Role of Silicon on Plant–Pathogen Interactions

Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 8; p. 701
Main Authors Wang, Min, Gao, Limin, Dong, Suyue, Sun, Yuming, Shen, Qirong, Guo, Shiwei
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 05.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and bacterial pathogens. In this review, the effects of Si on plant-pathogen interactions are analyzed, mainly on physical, biochemical, and molecular aspects. In most cases, the Si-induced biochemical/molecular resistance during plant-pathogen interactions were dominated as joint resistance, involving activating defense-related enzymes activates, stimulating antimicrobial compound production, regulating the complex network of signal pathways, and activating of the expression of defense-related genes. The most previous studies described an independent process, however, the whole plant resistances were rarely considered, especially the interaction of different process in higher plants. Si can act as a modulator influencing plant defense responses and interacting with key components of plant stress signaling systems leading to induced resistance. Priming of plant defense responses, alterations in phytohormone homeostasis, and networking by defense signaling components are all potential mechanisms involved in Si-triggered resistance responses. This review summarizes the roles of Si in plant-microbe interactions, evaluates the potential for improving plant resistance by modifying Si fertilizer inputs, and highlights future research concerning the role of Si in agriculture.
AbstractList Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and bacterial pathogens. In this review, the effects of Si on plant–pathogen interactions are analyzed, mainly on physical, biochemical, and molecular aspects. In most cases, the Si-induced biochemical/molecular resistance during plant–pathogen interactions were dominated as joint resistance, involving activating defense-related enzymes activates, stimulating antimicrobial compound production, regulating the complex network of signal pathways, and activating of the expression of defense-related genes. The most previous studies described an independent process, however, the whole plant resistances were rarely considered, especially the interaction of different process in higher plants. Si can act as a modulator influencing plant defense responses and interacting with key components of plant stress signaling systems leading to induced resistance. Priming of plant defense responses, alterations in phytohormone homeostasis, and networking by defense signaling components are all potential mechanisms involved in Si-triggered resistance responses. This review summarizes the roles of Si in plant–microbe interactions, evaluates the potential for improving plant resistance by modifying Si fertilizer inputs, and highlights future research concerning the role of Si in agriculture.
Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and bacterial pathogens. In this review, the effects of Si on plant-pathogen interactions are analyzed, mainly on physical, biochemical, and molecular aspects. In most cases, the Si-induced biochemical/molecular resistance during plant-pathogen interactions were dominated as joint resistance, involving activating defense-related enzymes activates, stimulating antimicrobial compound production, regulating the complex network of signal pathways, and activating of the expression of defense-related genes. The most previous studies described an independent process, however, the whole plant resistances were rarely considered, especially the interaction of different process in higher plants. Si can act as a modulator influencing plant defense responses and interacting with key components of plant stress signaling systems leading to induced resistance. Priming of plant defense responses, alterations in phytohormone homeostasis, and networking by defense signaling components are all potential mechanisms involved in Si-triggered resistance responses. This review summarizes the roles of Si in plant-microbe interactions, evaluates the potential for improving plant resistance by modifying Si fertilizer inputs, and highlights future research concerning the role of Si in agriculture.Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and bacterial pathogens. In this review, the effects of Si on plant-pathogen interactions are analyzed, mainly on physical, biochemical, and molecular aspects. In most cases, the Si-induced biochemical/molecular resistance during plant-pathogen interactions were dominated as joint resistance, involving activating defense-related enzymes activates, stimulating antimicrobial compound production, regulating the complex network of signal pathways, and activating of the expression of defense-related genes. The most previous studies described an independent process, however, the whole plant resistances were rarely considered, especially the interaction of different process in higher plants. Si can act as a modulator influencing plant defense responses and interacting with key components of plant stress signaling systems leading to induced resistance. Priming of plant defense responses, alterations in phytohormone homeostasis, and networking by defense signaling components are all potential mechanisms involved in Si-triggered resistance responses. This review summarizes the roles of Si in plant-microbe interactions, evaluates the potential for improving plant resistance by modifying Si fertilizer inputs, and highlights future research concerning the role of Si in agriculture.
Author Gao, Limin
Dong, Suyue
Shen, Qirong
Wang, Min
Sun, Yuming
Guo, Shiwei
AuthorAffiliation Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University Nanjing, China
AuthorAffiliation_xml – name: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University Nanjing, China
Author_xml – sequence: 1
  givenname: Min
  surname: Wang
  fullname: Wang, Min
– sequence: 2
  givenname: Limin
  surname: Gao
  fullname: Gao, Limin
– sequence: 3
  givenname: Suyue
  surname: Dong
  fullname: Dong, Suyue
– sequence: 4
  givenname: Yuming
  surname: Sun
  fullname: Sun, Yuming
– sequence: 5
  givenname: Qirong
  surname: Shen
  fullname: Shen, Qirong
– sequence: 6
  givenname: Shiwei
  surname: Guo
  fullname: Guo, Shiwei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28529517$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1rVDEUhoNUbK1du5NZuplpkptzb7IRpPgxULD4Ae7CSW4yTckk401GcOd_8B_6S8zM1NIKhkC-3vc54bxPyVHKyRHynNFF10l17jexLDhlw4LSgbJH5IT1vZiLnn89urc_Jmel3NA2gFKlhifkmEvgCthwQujHHN0s-9mnEIPNadbmVcRUf__8dYX1Oq9cmi1TdRPaGnIqz8hjj7G4s9v1lHx5--bzxfv55Yd3y4vXl3MLHOpcogE6IneAI0fBvOoGATCy3nauGwxiO3IAwZGPVkoGoqMeLCrD9qJTsjxwx4w3ejOFNU4_dMag9xd5WmmcarDRaaBIvTSKeseF8KMxRjjppeX9gNb4xnp1YG22Zu1G61KdMD6APnxJ4Vqv8ncNgskOZAO8vAVM-dvWlarXoVgXW6Nc3hbNFGUdo4pCk764X-uuyN-WN8H5QWCnXMrk_J2EUb3LVe9y1btc9T7X5oB_HDZU3KXRPhvif31_ANCPqKY
CitedBy_id crossref_primary_10_3390_plants10122758
crossref_primary_10_3390_plants10081689
crossref_primary_10_1016_j_envres_2023_116292
crossref_primary_10_1590_1519_6984_259016
crossref_primary_10_1007_s10311_021_01376_8
crossref_primary_10_3389_fmars_2018_00123
crossref_primary_10_3389_fpls_2021_763365
crossref_primary_10_1007_s40858_023_00593_6
crossref_primary_10_1007_s42161_023_01497_9
crossref_primary_10_1094_PHYTO_05_24_0162_R
crossref_primary_10_3389_fgene_2018_00506
crossref_primary_10_1093_jmicro_dfac038
crossref_primary_10_1007_s10725_023_00982_6
crossref_primary_10_1016_j_jhazmat_2021_126193
crossref_primary_10_1111_efp_12794
crossref_primary_10_3390_plants13020313
crossref_primary_10_3389_fpls_2020_608503
crossref_primary_10_1016_j_pmpp_2023_102150
crossref_primary_10_1016_j_scienta_2022_111122
crossref_primary_10_3390_biology12060789
crossref_primary_10_3389_fpls_2023_1274396
crossref_primary_10_1093_jxb_eraa300
crossref_primary_10_1016_j_scitotenv_2023_168545
crossref_primary_10_3390_plants13202915
crossref_primary_10_3390_plants11151980
crossref_primary_10_1039_D3EN00504F
crossref_primary_10_1007_s10343_023_00956_8
crossref_primary_10_1016_j_ejsobi_2024_103615
crossref_primary_10_1007_s10725_022_00843_8
crossref_primary_10_1186_s40538_023_00418_3
crossref_primary_10_3390_biology10080791
crossref_primary_10_1080_01904167_2021_2020820
crossref_primary_10_1016_j_plaphy_2021_05_031
crossref_primary_10_17660_ActaHortic_2021_1327_39
crossref_primary_10_5902_2179460X85995
crossref_primary_10_1007_s41348_019_00292_y
crossref_primary_10_3389_fpls_2022_951095
crossref_primary_10_3390_agriculture13091796
crossref_primary_10_3389_fpls_2019_01132
crossref_primary_10_1007_s12633_022_02251_z
crossref_primary_10_1186_s12864_021_08028_9
crossref_primary_10_1007_s12633_023_02485_5
crossref_primary_10_2174_18743315_v16_e2207260
crossref_primary_10_1016_j_plaphy_2021_02_024
crossref_primary_10_1038_s41598_022_19308_z
crossref_primary_10_1007_s12633_022_02209_1
crossref_primary_10_1016_j_plaphy_2021_03_060
crossref_primary_10_3389_fpls_2018_00624
crossref_primary_10_2174_1874331502115010054
crossref_primary_10_3389_fpls_2020_00028
crossref_primary_10_3390_cells7120267
crossref_primary_10_1007_s42729_024_01790_1
crossref_primary_10_1016_j_plaphy_2021_05_045
crossref_primary_10_1016_S2095_3119_18_62037_4
crossref_primary_10_1016_j_plaphy_2020_11_015
crossref_primary_10_1080_01904167_2023_2262513
crossref_primary_10_1016_j_scitotenv_2020_142209
crossref_primary_10_1007_s42729_020_00197_y
crossref_primary_10_1007_s12633_024_03215_1
crossref_primary_10_1080_03235408_2023_2207958
crossref_primary_10_3389_fpls_2023_1265782
crossref_primary_10_1038_s41598_023_41699_w
crossref_primary_10_3390_biom12081027
crossref_primary_10_3389_fpls_2021_609870
crossref_primary_10_1007_s10530_022_02853_z
crossref_primary_10_3389_fpls_2019_01151
crossref_primary_10_1016_j_jelechem_2021_115960
crossref_primary_10_3390_plants13101336
crossref_primary_10_1093_lambio_ovaf027
crossref_primary_10_1186_s42269_023_01080_3
crossref_primary_10_1007_s12633_021_01310_1
crossref_primary_10_1016_j_scitotenv_2019_133636
crossref_primary_10_1080_15226514_2023_2285015
crossref_primary_10_1016_j_indcrop_2020_112848
crossref_primary_10_1007_s41348_019_00283_z
crossref_primary_10_1080_19315260_2019_1675843
crossref_primary_10_1111_1365_2435_13295
crossref_primary_10_3390_agronomy11101938
crossref_primary_10_1016_j_apsoil_2019_08_003
crossref_primary_10_3390_jof11030230
crossref_primary_10_1007_s12633_023_02825_5
crossref_primary_10_1016_j_impact_2022_100418
crossref_primary_10_1038_s41438_021_00681_1
crossref_primary_10_3390_ijms23073803
crossref_primary_10_1080_01904167_2020_1727508
crossref_primary_10_21603_2308_4057_2021_2_224_233
crossref_primary_10_3389_fmicb_2025_1531393
crossref_primary_10_3390_agronomy11050899
crossref_primary_10_3390_plants10040652
crossref_primary_10_3390_plants10071329
crossref_primary_10_1016_j_cropro_2020_105460
crossref_primary_10_1007_s12649_023_02190_9
crossref_primary_10_3390_ijms23136965
crossref_primary_10_60158_rma_v11i1_421
crossref_primary_10_3390_ijms24043268
crossref_primary_10_1007_s42977_024_00247_x
crossref_primary_10_1021_acs_est_4c03522
crossref_primary_10_1515_ntrev_2022_0097
crossref_primary_10_1080_15592324_2023_2198848
crossref_primary_10_7717_peerj_9224
crossref_primary_10_1016_j_plaphy_2020_10_011
crossref_primary_10_3390_plants12101939
crossref_primary_10_1016_j_scitotenv_2022_157248
crossref_primary_10_1007_s42161_020_00652_w
crossref_primary_10_1016_j_ram_2023_06_005
crossref_primary_10_1080_03235408_2020_1843306
crossref_primary_10_1007_s13762_023_05434_2
crossref_primary_10_1016_j_foodcont_2022_108982
crossref_primary_10_1093_jxb_eraa488
crossref_primary_10_1016_j_ecoenv_2023_114783
crossref_primary_10_1016_j_scienta_2024_113407
crossref_primary_10_1016_j_ijbiomac_2023_124192
crossref_primary_10_1007_s12633_025_03271_1
crossref_primary_10_1016_j_pmpp_2022_101849
crossref_primary_10_1016_S2095_3119_18_62035_0
crossref_primary_10_1038_s41598_024_61830_9
crossref_primary_10_3934_agrfood_2023030
crossref_primary_10_1007_s12033_022_00527_8
crossref_primary_10_1002_ppp3_10418
crossref_primary_10_1016_j_diamond_2024_111794
crossref_primary_10_1007_s12633_020_00710_z
crossref_primary_10_3390_biom13040669
crossref_primary_10_1177_15593258211014646
crossref_primary_10_3390_ijms24032941
crossref_primary_10_1007_s41348_022_00633_4
crossref_primary_10_1007_s11104_022_05358_9
crossref_primary_10_3390_biom11081103
crossref_primary_10_1016_j_scitotenv_2023_165446
crossref_primary_10_1080_00380768_2023_2175177
crossref_primary_10_3389_fmicb_2019_02950
crossref_primary_10_3389_fpls_2022_842832
crossref_primary_10_3390_genes14020477
crossref_primary_10_3389_fpls_2019_00652
crossref_primary_10_1080_10426507_2025_2482090
crossref_primary_10_1016_j_envexpbot_2020_104058
crossref_primary_10_1021_acs_est_1c00447
crossref_primary_10_3390_agronomy11112198
crossref_primary_10_1186_s42269_019_0139_1
crossref_primary_10_1016_j_scienta_2022_111087
crossref_primary_10_15406_jabb_2020_07_00233
crossref_primary_10_1007_s11104_022_05482_6
crossref_primary_10_1002_agj2_20802
crossref_primary_10_3390_su13073750
crossref_primary_10_1016_j_envexpbot_2024_105950
crossref_primary_10_1016_j_fochx_2023_100963
crossref_primary_10_1007_s12355_020_00831_0
crossref_primary_10_1134_S1607672920060150
crossref_primary_10_1080_15592324_2023_2178362
crossref_primary_10_1111_gcb_13971
crossref_primary_10_1088_1755_1315_1371_3_032038
crossref_primary_10_7235_HORT_20240035
crossref_primary_10_1007_s11104_022_05385_6
crossref_primary_10_1186_s12951_022_01420_x
crossref_primary_10_3390_agriculture14010009
crossref_primary_10_1093_jxb_eraa291
crossref_primary_10_1007_s00344_020_10172_7
crossref_primary_10_3389_fpls_2023_1156869
crossref_primary_10_1007_s41348_022_00693_6
crossref_primary_10_1007_s12633_023_02610_4
crossref_primary_10_1016_j_jhazmat_2023_131254
crossref_primary_10_3390_agronomy9100637
crossref_primary_10_1094_PHP_01_22_0005_SC
crossref_primary_10_1080_01904167_2024_2406479
crossref_primary_10_3390_agronomy10081138
crossref_primary_10_3390_su141710996
crossref_primary_10_20479_bursauludagziraat_1133666
crossref_primary_10_1080_14620316_2019_1614486
crossref_primary_10_1093_pcp_pcab022
crossref_primary_10_1111_ppa_13790
crossref_primary_10_3389_fpls_2021_721436
crossref_primary_10_1007_s13593_018_0496_4
crossref_primary_10_1016_j_plaphy_2021_06_005
crossref_primary_10_1016_j_envpol_2022_119855
crossref_primary_10_1016_j_jenvman_2021_113278
crossref_primary_10_1111_ppl_13900
crossref_primary_10_3390_plants10102163
crossref_primary_10_1016_j_bioorg_2020_103773
crossref_primary_10_3390_su151712783
crossref_primary_10_1111_ppl_14313
crossref_primary_10_1007_s12633_023_02589_y
crossref_primary_10_48044_jauf_2024_024
crossref_primary_10_3390_agronomy13071709
crossref_primary_10_1016_j_sjbs_2021_02_016
crossref_primary_10_1111_ppa_13621
crossref_primary_10_3389_fpls_2021_677839
crossref_primary_10_1007_s00425_019_03120_7
crossref_primary_10_1080_03235408_2020_1856596
crossref_primary_10_1080_03235408_2020_1854971
crossref_primary_10_1007_s42452_021_04927_4
crossref_primary_10_3390_horticulturae10111224
crossref_primary_10_3390_horticulturae10080806
crossref_primary_10_36253_phyto_14576
crossref_primary_10_3390_plants9111612
crossref_primary_10_1007_s10343_021_00568_0
crossref_primary_10_1002_jsfa_10634
crossref_primary_10_3390_plants11192525
crossref_primary_10_3389_fpls_2017_01265
crossref_primary_10_1007_s42161_020_00622_2
crossref_primary_10_3389_fenvs_2024_1458360
crossref_primary_10_1111_jipb_13204
crossref_primary_10_1007_s11368_022_03323_8
crossref_primary_10_1007_s10658_020_01982_2
crossref_primary_10_1007_s13580_022_00486_8
crossref_primary_10_2478_agri_2024_0003
crossref_primary_10_1002_jsfa_10767
crossref_primary_10_1007_s12633_021_01033_3
crossref_primary_10_1080_10889868_2024_2352125
crossref_primary_10_1021_acs_langmuir_3c03946
crossref_primary_10_1590_1678_4499_20210147
crossref_primary_10_1038_s41565_020_00812_0
crossref_primary_10_1007_s12633_024_03002_y
crossref_primary_10_1007_s42360_023_00659_0
crossref_primary_10_3390_su13158535
crossref_primary_10_1016_j_cropro_2023_106387
crossref_primary_10_1590_2447_536x_v27i3_2308
crossref_primary_10_3389_fagro_2021_741557
crossref_primary_10_3390_ijms241814153
crossref_primary_10_1016_j_apsoil_2023_105131
crossref_primary_10_2478_contagri_2024_0028
crossref_primary_10_3389_fpls_2022_982068
crossref_primary_10_1007_s40626_021_00218_w
crossref_primary_10_1016_j_envres_2021_112244
crossref_primary_10_1111_tpj_15469
crossref_primary_10_1016_j_crsust_2023_100226
crossref_primary_10_1016_j_jes_2022_09_005
crossref_primary_10_1007_s42729_022_00787_y
crossref_primary_10_3389_fpls_2018_01468
crossref_primary_10_1007_s10343_022_00697_0
crossref_primary_10_1111_1440_1703_12025
crossref_primary_10_1021_acssuschemeng_9b04800
crossref_primary_10_3390_microorganisms12030541
crossref_primary_10_1007_s10441_023_09456_8
crossref_primary_10_1016_j_pestbp_2020_104696
crossref_primary_10_1016_j_micron_2022_103231
Cites_doi 10.1007/s11103-005-2140-3
10.1016/j.plaphy.2013.03.020
10.1111/nph.13282
10.1080/00380768.1995.10419564
10.1016/j.chemosphere.2004.09.034
10.1081/PLN-120027657
10.1016/j.postharvbio.2014.07.016
10.1094/Phyto.2003.93.4.402
10.1007/s00425-012-1779-7
10.1094/PHYTO-12-14-0378-R
10.2307/3869902
10.1146/annurev-cellbio-092910-154055
10.1016/j.bbagen.2013.11.021
10.1016/j.plaphy.2011.01.014
10.1007/s10658-015-0812-7
10.1073/pnas.0802361105
10.1016/j.jplph.2011.04.002
10.1590/S1982-56762013005000006
10.1094/PHYTO-02-12-0037-R
10.3389/Fpls.2016.00463
10.1007/s13313-016-0429-0
10.1046/j.1365-313X.2003.01606.x
10.1016/S0885-5765(05)80027-X
10.1111/nph.13270
10.1016/j.pmpp.2010.11.004
10.1104/pp.106.085258
10.1590/0103-9016-2014-0221
10.1016/S1369-5266(03)00041-4
10.1111/j.1439-0434.2009.01623.x
10.1111/j.1439-0434.2009.01665.x
10.1007/s13313-010-0010-1
10.1590/S1982-56762013000600002
10.1590/S1982-56762013005000021
10.1038/nature04590
10.1094/PHYTO.2004.94.2.177
10.1071/AP01047
10.1016/j.pmpp.2004.07.005
10.1094/pdis-01-14-0102-re
10.1016/j.tplants.2006.06.007
10.1094/PHYTO-04-15-0109-R
10.1007/s10327-005-0270-8
10.1007/s10658-010-9625-x
10.1016/j.pbi.2006.03.001
10.3390/su8040293
10.1023/A:1004526604913
10.1007/s10658-011-9835-x
10.1111/j.1365-3059.2005.01246.x
10.1007/s10658-007-9181-1
10.1111/j.1399-3054.2009.01226.x
10.1139/b93-029
10.1046/j.1364-3703.2002.00131.x
10.1186/1471-2229-14-13
10.1111/j.1365-2621.2006.01464.x
10.1111/j.1745-4549.2008.00292.x
10.1016/j.pmpp.2005.05.006
10.1111/ppa.12346
10.1016/j.femsle.2005.06.034
10.1080/00380768.2004.10408447
10.1590/S1982-56762014000100005
10.1111/jph.12353
10.1111/aab.12246
10.1111/mpp.12236
10.1111/j.1365-3059.2009.02228.x
10.1002/jpln.200420490
10.1094/Phyto-82-119
10.1016/j.pmpp.2013.06.004
10.1146/annurev.phyto.42.040803.140421
10.1111/j.1750-3841.2009.01154.x
10.1105/tpc.016980
10.1073/Pnas.91.1.11
10.1007/978-3-319-22930-0
10.1111/jph.12005
10.1094/PDIS.2000.84.8.871
10.1094/PDIS.2001.85.8.827
10.1080/01904160802459641
10.1021/pr100716h
10.1016/S1369-5266(03)00058-X
10.1093/aob/mcw095
10.2135/cropsci2005.04-0002
10.1111/ppa.12468
10.1073/pnas.1305848110
10.1094/pdis-04-11-0274
10.1007/s11738-016-2217-4
10.1094/pd-90-0279
10.1038/nchembio.164
10.1016/S0176-1617(89)80209-3
10.1105/tpc.12.11.2175
10.1071/AP08047
10.1007/978-3-319-22930-0_5
10.1094/PHYTO.2003.93.5.535
10.1093/jxb/eru220
10.1111/aab.12109
10.1094/pdis-07-10-0500
10.1111/j.1744-7348.2009.00347.x
10.1016/j.scienta.2014.05.027
10.1007/s00018-008-7580-x
10.3389/fpls.2016.00744
10.1073/pnas.0606330103
10.1007/s10658-011-9855-6
10.1094/Phyto-84-236
10.1590/S1982-56762012000600005
10.1016/j.envexpbot.2008.07.004
10.1111/jph.12020
10.1016/j.pmpp.2012.01.004
10.1094/PHYTO.1998.88.5.396
10.1094/PHYTO-95-0069
10.1002/jpln.201200008
10.1093/jxb/ers329
10.1016/0885-5765(91)90007-5
10.1515/hppj-2016-0001
10.1080/00380768.1983.10432407
10.1094/MPMI-22-11-1323
10.1094/PHYTO-10-14-0280-R
10.1590/S1982-56762014000600007
10.1111/mpp.12213
10.1111/jph.12370
10.1094/Pdis.2004.88.3.253
10.1007/s11104-014-2293-4
10.1111/j.1439-0434.2009.01610.x
10.3389/Fpls.2016.01072
10.1007/s00217-011-1611-9
10.1016/S0065-2113(08)60255-2
10.1111/1751-7915.12017
10.1016/S0065-2296(08)60120-2
10.1111/jph.12497
10.1038/nature05964
10.1093/jxb/erl232
10.1146/annurev.arplant.50.1.641
10.1016/j.profoo.2016.02.035
10.21273/JASHS.117.6.902
10.1111/jph.12170
10.1094/PHYTO-98-9-1038
10.1104/pp.108.127878
10.1094/PHYTO-04-10-0105
10.1186/1471-2229-12-190
10.1590/S1982-56762013000600003
10.1111/j.1439-0434.2011.01803.x
10.1094/PHYTO.2002.92.10.1095
10.1038/srep24640
10.1016/j.pmpp.2005.06.002
10.1093/aob/mcl255
10.1080/01904160701394287
10.1016/S1360-1385(02)02307-5
10.1080/01904167.2010.519082
10.2174/157016410791330507
10.1038/nature05960
10.1016/j.cropro.2014.10.004
10.1111/j.1365-3059.2011.02493.x
10.1111/j.1399-3054.2008.01140.x
10.1046/j.1365-313X.2002.01300.x
10.1146/annurev.phyto.36.1.59
ContentType Journal Article
Copyright Copyright © 2017 Wang, Gao, Dong, Sun, Shen and Guo. 2017 Wang, Gao, Dong, Sun, Shen and Guo
Copyright_xml – notice: Copyright © 2017 Wang, Gao, Dong, Sun, Shen and Guo. 2017 Wang, Gao, Dong, Sun, Shen and Guo
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2017.00701
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_50a0f8b90fe244fdbbb4e8f8c267acbf
PMC5418358
28529517
10_3389_fpls_2017_00701
Genre Journal Article
Review
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c525t-8ab50da2e5ad2a41f937455d16c3e37baa74525542a2dc8815430f5ca9b1d16c3
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:25:19 EDT 2025
Thu Aug 21 17:45:29 EDT 2025
Fri Jul 11 09:34:20 EDT 2025
Thu Apr 03 07:08:51 EDT 2025
Tue Jul 01 00:51:59 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords plant–pathogen interactions
defense response
molecular
silicon
physical
biochemical
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-8ab50da2e5ad2a41f937455d16c3e37baa74525542a2dc8815430f5ca9b1d16c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Rupesh Kailasrao Deshmukh, Laval University, Canada
This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science
Reviewed by: Huixia Shou, Zhejiang University, China; Heiner Goldbach, University of Bonn, Germany
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2017.00701
PMID 28529517
PQID 1901310905
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_50a0f8b90fe244fdbbb4e8f8c267acbf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5418358
proquest_miscellaneous_1901310905
pubmed_primary_28529517
crossref_primary_10_3389_fpls_2017_00701
crossref_citationtrail_10_3389_fpls_2017_00701
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-05
PublicationDateYYYYMMDD 2017-05-05
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-05
  day: 05
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2017
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Pieterse (B99) 2009; 5
Resende (B111) 2013; 161
Wiese (B151) 2005; 168
Seebold (B128) 2000; 84
Shah (B130) 2003; 6
Van (B146); 16
Majeed Zargar (B85) 2010; 7
Vivancos (B148) 2015; 16
Liu (B77) 2009; 33
Richmond (B113) 2003; 6
Brecht (B5) 2007; 30
Rahman (B107) 2015; 105
Menzies (B89) 1992; 117
Domiciano (B28) 2015; 105
Hayasaka (B54) 2008; 98
Guo (B52) 2007; 42
Zeyen (B154) 1993; 71
Hao (B53) 2011; 49
Ramouthar (B108) 2015; 145
Fortunato (B43); 102
Ye (B152) 2013; 110
Durrant (B32) 2004; 42
Carré-Missio (B10) 2014; 164
Takahashi (B139) 1990; 2
He (B55) 2015; 206
Silva (B133) 2010; 158
Dreher (B31) 2007; 99
Kurabachew (B67) 2013; 84
Andrade (B1) 2013; 38
Sakr (B122) 2016; 9
Kim (B66) 2014; 14
Cai (B9) 2008; 134
Silva (B134) 2010; 59
Marschner (B86) 2012
Clarke (B15) 2000; 12
Liang (B76); 58
Zhang (B157) 2006; 46
McDonagh (B88) 2010
Peters (B98) 2001; 85
Van (B144) 2013; 64
Dallagnol (B19) 2015; 64
Li (B71) 2004; 16
Cruz (B18) 2014; 162
Silva (B135) 2015; 72
Ma (B79) 2004; 50
Chain (B11) 2009; 22
Remus-Borel (B110) 2005; 66
Nwugo (B96) 2011; 10
Guérin (B49) 2014; 98
Epstein (B34) 1994; 91
Rodrigues (B117) 2001; 85
Fawe (B39) 1998; 88
Whan (B150) 2016; 118
Bi (B4) 2006; 90
Chérif (B14) 1994; 84
Zhang (B156) 2004; 55
Dann (B22) 2002; 31
Deepak (B25) 2008; 37
Liu (B78) 2014; 65
Kablan (B62) 2012; 96
Lemes (B69) 2011; 95
Vermeire (B147) 2011; 131
Nawrath (B95) 2006; 9
Sun (B138) 2010; 128
Iwai (B60) 2006; 142
Reynolds (B112) 2016; 7
Pan (B97) 1992; 82
Łaźniewska (B68) 2012; 78
Rodrigues (B116) 2015
French-Monar (B44) 2010; 158
Li (B73) 2009; 74
Miyake (B91) 1983; 29
Ma (B82) 2008; 65
Epstein (B35) 1999; 50
Rodrigues (B115) 2010; 33
Garibaldi (B45) 2011; 132
Ratnayake (B109) 2016; 45
Prabhu (B104) 2012; 37
Kauss (B64) 2003; 33
Guével (B51) 2007; 119
Huang (B57) 2011; 159
Ma (B80) 2006; 440
Devadas (B26) 2002; 30
Chen (B13) 2009; 136
Ghareeb (B47) 2011; 75
Araujo (B2) 2015; 106
Rodrigues (B121)
Epstein (B36) 2001
Ma (B84) 2008; 105
Uriarte (B143) 2004; 27
Conceição (B16) 2014; 174
Emadian (B33) 1989; 134
Guerriero (B50) 2016; 7
Ghanmi (B46) 2004; 64
Dallagnol (B20) 2011; 101
Menzies (B90) 1991; 39
Rodrigues (B119) 2004; 94
Tatagiba (B140) 2016; 168
Jayawardana (B61) 2016; 6
Li (B72) 2011; 234
Schurt (B127) 2014; 39
Rodrigues (B118) 2005; 66
Pieterse (B100) 2012; 28
Dixon (B27) 2002; 3
Polanco (B103) 2014; 39
Thines (B142) 2007; 448
Quarta (B106) 2013; 68
Lepolu Torlon (B70) 2016; 8
Piperno (B101) 2006
Zellner (B153) 2011; 168
Samuels (B123) 1994; 44
Zhang (B155) 2013; 176
Moyer (B93) 2008; 31
Song (B136) 2016; 6
Telles Nascimento (B141) 2016; 164
Coskun (B17) 2016; 7
Savant (B124) 1997; 58
Fortunato (B42); 160
Qin (B105) 2005; 95
Grant (B48) 2013; 6
Najihah (B94) 2015; 67
Pirrello (B102) 2012; 12
Dallagnol (B21) 2013; 38
Savvas (B125) 2009; 65
Schmelzer (B126) 2002; 7
Chen (B12) 2014; 387
Sousa (B137) 2013; 38
Liang (B74) 1999; 209
Hutcheson (B58) 1998; 36
Liang (B75); 54
Moldes (B92) 2016; 38
Shewry (B132) 1997; 26
Datnoff (B23) 2007
Inanaga (B59) 1995; 41
Domiciano (B29) 2013; 38
Filha (B40) 2011; 40
Ma (B83) 2007; 448
Heine (B56) 2007; 58
Rodrigues (B114) 2003; 93
Shetty (B131) 2012; 61
Belanger (B3) 2003; 93
Kanto (B63) 2006; 72
Fortunato (B41) 2015; 163
De Vleesschauwer (B24) 2008; 148
Mburu (B87) 2015; 65
Ma (B81) 2006; 11
Fauteux (B38) 2005; 249
Kim (B65) 2002; 92
Seebold (B129) 2004; 88
Brunings (B7) 2009; 155
Cabot (B8) 2013; 237
Van (B145); 206
Brisson (B6) 1994; 6
Domiciano (B30) 2010; 158
Waewthongrak (B149) 2015; 99
Rodrigues (B120); 163
Fauteux (B37) 2006; 103
20879842 - Phytopathology. 2011 Jan;101(1):92-104
18513376 - Physiol Plant. 2008 Oct;134(2):324-33
18626020 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9931-5
24879770 - J Exp Bot. 2014 Sep;65(17):4747-56
17625566 - Nature. 2007 Jul 12;448(7150):209-12
23255278 - J Exp Bot. 2013 Mar;64(5):1281-93
19470092 - Physiol Plant. 2009 Jul;136(3):324-35
18944220 - Phytopathology. 2002 Oct;92(10):1095-103
27288509 - Ann Bot. 2016 Aug;118(2):219-26
15012222 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:641-664
16839801 - Trends Plant Sci. 2006 Aug;11(8):392-7
11090217 - Plant Cell. 2000 Nov;12(11):2175-90
21696845 - J Plant Physiol. 2011 Oct 15;168(15):1866-9
23279915 - Microb Biotechnol. 2013 May;6(3):212-22
18943742 - Phytopathology. 2008 Sep;98(9):1038-44
16580871 - Curr Opin Plant Biol. 2006 Jun;9(3):281-7
19810802 - Mol Plant Microbe Interact. 2009 Nov;22(11):1323-30
27486474 - Front Plant Sci. 2016 Jul 18;7:1072
22784251 - Phytopathology. 2012 Oct;102(10):957-66
18945932 - Plant Physiol. 2008 Dec;148(4):1996-2012
14742872 - Plant Cell. 2004 Feb;16(2):319-31
17012402 - Plant Physiol. 2006 Nov;142(3):1202-15
26237696 - Phytopathology. 2016 Feb;106(2):132-41
17158106 - J Exp Bot. 2007;58(3):569-77
12028576 - Plant J. 2002 May;30(4):467-80
18943838 - Phytopathology. 2005 Jan;95(1):69-75
25738553 - Phytopathology. 2015 Jun;105(6):748-57
27148294 - Front Plant Sci. 2016 Apr 12;7:463
27379104 - Front Plant Sci. 2016 Jun 13;7:744
25583155 - Mol Plant Pathol. 2015 Oct;16(8):811-24
23070523 - Planta. 2013 Jan;237(1):337-49
12244231 - Plant Cell. 1994 Dec;6(12):1703-1712
18942975 - Phytopathology. 2003 May;93(5):535-46
12234733 - Trends Plant Sci. 2002 Sep;7(9):411-5
12873532 - Curr Opin Plant Biol. 2003 Aug;6(4):365-71
15604719 - Plant Mol Biol. 2004 Aug;55(6):825-34
24405887 - BMC Plant Biol. 2014 Jan 09;14:13
19646050 - J Food Sci. 2009 Jun;74(5):M213-8
21300551 - Plant Physiol Biochem. 2011 Jul;49(7):744-51
17082308 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17554-9
15012493 - Annu Rev Phytopathol. 1998;36:59-90
25615017 - New Phytol. 2015 May;206(3):1051-62
17637677 - Nature. 2007 Aug 9;448(7154):661-5
15283665 - Annu Rev Phytopathol. 2004;42:185-209
16006059 - FEMS Microbiol Lett. 2005 Aug 1;249(1):1-6
25607719 - Phytopathology. 2015 Jun;105(6):738-47
22559264 - Annu Rev Cell Dev Biol. 2012;28:489-521
25625327 - New Phytol. 2015 Apr;206(2):761-73
24003150 - Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3631-9
18560761 - Cell Mol Life Sci. 2008 Oct;65(19):3049-57
18944917 - Phytopathology. 1998 May;88(5):396-401
19377457 - Nat Chem Biol. 2009 May;5(5):308-16
12753977 - Curr Opin Plant Biol. 2003 Jun;6(3):268-72
12943543 - Plant J. 2003 Jan;33(1):87-95
27091552 - Sci Rep. 2016 Apr 19;6:24640
23628925 - Plant Physiol Biochem. 2013 Jul;68:52-60
18944354 - Phytopathology. 2003 Apr;93(4):402-12
20569344 - Mol Plant Pathol. 2002 Sep 1;3(5):371-90
15620739 - Chemosphere. 2005 Jan;58(4):475-83
11607449 - Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):11-7
16572174 - Nature. 2006 Mar 30;440(7084):688-91
18943541 - Phytopathology. 2004 Feb;94(2):177-83
25346281 - Mol Plant Pathol. 2015 Aug;16(6):572-82
21117708 - J Proteome Res. 2011 Feb 4;10(2):518-28
23057995 - BMC Plant Biol. 2012 Oct 11;12:190
17220175 - Ann Bot. 2007 May;99(5):787-822
References_xml – volume: 55
  start-page: 825
  year: 2004
  ident: B156
  article-title: Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-005-2140-3
– volume: 68
  start-page: 52
  year: 2013
  ident: B106
  article-title: Isolation of a polyphenol oxidase (PPO) cDNA from artichoke and expression analysis in wounded artichoke heads.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.03.020
– volume: 206
  start-page: 1051
  year: 2015
  ident: B55
  article-title: A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice.
  publication-title: New Phytol.
  doi: 10.1111/nph.13282
– volume: 41
  start-page: 111
  year: 1995
  ident: B59
  article-title: Does silicon exist in association with organic compounds in rice plant?
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.1995.10419564
– volume: 58
  start-page: 475
  ident: B76
  article-title: Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil.
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.09.034
– volume: 27
  start-page: 325
  year: 2004
  ident: B143
  article-title: Effect of soluble silica on brown patch and dollar spot of creeping bentgrass.
  publication-title: J. Plant Nutr.
  doi: 10.1081/PLN-120027657
– volume: 99
  start-page: 44
  year: 2015
  ident: B149
  article-title: Effect of Bacillus subtilis and chitosan applications on green mold (Penicillium digitatum Sacc.) decay in citrus fruit.
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2014.07.016
– volume: 93
  start-page: 402
  year: 2003
  ident: B3
  article-title: Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp tritici).
  publication-title: Phytopathology
  doi: 10.1094/Phyto.2003.93.4.402
– volume: 237
  start-page: 337
  year: 2013
  ident: B8
  article-title: Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea.
  publication-title: Planta
  doi: 10.1007/s00425-012-1779-7
– volume: 105
  start-page: 748
  year: 2015
  ident: B107
  article-title: Silicon-induced systemic defense responses in perennial ryegrass against infection by Magnaporthe oryzae.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-12-14-0378-R
– volume: 6
  start-page: 1703
  year: 1994
  ident: B6
  article-title: Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance.
  publication-title: Plant Cell
  doi: 10.2307/3869902
– volume: 28
  start-page: 489
  year: 2012
  ident: B100
  article-title: Hormonal modulation of plant immunity.
  publication-title: Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-092910-154055
– volume: 2
  start-page: 99
  year: 1990
  ident: B139
  article-title: The possibility of silicon as an essential element for higher plants.
  publication-title: Comment. Agric. Food Chem.
  doi: 10.1016/j.bbagen.2013.11.021
– volume: 49
  start-page: 744
  year: 2011
  ident: B53
  article-title: Expression of defense genes and activities of antioxidant enzymes in rice resistance to rice stripe virus and small brown planthopper.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2011.01.014
– volume: 145
  start-page: 53
  year: 2015
  ident: B108
  article-title: Effect of silicon on the severity of brown rust of sugarcane in South Africa.
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-015-0812-7
– volume: 105
  start-page: 9931
  year: 2008
  ident: B84
  article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0802361105
– volume: 168
  start-page: 1866
  year: 2011
  ident: B153
  article-title: Silicon delays Tobacco ringspot virus systemic symptoms in Nicotiana tabacum.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2011.04.002
– volume: 38
  start-page: 258
  year: 2013
  ident: B29
  article-title: Infection process of Bipolaris sorokiniana on wheat leaves is affected by silicon.
  publication-title: Trop. Plant Pathol.
  doi: 10.1590/S1982-56762013005000006
– volume: 102
  start-page: 957
  ident: B43
  article-title: Physiological and biochemical aspects of the resistance of banana plants to Fusarium wilt potentiated by silicon.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-02-12-0037-R
– volume: 7
  year: 2016
  ident: B50
  article-title: Silicon and the plant extracellular matrix.
  publication-title: Front. Plant Sci.
  doi: 10.3389/Fpls.2016.00463
– volume: 45
  start-page: 425
  year: 2016
  ident: B109
  article-title: Some biochemical defense responses enhanced by soluble silicon in bitter gourd-powdery mildew pathosystem.
  publication-title: Australas. Plant Pathol.
  doi: 10.1007/s13313-016-0429-0
– volume: 33
  start-page: 87
  year: 2003
  ident: B64
  article-title: Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants.
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01606.x
– volume: 44
  start-page: 237
  year: 1994
  ident: B123
  article-title: Silicon in cell walls and papillae of Cucumis sativus during infection by Sphaerotheca fuliginea.
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/S0885-5765(05)80027-X
– volume: 206
  start-page: 761
  ident: B145
  article-title: Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway.
  publication-title: New Phytol.
  doi: 10.1111/nph.13270
– volume: 75
  start-page: 83
  year: 2011
  ident: B47
  article-title: Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect.
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2010.11.004
– volume: 142
  year: 2006
  ident: B60
  article-title: Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.085258
– volume: 72
  start-page: 322
  year: 2015
  ident: B135
  article-title: Histochemical aspects of wheat resistance to leaf blast mediated by silicon.
  publication-title: Sci. Agric.
  doi: 10.1590/0103-9016-2014-0221
– volume: 6
  start-page: 268
  year: 2003
  ident: B113
  article-title: Got silicon? The non-essential beneficial plant nutrient.
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/S1369-5266(03)00041-4
– volume: 158
  start-page: 334
  year: 2010
  ident: B30
  article-title: Wheat resistance to spot blotch potentiated by silicon.
  publication-title: J. Phytopathol.
  doi: 10.1111/j.1439-0434.2009.01623.x
– volume: 158
  start-page: 554
  year: 2010
  ident: B44
  article-title: Silicon suppresses Phytophthora blight development on bell pepper.
  publication-title: J. Phytopathol.
  doi: 10.1111/j.1439-0434.2009.01665.x
– volume: 40
  start-page: 28
  year: 2011
  ident: B40
  article-title: Wheat resistance to leaf blast mediated by silicon.
  publication-title: Australas. Plant Pathol.
  doi: 10.1007/s13313-010-0010-1
– volume: 38
  start-page: 472
  year: 2013
  ident: B137
  article-title: Cytological aspects of the infection process of Pyricularia oryzae on leaves of wheat plants supplied with silicon.
  publication-title: Trop. Plant Pathol.
  doi: 10.1590/S1982-56762013000600002
– volume: 38
  start-page: 436
  year: 2013
  ident: B1
  article-title: Silicon reduces bacterial speck development on tomato leaves.
  publication-title: Trop. Plant Pathol.
  doi: 10.1590/S1982-56762013005000021
– volume: 440
  start-page: 688
  year: 2006
  ident: B80
  article-title: A silicon transporter in rice.
  publication-title: Nature
  doi: 10.1038/nature04590
– volume: 94
  start-page: 177
  year: 2004
  ident: B119
  article-title: Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2004.94.2.177
– volume: 31
  start-page: 9
  year: 2002
  ident: B22
  article-title: Peas grown in media with elevated plant-available silicon levels have higher activities of chitinase and β-1, 3-glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon.
  publication-title: Australas. Plant Pathol.
  doi: 10.1071/AP01047
– volume: 64
  start-page: 189
  year: 2004
  ident: B46
  article-title: Powdery mildew of Arabidopsis thaliana: a pathosystem for exploring the role of silicon in plant-microbe interactions.
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2004.07.005
– volume: 98
  start-page: 1632
  year: 2014
  ident: B49
  article-title: A zoospore inoculation method with Phytophthora sojae to assess the prophylactic role of silicon on soybean cultivars.
  publication-title: Plant Dis.
  doi: 10.1094/pdis-01-14-0102-re
– volume: 11
  start-page: 392
  year: 2006
  ident: B81
  article-title: Silicon uptake and accumulation in higher plants.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2006.06.007
– volume: 106
  start-page: 132
  year: 2015
  ident: B2
  article-title: Microscopic aspects of silicon-mediated rice resistance to leaf scald.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-04-15-0109-R
– volume: 72
  start-page: 137
  year: 2006
  ident: B63
  article-title: Suppressive effect of liquid potassium silicate on powdery mildew of strawberry in soil.
  publication-title: J.Gen. Plant Pathol.
  doi: 10.1007/s10327-005-0270-8
– volume: 128
  start-page: 39
  year: 2010
  ident: B138
  article-title: Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier.
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-010-9625-x
– volume: 9
  start-page: 281
  year: 2006
  ident: B95
  article-title: Unraveling the complex network of cuticular structure and function.
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2006.03.001
– volume: 8
  year: 2016
  ident: B70
  article-title: Silicon soil amendments for suppressing powdery mildew on pumpkin.
  publication-title: Sustainability
  doi: 10.3390/su8040293
– volume: 209
  start-page: 217
  year: 1999
  ident: B74
  article-title: Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress.
  publication-title: Plant Soil
  doi: 10.1023/A:1004526604913
– volume: 131
  start-page: 621
  year: 2011
  ident: B147
  article-title: Protective role of silicon in the banana-Cylindrocladium spathiphylli pathosystem.
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-011-9835-x
– volume: 54
  start-page: 678
  ident: B75
  article-title: Effects of foliar-and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus.
  publication-title: Plant Pathol.
  doi: 10.1111/j.1365-3059.2005.01246.x
– volume: 119
  start-page: 429
  year: 2007
  ident: B51
  article-title: Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants.
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-007-9181-1
– volume: 136
  start-page: 324
  year: 2009
  ident: B13
  article-title: Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt.
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2009.01226.x
– volume: 71
  start-page: 284
  year: 1993
  ident: B154
  article-title: X-ray microanalysis of frozen-hydrated, freeze-dried, and critical point dried leaf specimens: determination of soluble and insoluble chemical elements of Erysiphe graminis epidermal cell papilla sites in barley isolines containing Ml-O and ml-O alleles.
  publication-title: Can. J. Bot.
  doi: 10.1139/b93-029
– volume: 3
  start-page: 371
  year: 2002
  ident: B27
  article-title: The phenylpropanoid pathway and plant defence-a genomics perspective.
  publication-title: Mol. Plant Pathol.
  doi: 10.1046/j.1364-3703.2002.00131.x
– volume: 14
  year: 2014
  ident: B66
  article-title: Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones.
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-14-13
– volume: 42
  start-page: 1012
  year: 2007
  ident: B52
  article-title: Use of silicon oxide and sodium silicate for controlling Trichothecium roseum postharvest rot in Chinese cantaloupe (Cucumis melo L.).
  publication-title: Int. J. Food Sci. Techol.
  doi: 10.1111/j.1365-2621.2006.01464.x
– volume: 33
  start-page: 187
  year: 2009
  ident: B77
  article-title: Inhabited mechanisms of silicon compounds against Fusarium rot (Fusarium spp.) of postharvest Chinese cantaloupe.
  publication-title: J. Food Process. Preserv.
  doi: 10.1111/j.1745-4549.2008.00292.x
– volume: 66
  start-page: 108
  year: 2005
  ident: B110
  article-title: Silicon induces antifungal compounds in powdery mildew-infected wheat.
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2005.05.006
– volume: 64
  start-page: 1085
  year: 2015
  ident: B19
  article-title: Comparison of root and foliar applications of potassium silicate in potentiating post-infection defences of melon against powdery mildew.
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12346
– volume: 249
  start-page: 1
  year: 2005
  ident: B38
  article-title: Silicon and plant disease resistance against pathogenic fungi.
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/j.femsle.2005.06.034
– volume: 50
  start-page: 11
  year: 2004
  ident: B79
  article-title: Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses.
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2004.10408447
– volume: 39
  start-page: 35
  year: 2014
  ident: B103
  article-title: Photosynthetic gas exchange and antioxidative system in common bean plants infected by Colletotrichum lindemuthianum and supplied with silicon.
  publication-title: Trop. Plant Pathol.
  doi: 10.1590/S1982-56762014000100005
– volume: 163
  start-page: 554
  ident: B120
  article-title: Photosynthetic gas exchange in common bean submitted to foliar sprays of potassium silicate, sodium molybdate and fungicide and infected with Colletotrichum lindemuthianum.
  publication-title: J. Phytopathol.
  doi: 10.1111/jph.12353
– volume: 168
  start-page: 111
  year: 2016
  ident: B140
  article-title: Silicon partially preserves the photosynthetic performance of rice plants infected by Monographella albescens.
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12246
– volume: 16
  start-page: 811
  ident: B146
  article-title: Primary metabolism plays a central role in molding silicon-inducible brown spot resistance in rice.
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12236
– volume: 59
  start-page: 586
  year: 2010
  ident: B134
  article-title: Biochemical responses of coffee resistance against Meloidogyne exigua mediated by silicon.
  publication-title: Plant Pathol.
  doi: 10.1111/j.1365-3059.2009.02228.x
– volume: 168
  start-page: 269
  year: 2005
  ident: B151
  article-title: Osmotic stress and silicon act additively in enhancing pathogen resistance in barley against barley powdery mildew.
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200420490
– volume: 82
  start-page: 119
  year: 1992
  ident: B97
  article-title: Induction of chitinases in tobacco plants systemically protected against blue mold by Peronospora tabacina or tobacco mosaic virus.
  publication-title: Phytopathology
  doi: 10.1094/Phyto-82-119
– volume: 84
  start-page: 44
  year: 2013
  ident: B67
  article-title: Global gene expression of rhizobacteria-silicon mediated induced systemic resistance in tomato (Solanum lycopersicum) against Ralstonia solanacearum.
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2013.06.004
– volume: 42
  start-page: 185
  year: 2004
  ident: B32
  article-title: Systemic acquired resistance.
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.phyto.42.040803.140421
– volume: 74
  start-page: 213
  year: 2009
  ident: B73
  article-title: Antifungal activity of sodium silicate on Fusarium sulphureum and its effect on dry rot of potato tubers.
  publication-title: J. Food Sci.
  doi: 10.1111/j.1750-3841.2009.01154.x
– volume: 16
  start-page: 319
  year: 2004
  ident: B71
  article-title: The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense.
  publication-title: Plant Cell
  doi: 10.1105/tpc.016980
– volume: 91
  start-page: 11
  year: 1994
  ident: B34
  article-title: The anomaly of silicon in plant biology.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/Pnas.91.1.11
– year: 2015
  ident: B116
  publication-title: Silicon and Plant Diseases.
  doi: 10.1007/978-3-319-22930-0
– volume: 160
  start-page: 674
  ident: B42
  article-title: Silicon suppresses Fusarium wilt development in banana plants.
  publication-title: J. Phytopathol.
  doi: 10.1111/jph.12005
– volume: 84
  start-page: 871
  year: 2000
  ident: B128
  article-title: Effect of silicon rate and host resistance on blast, scald, and yield of upland rice.
  publication-title: Plant Dis.
  doi: 10.1094/PDIS.2000.84.8.871
– volume: 85
  start-page: 827
  year: 2001
  ident: B117
  article-title: Effect of silicon and host resistance on sheath blight development in rice.
  publication-title: Plant Dis.
  doi: 10.1094/PDIS.2001.85.8.827
– volume: 31
  start-page: 2131
  year: 2008
  ident: B93
  article-title: Evaluation of silicon for managing powdery mildew on gerbera daisy.
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904160802459641
– volume: 10
  start-page: 518
  year: 2011
  ident: B96
  article-title: The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress.
  publication-title: J. Proteome Res.
  doi: 10.1021/pr100716h
– volume: 6
  start-page: 365
  year: 2003
  ident: B130
  article-title: The salicylic acid loop in plant defense.
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/S1369-5266(03)00058-X
– volume: 118
  start-page: 219
  year: 2016
  ident: B150
  article-title: Effects of silicon treatment and inoculation with Fusarium oxysporum f. sp. vasinfectum on cellular defences in root tissues of two cotton cultivars.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcw095
– volume: 46
  start-page: 1635
  year: 2006
  ident: B157
  article-title: Evaluation of calcium silicate for brown patch and dollar spot suppression on turfgrasses.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2005.04-0002
– volume: 65
  start-page: 807
  year: 2015
  ident: B87
  article-title: Silicon application enhances resistance to xanthomonas wilt disease in banana.
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12468
– volume: 110
  start-page: 3631
  year: 2013
  ident: B152
  article-title: Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1305848110
– volume: 96
  start-page: 273
  year: 2012
  ident: B62
  article-title: Silicon reduces black sigatoka development in banana.
  publication-title: Plant Dis.
  doi: 10.1094/pdis-04-11-0274
– volume: 38
  year: 2016
  ident: B92
  article-title: Occurrence of powdery mildew disease in wheat fertilized with increasing silicon doses: a chemometric analysis of antioxidant response.
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-016-2217-4
– volume: 90
  start-page: 279
  year: 2006
  ident: B4
  article-title: Sodium silicate reduces postharvest decay on Hami melons: induced resistance and fungistatic effects.
  publication-title: Plant Dis.
  doi: 10.1094/pd-90-0279
– volume: 5
  start-page: 308
  year: 2009
  ident: B99
  article-title: Networking by small-molecule hormones in plant immunity.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.164
– volume: 134
  start-page: 98
  year: 1989
  ident: B33
  article-title: Growth enhancement of loblolly pine (Pinus taeda L.) seedlings by silicon.
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(89)80209-3
– volume: 12
  start-page: 2175
  year: 2000
  ident: B15
  article-title: Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis.
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.11.2175
– volume: 37
  start-page: 498
  year: 2008
  ident: B25
  article-title: Involvement of silicon in pearl millet resistance to downy mildew disease and its interplay with cell wall proline/hydroxyproline-rich glycoproteins.
  publication-title: Australas. Plant Pathol.
  doi: 10.1071/AP08047
– ident: B121
  publication-title: Silicon Potentiates Host Defense Mechanisms against Infection by Plant Pathogens.
  doi: 10.1007/978-3-319-22930-0_5
– volume: 85
  start-page: 827
  year: 2001
  ident: B98
  article-title: Effect of silicon and host resistance on sheath blight development in rice.
  publication-title: Plant Dis.
  doi: 10.1094/PDIS.2001.85.8.827
– volume: 93
  start-page: 535
  year: 2003
  ident: B114
  article-title: Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2003.93.5.535
– volume: 65
  start-page: 4747
  year: 2014
  ident: B78
  article-title: Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru220
– volume: 164
  start-page: 396
  year: 2014
  ident: B10
  article-title: Effect of foliar-applied potassium silicate on coffee leaf infection by Hemileia vastatrix.
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12109
– volume: 95
  start-page: 317
  year: 2011
  ident: B69
  article-title: Effects of silicon applications on soybean rust development under greenhouse and field conditions.
  publication-title: Plant Dis.
  doi: 10.1094/pdis-07-10-0500
– volume: 155
  start-page: 161
  year: 2009
  ident: B7
  article-title: Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae.
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.2009.00347.x
– volume: 174
  start-page: 164
  year: 2014
  ident: B16
  article-title: Combined effect of yeast and silicon on the control of bacterial fruit blotch in melon.
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2014.05.027
– volume: 65
  start-page: 3049
  year: 2008
  ident: B82
  article-title: Functions and transport of silicon in plants.
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-008-7580-x
– volume: 7
  year: 2016
  ident: B112
  article-title: Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00744
– volume: 103
  start-page: 17554
  year: 2006
  ident: B37
  article-title: The protective role of silicon in the Arabidopsis-powdery mildew pathosystem.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0606330103
– volume: 132
  start-page: 123
  year: 2011
  ident: B45
  article-title: Silicon and increased electrical conductivity reduce downy mildew of soilless grown lettuce.
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-011-9855-6
– volume: 84
  start-page: 236
  year: 1994
  ident: B14
  article-title: Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp.
  publication-title: Phytopathology
  doi: 10.1094/Phyto-84-236
– volume: 37
  start-page: 409
  year: 2012
  ident: B104
  article-title: Silicon reduces brown spot severity and grain discoloration on several rice genotypes.
  publication-title: Trop. Plant Pathol.
  doi: 10.1590/S1982-56762012000600005
– volume: 65
  start-page: 11
  year: 2009
  ident: B125
  article-title: Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections.
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2008.07.004
– volume: 161
  start-page: 11
  year: 2013
  ident: B111
  article-title: Silicon and fungicide effects on anthracnose in moderately resistant and susceptible sorghum lines.
  publication-title: J. Phytopathol.
  doi: 10.1111/jph.12020
– volume: 78
  start-page: 24
  year: 2012
  ident: B68
  article-title: Plant-fungus interface: the role of surface structures in plant resistance and susceptibility to pathogenic fungi.
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2012.01.004
– volume: 88
  start-page: 396
  year: 1998
  ident: B39
  article-title: Silicon-mediated accumulation of flavonoid phytoalexins in cucumber.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.1998.88.5.396
– volume: 95
  start-page: 69
  year: 2005
  ident: B105
  article-title: Enhancement of biocontrol activity of Cryptococcus laurentii by silicon and the possible mechanisms involved.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-95-0069
– volume: 176
  start-page: 118
  year: 2013
  ident: B155
  article-title: Stimulation of phenolic metabolism by silicon contributes to rice resistance to sheath blight.
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201200008
– volume: 64
  start-page: 1281
  year: 2013
  ident: B144
  article-title: Towards establishing broad-spectrum disease resistance in plants: silicon leads the way.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers329
– volume: 39
  start-page: 403
  year: 1991
  ident: B90
  article-title: The influence of silicon on cytological interactions between Sphaerotheca fuliginea and Cucumis sativus.
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/0885-5765(91)90007-5
– year: 2007
  ident: B23
  publication-title: Mineral Nutrition and Plant Disease.
– volume: 9
  start-page: 1
  year: 2016
  ident: B122
  article-title: The role of silicon (Si) in increasing plant resistance against fungal diseases.
  publication-title: Hell. Plant Protect. J.
  doi: 10.1515/hppj-2016-0001
– volume: 29
  start-page: 71
  year: 1983
  ident: B91
  article-title: Effect of silicon on the growth of solution-cultured cucumber plant.
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.1983.10432407
– volume: 22
  start-page: 1323
  year: 2009
  ident: B11
  article-title: A comprehensive transcriptomic analysis of the effect of silicon on wheat plants under control and pathogen stress conditions.
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-22-11-1323
– volume: 105
  start-page: 738
  year: 2015
  ident: B28
  article-title: Alterations in gas exchange and oxidative metabolism in rice leaves infected by Pyricularia oryzae are attenuated by silicon.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-10-14-0280-R
– volume: 39
  start-page: 457
  year: 2014
  ident: B127
  article-title: Silicon potentiates the activities of defense enzymes in the leaf sheaths of rice plants infected by Rhizoctonia solani.
  publication-title: Trop. Plant Pathol.
  doi: 10.1590/S1982-56762014000600007
– volume: 16
  start-page: 572
  year: 2015
  ident: B148
  article-title: Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway.
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12213
– year: 2012
  ident: B86
  publication-title: Marschner’s Mineral Nutrition of Higher Plants.
– volume: 163
  start-page: 731
  year: 2015
  ident: B41
  article-title: Defence-related enzymes in soybean resistance to target spot.
  publication-title: J. Phytopathol.
  doi: 10.1111/jph.12370
– volume: 88
  start-page: 253
  year: 2004
  ident: B129
  article-title: Effects of silicon and fungicides on the control of leaf and neck blast in upland rice.
  publication-title: Plant Dis.
  doi: 10.1094/Pdis.2004.88.3.253
– volume: 387
  start-page: 425
  year: 2014
  ident: B12
  article-title: Proteomic characterization of silicon-mediated resistance against Ralstonia solanacearum in tomato.
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2293-4
– year: 2001
  ident: B36
  publication-title: Silicon in Plants: Facts vs Concepts.
– volume: 158
  start-page: 253
  year: 2010
  ident: B133
  article-title: Wheat resistance to bacterial leaf streak mediated by silicon.
  publication-title: J. Phytopathol.
  doi: 10.1111/j.1439-0434.2009.01610.x
– volume: 7
  year: 2016
  ident: B17
  article-title: The role of silicon in higher plants under salinity and drought stress.
  publication-title: Front. Plant Sci.
  doi: 10.3389/Fpls.2016.01072
– volume: 234
  start-page: 137
  year: 2011
  ident: B72
  article-title: Effects of postharvest sodium silicate treatment on pink rot disease and oxidative stress-antioxidative system in muskmelon fruit.
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-011-1611-9
– volume: 58
  start-page: 151
  year: 1997
  ident: B124
  article-title: Silicon management and sustainable rice production.
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(08)60255-2
– volume: 6
  start-page: 212
  year: 2013
  ident: B48
  article-title: Exploiting pathogens’ tricks of the trade for engineering of plant disease resistance: challenges and opportunities.
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.12017
– volume: 26
  start-page: 135
  year: 1997
  ident: B132
  article-title: Plant proteins that confer resistance to pests and pathogens.
  publication-title: Adv. Bot. Res.
  doi: 10.1016/S0065-2296(08)60120-2
– volume: 164
  start-page: 768
  year: 2016
  ident: B141
  article-title: Silicon-induced changes in the antioxidant system reduce soybean resistance to frogeye leaf spot.
  publication-title: J. Phytopathol.
  doi: 10.1111/jph.12497
– volume: 448
  start-page: 209
  year: 2007
  ident: B83
  article-title: An efflux transporter of silicon in rice.
  publication-title: Nature
  doi: 10.1038/nature05964
– volume: 58
  start-page: 569
  year: 2007
  ident: B56
  article-title: The effect of silicon on the infection by and spread of Pythium aphanidermatum in single roots of tomato and bitter gourd.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erl232
– volume: 50
  start-page: 641
  year: 1999
  ident: B35
  article-title: Silicon.
  publication-title: Ann. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.50.1.641
– volume: 6
  start-page: 147
  year: 2016
  ident: B61
  article-title: The mechanisms underlying the Anthracnose disease reduction by rice hull as a silicon source in capsicum (Capsicum annuum L.) grown in simplified hydroponics.
  publication-title: Procedia Food Sci.
  doi: 10.1016/j.profoo.2016.02.035
– volume: 117
  start-page: 902
  year: 1992
  ident: B89
  article-title: Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash.
  publication-title: J. Am. Soc. Hortic. Sci.
  doi: 10.21273/JASHS.117.6.902
– volume: 162
  start-page: 133
  year: 2014
  ident: B18
  article-title: Soybean resistance to Phakopsora pachyrhizi as affected by acibenzolar-S-methyl, jasmonic acid and silicon.
  publication-title: J. Phytopathol.
  doi: 10.1111/jph.12170
– volume: 98
  start-page: 1038
  year: 2008
  ident: B54
  article-title: The role of silicon in preventing appressorial penetration by the rice blast fungus.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-98-9-1038
– volume: 148
  start-page: 1996
  year: 2008
  ident: B24
  article-title: Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.127878
– volume: 101
  start-page: 92
  year: 2011
  ident: B20
  article-title: Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice-Bipolaris oryzae interaction.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-04-10-0105
– volume: 12
  year: 2012
  ident: B102
  article-title: Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene.
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-12-190
– volume: 38
  start-page: 478
  year: 2013
  ident: B21
  article-title: Silicon improves the emergence and sanity of rice seedlings obtained from seeds infected with Bipolaris oryzae.
  publication-title: Trop. Plant Pathol.
  doi: 10.1590/S1982-56762013000600003
– volume: 159
  start-page: 546
  year: 2011
  ident: B57
  article-title: Silicon suppresses Fusarium crown and root rot of tomato.
  publication-title: J. Phytopathol.
  doi: 10.1111/j.1439-0434.2011.01803.x
– volume: 92
  start-page: 1095
  year: 2002
  ident: B65
  article-title: Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast.
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2002.92.10.1095
– volume: 6
  year: 2016
  ident: B136
  article-title: The role of silicon in enhancing resistance to bacterial blight of hydroponic- and soil-cultured rice.
  publication-title: Sci. Rep.
  doi: 10.1038/srep24640
– start-page: 195
  year: 2010
  ident: B88
  article-title: Effect of silicon application on Lolium perenne development and Fusarium control.
  publication-title: Paper presented at the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010)
– volume: 66
  start-page: 144
  year: 2005
  ident: B118
  article-title: Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions.
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2005.06.002
– volume: 99
  start-page: 787
  year: 2007
  ident: B31
  article-title: Ubiquitin, hormones and biotic stress in plants.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcl255
– volume: 30
  start-page: 1005
  year: 2007
  ident: B5
  article-title: The influence of silicon on the components of resistance to gray leaf spot in St. Augustinegrass.
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904160701394287
– volume: 7
  start-page: 411
  year: 2002
  ident: B126
  article-title: Cell polarization, a crucial process in fungal defence.
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(02)02307-5
– volume: 33
  start-page: 2082
  year: 2010
  ident: B115
  article-title: Foliar spray of potassium silicate on the control of angular leaf spot on beans.
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2010.519082
– volume: 7
  start-page: 135
  year: 2010
  ident: B85
  article-title: Silicon in plant tolerance against environmental stressors: towards crop improvement using omics approaches.
  publication-title: Curr. Proteomics
  doi: 10.2174/157016410791330507
– volume: 448
  start-page: 661
  year: 2007
  ident: B142
  article-title: JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling.
  publication-title: Nature
  doi: 10.1038/nature05960
– volume: 67
  start-page: 151
  year: 2015
  ident: B94
  article-title: Silicon treatment in oil palms confers resistance to basal stem rot disease caused by Ganoderma boninense.
  publication-title: Crop Prot.
  doi: 10.1016/j.cropro.2014.10.004
– volume: 61
  start-page: 120
  year: 2012
  ident: B131
  article-title: Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa.
  publication-title: Plant Pathol.
  doi: 10.1111/j.1365-3059.2011.02493.x
– volume: 134
  start-page: 324
  year: 2008
  ident: B9
  article-title: Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease.
  publication-title: Physiol. Plant
  doi: 10.1111/j.1399-3054.2008.01140.x
– volume: 30
  start-page: 467
  year: 2002
  ident: B26
  article-title: The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens.
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2002.01300.x
– year: 2006
  ident: B101
  article-title: “The production, deposition, and dissolution of phytoliths,” in
  publication-title: Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists
– volume: 36
  start-page: 59
  year: 1998
  ident: B58
  article-title: Current concepts of active defense in plants.
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.phyto.36.1.59
– reference: 19470092 - Physiol Plant. 2009 Jul;136(3):324-35
– reference: 22784251 - Phytopathology. 2012 Oct;102(10):957-66
– reference: 17082308 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17554-9
– reference: 15620739 - Chemosphere. 2005 Jan;58(4):475-83
– reference: 12873532 - Curr Opin Plant Biol. 2003 Aug;6(4):365-71
– reference: 18944917 - Phytopathology. 1998 May;88(5):396-401
– reference: 18943838 - Phytopathology. 2005 Jan;95(1):69-75
– reference: 21696845 - J Plant Physiol. 2011 Oct 15;168(15):1866-9
– reference: 20569344 - Mol Plant Pathol. 2002 Sep 1;3(5):371-90
– reference: 23070523 - Planta. 2013 Jan;237(1):337-49
– reference: 18943742 - Phytopathology. 2008 Sep;98(9):1038-44
– reference: 18560761 - Cell Mol Life Sci. 2008 Oct;65(19):3049-57
– reference: 11607449 - Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):11-7
– reference: 27379104 - Front Plant Sci. 2016 Jun 13;7:744
– reference: 25346281 - Mol Plant Pathol. 2015 Aug;16(6):572-82
– reference: 16580871 - Curr Opin Plant Biol. 2006 Jun;9(3):281-7
– reference: 22559264 - Annu Rev Cell Dev Biol. 2012;28:489-521
– reference: 18943541 - Phytopathology. 2004 Feb;94(2):177-83
– reference: 15604719 - Plant Mol Biol. 2004 Aug;55(6):825-34
– reference: 18944354 - Phytopathology. 2003 Apr;93(4):402-12
– reference: 18944220 - Phytopathology. 2002 Oct;92(10):1095-103
– reference: 27148294 - Front Plant Sci. 2016 Apr 12;7:463
– reference: 18513376 - Physiol Plant. 2008 Oct;134(2):324-33
– reference: 23279915 - Microb Biotechnol. 2013 May;6(3):212-22
– reference: 15012222 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:641-664
– reference: 24879770 - J Exp Bot. 2014 Sep;65(17):4747-56
– reference: 12753977 - Curr Opin Plant Biol. 2003 Jun;6(3):268-72
– reference: 19646050 - J Food Sci. 2009 Jun;74(5):M213-8
– reference: 17625566 - Nature. 2007 Jul 12;448(7150):209-12
– reference: 23255278 - J Exp Bot. 2013 Mar;64(5):1281-93
– reference: 19810802 - Mol Plant Microbe Interact. 2009 Nov;22(11):1323-30
– reference: 18945932 - Plant Physiol. 2008 Dec;148(4):1996-2012
– reference: 17637677 - Nature. 2007 Aug 9;448(7154):661-5
– reference: 12234733 - Trends Plant Sci. 2002 Sep;7(9):411-5
– reference: 12028576 - Plant J. 2002 May;30(4):467-80
– reference: 25607719 - Phytopathology. 2015 Jun;105(6):738-47
– reference: 16839801 - Trends Plant Sci. 2006 Aug;11(8):392-7
– reference: 25615017 - New Phytol. 2015 May;206(3):1051-62
– reference: 23057995 - BMC Plant Biol. 2012 Oct 11;12:190
– reference: 26237696 - Phytopathology. 2016 Feb;106(2):132-41
– reference: 20879842 - Phytopathology. 2011 Jan;101(1):92-104
– reference: 21300551 - Plant Physiol Biochem. 2011 Jul;49(7):744-51
– reference: 16572174 - Nature. 2006 Mar 30;440(7084):688-91
– reference: 23628925 - Plant Physiol Biochem. 2013 Jul;68:52-60
– reference: 15012493 - Annu Rev Phytopathol. 1998;36:59-90
– reference: 24003150 - Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3631-9
– reference: 15283665 - Annu Rev Phytopathol. 2004;42:185-209
– reference: 24405887 - BMC Plant Biol. 2014 Jan 09;14:13
– reference: 12244231 - Plant Cell. 1994 Dec;6(12):1703-1712
– reference: 25625327 - New Phytol. 2015 Apr;206(2):761-73
– reference: 18942975 - Phytopathology. 2003 May;93(5):535-46
– reference: 25583155 - Mol Plant Pathol. 2015 Oct;16(8):811-24
– reference: 17158106 - J Exp Bot. 2007;58(3):569-77
– reference: 14742872 - Plant Cell. 2004 Feb;16(2):319-31
– reference: 17220175 - Ann Bot. 2007 May;99(5):787-822
– reference: 16006059 - FEMS Microbiol Lett. 2005 Aug 1;249(1):1-6
– reference: 19377457 - Nat Chem Biol. 2009 May;5(5):308-16
– reference: 27091552 - Sci Rep. 2016 Apr 19;6:24640
– reference: 27288509 - Ann Bot. 2016 Aug;118(2):219-26
– reference: 12943543 - Plant J. 2003 Jan;33(1):87-95
– reference: 21117708 - J Proteome Res. 2011 Feb 4;10(2):518-28
– reference: 25738553 - Phytopathology. 2015 Jun;105(6):748-57
– reference: 11090217 - Plant Cell. 2000 Nov;12(11):2175-90
– reference: 17012402 - Plant Physiol. 2006 Nov;142(3):1202-15
– reference: 27486474 - Front Plant Sci. 2016 Jul 18;7:1072
– reference: 18626020 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9931-5
SSID ssj0000500997
Score 2.5968204
SecondaryResourceType review_article
Snippet Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 701
SubjectTerms biochemical
defense response
molecular
physical
Plant Science
plant–pathogen interactions
silicon
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0iLtyIb-uLCi7cVNs0adKliiKCIj7AXUjSBIXSDk5duPMf_EO_xHvbzjAjihuhqzal4Zy099wmOZeQ_ZRxLa00UU59GrHU6QiioI6KDM3fUpNoiruRr66ziwd2-cgfJ0p94Zqwzh64A-6Ixzr20uSxdxCJfGGMYU56aWkmtDUev74Q8yaSqc7VG6WP6Lx8IAvLj_ygRHfuBB0LRV8CZhSGWrf-nyTm95WSE6HnfJEs9JoxPO76ukRmXLVM5k5q0HVvKyS-rUsX1j68ey6B1iqEA0sRNZ_vHzeg72oYImH746_bwzBcJQ_nZ_enF1FfByGynPImktrwuNDUcV1QzRIPkoJxXiSZTV0qjNYCZyc5o5oWVkpQRWnsudW5SdpGa2S2qiu3QUIH6Y2zhfBMaJbFVjrca4vYoksPSwNyOIJF2d4kHGtVlAqSBcRRIY4KcVQtjgE5GN8w6Pwxfm96gjiPm6GxdXsC6FY93eovugOyN2JJwYuAsxu6cvXrUKGyQZvTmAdkvWNt_CgqcT4zEQERU3xO9WX6SvX81JptcwYfPS43_6PzW2Qe4WjXS_JtMtu8vLod0DSN2W2H7xfgPvcR
  priority: 102
  providerName: Directory of Open Access Journals
Title Role of Silicon on Plant–Pathogen Interactions
URI https://www.ncbi.nlm.nih.gov/pubmed/28529517
https://www.proquest.com/docview/1901310905
https://pubmed.ncbi.nlm.nih.gov/PMC5418358
https://doaj.org/article/50a0f8b90fe244fdbbb4e8f8c267acbf
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBYj3cNexrqfXrfgwR72osyWJUt5GKUZy8qgpawN5E1IstQFjJ0lKbT__e5kN1tGBgPjB1u25DvJ952k-46Q9wUXRjll6ZiFgvLCGwpW0NCqRPK3wuaGYTTy2Xl5OuPf5mL-Ox1QL8D1XtcO80nNVvXo9ufdMQz4T-hxgr39GJY1Em_nSEYoMZbrAMySxHQGZz3W74i-EQ3FZCtlySkv2byj-tn3jh0rFcn89yHQvzdS_mGZpk_I4x5SpiddHzgkD3zzlDyctAD77p6R0fe29mkb0stFDVpvUjgwU9GGXgD4a6H_pHFWsAtwWD8ns-mXq8-ntE-SQJ1gYkOVsSKrDPPCVMzwPADe4EJUeekKX0hrjMSlS8GZYZVTCiBTkQXhzNjmsdALMmjaxr8iqQffx7tKBi4NLzOnPAbiZsEzpPDhRUJG90LRrmcQx0QWtQZPAqWoUYoapaijFBPyYfvAsiPP-HfRCUp5WwxZr-OFdnWt-0GkRWayoOwYm8R5qKy13KugHCulcTYk5N29jjSMElz6MI1vb9YaYQ9yoGYiIS87nW2rYgoXO3OZELmjzZ227N5pFj8iE7fg8EcU6vV_1HtEHuHXxr2S4g0ZbFY3_i3gmY0dxnkAOH-d58PYZ38Bptnz8Q
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Silicon+on+Plant-Pathogen+Interactions&rft.jtitle=Frontiers+in+plant+science&rft.au=Wang%2C+Min&rft.au=Gao%2C+Limin&rft.au=Dong%2C+Suyue&rft.au=Sun%2C+Yuming&rft.date=2017-05-05&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=8&rft.spage=701&rft_id=info:doi/10.3389%2Ffpls.2017.00701&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon