108386 crossref_primary_10_1016_j_jocmr_2024_101126 crossref_primary_10_3390_s22228999 crossref_primary_10_3390_diagnostics11101856 crossref_primary_10_3390_app12147282 crossref_primary_10_1007_s41060_024_00697_5 crossref_primary_10_3390_math10234566 crossref_primary_10_3390_biomedicines12071395 crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1302 crossref_primary_10_3390_life12122036 crossref_primary_10_1007_s11042_020_10335_4 crossref_primary_10_9728_dcs_2020_21_11_2033 crossref_primary_10_1109_ACCESS_2023_3326447 crossref_primary_10_1002_ima_22641 crossref_primary_10_3390_cancers13215546 crossref_primary_10_1002_ima_22763 crossref_primary_10_1007_s10462_024_11049_x crossref_primary_10_3390_app13063680 crossref_primary_10_1007_s40998_022_00557_7 crossref_primary_10_54365_adyumbd_1391157 crossref_primary_10_1016_j_bspc_2023_104777 crossref_primary_10_1016_j_compeleceng_2022_108010 crossref_primary_10_1007_s40998_024_00726_w crossref_primary_10_1007_s00530_021_00884_5 crossref_primary_10_1007_s11227_023_05549_w crossref_primary_10_1016_j_atech_2023_100297 crossref_primary_10_3390_bioengineering11030266 crossref_primary_10_3390_cancers15154002 crossref_primary_10_1007_s11265_022_01757_4 crossref_primary_10_1007_s12652_021_03028_9 crossref_primary_10_1016_j_compmedimag_2024_102373 crossref_primary_10_1016_j_eswa_2021_115805 crossref_primary_10_1016_j_compag_2021_106285 crossref_primary_10_1016_j_compbiomed_2024_109531 crossref_primary_10_1016_j_bspc_2023_105620 crossref_primary_10_1016_j_wneu_2024_03_152 crossref_primary_10_3233_XST_230085 crossref_primary_10_1007_s42979_025_03683_1 crossref_primary_10_1177_20552076241311939 crossref_primary_10_1007_s11548_021_02326_z crossref_primary_10_1007_s10462_021_10127_8 crossref_primary_10_1016_j_mlwa_2021_100212 crossref_primary_10_3233_JIFS_232493 crossref_primary_10_3390_s21062222 crossref_primary_10_1007_s00432_023_04754_7 crossref_primary_10_1016_j_asoc_2022_109631 crossref_primary_10_3390_diagnostics12081793 crossref_primary_10_1007_s11042_023_14828_w crossref_primary_10_1155_2022_7882924 crossref_primary_10_3389_fonc_2022_908873 crossref_primary_10_1016_j_mehy_2019_109413 crossref_primary_10_3389_fonc_2021_762643 crossref_primary_10_1002_ima_22740 crossref_primary_10_7717_peerj_cs_1917 crossref_primary_10_1080_00051144_2024_2315405 crossref_primary_10_1007_s00371_023_02978_9 crossref_primary_10_3389_fonc_2022_835047 crossref_primary_10_1109_JBHI_2021_3100758 crossref_primary_10_1016_j_bspc_2023_104876 crossref_primary_10_1016_j_compbiomed_2021_104564 crossref_primary_10_3390_jimaging7090179 crossref_primary_10_4103_cmrp_cmrp_85_22 crossref_primary_10_1016_j_ejmp_2021_03_003 crossref_primary_10_4108_eetpht_10_5627 crossref_primary_10_3389_fonc_2022_844197 crossref_primary_10_1177_0954411920987964 crossref_primary_10_1177_10732748231169149 crossref_primary_10_1007_s00521_023_09164_x crossref_primary_10_37394_23208_2024_21_17 crossref_primary_10_1080_21681163_2022_2068161 crossref_primary_10_1155_2022_3264367 crossref_primary_10_1002_ima_22975 crossref_primary_10_1155_2023_1224619 crossref_primary_10_1016_j_acra_2022_10_004 crossref_primary_10_1016_j_mineng_2021_107020 crossref_primary_10_1155_2021_5531585 crossref_primary_10_1002_ima_22619 crossref_primary_10_1155_2021_6438861 crossref_primary_10_1016_j_compeleceng_2023_108586 crossref_primary_10_1007_s42979_024_03558_x crossref_primary_10_3390_diagnostics13030551 crossref_primary_10_1109_ACCESS_2022_3153306 crossref_primary_10_1016_j_future_2021_10_006 crossref_primary_10_1109_TITS_2022_3147845 crossref_primary_10_3390_curroncol29100590 crossref_primary_10_1016_j_eswa_2022_119261 crossref_primary_10_1016_j_mehy_2019_109433 crossref_primary_10_1016_j_compbiomed_2022_105857 crossref_primary_10_1007_s11042_023_17644_4 crossref_primary_10_1109_JBHI_2022_3216270 crossref_primary_10_3390_medicina58081090 crossref_primary_10_3389_fphys_2024_1342572 crossref_primary_10_3389_frai_2023_1232640 crossref_primary_10_1007_s00500_022_07163_z crossref_primary_10_1145_3713077 crossref_primary_10_3390_asi3040043 crossref_primary_10_1007_s11227_022_04678_y crossref_primary_10_1109_OJEMB_2022_3217186 crossref_primary_10_1007_s12539_021_00463_2 crossref_primary_10_21205_deufmd_2020226625 crossref_primary_10_1007_s11042_021_10538_3 crossref_primary_10_1142_S0218001423560013 crossref_primary_10_3390_diagnostics11122343 crossref_primary_10_3390_electronics11244178 crossref_primary_10_3389_fonc_2024_1395159 crossref_primary_10_1002_ima_22951 crossref_primary_10_1109_TAI_2024_3423813 crossref_primary_10_1177_09544070241232606 crossref_primary_10_1016_j_bspc_2023_105421 crossref_primary_10_1016_j_bspc_2023_105419 crossref_primary_10_1002_ima_22956 crossref_primary_10_1007_s41870_023_01259_x crossref_primary_10_1007_s41870_024_01830_0 crossref_primary_10_1007_s11042_023_17215_7 crossref_primary_10_1016_j_jocs_2024_102324 crossref_primary_10_1007_s11042_024_19313_6 crossref_primary_10_3390_a17060221 crossref_primary_10_1002_ima_22839 crossref_primary_10_3390_computers12080167 crossref_primary_10_3103_S1060992X24700863 crossref_primary_10_32604_csse_2023_032488 crossref_primary_10_46300_9106_2022_16_70 crossref_primary_10_1002_jmri_29071 crossref_primary_10_1002_jmri_29072 crossref_primary_10_37394_23205_2024_23_25 crossref_primary_10_1016_j_jksuci_2020_08_006 crossref_primary_10_1002_ece3_7970 crossref_primary_10_1007_s00521_022_07099_3 crossref_primary_10_1109_ACCESS_2023_3294562 crossref_primary_10_1016_j_health_2023_100217 crossref_primary_10_1007_s11042_024_20141_x crossref_primary_10_3390_bioengineering11060627 crossref_primary_10_46300_9106_2020_14_137 crossref_primary_10_3389_fonc_2021_668694 crossref_primary_10_1016_j_bspc_2022_104018 crossref_primary_10_1016_j_aei_2020_101055 crossref_primary_10_1109_ACCESS_2020_2978629 crossref_primary_10_1016_j_cmpb_2025_108615 crossref_primary_10_1080_15368378_2024_2401540 crossref_primary_10_4015_S1016237222500442 crossref_primary_10_1007_s12553_022_00648_9 crossref_primary_10_1016_j_asoc_2020_106859 crossref_primary_10_1002_brx2_23 crossref_primary_10_1016_j_compmedimag_2021_101940 crossref_primary_10_3390_info11030155 crossref_primary_10_1109_ACCESS_2023_3317796 crossref_primary_10_1080_03772063_2022_2088628 crossref_primary_10_31590_ejosat_963609 crossref_primary_10_1007_s11042_022_12362_9 crossref_primary_10_3389_fcell_2020_00683 crossref_primary_10_1007_s11042_024_20203_0 crossref_primary_10_1007_s42044_023_00137_w crossref_primary_10_1155_2024_1622294 crossref_primary_10_3390_diagnostics12081850 crossref_primary_10_3390_diagnostics13122110 crossref_primary_10_17780_ksujes_1339884 crossref_primary_10_1007_s00521_024_10168_4 crossref_primary_10_1016_j_spinee_2021_01_022 crossref_primary_10_3389_fnagi_2021_764872 crossref_primary_10_1038_s41598_024_83031_0 crossref_primary_10_4018_IJSWIS_365910 crossref_primary_10_1007_s11102_019_01026_x crossref_primary_10_1016_j_compbiomed_2020_103912 crossref_primary_10_1016_j_compbiomed_2022_105539 crossref_primary_10_1016_j_bspc_2022_104564 crossref_primary_10_1587_transinf_2022EDP7198 crossref_primary_10_7717_peerj_cs_1667 crossref_primary_10_1016_j_jrras_2022_05_014 crossref_primary_10_1016_j_knosys_2022_109370 crossref_primary_10_3390_jimaging9010010 crossref_primary_10_1088_1742_6596_1964_7_072021 crossref_primary_10_1007_s12553_023_00737_3 crossref_primary_10_1080_1206212X_2022_2047443 crossref_primary_10_3389_fmicb_2022_995323 crossref_primary_10_1007_s11831_025_10238_3 crossref_primary_10_3390_jpm11121276 crossref_primary_10_1007_s12652_023_04725_3 crossref_primary_10_3389_fonc_2021_639062 crossref_primary_10_3390_bioengineering10040475 crossref_primary_10_1007_s00521_024_09688_w crossref_primary_10_3390_electronics11071146 crossref_primary_10_1155_2021_7804540 crossref_primary_10_3390_diagnostics12102541 crossref_primary_10_1007_s00521_021_06430_8 crossref_primary_10_1007_s42979_022_01167_0 crossref_primary_10_1155_2022_2092985 crossref_primary_10_1177_14604582221140975 crossref_primary_10_31466_kfbd_1455542 crossref_primary_10_1007_s00371_020_02005_1 crossref_primary_10_1007_s11042_023_17888_0 crossref_primary_10_1038_s41598_025_92020_w crossref_primary_10_1371_journal_pone_0315631 crossref_primary_10_3390_technologies11020040 crossref_primary_10_1007_s11042_022_12482_2 crossref_primary_10_1016_j_ssci_2021_105479 crossref_primary_10_1016_j_bspc_2023_104926 crossref_primary_10_1109_ACCESS_2023_3288017 crossref_primary_10_1109_ACCESS_2023_3289224 crossref_primary_10_1016_j_bbe_2020_05_005 crossref_primary_10_1016_j_ibmed_2024_100168 crossref_primary_10_1016_j_bspc_2024_107250 crossref_primary_10_1007_s10278_020_00347_9 crossref_primary_10_1088_1742_6596_1804_1_012110 crossref_primary_10_3390_jimaging10040081 crossref_primary_10_1007_s00521_024_10629_w crossref_primary_10_2139_ssrn_4607794 crossref_primary_10_1016_j_heliyon_2023_e22203 crossref_primary_10_1007_s00138_020_01069_2 crossref_primary_10_1016_j_compbiomed_2021_105014 crossref_primary_10_1038_s41699_020_00186_w crossref_primary_10_1166_jmihi_2021_3855 crossref_primary_10_1007_s13735_020_00199_7 crossref_primary_10_1007_s11831_023_10041_y crossref_primary_10_3233_JIFS_220308 crossref_primary_10_1049_ipr2_12358 crossref_primary_10_3390_s22093439 crossref_primary_10_1109_TETCI_2024_3448490 crossref_primary_10_1007_s11042_020_10114_1 crossref_primary_10_1007_s00521_021_05841_x crossref_primary_10_1007_s10278_024_01368_4 crossref_primary_10_1016_j_bspc_2023_104988 crossref_primary_10_1038_s41598_024_76445_3 crossref_primary_10_1155_2022_1078056 crossref_primary_10_3390_s22051960 crossref_primary_10_3233_JIFS_223996 crossref_primary_10_1016_j_seta_2022_102990 crossref_primary_10_3389_feart_2023_1285138 crossref_primary_10_1007_s12652_021_03535_9 crossref_primary_10_1007_s11042_022_13545_0 crossref_primary_10_1007_s00500_023_08319_1 crossref_primary_10_1111_exsy_13226 crossref_primary_10_3389_fninf_2024_1403732 crossref_primary_10_4018_IJSSCI_304438 crossref_primary_10_1016_j_compbiomed_2023_106726 crossref_primary_10_1016_j_compbiomed_2023_106966 crossref_primary_10_1016_j_bspc_2022_103544 crossref_primary_10_3390_neuroglia5020008 crossref_primary_10_1007_s00500_022_07457_2 crossref_primary_10_1088_2632_2153_ad65b5 crossref_primary_10_1007_s44196_025_00772_0 crossref_primary_10_1016_j_engappai_2023_106700 crossref_primary_10_1007_s11042_022_13260_w crossref_primary_10_1109_TFUZZ_2024_3372608 crossref_primary_10_32604_cmc_2021_016698 crossref_primary_10_1007_s11760_020_01793_2 crossref_primary_10_1109_TNNLS_2020_2995800 crossref_primary_10_1038_s41574_021_00543_9 crossref_primary_10_1590_1678_4324_2024230705 crossref_primary_10_1117_1_JMI_10_2_024004 crossref_primary_10_1007_s11042_025_20751_z crossref_primary_10_1016_j_bspc_2023_105938 crossref_primary_10_3390_s22249875 crossref_primary_10_1038_s41598_024_68291_0 crossref_primary_10_1007_s11042_024_18454_y crossref_primary_10_1016_j_eswa_2023_120368 crossref_primary_10_3390_diagnostics13122050 crossref_primary_10_1109_ACCESS_2020_3035803 crossref_primary_10_32604_cmc_2023_035584 crossref_primary_10_51583_IJLTEMAS_2024_130907 crossref_primary_10_1109_ACCESS_2023_3281546 crossref_primary_10_47164_ijngc_v14i1_1032 crossref_primary_10_1080_21681163_2022_2083019 crossref_primary_10_22630_MGV_2024_33_3_1 crossref_primary_10_1142_S0218001422510077 crossref_primary_10_1016_j_compbiomed_2020_103818 crossref_primary_10_1371_journal_pone_0306987 crossref_primary_10_3233_IDT_230216 crossref_primary_10_1093_braincomms_fcae372 crossref_primary_10_1016_j_ceh_2024_08_001 crossref_primary_10_1007_s00521_022_07742_z crossref_primary_10_3390_diagnostics14232710 crossref_primary_10_1109_TCBB_2020_3033538 crossref_primary_10_1155_2021_5513500 crossref_primary_10_3390_healthcare11020212 crossref_primary_10_1002_cpe_7031 crossref_primary_10_3390_diagnostics14040383 crossref_primary_10_1016_j_bspc_2022_104542 crossref_primary_10_1016_j_bspc_2022_104536 crossref_primary_10_1080_15368378_2024_2375266 crossref_primary_10_1016_j_bspc_2023_104834 crossref_primary_10_1016_j_jksuci_2023_101810 crossref_primary_10_1108_ACI_09_2023_0022 crossref_primary_10_3390_cancers17010121 crossref_primary_10_1016_j_eij_2024_100565 crossref_primary_10_1007_s13755_022_00203_w crossref_primary_10_1007_s11042_022_12403_3 crossref_primary_10_3934_mbe_2021292 crossref_primary_10_1007_s12553_020_00514_6 crossref_primary_10_1007_s10278_024_00988_0 crossref_primary_10_3390_diagnostics11050744 crossref_primary_10_4218_etrij_2022_0088 crossref_primary_10_1038_s41416_022_02134_5 crossref_primary_10_1016_j_compbiomed_2020_103882 crossref_primary_10_1002_nbm_5307 crossref_primary_10_1016_j_neucom_2023_127216 crossref_primary_10_26634_jaim_1_2_19281 crossref_primary_10_1111_coin_12451 crossref_primary_10_1002_ima_23170 crossref_primary_10_3390_cancers15061837 crossref_primary_10_1038_s41598_023_41407_8 crossref_primary_10_3390_diagnostics14141469 crossref_primary_10_3390_app13137583 crossref_primary_10_1142_S0218001424570088 crossref_primary_10_3390_info14120642 crossref_primary_10_1016_j_bspc_2022_103631 crossref_primary_10_1002_mp_15612 crossref_primary_10_3390_app142210154 crossref_primary_10_1016_j_jneumeth_2025_110424 crossref_primary_10_1007_s11042_023_14831_1 crossref_primary_10_1016_j_compbiomed_2020_103993 crossref_primary_10_3390_bioengineering11050410 crossref_primary_10_1155_2022_3236305 crossref_primary_10_17694_bajece_1346818 crossref_primary_10_3390_life13020349 crossref_primary_10_1111_coin_12687 crossref_primary_10_1109_ACCESS_2024_3446190 crossref_primary_10_32604_iasc_2023_035905 crossref_primary_10_1007_s00330_022_08783_7 crossref_primary_10_1038_s41467_024_54424_6 crossref_primary_10_1007_s00521_020_05671_3 crossref_primary_10_1109_ACCESS_2024_3413008 crossref_primary_10_1049_ipr2_12990 crossref_primary_10_1038_s43856_022_00199_0 crossref_primary_10_1007_s42979_023_02446_0 crossref_primary_10_1038_s41598_025_85874_7 crossref_primary_10_1051_e3sconf_202447700082 crossref_primary_10_1155_2022_4822235 crossref_primary_10_1007_s11042_024_20366_w crossref_primary_10_1016_j_bspc_2024_106312 crossref_primary_10_1016_j_bspc_2021_103356 crossref_primary_10_3934_mbe_2021146 crossref_primary_10_3390_app12157554 crossref_primary_10_1016_j_asoc_2022_109197 crossref_primary_10_1016_j_bspc_2021_103359 crossref_primary_10_3390_diagnostics13122094 crossref_primary_10_32628_CSEIT2410326 crossref_primary_10_3389_fneur_2021_752119 crossref_primary_10_1007_s10462_022_10337_8 crossref_primary_10_1007_s40747_024_01530_z crossref_primary_10_3389_fmolb_2023_1250596 crossref_primary_10_2174_1573405618666220415122843 crossref_primary_10_1007_s00500_021_05748_8 crossref_primary_10_1007_s11042_024_18129_8 crossref_primary_10_1007_s11042_024_18489_1 crossref_primary_10_3390_life12071084 crossref_primary_10_1016_j_bspc_2022_103644 crossref_primary_10_1016_j_enconman_2024_118718 crossref_primary_10_3389_fnins_2021_679847 crossref_primary_10_1109_ACCESS_2024_3460380 crossref_primary_10_1007_s00414_025_03453_x crossref_primary_10_34248_bsengineering_938520 crossref_primary_10_1016_j_knosys_2024_111981 crossref_primary_10_1186_s40537_024_01050_0 crossref_primary_10_1002_cpe_7542 crossref_primary_10_1016_j_saa_2024_124454 crossref_primary_10_1002_cpe_7541 crossref_primary_10_1016_j_prime_2024_100723 crossref_primary_10_1007_s00500_024_09830_9 crossref_primary_10_1142_S0218001421570056 crossref_primary_10_1016_j_bspc_2024_106256 crossref_primary_10_3390_bdcc7010025 crossref_primary_10_1080_21681163_2022_2111719 crossref_primary_10_1080_13682199_2023_2211890 crossref_primary_10_1111_exsy_13294 crossref_primary_10_35377_saucis___1518139 crossref_primary_10_1155_2020_9673724 crossref_primary_10_3389_fonc_2020_590756 crossref_primary_10_1002_cbf_3870 crossref_primary_10_1080_21655979_2021_1930333 crossref_primary_10_4018_IJSI_293269 crossref_primary_10_1007_s11548_024_03107_0 crossref_primary_10_3390_app13010312 crossref_primary_10_1016_j_compbiomed_2021_104829 crossref_primary_10_3390_diagnostics13091562 crossref_primary_10_32604_iasc_2022_026601 crossref_primary_10_12720_jait_15_9_1035_1046 crossref_primary_10_32604_csse_2023_037050 crossref_primary_10_32628_IJSRST52310248 crossref_primary_10_1016_j_jneumeth_2024_110247 crossref_primary_10_1007_s42044_024_00220_w crossref_primary_10_1109_ACCESS_2024_3425469 crossref_primary_10_32604_csse_2023_033927 crossref_primary_10_1016_j_compbiomed_2025_109790 crossref_primary_10_1007_s13246_022_01166_8 crossref_primary_10_2139_ssrn_4624936 crossref_primary_10_1016_j_jclepro_2023_139351 crossref_primary_10_1016_j_eswa_2024_124886 crossref_primary_10_1109_ACCESS_2025_3532354 crossref_primary_10_1007_s10845_024_02408_0 crossref_primary_10_3390_diagnostics10080565 crossref_primary_10_1007_s11517_020_02290_x crossref_primary_10_1016_j_tics_2022_07_003 crossref_primary_10_1002_ima_23128 crossref_primary_10_1016_j_bspc_2020_102025 crossref_primary_10_32604_iasc_2022_024538 crossref_primary_10_1155_2021_4793293 crossref_primary_10_1109_ACCESS_2020_2985717 crossref_primary_10_37391_ijeer_100441 crossref_primary_10_1016_j_imavis_2025_105495 crossref_primary_10_3389_fonc_2022_990156 crossref_primary_10_1016_j_asoc_2021_107733 crossref_primary_10_1186_s12880_022_00793_7 crossref_primary_10_1007_s11517_024_03064_5 crossref_primary_10_1007_s00521_022_07953_4 crossref_primary_10_1016_j_heliyon_2023_e23610 crossref_primary_10_1038_s41598_025_87934_4 crossref_primary_10_1016_j_neuri_2021_100013 crossref_primary_10_1109_ACCESS_2020_3038909 crossref_primary_10_1007_s10103_025_04297_y crossref_primary_10_1016_j_eswa_2023_122159 crossref_primary_10_3390_electronics12040964 crossref_primary_10_31796_ogummf_1158526 crossref_primary_10_1007_s42979_023_02360_5 crossref_primary_10_1016_j_asoc_2021_107666 crossref_primary_10_1155_int_6914757 crossref_primary_10_1016_j_bspc_2023_105006 crossref_primary_10_3389_fnins_2022_900519 crossref_primary_10_1016_j_compeleceng_2023_108700 crossref_primary_10_1007_s00234_021_02845_1 crossref_primary_10_1002_lary_30291 crossref_primary_10_1016_j_bspc_2023_105119 crossref_primary_10_3390_biology10090859 crossref_primary_10_3390_s22010372 crossref_primary_10_3390_biomedicines11010184 crossref_primary_10_1016_j_wneu_2022_11_091 crossref_primary_10_53941_ijndi_2023_100008 crossref_primary_10_3390_electronics12040955 crossref_primary_10_1177_02841851241292528 crossref_primary_10_1016_j_biosystemseng_2021_11_016 crossref_primary_10_1109_ACCESS_2023_3326841 crossref_primary_10_3390_cancers16020300 crossref_primary_10_32604_iasc_2024_047921 crossref_primary_10_3389_fonc_2025_1508451 crossref_primary_10_1007_s13369_024_09284_z crossref_primary_10_1142_S1793005725500115 crossref_primary_10_1007_s00521_020_05082_4 crossref_primary_10_1016_j_bspc_2023_105596 crossref_primary_10_1016_j_engappai_2024_109869 crossref_primary_10_1016_j_eswa_2022_118776 crossref_primary_10_1080_21681163_2021_2021111 crossref_primary_10_1007_s12596_023_01485_3 crossref_primary_10_2139_ssrn_4055814 crossref_primary_10_1007_s11227_022_05033_x crossref_primary_10_54097_hset_v4i_919 crossref_primary_10_1016_j_jfranklin_2023_07_015 crossref_primary_10_17341_gazimmfd_762056 crossref_primary_10_1016_j_compbiomed_2022_106183 crossref_primary_10_1016_j_ijin_2022_11_003 crossref_primary_10_1007_s11633_022_1382_8 crossref_primary_10_1007_s12161_022_02362_8 crossref_primary_10_1007_s13042_024_02110_w crossref_primary_10_1016_j_wneu_2023_03_115 crossref_primary_10_3389_fnins_2022_933660 crossref_primary_10_37394_23203_2022_17_22 crossref_primary_10_1002_jmri_27378 crossref_primary_10_1007_s41870_023_01701_0 crossref_primary_10_3233_JIFS_222172 crossref_primary_10_14359_51738344 crossref_primary_10_1016_j_heliyon_2024_e25468 crossref_primary_10_1007_s11831_022_09758_z crossref_primary_10_3389_fnhum_2023_1150120 crossref_primary_10_3390_ijerph20010796 crossref_primary_10_1007_s00521_024_10521_7 crossref_primary_10_1007_s11042_023_17213_9 crossref_primary_10_1016_j_iotcps_2022_05_001 crossref_primary_10_35940_ijsce_D3644_14040924 crossref_primary_10_3390_bioengineering10010018 crossref_primary_10_1089_cmb_2024_0483 crossref_primary_10_1097_AUD_0000000000000794 crossref_primary_10_1016_j_prime_2024_100498 crossref_primary_10_1002_cpe_6541 crossref_primary_10_1007_s40998_021_00426_9 crossref_primary_10_3390_pr11030679 crossref_primary_10_1016_j_patcog_2023_109871 crossref_primary_10_3390_jimaging6060037 crossref_primary_10_1016_j_neucom_2021_08_159 crossref_primary_10_1016_j_compbiomed_2024_108971 crossref_primary_10_1097_RCT_0000000000001565 crossref_primary_10_1109_ACCESS_2023_3347545 crossref_primary_10_1016_j_engappai_2022_104959 crossref_primary_10_32604_cmc_2022_030698 crossref_primary_10_1038_s41598_025_92776_1 crossref_primary_10_1016_j_neuri_2022_100084 crossref_primary_10_1016_j_bbe_2021_11_004 crossref_primary_10_1016_j_smhl_2023_100430 crossref_primary_10_1016_j_bspc_2023_105569 crossref_primary_10_1002_jmri_28695 crossref_primary_10_1016_j_csbj_2021_05_023 crossref_primary_10_1016_j_iswa_2025_200492 crossref_primary_10_1016_j_ultrasmedbio_2021_03_038 crossref_primary_10_1016_j_jii_2022_100366 crossref_primary_10_3390_axioms11010015 crossref_primary_10_1016_j_ecolind_2023_111246 crossref_primary_10_1142_S0129054122420047 crossref_primary_10_3390_brainsci13020348 crossref_primary_10_1016_j_bspc_2022_104075 crossref_primary_10_1016_j_compeleceng_2022_108105 crossref_primary_10_3390_jimaging10120296 crossref_primary_10_1007_s12539_023_00571_1 crossref_primary_10_1002_btm2_10553 crossref_primary_10_13005_bpj_2124 crossref_primary_10_1007_s00521_024_09757_0 crossref_primary_10_1016_j_brainres_2023_148300 crossref_primary_10_3390_tomography8040161 crossref_primary_10_1109_ACCESS_2024_3497346 crossref_primary_10_1016_j_neunet_2023_11_006 crossref_primary_10_1007_s00521_023_08281_x crossref_primary_10_1016_j_compmedimag_2023_102313 crossref_primary_10_1007_s40747_021_00563_y crossref_primary_10_1016_j_patrec_2020_10_017 crossref_primary_10_1016_j_knosys_2024_112003 crossref_primary_10_3390_app10144915 crossref_primary_10_1016_j_envpol_2021_117884 crossref_primary_10_1049_cit2_12276 crossref_primary_10_32604_cmc_2023_033920 crossref_primary_10_1007_s12204_023_2625_8 crossref_primary_10_31202_ecjse_1169424 crossref_primary_10_1007_s11227_020_03572_9 crossref_primary_10_1007_s11042_024_18315_8 crossref_primary_10_1177_20552076241286140 crossref_primary_10_32604_cmc_2022_029140 crossref_primary_10_2174_1573405617666210923144739 crossref_primary_10_1109_TITS_2021_3127681 crossref_primary_10_1016_j_compbiomed_2021_104543 crossref_primary_10_1002_jmri_28112 crossref_primary_10_1109_ACCESS_2023_3242666 crossref_primary_10_1007_s13369_023_08607_w crossref_primary_10_1007_s10489_024_05688_4 crossref_primary_10_1007_s00405_022_07455_y crossref_primary_10_3390_bioengineering10020147 crossref_primary_10_3389_fpubh_2022_959667 crossref_primary_10_1016_j_compbiomed_2020_104115 crossref_primary_10_59313_jsr_a_1293119 crossref_primary_10_1002_ima_22554 crossref_primary_10_1016_j_tust_2024_106085 crossref_primary_10_1002_ima_22558 crossref_primary_10_32604_iasc_2023_032391 crossref_primary_10_1007_s00521_022_07934_7 crossref_primary_10_1016_j_neunet_2023_10_010 crossref_primary_10_3389_fnins_2023_1269100 crossref_primary_10_1038_s41598_024_73803_z crossref_primary_10_1016_j_softx_2025_102088 crossref_primary_10_3389_fonc_2023_1248452 crossref_primary_10_3390_mi13010015 crossref_primary_10_1186_s12911_022_01826_5 crossref_primary_10_1080_13682199_2023_2262259 crossref_primary_10_3390_diagnostics13050864 crossref_primary_10_1016_j_ijar_2021_04_010 crossref_primary_10_1155_2024_3819801 crossref_primary_10_32604_csse_2022_020810 crossref_primary_10_1016_j_eswa_2024_125443 crossref_primary_10_1007_s40846_024_00860_0 crossref_primary_10_1515_bmt_2021_0070 crossref_primary_10_1016_j_compbiomed_2024_109507 crossref_primary_10_3390_s25051397 crossref_primary_10_1007_s11042_022_12106_9 crossref_primary_10_1016_j_measen_2022_100426 crossref_primary_10_3390_bdcc8090097 crossref_primary_10_1016_j_future_2022_04_025 crossref_primary_10_3390_info16030188 crossref_primary_10_1007_s11042_023_17760_1 crossref_primary_10_4015_S1016237224500273 crossref_primary_10_36306_konjes_1078358 |
Cites_doi | 10.1016/j.compbiomed.2018.04.004 10.1109/TMI.2019.2894349 10.1016/j.cogsys.2018.12.015 10.1371/journal.pone.0157112 10.1016/j.bspc.2017.07.007 10.1016/j.compbiomed.2018.10.011 10.3389/fnins.2018.00804 10.1007/s40846-016-0182-4 10.1016/j.procs.2017.11.400 10.1109/LSP.2017.2654803 10.1109/TKDE.2009.191 10.1007/s13755-018-0057-x 10.1016/j.compbiomed.2018.02.004 10.1109/TNNLS.2014.2330900 10.1016/j.cogsys.2018.12.007 10.1371/journal.pone.0140381 10.1109/ACCESS.2019.2892455 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd |
DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.compbiomed.2019.103345 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Local Electronic Collection Information Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
ExternalDocumentID | 31279167 10_1016_j_compbiomed_2019_103345 S0010482519302148 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG LCYCR M0N RIG AAYXX AFCTW AGRNS ALIPV CITATION NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c525t-8fa35ee803cf75785c25cd8ce5d10fd2f9a42ca1d4aa846ffd084da974bb3b553 |
IEDL.DBID | .~1 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Fri Jul 11 05:19:34 EDT 2025 Wed Aug 13 08:08:29 EDT 2025 Wed Feb 19 02:30:57 EST 2025 Tue Jul 01 03:28:33 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Fri Feb 23 02:24:30 EST 2024 Tue Aug 26 16:33:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain tumor Support vector machine Transfer learning Convolutional neural network Computer-aided diagnosis |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-8fa35ee803cf75785c25cd8ce5d10fd2f9a42ca1d4aa846ffd084da974bb3b553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 31279167 |
PQID | 2280421657 |
PQPubID | 1226355 |
ParticipantIDs | proquest_miscellaneous_2253287892 proquest_journals_2280421657 pubmed_primary_31279167 crossref_citationtrail_10_1016_j_compbiomed_2019_103345 crossref_primary_10_1016_j_compbiomed_2019_103345 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103345 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 2019-08-00 20190801 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Talo, Baloglu, Acharya (bib14) 2019; 54 Cheng, Yang, Huang, Huang, Jiang, Chen (bib18) 2016; 11 Shao, Zhu, Li (bib7) 2015; 26 Pashaei, Sajedi, Jazayeri (bib21) 2018 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Rabinovich (bib25) 2015 Deniz, Şengür, Kadiroğlu, Guo, Bajaj, Budak (bib9) 2018; 6 Swati, Zhao, Kabir, Ali, Zakir, Ahmad, Lu (bib16) 2019; 7 Zhou, Zhang, Chen, Zhao, Yin, Jiang (bib8) 2019; 12 Abiwinanda, Hanif, Hesaputra, Handayani, Mengko (bib20) 2018 Yang, Yan, Zhang, Han, Nan, Hu, Ge (bib13) 2018; 12 Cheng, Huang, Cao, Yang, Yang, Yun, Feng (bib17) 2015; 10 Liu, Hall, Goldgof, Zhou, Gatenby, Ahmed (bib11) 2016 bib26 Zuo, Fan, Blasch, Ling (bib5) 2017; 24 Kumar, Dabas, Godara (bib1) 2017; 122 Gu, Lu, Yang, Zhang, Yu, Zhao, Zhou (bib4) 2018; 103 Ismael, Abdel-Qader (bib19) 2018 Mohan, Subashini (bib2) 2018; 39 Charron, Lallement, Jarnet, Noblet, Clavier, Meyer (bib6) 2018; 95 Xue, Zhang, Feng, Wang (bib27) 2016; 36 Yousefi, Krzyz̀ak, Suen (bib3) 2018; 96 Tan, Sun, Kong, Zhang, Yang, Liu (bib23) 2018 Ahmed, Hall, Goldgof, Liu, Gatenby (bib12) 2017; 10134 Jain, Jain, Aggarwal, Hemanth (bib15) 2019 Hussein, Kandel, Bolan, Wallace, Bagci (bib10) 2019 Pan, Yang (bib24) 2010; 22 Afshar, Plataniotis, Mohammadi (bib22) 2019 Cheng (10.1016/j.compbiomed.2019.103345_bib18) 2016; 11 Ahmed (10.1016/j.compbiomed.2019.103345_bib12) 2017; 10134 Ismael (10.1016/j.compbiomed.2019.103345_bib19) 2018 Liu (10.1016/j.compbiomed.2019.103345_bib11) 2016 Szegedy (10.1016/j.compbiomed.2019.103345_bib25) 2015 Deniz (10.1016/j.compbiomed.2019.103345_bib9) 2018; 6 Shao (10.1016/j.compbiomed.2019.103345_bib7) 2015; 26 Swati (10.1016/j.compbiomed.2019.103345_bib16) 2019; 7 Zhou (10.1016/j.compbiomed.2019.103345_bib8) 2019; 12 Pan (10.1016/j.compbiomed.2019.103345_bib24) 2010; 22 Yang (10.1016/j.compbiomed.2019.103345_bib13) 2018; 12 Talo (10.1016/j.compbiomed.2019.103345_bib14) 2019; 54 Kumar (10.1016/j.compbiomed.2019.103345_bib1) 2017; 122 Hussein (10.1016/j.compbiomed.2019.103345_bib10) 2019 Xue (10.1016/j.compbiomed.2019.103345_bib27) 2016; 36 Charron (10.1016/j.compbiomed.2019.103345_bib6) 2018; 95 Mohan (10.1016/j.compbiomed.2019.103345_bib2) 2018; 39 Pashaei (10.1016/j.compbiomed.2019.103345_bib21) 2018 Jain (10.1016/j.compbiomed.2019.103345_bib15) 2019 Cheng (10.1016/j.compbiomed.2019.103345_bib17) 2015; 10 Yousefi (10.1016/j.compbiomed.2019.103345_bib3) 2018; 96 Tan (10.1016/j.compbiomed.2019.103345_bib23) 2018 Zuo (10.1016/j.compbiomed.2019.103345_bib5) 2017; 24 Afshar (10.1016/j.compbiomed.2019.103345_bib22) 2019 Gu (10.1016/j.compbiomed.2019.103345_bib4) 2018; 103 Abiwinanda (10.1016/j.compbiomed.2019.103345_bib20) 2018 |
References_xml | – volume: 95 start-page: 43 year: 2018 end-page: 54 ident: bib6 article-title: Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network publication-title: Comput. Biol. Med. – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: bib24 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 10134 start-page: 101342E year: 2017 ident: bib12 article-title: Fine-tuning convolutional deep features for MRI based brain tumor classification publication-title: International Society for Optics and Photonics Medical Imaging 2017: Computer-Aided Diagnosis – volume: 96 start-page: 283 year: 2018 end-page: 293 ident: bib3 article-title: Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning publication-title: Comput. Biol. Med. – start-page: 1 year: 2015 end-page: 9 ident: bib25 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2019 ident: bib15 article-title: Convolutional neural network based Alzheimer's disease classification from magnetic resonance brain images publication-title: Cogn. Syst. Res. – start-page: 1368 year: 2019 end-page: 1372 ident: bib22 article-title: Capsule networks for brain tumor classification based on MRI images and course tumor boundaries publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 26 start-page: 1019 year: 2015 end-page: 1034 ident: bib7 article-title: Transfer learning for visual categorization: a survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 39 start-page: 139 year: 2018 end-page: 161 ident: bib2 article-title: MRI based medical image analysis: survey on brain tumor grade classification publication-title: Biomed. Signal Proces. – volume: 122 start-page: 510 year: 2017 end-page: 517 ident: bib1 article-title: Classification of brain MRI tumor images: a hybrid approach publication-title: Procedia Comput. Sci. – volume: 12 start-page: 292 year: 2019 end-page: 300 ident: bib8 article-title: A deep learning-based radiomics model for differentiating benign and malignant renal tumors, Transl publication-title: Oncol. – volume: 54 start-page: 176 year: 2019 end-page: 188 ident: bib14 article-title: Application of deep transfer learning for automated brain abnormality classification using MR images publication-title: Cogn. Syst. Res. – ident: bib26 article-title: Figshare brain tumor dataset – start-page: 183 year: 2018 end-page: 189 ident: bib20 article-title: Brain tumor classification using convolutional neural network publication-title: Springer World Congress on Medical Physics and Biomedical Engineering – volume: 103 start-page: 220 year: 2018 end-page: 231 ident: bib4 article-title: Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs publication-title: Comput. Biol. Med. – volume: 24 start-page: 289 year: 2017 end-page: 293 ident: bib5 article-title: Combining convolutional and recurrent neural networks for human skin detection publication-title: IEEE Signal Process. Lett. – volume: 7 start-page: 17809 year: 2019 end-page: 17822 ident: bib16 article-title: Content-based brain tumor retrieval for MR images using transfer learning publication-title: IEEE Access – volume: 36 start-page: 755 year: 2016 end-page: 764 ident: bib27 article-title: CNN-SVM for microvascular morphological type recognition with data augmentation publication-title: J. Med. Biol. Eng. – volume: 6 start-page: 18 year: 2018 ident: bib9 article-title: Transfer learning based histopathologic image classification for breast cancer detection publication-title: Health Inf. Sci. Syst. – start-page: 314 year: 2018 end-page: 319 ident: bib21 article-title: Brain tumor classification via convolutional neural network and extreme learning machines publication-title: IEEE 8th International Conference on Computer and Knowledge Engineering – year: 2019 ident: bib10 article-title: Lung and pancreatic tumor characterization in the deep learning era: novel supervised and unsupervised learning approaches publication-title: IEEE Trans. Med. Imaging – volume: 10 year: 2015 ident: bib17 article-title: Enhanced performance of brain tumor classification via tumor region augmentation and partition publication-title: PLoS One – volume: 12 year: 2018 ident: bib13 article-title: Glioma grading on conventional MR images: a deep learning study with transfer learning publication-title: Front. Neurosci. – volume: 11 year: 2016 ident: bib18 article-title: Retrieval of brain tumors by adaptive spatial pooling and Fisher vector representation publication-title: PLoS One – start-page: 235 year: 2016 end-page: 242 ident: bib11 article-title: Exploring deep features from brain tumor magnetic resonance images via transfer learning publication-title: IEEE International Joint Conference on Neural Networks – start-page: 270 year: 2018 end-page: 279 ident: bib23 article-title: A survey on deep transfer learning publication-title: Springer International Conference on Artificial Neural Networks – start-page: 0252 year: 2018 end-page: 0257 ident: bib19 article-title: Brain tumor classification via statistical features and back-propagation neural network publication-title: IEEE International Conference on Electro/Information Technology – volume: 96 start-page: 283 year: 2018 ident: 10.1016/j.compbiomed.2019.103345_bib3 article-title: Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.04.004 – year: 2019 ident: 10.1016/j.compbiomed.2019.103345_bib10 article-title: Lung and pancreatic tumor characterization in the deep learning era: novel supervised and unsupervised learning approaches publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2894349 – start-page: 0252 year: 2018 ident: 10.1016/j.compbiomed.2019.103345_bib19 article-title: Brain tumor classification via statistical features and back-propagation neural network – year: 2019 ident: 10.1016/j.compbiomed.2019.103345_bib15 article-title: Convolutional neural network based Alzheimer's disease classification from magnetic resonance brain images publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.12.015 – volume: 11 issue: 6 year: 2016 ident: 10.1016/j.compbiomed.2019.103345_bib18 article-title: Retrieval of brain tumors by adaptive spatial pooling and Fisher vector representation publication-title: PLoS One doi: 10.1371/journal.pone.0157112 – volume: 39 start-page: 139 year: 2018 ident: 10.1016/j.compbiomed.2019.103345_bib2 article-title: MRI based medical image analysis: survey on brain tumor grade classification publication-title: Biomed. Signal Proces. doi: 10.1016/j.bspc.2017.07.007 – volume: 103 start-page: 220 year: 2018 ident: 10.1016/j.compbiomed.2019.103345_bib4 article-title: Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.10.011 – start-page: 183 year: 2018 ident: 10.1016/j.compbiomed.2019.103345_bib20 article-title: Brain tumor classification using convolutional neural network – volume: 12 year: 2018 ident: 10.1016/j.compbiomed.2019.103345_bib13 article-title: Glioma grading on conventional MR images: a deep learning study with transfer learning publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00804 – volume: 36 start-page: 755 issue: 6 year: 2016 ident: 10.1016/j.compbiomed.2019.103345_bib27 article-title: CNN-SVM for microvascular morphological type recognition with data augmentation publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-016-0182-4 – volume: 122 start-page: 510 year: 2017 ident: 10.1016/j.compbiomed.2019.103345_bib1 article-title: Classification of brain MRI tumor images: a hybrid approach publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.11.400 – volume: 24 start-page: 289 issue: 3 year: 2017 ident: 10.1016/j.compbiomed.2019.103345_bib5 article-title: Combining convolutional and recurrent neural networks for human skin detection publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2017.2654803 – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.compbiomed.2019.103345_bib24 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 10134 start-page: 101342E year: 2017 ident: 10.1016/j.compbiomed.2019.103345_bib12 article-title: Fine-tuning convolutional deep features for MRI based brain tumor classification – volume: 6 start-page: 18 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2019.103345_bib9 article-title: Transfer learning based histopathologic image classification for breast cancer detection publication-title: Health Inf. Sci. Syst. doi: 10.1007/s13755-018-0057-x – start-page: 235 year: 2016 ident: 10.1016/j.compbiomed.2019.103345_bib11 article-title: Exploring deep features from brain tumor magnetic resonance images via transfer learning – volume: 95 start-page: 43 year: 2018 ident: 10.1016/j.compbiomed.2019.103345_bib6 article-title: Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.02.004 – start-page: 270 year: 2018 ident: 10.1016/j.compbiomed.2019.103345_bib23 article-title: A survey on deep transfer learning – volume: 26 start-page: 1019 issue: 5 year: 2015 ident: 10.1016/j.compbiomed.2019.103345_bib7 article-title: Transfer learning for visual categorization: a survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2330900 – volume: 12 start-page: 292 issue: 2 year: 2019 ident: 10.1016/j.compbiomed.2019.103345_bib8 article-title: A deep learning-based radiomics model for differentiating benign and malignant renal tumors, Transl publication-title: Oncol. – start-page: 1368 year: 2019 ident: 10.1016/j.compbiomed.2019.103345_bib22 article-title: Capsule networks for brain tumor classification based on MRI images and course tumor boundaries – volume: 54 start-page: 176 year: 2019 ident: 10.1016/j.compbiomed.2019.103345_bib14 article-title: Application of deep transfer learning for automated brain abnormality classification using MR images publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.12.007 – start-page: 1 year: 2015 ident: 10.1016/j.compbiomed.2019.103345_bib25 article-title: Going deeper with convolutions – volume: 10 issue: 10 year: 2015 ident: 10.1016/j.compbiomed.2019.103345_bib17 article-title: Enhanced performance of brain tumor classification via tumor region augmentation and partition publication-title: PLoS One doi: 10.1371/journal.pone.0140381 – volume: 7 start-page: 17809 year: 2019 ident: 10.1016/j.compbiomed.2019.103345_bib16 article-title: Content-based brain tumor retrieval for MR images using transfer learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2892455 – start-page: 314 year: 2018 ident: 10.1016/j.compbiomed.2019.103345_bib21 article-title: Brain tumor classification via convolutional neural network and extreme learning machines |
SSID | ssj0004030 |
Score | 2.6681345 |
Snippet | Brain tumor classification is an important problem in computer-aided diagnosis (CAD) for medical applications. This paper focuses on a 3-class classification... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103345 |
SubjectTerms | Accuracy Algorithms Brain Brain cancer Brain research Brain tumor Brain tumors Breast cancer Classification Computer-aided diagnosis Concept learning Conflicts of interest Convolutional neural network Datasets Deep learning Feature extraction Glioma Image classification Image retrieval Learning Magnetic resonance imaging Measurement methods Medical diagnosis Medical imaging Meningioma Neural networks NMR Nuclear magnetic resonance Pituitary Pituitary gland Support vector machine Transfer learning Tumors Wavelet transforms |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46QbyIv51OieC12DZJ0-JBdDiGsJ0c7BbSJB2KrnPr_PvNa9LtorJz-0r78vLypfm-9xC6hSgikpogpRkNqI55kCsiA0WS1GRccVrLxwbDpD-iL2M29j_cFp5W2eTEOlHrUsE_8jso20LjKGH8YfYVQNcoOF31LTS20Q6ULoOo5mO-1kWGxElQbK6hdivkmTyO3wWUbSdxB4JXBupzAqKm35env-BnvQz1DtC-x4_40Q34Idoy0yO0O_An5Meo_wQ9H3C1_CznWAE0Bi5Q7X4MHPcJ1sbMcHc4xIWpi3ou8PebxFUNYM0c-zYSkxM06j2_dvuB75YQKBazKkgLSZgxaUhUAUXqmYpr4b9hOgoLHReZpLGSkaZSWtBRFDpMqZZ2P5HnJGeMnKLWtJyac4Str1PKlCQR0TaRMknDIicW6CRRonOTtBFvnCSULyUOHS0-RMMZexdr9wpwr3DubaNoZTlz5TQ2sMmacRCNXNQmOGFz_ga29ytbDykcVNjQutMMu_BTeyHWgdhGN6vLdlLCSYucmnIJ9zBit6JpFrfRmQuX1eeSKOYWk_OL_x9-ifbgTRzXsINa1Xxpriz-qfLrOsh_AAbyAxg priority: 102 providerName: ProQuest |
Title | Brain tumor classification using deep CNN features via transfer learning |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519302148 https://dx.doi.org/10.1016/j.compbiomed.2019.103345 https://www.ncbi.nlm.nih.gov/pubmed/31279167 https://www.proquest.com/docview/2280421657 https://www.proquest.com/docview/2253287892 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbKX0XZfWT_QYK9ebX1YMn1qQ7NspWaMFfImZEkuGVsSUqeP_durk-SUQgeBvdjY1oF8Op1O6Pe7Q-gzWBHVzGWSVSxjloisMVRnhpbSVcIIFuhj13U5vmHfJ3yyhYY9FwZglcn3R58evHV6c5q0ebqYToHj67cSgXlJIfEXEH4ZE2DlXx6eYB4sp5GG4v0NtE5onojxAth2pLkDyKsCBjoFYtPLS9S_QtCwFI320OsUQ-Lz2M19tOVmB2j3Op2Sv0HjC6j7gLvV3_kSGwiPAQ8UhgADzv0WW-cWeFjXuHUhsecdvp9q3IUg1i1xKiVx-xbdjC5_DcdZqpiQGU54l8lWU-6czKlpIVE9NySQ_x23Rd5a0laaEaMLy7T2gUfb2lwyq_2eomlowzl9h7Zn85n7gDAhUjJuNC2o9c6Ua5a3DfXBTlmUtnHlAIleScqkdOJQ1eKP6nFjv9WTehWoV0X1DlCxllzElBobyFT9OKieMuqdnPJ-fwPZs7XsM9PaUPqoH3aVpvedghxCjBQlFwP0af3ZT0w4bdEzN19BG079dlRWZIDeR3NZ_y4tiPBxufj4X107RK_gKcIRj9B2t1y5Yx8idc1JmAP-KibCX-Xo6wnaOf92Na79_eKy_vHzEY4VEzo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRSpcEOXVlAKLBEcLex9-CCFECyGlTU6t1Nuy3l1XrWgSEoeqf4rfyIzXTi5Q5dJzMlYyM5n5Nvt9MwBvKYuEkT7KZSEj6XgWlVaYyIo090VmM9nIx4ajdHAqv5-psw3402lhiFbZ1cSmULuJpf_I39PYFsmTVGWfpr8i2hpFt6vdCo2QFkf-5hqPbPOPh18wvu847389ORhE7VaByCqu6iivjFDe57GwFQ1zV5Y3AnmvXBJXjleFkdyaxEljsDlXlYtz6Qzi7rIUpaItEVjy70mBnZyU6f1vKx1mLILkBWubxKNXyxwKfDKiiAdJPRHKClK7CxJR_bsd_g_uNm2v_wgetniVfQ4Jtg0bfvwYtobtjfwTGOzTjglWL64mM2YJihP3qAk3I079OXPeT9nBaMQq3wwRnbPfF4bVDWD2M9aurTh_Cqd34sdnsDmejP0OMIxtLpU1IhEOC7cyMq5KgcAqTVJX-rQHWeckbdvR5bRB46fuOGqXeuVeTe7Vwb09SJaW0zC-Yw2boouD7uSpWFA19pg1bD8sbVsIE6DJmtZ7Xdh1W0rmepX4PXizfBmLAN3smLGfLOg9SuDRNy94D56HdFl-XZHwDM8A2e7tD38N9wcnw2N9fDg6egEP6FMFnuMebNazhX-J2KsuXzUJz-DHXf_C_gLMTEGs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqVRxQbwJLbBIcLSw9-GHEEL0EaWUWhWiUm_Leh9VEU1C4oD4a_w6drzr5AIol57tseyZ2dlvvN_MALxEL2KK26TkFU-4oUXSaKYSzfLSVoUueFc-dlrn43P-4UJcbMHvvhYGaZV9TOwCtZlq_Ef-Gtu2cJrlPoF3kRZxdjh6N_ue4AQpPGntx2kEFzmxv3769G3x9vjQ2_oVpaOjzwfjJE4YSLSgok1Kp5iwtkyZdtjYXWjaFctbYbLUGeoqxalWmeFK-Y3aOZOW3CiPwZuGNQInRvjwv11gVjSA7f2j-uzTuiozZaEAxkc67hOxyCMK7DIkjIcCe6SXVVj7zrCk6u-b47_Ab7cJju7A7Yheyfvgbndhy07uwc5pPJ-_D-N9nDhB2uX1dE40AnNkInXGJ8iwvyTG2hk5qGvibNdSdEF-XCnSdvDZzkkcYnH5AM5vRJMPYTCZTuxjIN7SJRdasYwZH8aF4qlrmIdZeZabxuZDKHolSR0bmeM8jW-yZ6x9lWv1SlSvDOodQraSnIVmHhvIVL0dZF-s6sOr9DvOBrJvVrIR0ASgsqH0Xm92GQPLQq6XwRBerC77kIDnPGpip0u8RzCfCJcVHcKj4C6rz2UZLXxGUDz5_8Ofw45fXfLjcX2yC7fwpQLpcQ8G7Xxpn3og1jbPoscT-HLTi-wPC25HPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+tumor+classification+using+deep+CNN+features+via+transfer+learning&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Deepak%2C+S&rft.au=Ameer%2C+P+M&rft.date=2019-08-01&rft.eissn=1879-0534&rft.volume=111&rft.spage=103345&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103345&rft_id=info%3Apmid%2F31279167&rft.externalDocID=31279167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |