Chemotactic Host-Finding Strategies of Plant Endoparasites and Endophytes
Plants interact with microorganisms in the environment during all stages of their development and in most of their organs. These interactions can be either beneficial or detrimental for the plant and may be transient or long-term. In extreme cases, microorganisms become endoparastic or endophytic an...
Saved in:
Published in | Frontiers in plant science Vol. 11; p. 1167 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
31.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plants interact with microorganisms in the environment during all stages of their development and in most of their organs. These interactions can be either beneficial or detrimental for the plant and may be transient or long-term. In extreme cases, microorganisms become endoparastic or endophytic and permanently reside within a plant, while the host plant undergoes developmental reprogramming and produces new tissues or organs as a response to the invasion. Events at the cellular and molecular level following infection have been extensively described, however the mechanisms of how these microorganisms locate their plant hosts
chemotaxis remain largely unknown. In this review, we summarize recent findings concerning the signalling molecules that regulate chemotaxis of endoparasitic/endophytic bacteria, fungi, and nematodes. In particular, we will focus on the molecules secreted by plants that are most likely to act as guidance cues for microorganisms. These compounds are found in a wide range of plant species and show a variety of secondary effects. Interestingly, these compounds show different attraction potencies depending on the species of the invading organism, suggesting that cues perceived in the soil may be more complex than anticipated. However, what the cognate receptors are for these attractants, as well as the mechanism of how these attractants influence these organisms, remain important outstanding questions. Host-targeting marks the first step of plant-microorganism interactions, therefore understanding the signalling molecules involved in this step plays a key role in understanding these interactions as a whole. |
---|---|
AbstractList | Plants interact with microorganisms in the environment during all stages of their development and in most of their organs. These interactions can be either beneficial or detrimental for the plant and may be transient or long-term. In extreme cases, microorganisms become endoparastic or endophytic and permanently reside within a plant, while the host plant undergoes developmental reprogramming and produces new tissues or organs as a response to the invasion. Events at the cellular and molecular level following infection have been extensively described, however the mechanisms of how these microorganisms locate their plant hosts via chemotaxis remain largely unknown. In this review, we summarize recent findings concerning the signalling molecules that regulate chemotaxis of endoparasitic/endophytic bacteria, fungi, and nematodes. In particular, we will focus on the molecules secreted by plants that are most likely to act as guidance cues for microorganisms. These compounds are found in a wide range of plant species and show a variety of secondary effects. Interestingly, these compounds show different attraction potencies depending on the species of the invading organism, suggesting that cues perceived in the soil may be more complex than anticipated. However, what the cognate receptors are for these attractants, as well as the mechanism of how these attractants influence these organisms, remain important outstanding questions. Host-targeting marks the first step of plant—microorganism interactions, therefore understanding the signalling molecules involved in this step plays a key role in understanding these interactions as a whole. Plants interact with microorganisms in the environment during all stages of their development and in most of their organs. These interactions can be either beneficial or detrimental for the plant and may be transient or long-term. In extreme cases, microorganisms become endoparastic or endophytic and permanently reside within a plant, while the host plant undergoes developmental reprogramming and produces new tissues or organs as a response to the invasion. Events at the cellular and molecular level following infection have been extensively described, however the mechanisms of how these microorganisms locate their plant hosts chemotaxis remain largely unknown. In this review, we summarize recent findings concerning the signalling molecules that regulate chemotaxis of endoparasitic/endophytic bacteria, fungi, and nematodes. In particular, we will focus on the molecules secreted by plants that are most likely to act as guidance cues for microorganisms. These compounds are found in a wide range of plant species and show a variety of secondary effects. Interestingly, these compounds show different attraction potencies depending on the species of the invading organism, suggesting that cues perceived in the soil may be more complex than anticipated. However, what the cognate receptors are for these attractants, as well as the mechanism of how these attractants influence these organisms, remain important outstanding questions. Host-targeting marks the first step of plant-microorganism interactions, therefore understanding the signalling molecules involved in this step plays a key role in understanding these interactions as a whole. Plants interact with microorganisms in the environment during all stages of their development and in most of their organs. These interactions can be either beneficial or detrimental for the plant and may be transient or long-term. In extreme cases, microorganisms become endoparastic or endophytic and permanently reside within a plant, while the host plant undergoes developmental reprogramming and produces new tissues or organs as a response to the invasion. Events at the cellular and molecular level following infection have been extensively described, however the mechanisms of how these microorganisms locate their plant hosts via chemotaxis remain largely unknown. In this review, we summarize recent findings concerning the signalling molecules that regulate chemotaxis of endoparasitic/endophytic bacteria, fungi, and nematodes. In particular, we will focus on the molecules secreted by plants that are most likely to act as guidance cues for microorganisms. These compounds are found in a wide range of plant species and show a variety of secondary effects. Interestingly, these compounds show different attraction potencies depending on the species of the invading organism, suggesting that cues perceived in the soil may be more complex than anticipated. However, what the cognate receptors are for these attractants, as well as the mechanism of how these attractants influence these organisms, remain important outstanding questions. Host-targeting marks the first step of plant-microorganism interactions, therefore understanding the signalling molecules involved in this step plays a key role in understanding these interactions as a whole.Plants interact with microorganisms in the environment during all stages of their development and in most of their organs. These interactions can be either beneficial or detrimental for the plant and may be transient or long-term. In extreme cases, microorganisms become endoparastic or endophytic and permanently reside within a plant, while the host plant undergoes developmental reprogramming and produces new tissues or organs as a response to the invasion. Events at the cellular and molecular level following infection have been extensively described, however the mechanisms of how these microorganisms locate their plant hosts via chemotaxis remain largely unknown. In this review, we summarize recent findings concerning the signalling molecules that regulate chemotaxis of endoparasitic/endophytic bacteria, fungi, and nematodes. In particular, we will focus on the molecules secreted by plants that are most likely to act as guidance cues for microorganisms. These compounds are found in a wide range of plant species and show a variety of secondary effects. Interestingly, these compounds show different attraction potencies depending on the species of the invading organism, suggesting that cues perceived in the soil may be more complex than anticipated. However, what the cognate receptors are for these attractants, as well as the mechanism of how these attractants influence these organisms, remain important outstanding questions. Host-targeting marks the first step of plant-microorganism interactions, therefore understanding the signalling molecules involved in this step plays a key role in understanding these interactions as a whole. Plants interact with microorganisms in the environment during all stages of their development and in most of their organs. These interactions can be either beneficial or detrimental for the plant and may be transient or long-term. In extreme cases, microorganisms become endoparastic or endophytic and permanently reside within a plant, while the host plant undergoes developmental reprogramming and produces new tissues or organs as a response to the invasion. Events at the cellular and molecular level following infection have been extensively described, however the mechanisms of how these microorganisms locate their plant hosts via chemotaxis remain largely unknown. In this review, we summarize recent findings concerning the signalling molecules that regulate chemotaxis of endoparasitic/endophytic bacteria, fungi, and nematodes. In particular, we will focus on the molecules secreted by plants that are most likely to act as guidance cues for microorganisms. These compounds are found in a wide range of plant species and show a variety of secondary effects. Interestingly, these compounds show different attraction potencies depending on the species of the invading organism, suggesting that cues perceived in the soil may be more complex than anticipated. However, what the cognate receptors are for these attractants, as well as the mechanism of how these attractants influence these organisms, remain important outstanding questions. Host-targeting marks the first step of plant—microorganism interactions, therefore understanding the signalling molecules involved in this step plays a key role in understanding these interactions as a whole. |
Author | Oota, Morihiro Tsai, Allen Yi-Lun Sawa, Shinichiro |
AuthorAffiliation | Graduate School of Science and Technology, Kumamoto University , Kumamoto , Japan |
AuthorAffiliation_xml | – name: Graduate School of Science and Technology, Kumamoto University , Kumamoto , Japan |
Author_xml | – sequence: 1 givenname: Allen Yi-Lun surname: Tsai fullname: Tsai, Allen Yi-Lun – sequence: 2 givenname: Morihiro surname: Oota fullname: Oota, Morihiro – sequence: 3 givenname: Shinichiro surname: Sawa fullname: Sawa, Shinichiro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32849722$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtrGzEUhUVJyXvdXZllN-PoLc2mUEwehkALbaE7cUfS2ArjkSvJgfz7yHESkkK1kXR1zne5OifoYIqTR-gTwTPGdHcxbMY8o5jiGSZEqg_omEjJWy7pn4M35yN0nvMdrktg3HXqEB0xqnmnKD1Gi_nKr2MBW4JtbmIu7VWYXJiWzc-SoPhl8LmJQ_NjhKk0l5OLG0iQQ6llmNy-snqo1zP0cYAx-_Pn_RT9vrr8Nb9pb79fL-bfblsrqCit9k57zCjxhIAUHeNAej70njCnqVKSuY5hUE5aZhVVpO9B90x1vdPArGOnaLHnugh3ZpPCGtKDiRDMUyGmpYFUpxm9AVvHlITwgXAuJOmpcNRKKjHlRGlZWV_3rM22X3tn_VSHHt9B379MYWWW8d4oTkhlVMCXZ0CKf7c-F7MO2fqx_paP22woZ0pzIZSo0s9ve702ecmiCsReYFPMOfnB2FCghLhrHUZDsNnFbnaxm13s5in26rv4x_eC_p_jEWVBr4Q |
CitedBy_id | crossref_primary_10_1007_s10658_024_02818_z crossref_primary_10_3389_fmicb_2021_744094 crossref_primary_10_1126_sciadv_abh4182 crossref_primary_10_3390_plants12142724 crossref_primary_10_1007_s13199_020_00740_6 crossref_primary_10_7124_FEEO_v33_1588 crossref_primary_10_1146_annurev_micro_032421_110850 crossref_primary_10_3389_fpls_2024_1388384 crossref_primary_10_3390_pathogens13050425 crossref_primary_10_3389_fpls_2022_1008725 crossref_primary_10_3389_fsufs_2022_830198 crossref_primary_10_3390_plants11212875 crossref_primary_10_1094_MPMI_34_5 crossref_primary_10_1039_D3LC00784G crossref_primary_10_1080_15226514_2023_2176466 crossref_primary_10_1094_MPMI_12_20_0350_FI crossref_primary_10_3389_fmicb_2024_1424758 crossref_primary_10_1016_j_micres_2021_126925 crossref_primary_10_1146_annurev_phyto_010824_023359 crossref_primary_10_3389_fmicb_2023_1135487 crossref_primary_10_3390_microorganisms12071357 |
Cites_doi | 10.1105/tpc.114.133496 10.1104/pp.102.019661 10.1038/nature15516 10.1038/s41467-019-14104-2 10.1016/S1360-1385(03)00162-6 10.1099/mic.0.083576-0 10.1038/ncomms8795 10.1111/j.1462-2920.2010.02325.x 10.1101/cshperspect.a001958 10.1111/j.1439-0434.2007.01307.x 10.1128/JB.170.7.3164-3169.1988 10.2478/s11756-007-0021-8 10.1007/BF00425496 10.1007/978-1-4757-5235-9_2 10.1007/BF00871945 10.1038/s41598-018-29165-4 10.1073/pnas.83.5.1418 10.1186/s40168-018-0445-0 10.1038/nrm1524 10.1080/09168451.2017.1332980 10.1099/00221287-134-6-1427 10.1371/journal.pbio.0040226 10.1016/j.tim.2019.08.002 10.1021/bi972330a 10.1186/s12870-015-0651-x 10.1111/j.1469-8137.2011.03948.x 10.1146/annurev-phyto-080508-081803 10.1111/j.1574-6968.1987.tb02194.x 10.1016/S0092-8674(00)81068-5 10.1128/JB.00883-06 10.1371/journal.pone.0154675 10.1128/AEM.00115-14 10.1128/JB.170.9.4181-4187.1988 10.1126/science.aan0081 10.1016/j.molp.2018.11.008 10.1093/genetics/147.1.19 10.1126/science.aad4501 10.1038/nrmicro.2017.171 10.1016/S0007-1536(82)80118-6 10.1016/S0021-9258(18)38046-3 10.1007/s10725-008-9253-z 10.1094/MPMI.1998.11.2.131 10.1016/j.soilbio.2009.11.024 10.1371/journal.pone.0015148 10.1139/b02-066 10.31018/jans.v2i2.144 10.1007/BF00988457 10.1111/j.1365-3180.2007.00548.x 10.1111/j.1365-2958.1988.tb00085.x 10.1016/S1572-4379(96)80018-2 10.1007/s10886-012-0118-6 10.3389/fmicb.2018.02732 10.1007/s00425-020-03375-5 10.1104/pp.108.121400 10.1371/journal.pgen.1004762 10.1093/jxb/ert415 10.1094/PHYTO.2000.90.11.1239 10.1126/science.154.3753.1189 10.1098/rsif.2010.0417 10.1093/aob/mcl063 10.1098/rstb.1905.0003 10.1111/j.1365-2958.2006.05515.x 10.1128/AEM.48.1.149-152.1984 10.1093/mp/sst163 10.1099/00221287-126-1-231 10.1007/s10886-014-0457-6 10.1128/JB.06505-11 10.1017/S0953756200002860 10.1038/nrmicro1987 10.1007/s00425-005-0025-y 10.1099/00221287-128-4-789 10.1016/j.fbr.2012.02.003 10.1016/j.mib.2009.09.008 10.1163/15685411-00002856 10.1038/nature03608 10.1094/MPMI-10-17-0255-R 10.1128/JB.01286-08 10.1128/JB.182.21.6042-6048.2000 10.1094/MPMI-04-17-0096-R 10.1094/MPMI-08-18-0226-R 10.1111/j.1469-8137.1990.tb04717.x 10.1073/pnas.87.17.6708 10.1016/j.semcdb.2016.04.020 10.1126/science.aam9970 10.1016/j.tplants.2012.04.001 10.1016/j.mycres.2007.02.007 10.1099/00221287-144-7-1945 10.1016/j.pbi.2014.04.003 10.1111/j.1365-2958.2001.02307.x 10.1016/j.plantsci.2010.11.007 10.1163/156854109X447024 10.1006/fgbi.1998.1046 10.1111/j.1365-2958.2004.04096.x 10.1046/j.1365-2958.1996.1291489.x 10.1094/PDIS-09-17-1445-RE 10.1094/MPMI-12-17-0310-R 10.1128/EC.4.5.911-919.2005 10.1093/pcp/pcy001 10.1146/annurev-phyto-080614-120057 10.1038/nrmicro2580 10.1007/BF00413532 10.3389/fpls.2018.01786 10.1111/j.1365-2745.2010.01758.x 10.1007/s11103-016-0432-4 10.1007/s10886-007-9289-y 10.1111/nph.15076 10.1111/mmi.13561 10.1016/j.jinsphys.2015.07.013 10.1007/BF01020167 10.1146/annurev.phyto.40.032602.130045 10.1128/JB.179.20.6391-6399.1997 10.1093/aesa/62.6.1446 10.4161/psb.4.1.7419 10.1016/j.plantsci.2014.10.010 10.1016/j.fgb.2008.06.002 10.1016/S1572-4379(96)80009-1 10.1016/S1572-4379(96)80020-0 10.1016/j.conb.2016.09.002 10.1016/j.mib.2018.09.004 10.1007/s00572-005-0362-5 10.1126/scisignal.2005136 10.1111/1574-6976.12081 10.1007/978-1-4757-5235-9_3 10.1111/j.1365-2958.2005.04565.x 10.1128/EC.5.3.544-554.2006 10.1146/annurev.genet.33.1.399 10.1126/scisignal.2000724 10.1128/AEM.58.4.1153-1158.1992 10.1016/j.pbi.2015.07.004 10.1111/j.1469-8137.2008.02462.x 10.1093/jxb/ert356 10.1038/nature07271 10.1073/pnas.1523580113 10.1016/j.molp.2019.12.010 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Tsai, Oota and Sawa. Copyright © 2020 Tsai, Oota and Sawa 2020 Tsai, Oota and Sawa |
Copyright_xml | – notice: Copyright © 2020 Tsai, Oota and Sawa. – notice: Copyright © 2020 Tsai, Oota and Sawa 2020 Tsai, Oota and Sawa |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2020.01167 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_ac8496114f144561b25d2c6260241786 PMC7411241 32849722 10_3389_fpls_2020_01167 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 16F16406, 16K14757, 17H03967, 18H05487 |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c525t-8ed8e0321e11a65934a1b4fbe13d827763d930a7d6c3c7271bba8b379bd8a3cd3 |
IEDL.DBID | DOA |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:23:46 EDT 2025 Thu Aug 21 18:07:27 EDT 2025 Fri Jul 11 09:07:21 EDT 2025 Thu Jan 02 22:46:45 EST 2025 Tue Jul 01 03:27:23 EDT 2025 Thu Apr 24 22:56:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | gall-forming bacteria endoparasites arbuscular mycorrhizal fungi endophytes chemotaxis plant pathogenic nematode |
Language | English |
License | Copyright © 2020 Tsai, Oota and Sawa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-8ed8e0321e11a65934a1b4fbe13d827763d930a7d6c3c7271bba8b379bd8a3cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Hiromu Kameoka, Osaka Prefecture University, Japan; Yang Bai, Max Planck Institute for Plant Breeding Research, Germany Present address: Allen Yi-Lun Tsai, Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan These authors have contributed equally to this work This article was submitted to Plant Pathogen Interactions, a section of the journal Frontiers in Plant Science Edited by: Yusuke Saijo, Nara Institute of Science and Technology (NAIST), Japan |
OpenAccessLink | https://doaj.org/article/ac8496114f144561b25d2c6260241786 |
PMID | 32849722 |
PQID | 2437845575 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ac8496114f144561b25d2c6260241786 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7411241 proquest_miscellaneous_2437845575 pubmed_primary_32849722 crossref_citationtrail_10_3389_fpls_2020_01167 crossref_primary_10_3389_fpls_2020_01167 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-31 |
PublicationDateYYYYMMDD | 2020-07-31 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Zhao (B137) 2007; 33 Xu (B131) 2015; 17 Guinel (B41) 2002; 80 Attmannspacher (B9) 2005; 56 Turrà (B118) 2016; 57 Besserer (B15) 2009; 4 Meier (B78) 2007; 189 Manson (B74) 1996 Tsai (B115) 2019; 12 Wuichet (B130) 2010; 3 Dogra (B33) 2012; 194 Nagahashi (B81) 2000; 104 Cook (B27) 1966; 154 Fleming (B37) 2017; 49 Poole (B90) 2018; 16 Wadhams (B122) 2004; 5 Gómez-Roldán (B39) 2008; 455 Lombardi (B65) 2018; 31 Kim (B55) 2004; 52 Turrà (B117) 2015; 527 Goldwasser (B38) 2008; 55 Lacal (B60) 2010; 12 Ohri (B84) 2010; 2 Blumer (B16) 1988; 263 Di Pietro (B31) 2001; 39 Yost (B135) 1998; 144 Jiang (B52) 2017; 356 Reynolds (B97) 2011; 8 Yang (B133) 2016; 11 Ali (B4) 2011; 99 Horan (B48) 1990; 116 Cardoso (B23) 2011; 180 Li (B62) 2016; 113 Shivakumara (B105) 2019; 32 Gullan (B43) 2005 Mabrouk (B70) 2007; 155 Wang (B124) 2009; 11 Webb (B129) 2017; 103 de Lillo (B28) 2018; 9 Berendsen (B12) 2012; 17 Straney (B109) 1994; 65 Webb (B128) 2017; 30 Sabelis (B99) 1996 Götz (B40) 1982; 128 Burg (B20) 1982; 133 Nagahashi (B82) 2007; 111 Hagen (B45) 1986; 83 Yoneyama (B134) 2008; 179 Read (B94) 2009; 12 Lindquist (B63) 1996 Kim (B56) 2006; 5 Meier (B77) 2009; 191 Manohar (B72) 2020; 11 Webb (B127) 2014; 80 Khare (B53) 2018; 9 Hosoi (B50) 2017; 81 Ashby (B7) 1987; 41 Besserer (B13) 2006; 4 Leeder (B61) 2011; 9 Scharf (B102) 2016; 90 van Zeijl (B120) 2015; 15 Escobar (B35) 2003; 8 Parniske (B87) 2008; 6 Sampedro (B100) 2015; 39 Schrick (B103) 1997; 147 Oota (B85) 2019; 13 Papademetriou (B86) 1983; 9 Gutjahr (B44) 2014; 20 Dong (B34) 2014; 65 Turrà (B116) 2015; 26 Besserer (B14) 2008; 148 Straney (B110) 2002; 505 Raman (B92) 2005 Manosalva (B73) 2015; 6 Gulash (B42) 1984; 48 Walker (B123) 2003; 132 Miller (B79) 2007; 63 Akiyama (B2) 2005; 435 Huang (B51) 2018; 31 Martin (B75) 2017; 356 Wang (B126) 2018; 102 Akiyama (B1) 2006; 97 Sengupta (B104) 1996; 84 Dodueva (B32) 2020; 251 Mori (B80) 1999; 33 Strullu-Derrien (B111) 2018; 220 Dettmann (B29) 2014; 10 Boyer (B18) 2014; 7 Malek (B71) 1989; 152 Massee (B76) 1905; 197 Dharmatilake (B30) 1992; 58 Tooker (B114) 2014; 40 Alexandre (B3) 2000; 182 Barash (B10) 2009; 47 Taniguchi (B112) 2014; 7 Rengarajan (B96) 2016; 41 Yang (B132) 2020; 28 Hassani (B46) 2018; 6 Horiuchi (B49) 2005; 222 Bartlem (B11) 2014; 65 Read (B95) 2012; 26 Caetano-Anollés (B21) 1988; 170 van der Does (B119) 2008; 45 Arkowitz (B5) 2009; 1 Rasmann (B93) 2012; 38 Kim (B57) 1998; 11 Chitwood (B25) 2002; 40 Wang (B125) 2010; 5 Mabrouk (B68) 2007; 47 Nault (B83) 1969; 62 Pline (B89) 1987; 13 Breakspear (B19) 2014; 26 Hirsch (B47) 1998; 23 Koske (B59) 1982; 79 Roca (B98) 2005; 4 Zhao (B136) 2000; 90 Sourjik (B107) 1996; 22 Čepulytė (B24) 2018; 8 Sbrana (B101) 2005; 15 Siddique (B106) 2018; 46 Favery (B36) 2016; 84 Loake (B64) 1988; 134 Luginbuehl (B67) 2017; 356 Vierheilig (B121) 2002 Compant (B26) 2010; 42 Kierul (B54) 2015; 161 Tisserant (B113) 2012; 193 Mabrouk (B69) 2007; 62 Platzer (B88) 1997; 179 Ashby (B8) 1988; 170 López-Ráez (B66) 2015; 230 Sourjik (B108) 1998; 37 Cangelosi (B22) 1990; 87 Quist (B91) 2015; 53 Bowra (B17) 1981; 126 Kobae (B58) 2018; 59 Armitage (B6) 1988; 2 |
References_xml | – volume: 26 start-page: 4680 year: 2014 ident: B19 article-title: The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection publication-title: Plant Cell doi: 10.1105/tpc.114.133496 – start-page: 1 volume-title: Biology, ecology, and evolution of gall-inducing arthropods year: 2005 ident: B92 article-title: Galls and gall-inducing arthropods: an overview of their biology, ecology and evolution – volume: 132 start-page: 44 year: 2003 ident: B123 article-title: Root exudation and rhizosphere biology publication-title: Plant Physiol. doi: 10.1104/pp.102.019661 – volume: 527 start-page: 521 year: 2015 ident: B117 article-title: Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals publication-title: Nature doi: 10.1038/nature15516 – volume: 11 start-page: 208 year: 2020 ident: B72 article-title: Plant metabolism of nematode pheromones mediates plant-nematode interactions publication-title: Nat. Commun. doi: 10.1038/s41467-019-14104-2 – volume: 8 start-page: 380 year: 2003 ident: B35 article-title: Agrobacterium tumefaciens as an agent of disease publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(03)00162-6 – volume: 161 start-page: 131 year: 2015 ident: B54 article-title: Influence of root exudates on the extracellular proteome of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42 publication-title: Microbiology doi: 10.1099/mic.0.083576-0 – volume: 6 start-page: 7795 year: 2015 ident: B73 article-title: Conserved nematode signalling molecules elicit plant defenses and pathogen resistance publication-title: Nat. Commun. doi: 10.1038/ncomms8795 – volume: 12 start-page: 2873 year: 2010 ident: B60 article-title: Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2010.02325.x – volume: 1 year: 2009 ident: B5 article-title: Chemical gradients and chemotropism in yeast publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a001958 – volume: 155 start-page: 728 year: 2007 ident: B70 article-title: Induction of phenolic compounds in pea (Pisum sativum L.) inoculated by Rhizobium leguminosarum and infected with Orobanche crenata publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.2007.01307.x – volume: 170 start-page: 3164 year: 1988 ident: B21 article-title: Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes publication-title: J. Bacteriol. doi: 10.1128/JB.170.7.3164-3169.1988 – volume: 62 start-page: 139 year: 2007 ident: B69 article-title: The potential of Rhizobium strains for biological control of Orobanche crenata publication-title: Biologia doi: 10.2478/s11756-007-0021-8 – volume: 152 start-page: 611 year: 1989 ident: B71 article-title: Chemotaxis in Rhizobium meliloti strain L5.30 publication-title: Microbiology doi: 10.1007/BF00425496 – volume: 505 start-page: 9 year: 2002 ident: B110 article-title: Host recognition by pathogenic fungi through plant flavonoids publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4757-5235-9_2 – volume: 65 start-page: 183 year: 1994 ident: B109 article-title: In vitro transcription and binding analysis of promoter regulation by a host-specific signal in a phytopathogenic fungus publication-title: Antonie Van Leeuwenhoek. doi: 10.1007/BF00871945 – volume: 8 start-page: 10847 year: 2018 ident: B24 article-title: Potent Attractant for Root-Knot Nematodes in Exudates from Seedling Root Tips of Two Host Species publication-title: Sci. Rep. doi: 10.1038/s41598-018-29165-4 – volume: 83 start-page: 1418 year: 1986 ident: B45 article-title: Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.83.5.1418 – volume: 6 start-page: 58 year: 2018 ident: B46 article-title: Microbial interactions within the plant holobiont publication-title: Microbiome doi: 10.1186/s40168-018-0445-0 – volume: 5 start-page: 1024 year: 2004 ident: B122 article-title: Making sense of it all: bacterial chemotaxis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1524 – volume: 81 start-page: 1542 year: 2017 ident: B50 article-title: Nitrate analogs as attractants for soybean cyst nematode publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2017.1332980 – volume: 134 start-page: 1427 year: 1988 ident: B64 article-title: Attraction of Agrobacterium tumefaciens C58C1 towards sugars involves a highly sensitive chemotaxis system publication-title: Microbiology doi: 10.1099/00221287-134-6-1427 – volume: 4 start-page: 1239 year: 2006 ident: B13 article-title: Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria publication-title: PloS Biol. doi: 10.1371/journal.pbio.0040226 – volume: 28 start-page: 68 year: 2020 ident: B132 article-title: Diversity of Bacterial Chemosensory Arrays publication-title: Trends Microbiol. doi: 10.1016/j.tim.2019.08.002 – volume: 37 start-page: 2327 year: 1998 ident: B108 article-title: Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti publication-title: Biochemistry doi: 10.1021/bi972330a – volume: 15 start-page: 260 year: 2015 ident: B120 article-title: The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis publication-title: BMC Plant Biol. doi: 10.1186/s12870-015-0651-x – volume: 193 start-page: 755 year: 2012 ident: B113 article-title: The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional trade-offs in an obligate symbiont publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03948.x – volume: 47 start-page: 133 year: 2009 ident: B10 article-title: Recent evolution of bacterial pathogens: the gall-forming Pantoea agglomerans case publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-080508-081803 – volume: 41 start-page: 189 year: 1987 ident: B7 article-title: A Ti-plasmid determined function is responsible for chemotaxis of Agrobacterium tumefaciens towards the plant wound product acetosyringone publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1987.tb02194.x – volume: 84 start-page: 899 year: 1996 ident: B104 article-title: odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl publication-title: Cell doi: 10.1016/S0092-8674(00)81068-5 – volume: 189 start-page: 1816 year: 2007 ident: B78 article-title: Functional analysis of nine putative chemoreceptor proteins in Sinorhizobium meliloti publication-title: J. Bacteriol. doi: 10.1128/JB.00883-06 – volume: 11 year: 2016 ident: B133 article-title: Effects of Tomato Root Exudates on Meloidogyne incognita publication-title: PloS One doi: 10.1371/journal.pone.0154675 – volume: 80 start-page: 3404 year: 2014 ident: B127 article-title: Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00115-14 – volume: 170 start-page: 4181 year: 1988 ident: B8 article-title: Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants publication-title: J. Bacteriol. doi: 10.1128/JB.170.9.4181-4187.1988 – volume: 356 start-page: 1175 year: 2017 ident: B67 article-title: Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant publication-title: Science doi: 10.1126/science.aan0081 – volume: 12 start-page: 99 year: 2019 ident: B115 article-title: Regulation of Root-Knot Nematode Behavior by Seed-Coat Mucilage-Derived Attractants publication-title: Mol. Plant doi: 10.1016/j.molp.2018.11.008 – volume: 147 start-page: 19 year: 1997 ident: B103 article-title: Mating in Saccharomyces cerevisiae: the role of the pheromone signal transduction pathway in the chemotropic response to pheromone publication-title: Genetics doi: 10.1093/genetics/147.1.19 – volume: 356 year: 2017 ident: B75 article-title: Ancestral alliances: plant mutualistic symbioses with fungi and bacteria publication-title: Science doi: 10.1126/science.aad4501 – volume: 16 start-page: 291 year: 2018 ident: B90 article-title: Rhizobia: from saprophytes to endosymbionts publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2017.171 – volume: 79 start-page: 305 year: 1982 ident: B59 article-title: Evidence for a volatile attractant from plant roots affecting germ tubes of a VA mycorrhizal fungus publication-title: Trans. Br. Mycol. Soc doi: 10.1016/S0007-1536(82)80118-6 – volume: 263 start-page: 10836 year: 1988 ident: B16 article-title: The STE2 gene product is the ligand-binding component of the alpha-factor receptor of Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)38046-3 – volume: 55 start-page: 21 year: 2008 ident: B38 article-title: Production of strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination publication-title: Plant Growth Regul. doi: 10.1007/s10725-008-9253-z – volume: 11 start-page: 131 year: 1998 ident: B57 article-title: Opine catabolic loci from Agrobacterium plasmids confer chemotaxis to their cognate substrates publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI.1998.11.2.131 – volume: 42 start-page: 669 year: 2010 ident: B26 article-title: Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.11.024 – volume: 5 year: 2010 ident: B125 article-title: Root-knot nematodes exhibit strain-specific clumping behavior that is inherited as a simple genetic trait publication-title: PloS One doi: 10.1371/journal.pone.0015148 – volume: 80 start-page: 695 year: 2002 ident: B41 article-title: A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses publication-title: Can. J. Bot. doi: 10.1139/b02-066 – volume: 2 start-page: 344 year: 2010 ident: B84 article-title: Effect of phenolic compounds on nematodes - A review publication-title: J. Nat. Appl. Sci. doi: 10.31018/jans.v2i2.144 – volume: 9 start-page: 387 year: 1983 ident: B86 article-title: Chemotaxis of larval soybean cyst nematode, Heterodera glycines Race 3, to root leachates and ions publication-title: J. Chem. Ecol. doi: 10.1007/BF00988457 – volume: 47 start-page: 44 year: 2007 ident: B68 article-title: Some compatible Rhizobium leguminosarum strains in peas decrease infections when parasitised by Orobanche crenata publication-title: Weed Res. doi: 10.1111/j.1365-3180.2007.00548.x – volume: 2 start-page: 743 year: 1988 ident: B6 article-title: Comparison of the chemotactic behaviour of Rhizobium leguminosarum with and without the nodulation plasmid publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1988.tb00085.x – start-page: 159 volume-title: Biology, ecology, and evolution of gallinducing arthropods year: 2005 ident: B43 article-title: Gall-inducing scale insects (Hemiptera: Sternorrhyncha: Coccoidea) – start-page: 277 volume-title: Eriophyoid mites–their biology, natural enemies and control, World Crop Pests year: 1996 ident: B63 article-title: Evolution of eriophyoid mites in relation to their host plants doi: 10.1016/S1572-4379(96)80018-2 – volume: 38 start-page: 615 year: 2012 ident: B93 article-title: Ecology and evolution of soil nematode chemotaxis publication-title: J. Chem. Ecol. doi: 10.1007/s10886-012-0118-6 – volume: 9 year: 2018 ident: B53 article-title: Multifaceted Interactions Between Endophytes and Plant: Developments and Prospects publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02732 – volume: 251 start-page: 82 year: 2020 ident: B32 article-title: Plant tumors: a hundred years of study publication-title: Planta. doi: 10.1007/s00425-020-03375-5 – volume: 148 start-page: 402 year: 2008 ident: B14 article-title: GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism publication-title: Plant Physiol. doi: 10.1104/pp.108.121400 – volume: 10 year: 2014 ident: B29 article-title: Fungal communication requires the MAK-2 pathway elements STE-20 and RAS-2, the NRC-1 adapter STE-50 and the MAP kinase scaffold HAM-5 publication-title: PloS Genet. doi: 10.1371/journal.pgen.1004762 – volume: 65 start-page: 1789 year: 2014 ident: B11 article-title: Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert415 – volume: 90 start-page: 1239 year: 2000 ident: B136 article-title: Species-dependent effects of border cell and root tip exudates on nematode behavior publication-title: Phytopathology doi: 10.1094/PHYTO.2000.90.11.1239 – volume: 154 start-page: 1189 year: 1966 ident: B27 article-title: Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant publication-title: Science doi: 10.1126/science.154.3753.1189 – volume: 8 start-page: 568 year: 2011 ident: B97 article-title: Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes publication-title: J. R. Soc Interface. doi: 10.1098/rsif.2010.0417 – volume: 97 start-page: 925 year: 2006 ident: B1 article-title: Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots publication-title: Ann. Bot. doi: 10.1093/aob/mcl063 – volume: 197 start-page: 7 year: 1905 ident: B76 article-title: On the origin of parasitism in fungi publication-title: Philos. Trans. R. Soc doi: 10.1098/rstb.1905.0003 – volume: 63 start-page: 348 year: 2007 ident: B79 article-title: The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation publication-title: Molec. Microbiol. doi: 10.1111/j.1365-2958.2006.05515.x – volume: 48 start-page: 149 year: 1984 ident: B42 article-title: Rhizobia are attracted to localized sites on legume roots publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.48.1.149-152.1984 – volume: 7 start-page: 675 year: 2014 ident: B18 article-title: New strigolactone analogs as plant hormones with low activities in the rhizosphere publication-title: Mol. Plant doi: 10.1093/mp/sst163 – volume: 126 start-page: 231 year: 1981 ident: B17 article-title: Motility and chemotaxis towards sugars in Rhizobium leguminosarum publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-126-1-231 – volume: 40 start-page: 742 year: 2014 ident: B114 article-title: Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit publication-title: J. Chem. Ecol. doi: 10.1007/s10886-014-0457-6 – volume: 194 start-page: 1075 year: 2012 ident: B33 article-title: Sinorhizobium meliloti CheA complexed with CheS exhibits enhanced binding to CheY1, resulting in accelerated CheY1 dephosphorylation publication-title: J. Bacteriol. doi: 10.1128/JB.06505-11 – volume: 104 start-page: 1453 year: 2000 ident: B81 article-title: Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi publication-title: Mycol. Res. doi: 10.1017/S0953756200002860 – volume: 6 start-page: 763 year: 2008 ident: B87 article-title: Arbuscular mycorrhiza: the mother of plant root endosymbioses publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1987 – volume: 222 start-page: 848 year: 2005 ident: B49 article-title: Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria publication-title: Planta. doi: 10.1007/s00425-005-0025-y – volume: 128 start-page: 789 year: 1982 ident: B40 article-title: Motility and chemotaxis in two strains of Rhizobium with complex flagella publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-128-4-789 – volume: 26 start-page: 1 year: 2012 ident: B95 article-title: The mechanistic basis of self-fusion between conidial anastomosis tubes during fungal colony initiation publication-title: Fungal Biol. Rev. doi: 10.1016/j.fbr.2012.02.003 – volume: 12 start-page: 608 year: 2009 ident: B94 article-title: Self-signalling and self-fusion in filamentous fungi publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2009.09.008 – volume: 17 start-page: 117 year: 2015 ident: B131 article-title: Attractant and repellent effects of sweet potato root exudates on the potato rot nematode, Ditylenchus destructor publication-title: Nematology doi: 10.1163/15685411-00002856 – volume: 435 start-page: 824 year: 2005 ident: B2 article-title: Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi publication-title: Nature doi: 10.1038/nature03608 – volume: 31 start-page: 460 year: 2018 ident: B51 article-title: Two Agrobacterium tumefaciens CheW Proteins Are Incorporated into One Chemosensory Pathway with Different Efficiencies publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-10-17-0255-R – volume: 191 start-page: 5724 year: 2009 ident: B77 article-title: Cellular localization of predicted transmembrane and soluble chemoreceptors in Sinorhizobium meliloti publication-title: J. Bacteriol. doi: 10.1128/JB.01286-08 – volume: 182 start-page: 6042 year: 2000 ident: B3 article-title: Energy taxis is the dominant behavior in Azospirillum brasilense publication-title: J. Bacteriol. doi: 10.1128/JB.182.21.6042-6048.2000 – volume: 30 start-page: 770 year: 2017 ident: B128 article-title: Sinorhizobium meliloti Chemotaxis to Multiple Amino Acids Is Mediated by the Chemoreceptor McpU publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-04-17-0096-R – volume: 32 start-page: 876 year: 2019 ident: B105 article-title: Homologs of Caenorhabditis elegans Chemosensory Genes Have Roles in Behavior and Chemotaxis in the Root-Knot Nematode Meloidogyne incognita publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-08-18-0226-R – volume: 116 start-page: 297 year: 1990 ident: B48 article-title: Chemotropism — the key to ectomycorrhizal formation publication-title: New Phytol. doi: 10.1111/j.1469-8137.1990.tb04717.x – volume: 87 start-page: 6708 year: 1990 ident: B22 article-title: Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.87.17.6708 – volume: 57 start-page: 69 year: 2016 ident: B118 article-title: Hyphal chemotropism in fungal pathogenicity publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2016.04.020 – volume: 356 start-page: 1172 year: 2017 ident: B52 article-title: Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi publication-title: Science doi: 10.1126/science.aam9970 – volume: 17 start-page: 478 year: 2012 ident: B12 article-title: The rhizosphere microbiome and plant health publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.04.001 – volume: 111 start-page: 487 year: 2007 ident: B82 article-title: Separated components of root exudate and cytosol stimulate different morphologically identifiable types of branching responses by arbuscular mycorrhizal fungi publication-title: Mycol. Res. doi: 10.1016/j.mycres.2007.02.007 – volume: 144 start-page: 1945 year: 1998 ident: B135 article-title: Rhizobium leguminosarum contains a group of genes that appear to code for methylaccepting chemotaxis proteins publication-title: Microbiology doi: 10.1099/00221287-144-7-1945 – volume: 20 start-page: 26 year: 2014 ident: B44 article-title: Phytohormone signaling in arbuscular mycorhiza development publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2014.04.003 – volume: 39 start-page: 1140 year: 2001 ident: B31 article-title: A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2001.02307.x – volume: 180 start-page: 414 year: 2011 ident: B23 article-title: Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp publication-title: Plant Sci. doi: 10.1016/j.plantsci.2010.11.007 – volume: 11 start-page: 453 year: 2009 ident: B124 article-title: Application of pluronic gel to the study of root-knot nematode behaviour publication-title: Nematology doi: 10.1163/156854109X447024 – volume: 49 start-page: 462 year: 2017 ident: B37 article-title: Chemosensory Responses of Plant Parasitic Nematodes to Selected Phytochemicals Reveal Long-Term Habituation Traits publication-title: J. Nematol. – volume: 23 start-page: 205 year: 1998 ident: B47 article-title: Signal transduction pathways in mycorrhizal associations: comparisons with the Rhizobium legume symbiosis publication-title: Fungal Genet. Biol. doi: 10.1006/fgbi.1998.1046 – volume: 52 start-page: 1781 year: 2004 ident: B55 article-title: A pheromone receptor gene, pre-1, is essential formating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2004.04096.x – volume: 22 start-page: 427 year: 1996 ident: B107 article-title: Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1996.1291489.x – volume: 102 start-page: 1733 year: 2018 ident: B126 article-title: Responses of Heterodera glycines and Meloidogyne incognita Infective Juveniles to Root Tissues, Root Exudates, and Root Extracts from Three Plant Species publication-title: Plant Dis. doi: 10.1094/PDIS-09-17-1445-RE – volume: 31 start-page: 982 year: 2018 ident: B65 article-title: Root Exudates of Stressed Plants Stimulate and Attract Trichoderma Soil Fungi publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-12-17-0310-R – volume: 4 start-page: 911 year: 2005 ident: B98 article-title: Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot publication-title: Cell doi: 10.1128/EC.4.5.911-919.2005 – volume: 59 start-page: 544 year: 2018 ident: B58 article-title: Strigolactone Biosynthesis Genes of Rice are Required for the Punctual Entry of Arbuscular Mycorrhizal Fungi into the Roots publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcy001 – volume: 53 start-page: 289 year: 2015 ident: B91 article-title: Evolution of plant parasitism in the phylum Nematoda publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-080614-120057 – volume: 9 start-page: 440 year: 2011 ident: B61 article-title: The social network: decipheringfungal language publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2580 – volume: 133 start-page: 162 year: 1982 ident: B20 article-title: Chemotaxis by Rhizobium meliloti. Arch publication-title: Microbiol. doi: 10.1007/BF00413532 – volume: 9 year: 2018 ident: B28 article-title: An Intimate Relationship Between Eriophyoid Mites and Their Host Plants - A Review publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01786 – volume: 99 start-page: 26 year: 2011 ident: B4 article-title: Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2010.01758.x – volume: 90 start-page: 549 year: 2016 ident: B102 article-title: Chemotaxis signaling systems in model beneficial plant-bacteria associations publication-title: Plant Mol. Biol. doi: 10.1007/s11103-016-0432-4 – volume: 33 start-page: 1207 year: 2007 ident: B137 article-title: Chemotaxis of the pinewood nematode, Bursaphelenchus xylophilus, to volatiles associated with host pine, Pinus massoniana, and its vector Monochamus alternatus publication-title: J. Chem. Ecol. doi: 10.1007/s10886-007-9289-y – volume: 220 start-page: 1012 year: 2018 ident: B111 article-title: The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics publication-title: New Phytol. doi: 10.1111/nph.15076 – volume: 103 start-page: 333 year: 2017 ident: B129 article-title: Sinorhizobium meliloti chemotaxis to quaternary ammonium compounds is mediated by the chemoreceptor McpX publication-title: Mol. Microbiol. doi: 10.1111/mmi.13561 – volume: 84 start-page: 60 year: 2016 ident: B36 article-title: Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2015.07.013 – volume: 13 start-page: 873 year: 1987 ident: B89 article-title: Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking publication-title: J. Chem. Ecol. doi: 10.1007/BF01020167 – volume: 40 start-page: 221 year: 2002 ident: B25 article-title: Phytochemical-based strategies for nematode control publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.phyto.40.032602.130045 – volume: 179 start-page: 6391 year: 1997 ident: B88 article-title: Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti publication-title: J. Bacteriol. doi: 10.1128/JB.179.20.6391-6399.1997 – volume: 62 start-page: 1446 year: 1969 ident: B83 article-title: The dispersal of Aceria tulipae and three other grass-infesting eriophyid mites in Ohio publication-title: Ann. Entomol. Soc Am. doi: 10.1093/aesa/62.6.1446 – volume: 4 start-page: 75 year: 2009 ident: B15 article-title: Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones publication-title: Plant Signal Behav. doi: 10.4161/psb.4.1.7419 – volume: 230 start-page: 59 year: 2015 ident: B66 article-title: Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis publication-title: Plant Sci. doi: 10.1016/j.plantsci.2014.10.010 – volume: 45 start-page: 1257 year: 2008 ident: B119 article-title: Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2008.06.002 – start-page: 173 volume-title: Eriophyoid mites–their biology, natural enemies and control year: 1996 ident: B74 article-title: Life forms, deuterogyny, diapause and seasonal development doi: 10.1016/S1572-4379(96)80009-1 – start-page: 329 volume-title: Eriophyoid mites–their biology, natural enemies and control year: 1996 ident: B99 article-title: Evolutionary ecology: life history patterns, food plant choice and dispersal doi: 10.1016/S1572-4379(96)80020-0 – volume: 41 start-page: 136 year: 2016 ident: B96 article-title: Olfactory circuits and behaviors of nematodes publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2016.09.002 – volume: 46 start-page: 102 year: 2018 ident: B106 article-title: Parasitic nematodes manipulate plant development to establish feeding sites publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2018.09.004 – volume: 15 start-page: 539 year: 2005 ident: B101 article-title: Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae publication-title: Mycorrhiza. doi: 10.1007/s00572-005-0362-5 – volume: 7 start-page: ra39 year: 2014 ident: B112 article-title: Screening of odor-receptor pairs in Caenorhabditis elegans reveals different receptors for high and low odor concentrations publication-title: Sci. Signal doi: 10.1126/scisignal.2005136 – volume: 39 start-page: 17 year: 2015 ident: B100 article-title: Pseudomonas chemotaxis publication-title: FEMS Microbiol. Rev. doi: 10.1111/1574-6976.12081 – start-page: 23 volume-title: Flavonoids in cell function. year: 2002 ident: B121 article-title: Signalling in arbuscular mycorrhiza: facts and hypotheses doi: 10.1007/978-1-4757-5235-9_3 – volume: 56 start-page: 708 year: 2005 ident: B9 article-title: Control of speed modulation (chemokinesis) in the unidirectional rotary motor of Sinorhizobium meliloti publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2005.04565.x – volume: 5 start-page: 544 year: 2006 ident: B56 article-title: Pheromones are essential for male fertility and sufficient to direct chemotropic polarized growth of trichogynes during mating in Neurospora crassa publication-title: Eukaryot. Cell doi: 10.1128/EC.5.3.544-554.2006 – volume: 33 start-page: 399 year: 1999 ident: B80 article-title: Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.33.1.399 – volume: 3 start-page: ra50 year: 2010 ident: B130 article-title: Origins and diversification of a complex signal transduction system in prokaryotes publication-title: Sci. Signal doi: 10.1126/scisignal.2000724 – volume: 58 start-page: 1153 year: 1992 ident: B30 article-title: Chemotaxis of Rhizobium meliloti towards Nodulation Gene-Inducing Compounds from Alfalfa Roots publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.58.4.1153-1158.1992 – volume: 26 start-page: 135 year: 2015 ident: B116 article-title: Chemotropic sensing in fungus-plant interactions publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.07.004 – volume: 179 start-page: 484 year: 2008 ident: B134 article-title: Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02462.x – volume: 65 start-page: 131 year: 2014 ident: B34 article-title: Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert356 – volume: 455 start-page: 189 year: 2008 ident: B39 article-title: Strigolactone inhibition of shoot branching publication-title: Nature doi: 10.1038/nature07271 – volume: 113 start-page: 6496 year: 2016 ident: B62 article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1523580113 – volume: 13 start-page: 658 year: 2019 ident: B85 article-title: Identification of naturally-occurring polyamines as nematode Meloidogyne incognita attractants publication-title: Mol. Plant. doi: 10.1016/j.molp.2019.12.010 |
SSID | ssj0000500997 |
Score | 2.3579872 |
SecondaryResourceType | review_article |
Snippet | Plants interact with microorganisms in the environment during all stages of their development and in most of their organs. These interactions can be either... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1167 |
SubjectTerms | arbuscular mycorrhizal fungi chemotaxis endoparasites endophytes gall-forming bacteria plant pathogenic nematode Plant Science |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4cAFtZRH-lKQOHDJkvgV54BQW3W1IJUTK_UW2bFNK62SsptK7L_vTJLdstVy6y0PW7ZmYs_3xfY3AJ-s5VaqoBIfCpEI5YvE4mSJVEUgHDdIyDgdcL78qSZT8eNKXj2kAxoMuNhK7Sif1HQ-G_39s_yGA_4rMU6Mt1_C7YyEt1k66lYVnsMLDEs5jdLLAev3Qt-EhvJe3mdbvY3I1An4b0OdjzdP_hONxrvweoCR8Wnv9z145us38PKsQai33IfvJAOA13T-KZ40izYZ33SnV-KVGK1fxE2IKWNRG1_UriEFcFpHXsSmdv2T6yXevoXp-OLX-SQZciYklWSyTbR32qecZT7LjJIFFyazIlifcadZjrOJK3hqcqcqXiF2yaw12vK8sE4bXjn-DnbqpvYfIFZWWJcaLxlt5jPBIBLQwjgmQ5FyHiIYrexVVoOgOOW1mJVILMjAJRm4JAOXnYEj-LyucNtrafy_6Bk5YF2MRLC7B838dzmMqdJUWhQKCV1AVog40DLpWEUMjfyvVQQfV-4rcdDQSoipfXOHDQmeayERqkbwvnfnuimOAbvIGYsg33D0Rl8239Q3150wN6IzhEvZwVN0_hBekTn638hHsNPO7_wx4p_WnnTf9T1FtgNp priority: 102 providerName: Scholars Portal |
Title | Chemotactic Host-Finding Strategies of Plant Endoparasites and Endophytes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32849722 https://www.proquest.com/docview/2437845575 https://pubmed.ncbi.nlm.nih.gov/PMC7411241 https://doaj.org/article/ac8496114f144561b25d2c6260241786 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIb-uLCh68VNs82uSosusq6MmFvZWkSVCQdnHrwX_vTLO77IrixUto05SEmWnmmybzhZBzY5gRuc8T5xVPeO5UYmCyhFCFAxzXEJAxTHB-fMoHQ_4wEqOFo75wT1igBw6Cu9KV5CoH1O4B-oOzN1RYWiEMB99TyI5sG3zeQjAVWL0R-hSByweiMHXlx2_Izk3Ty27pYckNdWz9P0HM7zslF1xPf5NsTDFjfB3GukVWXL1N1m4awHWfO-Qec_7hGpOd4kEzaZP-a5eqEs-YZ90kbnyMxxO1ca-2DdJ946LxJNa1DTUvn3C7S4b93vPtIJkekJBUgoo2kc5KlzKauSzTuVCM68xwb1zGrKQFTB1WsVQXNq9YBUAlM0ZLwwplrNSssmyPrNZN7Q5InBtubKqdoLhzT3sNbl9ybanwKmXMR-RyJq-ymrKH4yEWbyVEESjgEgVcooDLTsARuZi_MA7EGb83vUEFzJsh43VXAXZQTu2g_MsOInI2U18JXwgue-jaNR_QEWeF5AJwaUT2gzrnXTHwzqqgNCLFkqKXxrL8pH596Vi4AYoBNsoO_2PwR2QdxRH-GR-T1fb9w50A2GnNaWfXUN6NMigfufwCFXn8Tg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemotactic+Host-Finding+Strategies+of+Plant+Endoparasites+and+Endophytes&rft.jtitle=Frontiers+in+plant+science&rft.au=Allen+Yi-Lun+Tsai&rft.au=Morihiro+Oota&rft.au=Shinichiro+Sawa&rft.date=2020-07-31&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=11&rft_id=info:doi/10.3389%2Ffpls.2020.01167&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ac8496114f144561b25d2c6260241786 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |