Role of Silicon on Plant–Pathogen Interactions
Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and...
Saved in:
Published in | Frontiers in plant science Vol. 8; p. 701 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
05.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and bacterial pathogens. In this review, the effects of Si on plant-pathogen interactions are analyzed, mainly on physical, biochemical, and molecular aspects. In most cases, the Si-induced biochemical/molecular resistance during plant-pathogen interactions were dominated as joint resistance, involving activating defense-related enzymes activates, stimulating antimicrobial compound production, regulating the complex network of signal pathways, and activating of the expression of defense-related genes. The most previous studies described an independent process, however, the whole plant resistances were rarely considered, especially the interaction of different process in higher plants. Si can act as a modulator influencing plant defense responses and interacting with key components of plant stress signaling systems leading to induced resistance. Priming of plant defense responses, alterations in phytohormone homeostasis, and networking by defense signaling components are all potential mechanisms involved in Si-triggered resistance responses. This review summarizes the roles of Si in plant-microbe interactions, evaluates the potential for improving plant resistance by modifying Si fertilizer inputs, and highlights future research concerning the role of Si in agriculture. |
---|---|
AbstractList | Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and bacterial pathogens. In this review, the effects of Si on plant–pathogen interactions are analyzed, mainly on physical, biochemical, and molecular aspects. In most cases, the Si-induced biochemical/molecular resistance during plant–pathogen interactions were dominated as joint resistance, involving activating defense-related enzymes activates, stimulating antimicrobial compound production, regulating the complex network of signal pathways, and activating of the expression of defense-related genes. The most previous studies described an independent process, however, the whole plant resistances were rarely considered, especially the interaction of different process in higher plants. Si can act as a modulator influencing plant defense responses and interacting with key components of plant stress signaling systems leading to induced resistance. Priming of plant defense responses, alterations in phytohormone homeostasis, and networking by defense signaling components are all potential mechanisms involved in Si-triggered resistance responses. This review summarizes the roles of Si in plant–microbe interactions, evaluates the potential for improving plant resistance by modifying Si fertilizer inputs, and highlights future research concerning the role of Si in agriculture. Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and bacterial pathogens. In this review, the effects of Si on plant-pathogen interactions are analyzed, mainly on physical, biochemical, and molecular aspects. In most cases, the Si-induced biochemical/molecular resistance during plant-pathogen interactions were dominated as joint resistance, involving activating defense-related enzymes activates, stimulating antimicrobial compound production, regulating the complex network of signal pathways, and activating of the expression of defense-related genes. The most previous studies described an independent process, however, the whole plant resistances were rarely considered, especially the interaction of different process in higher plants. Si can act as a modulator influencing plant defense responses and interacting with key components of plant stress signaling systems leading to induced resistance. Priming of plant defense responses, alterations in phytohormone homeostasis, and networking by defense signaling components are all potential mechanisms involved in Si-triggered resistance responses. This review summarizes the roles of Si in plant-microbe interactions, evaluates the potential for improving plant resistance by modifying Si fertilizer inputs, and highlights future research concerning the role of Si in agriculture.Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and bacterial pathogens. In this review, the effects of Si on plant-pathogen interactions are analyzed, mainly on physical, biochemical, and molecular aspects. In most cases, the Si-induced biochemical/molecular resistance during plant-pathogen interactions were dominated as joint resistance, involving activating defense-related enzymes activates, stimulating antimicrobial compound production, regulating the complex network of signal pathways, and activating of the expression of defense-related genes. The most previous studies described an independent process, however, the whole plant resistances were rarely considered, especially the interaction of different process in higher plants. Si can act as a modulator influencing plant defense responses and interacting with key components of plant stress signaling systems leading to induced resistance. Priming of plant defense responses, alterations in phytohormone homeostasis, and networking by defense signaling components are all potential mechanisms involved in Si-triggered resistance responses. This review summarizes the roles of Si in plant-microbe interactions, evaluates the potential for improving plant resistance by modifying Si fertilizer inputs, and highlights future research concerning the role of Si in agriculture. |
Author | Gao, Limin Dong, Suyue Shen, Qirong Wang, Min Sun, Yuming Guo, Shiwei |
AuthorAffiliation | Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University Nanjing, China |
AuthorAffiliation_xml | – name: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University Nanjing, China |
Author_xml | – sequence: 1 givenname: Min surname: Wang fullname: Wang, Min – sequence: 2 givenname: Limin surname: Gao fullname: Gao, Limin – sequence: 3 givenname: Suyue surname: Dong fullname: Dong, Suyue – sequence: 4 givenname: Yuming surname: Sun fullname: Sun, Yuming – sequence: 5 givenname: Qirong surname: Shen fullname: Shen, Qirong – sequence: 6 givenname: Shiwei surname: Guo fullname: Guo, Shiwei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28529517$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1rVDEUhoNUbK1du5NZuplpkptzb7IRpPgxULD4Ae7CSW4yTckk401GcOd_8B_6S8zM1NIKhkC-3vc54bxPyVHKyRHynNFF10l17jexLDhlw4LSgbJH5IT1vZiLnn89urc_Jmel3NA2gFKlhifkmEvgCthwQujHHN0s-9mnEIPNadbmVcRUf__8dYX1Oq9cmi1TdRPaGnIqz8hjj7G4s9v1lHx5--bzxfv55Yd3y4vXl3MLHOpcogE6IneAI0fBvOoGATCy3nauGwxiO3IAwZGPVkoGoqMeLCrD9qJTsjxwx4w3ejOFNU4_dMag9xd5WmmcarDRaaBIvTSKeseF8KMxRjjppeX9gNb4xnp1YG22Zu1G61KdMD6APnxJ4Vqv8ncNgskOZAO8vAVM-dvWlarXoVgXW6Nc3hbNFGUdo4pCk764X-uuyN-WN8H5QWCnXMrk_J2EUb3LVe9y1btc9T7X5oB_HDZU3KXRPhvif31_ANCPqKY |
CitedBy_id | crossref_primary_10_3390_plants10122758 crossref_primary_10_3390_plants10081689 crossref_primary_10_1016_j_envres_2023_116292 crossref_primary_10_1590_1519_6984_259016 crossref_primary_10_1007_s10311_021_01376_8 crossref_primary_10_3389_fmars_2018_00123 crossref_primary_10_3389_fpls_2021_763365 crossref_primary_10_1007_s40858_023_00593_6 crossref_primary_10_1007_s42161_023_01497_9 crossref_primary_10_1094_PHYTO_05_24_0162_R crossref_primary_10_3389_fgene_2018_00506 crossref_primary_10_1093_jmicro_dfac038 crossref_primary_10_1007_s10725_023_00982_6 crossref_primary_10_1016_j_jhazmat_2021_126193 crossref_primary_10_1111_efp_12794 crossref_primary_10_3390_plants13020313 crossref_primary_10_3389_fpls_2020_608503 crossref_primary_10_1016_j_pmpp_2023_102150 crossref_primary_10_1016_j_scienta_2022_111122 crossref_primary_10_3390_biology12060789 crossref_primary_10_3389_fpls_2023_1274396 crossref_primary_10_1093_jxb_eraa300 crossref_primary_10_1016_j_scitotenv_2023_168545 crossref_primary_10_3390_plants13202915 crossref_primary_10_3390_plants11151980 crossref_primary_10_1039_D3EN00504F crossref_primary_10_1007_s10343_023_00956_8 crossref_primary_10_1016_j_ejsobi_2024_103615 crossref_primary_10_1007_s10725_022_00843_8 crossref_primary_10_1186_s40538_023_00418_3 crossref_primary_10_3390_biology10080791 crossref_primary_10_1080_01904167_2021_2020820 crossref_primary_10_1016_j_plaphy_2021_05_031 crossref_primary_10_17660_ActaHortic_2021_1327_39 crossref_primary_10_5902_2179460X85995 crossref_primary_10_1007_s41348_019_00292_y crossref_primary_10_3389_fpls_2022_951095 crossref_primary_10_3390_agriculture13091796 crossref_primary_10_3389_fpls_2019_01132 crossref_primary_10_1007_s12633_022_02251_z crossref_primary_10_1186_s12864_021_08028_9 crossref_primary_10_1007_s12633_023_02485_5 crossref_primary_10_2174_18743315_v16_e2207260 crossref_primary_10_1016_j_plaphy_2021_02_024 crossref_primary_10_1038_s41598_022_19308_z crossref_primary_10_1007_s12633_022_02209_1 crossref_primary_10_1016_j_plaphy_2021_03_060 crossref_primary_10_3389_fpls_2018_00624 crossref_primary_10_2174_1874331502115010054 crossref_primary_10_3389_fpls_2020_00028 crossref_primary_10_3390_cells7120267 crossref_primary_10_1007_s42729_024_01790_1 crossref_primary_10_1016_j_plaphy_2021_05_045 crossref_primary_10_1016_S2095_3119_18_62037_4 crossref_primary_10_1016_j_plaphy_2020_11_015 crossref_primary_10_1080_01904167_2023_2262513 crossref_primary_10_1016_j_scitotenv_2020_142209 crossref_primary_10_1007_s42729_020_00197_y crossref_primary_10_1007_s12633_024_03215_1 crossref_primary_10_1080_03235408_2023_2207958 crossref_primary_10_3389_fpls_2023_1265782 crossref_primary_10_1038_s41598_023_41699_w crossref_primary_10_3390_biom12081027 crossref_primary_10_3389_fpls_2021_609870 crossref_primary_10_1007_s10530_022_02853_z crossref_primary_10_3389_fpls_2019_01151 crossref_primary_10_1016_j_jelechem_2021_115960 crossref_primary_10_3390_plants13101336 crossref_primary_10_1093_lambio_ovaf027 crossref_primary_10_1186_s42269_023_01080_3 crossref_primary_10_1007_s12633_021_01310_1 crossref_primary_10_1016_j_scitotenv_2019_133636 crossref_primary_10_1080_15226514_2023_2285015 crossref_primary_10_1016_j_indcrop_2020_112848 crossref_primary_10_1007_s41348_019_00283_z crossref_primary_10_1080_19315260_2019_1675843 crossref_primary_10_1111_1365_2435_13295 crossref_primary_10_3390_agronomy11101938 crossref_primary_10_1016_j_apsoil_2019_08_003 crossref_primary_10_3390_jof11030230 crossref_primary_10_1007_s12633_023_02825_5 crossref_primary_10_1016_j_impact_2022_100418 crossref_primary_10_1038_s41438_021_00681_1 crossref_primary_10_3390_ijms23073803 crossref_primary_10_1080_01904167_2020_1727508 crossref_primary_10_21603_2308_4057_2021_2_224_233 crossref_primary_10_3389_fmicb_2025_1531393 crossref_primary_10_3390_agronomy11050899 crossref_primary_10_3390_plants10040652 crossref_primary_10_3390_plants10071329 crossref_primary_10_1016_j_cropro_2020_105460 crossref_primary_10_1007_s12649_023_02190_9 crossref_primary_10_3390_ijms23136965 crossref_primary_10_60158_rma_v11i1_421 crossref_primary_10_3390_ijms24043268 crossref_primary_10_1007_s42977_024_00247_x crossref_primary_10_1021_acs_est_4c03522 crossref_primary_10_1515_ntrev_2022_0097 crossref_primary_10_1080_15592324_2023_2198848 crossref_primary_10_7717_peerj_9224 crossref_primary_10_1016_j_plaphy_2020_10_011 crossref_primary_10_3390_plants12101939 crossref_primary_10_1016_j_scitotenv_2022_157248 crossref_primary_10_1007_s42161_020_00652_w crossref_primary_10_1016_j_ram_2023_06_005 crossref_primary_10_1080_03235408_2020_1843306 crossref_primary_10_1007_s13762_023_05434_2 crossref_primary_10_1016_j_foodcont_2022_108982 crossref_primary_10_1093_jxb_eraa488 crossref_primary_10_1016_j_ecoenv_2023_114783 crossref_primary_10_1016_j_scienta_2024_113407 crossref_primary_10_1016_j_ijbiomac_2023_124192 crossref_primary_10_1007_s12633_025_03271_1 crossref_primary_10_1016_j_pmpp_2022_101849 crossref_primary_10_1016_S2095_3119_18_62035_0 crossref_primary_10_1038_s41598_024_61830_9 crossref_primary_10_3934_agrfood_2023030 crossref_primary_10_1007_s12033_022_00527_8 crossref_primary_10_1002_ppp3_10418 crossref_primary_10_1016_j_diamond_2024_111794 crossref_primary_10_1007_s12633_020_00710_z crossref_primary_10_3390_biom13040669 crossref_primary_10_1177_15593258211014646 crossref_primary_10_3390_ijms24032941 crossref_primary_10_1007_s41348_022_00633_4 crossref_primary_10_1007_s11104_022_05358_9 crossref_primary_10_3390_biom11081103 crossref_primary_10_1016_j_scitotenv_2023_165446 crossref_primary_10_1080_00380768_2023_2175177 crossref_primary_10_3389_fmicb_2019_02950 crossref_primary_10_3389_fpls_2022_842832 crossref_primary_10_3390_genes14020477 crossref_primary_10_3389_fpls_2019_00652 crossref_primary_10_1080_10426507_2025_2482090 crossref_primary_10_1016_j_envexpbot_2020_104058 crossref_primary_10_1021_acs_est_1c00447 crossref_primary_10_3390_agronomy11112198 crossref_primary_10_1186_s42269_019_0139_1 crossref_primary_10_1016_j_scienta_2022_111087 crossref_primary_10_15406_jabb_2020_07_00233 crossref_primary_10_1007_s11104_022_05482_6 crossref_primary_10_1002_agj2_20802 crossref_primary_10_3390_su13073750 crossref_primary_10_1016_j_envexpbot_2024_105950 crossref_primary_10_1016_j_fochx_2023_100963 crossref_primary_10_1007_s12355_020_00831_0 crossref_primary_10_1134_S1607672920060150 crossref_primary_10_1080_15592324_2023_2178362 crossref_primary_10_1111_gcb_13971 crossref_primary_10_1088_1755_1315_1371_3_032038 crossref_primary_10_7235_HORT_20240035 crossref_primary_10_1007_s11104_022_05385_6 crossref_primary_10_1186_s12951_022_01420_x crossref_primary_10_3390_agriculture14010009 crossref_primary_10_1093_jxb_eraa291 crossref_primary_10_1007_s00344_020_10172_7 crossref_primary_10_3389_fpls_2023_1156869 crossref_primary_10_1007_s41348_022_00693_6 crossref_primary_10_1007_s12633_023_02610_4 crossref_primary_10_1016_j_jhazmat_2023_131254 crossref_primary_10_3390_agronomy9100637 crossref_primary_10_1094_PHP_01_22_0005_SC crossref_primary_10_1080_01904167_2024_2406479 crossref_primary_10_3390_agronomy10081138 crossref_primary_10_3390_su141710996 crossref_primary_10_20479_bursauludagziraat_1133666 crossref_primary_10_1080_14620316_2019_1614486 crossref_primary_10_1093_pcp_pcab022 crossref_primary_10_1111_ppa_13790 crossref_primary_10_3389_fpls_2021_721436 crossref_primary_10_1007_s13593_018_0496_4 crossref_primary_10_1016_j_plaphy_2021_06_005 crossref_primary_10_1016_j_envpol_2022_119855 crossref_primary_10_1016_j_jenvman_2021_113278 crossref_primary_10_1111_ppl_13900 crossref_primary_10_3390_plants10102163 crossref_primary_10_1016_j_bioorg_2020_103773 crossref_primary_10_3390_su151712783 crossref_primary_10_1111_ppl_14313 crossref_primary_10_1007_s12633_023_02589_y crossref_primary_10_48044_jauf_2024_024 crossref_primary_10_3390_agronomy13071709 crossref_primary_10_1016_j_sjbs_2021_02_016 crossref_primary_10_1111_ppa_13621 crossref_primary_10_3389_fpls_2021_677839 crossref_primary_10_1007_s00425_019_03120_7 crossref_primary_10_1080_03235408_2020_1856596 crossref_primary_10_1080_03235408_2020_1854971 crossref_primary_10_1007_s42452_021_04927_4 crossref_primary_10_3390_horticulturae10111224 crossref_primary_10_3390_horticulturae10080806 crossref_primary_10_36253_phyto_14576 crossref_primary_10_3390_plants9111612 crossref_primary_10_1007_s10343_021_00568_0 crossref_primary_10_1002_jsfa_10634 crossref_primary_10_3390_plants11192525 crossref_primary_10_3389_fpls_2017_01265 crossref_primary_10_1007_s42161_020_00622_2 crossref_primary_10_3389_fenvs_2024_1458360 crossref_primary_10_1111_jipb_13204 crossref_primary_10_1007_s11368_022_03323_8 crossref_primary_10_1007_s10658_020_01982_2 crossref_primary_10_1007_s13580_022_00486_8 crossref_primary_10_2478_agri_2024_0003 crossref_primary_10_1002_jsfa_10767 crossref_primary_10_1007_s12633_021_01033_3 crossref_primary_10_1080_10889868_2024_2352125 crossref_primary_10_1021_acs_langmuir_3c03946 crossref_primary_10_1590_1678_4499_20210147 crossref_primary_10_1038_s41565_020_00812_0 crossref_primary_10_1007_s12633_024_03002_y crossref_primary_10_1007_s42360_023_00659_0 crossref_primary_10_3390_su13158535 crossref_primary_10_1016_j_cropro_2023_106387 crossref_primary_10_1590_2447_536x_v27i3_2308 crossref_primary_10_3389_fagro_2021_741557 crossref_primary_10_3390_ijms241814153 crossref_primary_10_1016_j_apsoil_2023_105131 crossref_primary_10_2478_contagri_2024_0028 crossref_primary_10_3389_fpls_2022_982068 crossref_primary_10_1007_s40626_021_00218_w crossref_primary_10_1016_j_envres_2021_112244 crossref_primary_10_1111_tpj_15469 crossref_primary_10_1016_j_crsust_2023_100226 crossref_primary_10_1016_j_jes_2022_09_005 crossref_primary_10_1007_s42729_022_00787_y crossref_primary_10_3389_fpls_2018_01468 crossref_primary_10_1007_s10343_022_00697_0 crossref_primary_10_1111_1440_1703_12025 crossref_primary_10_1021_acssuschemeng_9b04800 crossref_primary_10_3390_microorganisms12030541 crossref_primary_10_1007_s10441_023_09456_8 crossref_primary_10_1016_j_pestbp_2020_104696 crossref_primary_10_1016_j_micron_2022_103231 |
Cites_doi | 10.1007/s11103-005-2140-3 10.1016/j.plaphy.2013.03.020 10.1111/nph.13282 10.1080/00380768.1995.10419564 10.1016/j.chemosphere.2004.09.034 10.1081/PLN-120027657 10.1016/j.postharvbio.2014.07.016 10.1094/Phyto.2003.93.4.402 10.1007/s00425-012-1779-7 10.1094/PHYTO-12-14-0378-R 10.2307/3869902 10.1146/annurev-cellbio-092910-154055 10.1016/j.bbagen.2013.11.021 10.1016/j.plaphy.2011.01.014 10.1007/s10658-015-0812-7 10.1073/pnas.0802361105 10.1016/j.jplph.2011.04.002 10.1590/S1982-56762013005000006 10.1094/PHYTO-02-12-0037-R 10.3389/Fpls.2016.00463 10.1007/s13313-016-0429-0 10.1046/j.1365-313X.2003.01606.x 10.1016/S0885-5765(05)80027-X 10.1111/nph.13270 10.1016/j.pmpp.2010.11.004 10.1104/pp.106.085258 10.1590/0103-9016-2014-0221 10.1016/S1369-5266(03)00041-4 10.1111/j.1439-0434.2009.01623.x 10.1111/j.1439-0434.2009.01665.x 10.1007/s13313-010-0010-1 10.1590/S1982-56762013000600002 10.1590/S1982-56762013005000021 10.1038/nature04590 10.1094/PHYTO.2004.94.2.177 10.1071/AP01047 10.1016/j.pmpp.2004.07.005 10.1094/pdis-01-14-0102-re 10.1016/j.tplants.2006.06.007 10.1094/PHYTO-04-15-0109-R 10.1007/s10327-005-0270-8 10.1007/s10658-010-9625-x 10.1016/j.pbi.2006.03.001 10.3390/su8040293 10.1023/A:1004526604913 10.1007/s10658-011-9835-x 10.1111/j.1365-3059.2005.01246.x 10.1007/s10658-007-9181-1 10.1111/j.1399-3054.2009.01226.x 10.1139/b93-029 10.1046/j.1364-3703.2002.00131.x 10.1186/1471-2229-14-13 10.1111/j.1365-2621.2006.01464.x 10.1111/j.1745-4549.2008.00292.x 10.1016/j.pmpp.2005.05.006 10.1111/ppa.12346 10.1016/j.femsle.2005.06.034 10.1080/00380768.2004.10408447 10.1590/S1982-56762014000100005 10.1111/jph.12353 10.1111/aab.12246 10.1111/mpp.12236 10.1111/j.1365-3059.2009.02228.x 10.1002/jpln.200420490 10.1094/Phyto-82-119 10.1016/j.pmpp.2013.06.004 10.1146/annurev.phyto.42.040803.140421 10.1111/j.1750-3841.2009.01154.x 10.1105/tpc.016980 10.1073/Pnas.91.1.11 10.1007/978-3-319-22930-0 10.1111/jph.12005 10.1094/PDIS.2000.84.8.871 10.1094/PDIS.2001.85.8.827 10.1080/01904160802459641 10.1021/pr100716h 10.1016/S1369-5266(03)00058-X 10.1093/aob/mcw095 10.2135/cropsci2005.04-0002 10.1111/ppa.12468 10.1073/pnas.1305848110 10.1094/pdis-04-11-0274 10.1007/s11738-016-2217-4 10.1094/pd-90-0279 10.1038/nchembio.164 10.1016/S0176-1617(89)80209-3 10.1105/tpc.12.11.2175 10.1071/AP08047 10.1007/978-3-319-22930-0_5 10.1094/PHYTO.2003.93.5.535 10.1093/jxb/eru220 10.1111/aab.12109 10.1094/pdis-07-10-0500 10.1111/j.1744-7348.2009.00347.x 10.1016/j.scienta.2014.05.027 10.1007/s00018-008-7580-x 10.3389/fpls.2016.00744 10.1073/pnas.0606330103 10.1007/s10658-011-9855-6 10.1094/Phyto-84-236 10.1590/S1982-56762012000600005 10.1016/j.envexpbot.2008.07.004 10.1111/jph.12020 10.1016/j.pmpp.2012.01.004 10.1094/PHYTO.1998.88.5.396 10.1094/PHYTO-95-0069 10.1002/jpln.201200008 10.1093/jxb/ers329 10.1016/0885-5765(91)90007-5 10.1515/hppj-2016-0001 10.1080/00380768.1983.10432407 10.1094/MPMI-22-11-1323 10.1094/PHYTO-10-14-0280-R 10.1590/S1982-56762014000600007 10.1111/mpp.12213 10.1111/jph.12370 10.1094/Pdis.2004.88.3.253 10.1007/s11104-014-2293-4 10.1111/j.1439-0434.2009.01610.x 10.3389/Fpls.2016.01072 10.1007/s00217-011-1611-9 10.1016/S0065-2113(08)60255-2 10.1111/1751-7915.12017 10.1016/S0065-2296(08)60120-2 10.1111/jph.12497 10.1038/nature05964 10.1093/jxb/erl232 10.1146/annurev.arplant.50.1.641 10.1016/j.profoo.2016.02.035 10.21273/JASHS.117.6.902 10.1111/jph.12170 10.1094/PHYTO-98-9-1038 10.1104/pp.108.127878 10.1094/PHYTO-04-10-0105 10.1186/1471-2229-12-190 10.1590/S1982-56762013000600003 10.1111/j.1439-0434.2011.01803.x 10.1094/PHYTO.2002.92.10.1095 10.1038/srep24640 10.1016/j.pmpp.2005.06.002 10.1093/aob/mcl255 10.1080/01904160701394287 10.1016/S1360-1385(02)02307-5 10.1080/01904167.2010.519082 10.2174/157016410791330507 10.1038/nature05960 10.1016/j.cropro.2014.10.004 10.1111/j.1365-3059.2011.02493.x 10.1111/j.1399-3054.2008.01140.x 10.1046/j.1365-313X.2002.01300.x 10.1146/annurev.phyto.36.1.59 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Wang, Gao, Dong, Sun, Shen and Guo. 2017 Wang, Gao, Dong, Sun, Shen and Guo |
Copyright_xml | – notice: Copyright © 2017 Wang, Gao, Dong, Sun, Shen and Guo. 2017 Wang, Gao, Dong, Sun, Shen and Guo |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2017.00701 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_50a0f8b90fe244fdbbb4e8f8c267acbf PMC5418358 28529517 10_3389_fpls_2017_00701 |
Genre | Journal Article Review |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c525t-8ab50da2e5ad2a41f937455d16c3e37baa74525542a2dc8815430f5ca9b1d16c3 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:25:19 EDT 2025 Thu Aug 21 17:45:29 EDT 2025 Fri Jul 11 09:34:20 EDT 2025 Thu Apr 03 07:08:51 EDT 2025 Tue Jul 01 00:51:59 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | plant–pathogen interactions defense response molecular silicon physical biochemical |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-8ab50da2e5ad2a41f937455d16c3e37baa74525542a2dc8815430f5ca9b1d16c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Rupesh Kailasrao Deshmukh, Laval University, Canada This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science Reviewed by: Huixia Shou, Zhejiang University, China; Heiner Goldbach, University of Bonn, Germany |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2017.00701 |
PMID | 28529517 |
PQID | 1901310905 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_50a0f8b90fe244fdbbb4e8f8c267acbf pubmedcentral_primary_oai_pubmedcentral_nih_gov_5418358 proquest_miscellaneous_1901310905 pubmed_primary_28529517 crossref_primary_10_3389_fpls_2017_00701 crossref_citationtrail_10_3389_fpls_2017_00701 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-05 |
PublicationDateYYYYMMDD | 2017-05-05 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2017 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Pieterse (B99) 2009; 5 Resende (B111) 2013; 161 Wiese (B151) 2005; 168 Seebold (B128) 2000; 84 Shah (B130) 2003; 6 Van (B146); 16 Majeed Zargar (B85) 2010; 7 Vivancos (B148) 2015; 16 Liu (B77) 2009; 33 Richmond (B113) 2003; 6 Brecht (B5) 2007; 30 Rahman (B107) 2015; 105 Menzies (B89) 1992; 117 Domiciano (B28) 2015; 105 Hayasaka (B54) 2008; 98 Guo (B52) 2007; 42 Zeyen (B154) 1993; 71 Hao (B53) 2011; 49 Ramouthar (B108) 2015; 145 Fortunato (B43); 102 Ye (B152) 2013; 110 Durrant (B32) 2004; 42 Carré-Missio (B10) 2014; 164 Takahashi (B139) 1990; 2 He (B55) 2015; 206 Silva (B133) 2010; 158 Dreher (B31) 2007; 99 Kurabachew (B67) 2013; 84 Andrade (B1) 2013; 38 Sakr (B122) 2016; 9 Kim (B66) 2014; 14 Cai (B9) 2008; 134 Silva (B134) 2010; 59 Marschner (B86) 2012 Clarke (B15) 2000; 12 Liang (B76); 58 Zhang (B157) 2006; 46 McDonagh (B88) 2010 Peters (B98) 2001; 85 Van (B144) 2013; 64 Dallagnol (B19) 2015; 64 Li (B71) 2004; 16 Cruz (B18) 2014; 162 Silva (B135) 2015; 72 Ma (B79) 2004; 50 Chain (B11) 2009; 22 Remus-Borel (B110) 2005; 66 Nwugo (B96) 2011; 10 Guérin (B49) 2014; 98 Epstein (B34) 1994; 91 Rodrigues (B117) 2001; 85 Fawe (B39) 1998; 88 Whan (B150) 2016; 118 Bi (B4) 2006; 90 Chérif (B14) 1994; 84 Zhang (B156) 2004; 55 Dann (B22) 2002; 31 Deepak (B25) 2008; 37 Liu (B78) 2014; 65 Kablan (B62) 2012; 96 Lemes (B69) 2011; 95 Vermeire (B147) 2011; 131 Nawrath (B95) 2006; 9 Sun (B138) 2010; 128 Iwai (B60) 2006; 142 Reynolds (B112) 2016; 7 Pan (B97) 1992; 82 Łaźniewska (B68) 2012; 78 Rodrigues (B116) 2015 French-Monar (B44) 2010; 158 Li (B73) 2009; 74 Miyake (B91) 1983; 29 Ma (B82) 2008; 65 Epstein (B35) 1999; 50 Rodrigues (B115) 2010; 33 Garibaldi (B45) 2011; 132 Ratnayake (B109) 2016; 45 Prabhu (B104) 2012; 37 Kauss (B64) 2003; 33 Guével (B51) 2007; 119 Huang (B57) 2011; 159 Ma (B80) 2006; 440 Devadas (B26) 2002; 30 Chen (B13) 2009; 136 Ghareeb (B47) 2011; 75 Araujo (B2) 2015; 106 Rodrigues (B121) Epstein (B36) 2001 Ma (B84) 2008; 105 Uriarte (B143) 2004; 27 Conceição (B16) 2014; 174 Emadian (B33) 1989; 134 Guerriero (B50) 2016; 7 Ghanmi (B46) 2004; 64 Dallagnol (B20) 2011; 101 Menzies (B90) 1991; 39 Rodrigues (B119) 2004; 94 Tatagiba (B140) 2016; 168 Jayawardana (B61) 2016; 6 Li (B72) 2011; 234 Schurt (B127) 2014; 39 Rodrigues (B118) 2005; 66 Pieterse (B100) 2012; 28 Dixon (B27) 2002; 3 Polanco (B103) 2014; 39 Thines (B142) 2007; 448 Quarta (B106) 2013; 68 Lepolu Torlon (B70) 2016; 8 Piperno (B101) 2006 Zellner (B153) 2011; 168 Samuels (B123) 1994; 44 Zhang (B155) 2013; 176 Moyer (B93) 2008; 31 Song (B136) 2016; 6 Telles Nascimento (B141) 2016; 164 Coskun (B17) 2016; 7 Savant (B124) 1997; 58 Fortunato (B42); 160 Qin (B105) 2005; 95 Grant (B48) 2013; 6 Najihah (B94) 2015; 67 Pirrello (B102) 2012; 12 Dallagnol (B21) 2013; 38 Savvas (B125) 2009; 65 Schmelzer (B126) 2002; 7 Chen (B12) 2014; 387 Sousa (B137) 2013; 38 Liang (B74) 1999; 209 Hutcheson (B58) 1998; 36 Liang (B75); 54 Moldes (B92) 2016; 38 Shewry (B132) 1997; 26 Datnoff (B23) 2007 Inanaga (B59) 1995; 41 Domiciano (B29) 2013; 38 Filha (B40) 2011; 40 Ma (B83) 2007; 448 Heine (B56) 2007; 58 Rodrigues (B114) 2003; 93 Shetty (B131) 2012; 61 Belanger (B3) 2003; 93 Kanto (B63) 2006; 72 Fortunato (B41) 2015; 163 De Vleesschauwer (B24) 2008; 148 Mburu (B87) 2015; 65 Ma (B81) 2006; 11 Fauteux (B38) 2005; 249 Kim (B65) 2002; 92 Seebold (B129) 2004; 88 Brunings (B7) 2009; 155 Cabot (B8) 2013; 237 Van (B145); 206 Brisson (B6) 1994; 6 Domiciano (B30) 2010; 158 Waewthongrak (B149) 2015; 99 Rodrigues (B120); 163 Fauteux (B37) 2006; 103 20879842 - Phytopathology. 2011 Jan;101(1):92-104 18513376 - Physiol Plant. 2008 Oct;134(2):324-33 18626020 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9931-5 24879770 - J Exp Bot. 2014 Sep;65(17):4747-56 17625566 - Nature. 2007 Jul 12;448(7150):209-12 23255278 - J Exp Bot. 2013 Mar;64(5):1281-93 19470092 - Physiol Plant. 2009 Jul;136(3):324-35 18944220 - Phytopathology. 2002 Oct;92(10):1095-103 27288509 - Ann Bot. 2016 Aug;118(2):219-26 15012222 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:641-664 16839801 - Trends Plant Sci. 2006 Aug;11(8):392-7 11090217 - Plant Cell. 2000 Nov;12(11):2175-90 21696845 - J Plant Physiol. 2011 Oct 15;168(15):1866-9 23279915 - Microb Biotechnol. 2013 May;6(3):212-22 18943742 - Phytopathology. 2008 Sep;98(9):1038-44 16580871 - Curr Opin Plant Biol. 2006 Jun;9(3):281-7 19810802 - Mol Plant Microbe Interact. 2009 Nov;22(11):1323-30 27486474 - Front Plant Sci. 2016 Jul 18;7:1072 22784251 - Phytopathology. 2012 Oct;102(10):957-66 18945932 - Plant Physiol. 2008 Dec;148(4):1996-2012 14742872 - Plant Cell. 2004 Feb;16(2):319-31 17012402 - Plant Physiol. 2006 Nov;142(3):1202-15 26237696 - Phytopathology. 2016 Feb;106(2):132-41 17158106 - J Exp Bot. 2007;58(3):569-77 12028576 - Plant J. 2002 May;30(4):467-80 18943838 - Phytopathology. 2005 Jan;95(1):69-75 25738553 - Phytopathology. 2015 Jun;105(6):748-57 27148294 - Front Plant Sci. 2016 Apr 12;7:463 27379104 - Front Plant Sci. 2016 Jun 13;7:744 25583155 - Mol Plant Pathol. 2015 Oct;16(8):811-24 23070523 - Planta. 2013 Jan;237(1):337-49 12244231 - Plant Cell. 1994 Dec;6(12):1703-1712 18942975 - Phytopathology. 2003 May;93(5):535-46 12234733 - Trends Plant Sci. 2002 Sep;7(9):411-5 12873532 - Curr Opin Plant Biol. 2003 Aug;6(4):365-71 15604719 - Plant Mol Biol. 2004 Aug;55(6):825-34 24405887 - BMC Plant Biol. 2014 Jan 09;14:13 19646050 - J Food Sci. 2009 Jun;74(5):M213-8 21300551 - Plant Physiol Biochem. 2011 Jul;49(7):744-51 17082308 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17554-9 15012493 - Annu Rev Phytopathol. 1998;36:59-90 25615017 - New Phytol. 2015 May;206(3):1051-62 17637677 - Nature. 2007 Aug 9;448(7154):661-5 15283665 - Annu Rev Phytopathol. 2004;42:185-209 16006059 - FEMS Microbiol Lett. 2005 Aug 1;249(1):1-6 25607719 - Phytopathology. 2015 Jun;105(6):738-47 22559264 - Annu Rev Cell Dev Biol. 2012;28:489-521 25625327 - New Phytol. 2015 Apr;206(2):761-73 24003150 - Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3631-9 18560761 - Cell Mol Life Sci. 2008 Oct;65(19):3049-57 18944917 - Phytopathology. 1998 May;88(5):396-401 19377457 - Nat Chem Biol. 2009 May;5(5):308-16 12753977 - Curr Opin Plant Biol. 2003 Jun;6(3):268-72 12943543 - Plant J. 2003 Jan;33(1):87-95 27091552 - Sci Rep. 2016 Apr 19;6:24640 23628925 - Plant Physiol Biochem. 2013 Jul;68:52-60 18944354 - Phytopathology. 2003 Apr;93(4):402-12 20569344 - Mol Plant Pathol. 2002 Sep 1;3(5):371-90 15620739 - Chemosphere. 2005 Jan;58(4):475-83 11607449 - Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):11-7 16572174 - Nature. 2006 Mar 30;440(7084):688-91 18943541 - Phytopathology. 2004 Feb;94(2):177-83 25346281 - Mol Plant Pathol. 2015 Aug;16(6):572-82 21117708 - J Proteome Res. 2011 Feb 4;10(2):518-28 23057995 - BMC Plant Biol. 2012 Oct 11;12:190 17220175 - Ann Bot. 2007 May;99(5):787-822 |
References_xml | – volume: 55 start-page: 825 year: 2004 ident: B156 article-title: Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. publication-title: Plant Mol. Biol. doi: 10.1007/s11103-005-2140-3 – volume: 68 start-page: 52 year: 2013 ident: B106 article-title: Isolation of a polyphenol oxidase (PPO) cDNA from artichoke and expression analysis in wounded artichoke heads. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.03.020 – volume: 206 start-page: 1051 year: 2015 ident: B55 article-title: A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. publication-title: New Phytol. doi: 10.1111/nph.13282 – volume: 41 start-page: 111 year: 1995 ident: B59 article-title: Does silicon exist in association with organic compounds in rice plant? publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.1995.10419564 – volume: 58 start-page: 475 ident: B76 article-title: Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.09.034 – volume: 27 start-page: 325 year: 2004 ident: B143 article-title: Effect of soluble silica on brown patch and dollar spot of creeping bentgrass. publication-title: J. Plant Nutr. doi: 10.1081/PLN-120027657 – volume: 99 start-page: 44 year: 2015 ident: B149 article-title: Effect of Bacillus subtilis and chitosan applications on green mold (Penicillium digitatum Sacc.) decay in citrus fruit. publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2014.07.016 – volume: 93 start-page: 402 year: 2003 ident: B3 article-title: Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp tritici). publication-title: Phytopathology doi: 10.1094/Phyto.2003.93.4.402 – volume: 237 start-page: 337 year: 2013 ident: B8 article-title: Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. publication-title: Planta doi: 10.1007/s00425-012-1779-7 – volume: 105 start-page: 748 year: 2015 ident: B107 article-title: Silicon-induced systemic defense responses in perennial ryegrass against infection by Magnaporthe oryzae. publication-title: Phytopathology doi: 10.1094/PHYTO-12-14-0378-R – volume: 6 start-page: 1703 year: 1994 ident: B6 article-title: Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. publication-title: Plant Cell doi: 10.2307/3869902 – volume: 28 start-page: 489 year: 2012 ident: B100 article-title: Hormonal modulation of plant immunity. publication-title: Cell Dev. Biol. doi: 10.1146/annurev-cellbio-092910-154055 – volume: 2 start-page: 99 year: 1990 ident: B139 article-title: The possibility of silicon as an essential element for higher plants. publication-title: Comment. Agric. Food Chem. doi: 10.1016/j.bbagen.2013.11.021 – volume: 49 start-page: 744 year: 2011 ident: B53 article-title: Expression of defense genes and activities of antioxidant enzymes in rice resistance to rice stripe virus and small brown planthopper. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2011.01.014 – volume: 145 start-page: 53 year: 2015 ident: B108 article-title: Effect of silicon on the severity of brown rust of sugarcane in South Africa. publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-015-0812-7 – volume: 105 start-page: 9931 year: 2008 ident: B84 article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0802361105 – volume: 168 start-page: 1866 year: 2011 ident: B153 article-title: Silicon delays Tobacco ringspot virus systemic symptoms in Nicotiana tabacum. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2011.04.002 – volume: 38 start-page: 258 year: 2013 ident: B29 article-title: Infection process of Bipolaris sorokiniana on wheat leaves is affected by silicon. publication-title: Trop. Plant Pathol. doi: 10.1590/S1982-56762013005000006 – volume: 102 start-page: 957 ident: B43 article-title: Physiological and biochemical aspects of the resistance of banana plants to Fusarium wilt potentiated by silicon. publication-title: Phytopathology doi: 10.1094/PHYTO-02-12-0037-R – volume: 7 year: 2016 ident: B50 article-title: Silicon and the plant extracellular matrix. publication-title: Front. Plant Sci. doi: 10.3389/Fpls.2016.00463 – volume: 45 start-page: 425 year: 2016 ident: B109 article-title: Some biochemical defense responses enhanced by soluble silicon in bitter gourd-powdery mildew pathosystem. publication-title: Australas. Plant Pathol. doi: 10.1007/s13313-016-0429-0 – volume: 33 start-page: 87 year: 2003 ident: B64 article-title: Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01606.x – volume: 44 start-page: 237 year: 1994 ident: B123 article-title: Silicon in cell walls and papillae of Cucumis sativus during infection by Sphaerotheca fuliginea. publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/S0885-5765(05)80027-X – volume: 206 start-page: 761 ident: B145 article-title: Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. publication-title: New Phytol. doi: 10.1111/nph.13270 – volume: 75 start-page: 83 year: 2011 ident: B47 article-title: Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2010.11.004 – volume: 142 year: 2006 ident: B60 article-title: Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. publication-title: Plant Physiol. doi: 10.1104/pp.106.085258 – volume: 72 start-page: 322 year: 2015 ident: B135 article-title: Histochemical aspects of wheat resistance to leaf blast mediated by silicon. publication-title: Sci. Agric. doi: 10.1590/0103-9016-2014-0221 – volume: 6 start-page: 268 year: 2003 ident: B113 article-title: Got silicon? The non-essential beneficial plant nutrient. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/S1369-5266(03)00041-4 – volume: 158 start-page: 334 year: 2010 ident: B30 article-title: Wheat resistance to spot blotch potentiated by silicon. publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.2009.01623.x – volume: 158 start-page: 554 year: 2010 ident: B44 article-title: Silicon suppresses Phytophthora blight development on bell pepper. publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.2009.01665.x – volume: 40 start-page: 28 year: 2011 ident: B40 article-title: Wheat resistance to leaf blast mediated by silicon. publication-title: Australas. Plant Pathol. doi: 10.1007/s13313-010-0010-1 – volume: 38 start-page: 472 year: 2013 ident: B137 article-title: Cytological aspects of the infection process of Pyricularia oryzae on leaves of wheat plants supplied with silicon. publication-title: Trop. Plant Pathol. doi: 10.1590/S1982-56762013000600002 – volume: 38 start-page: 436 year: 2013 ident: B1 article-title: Silicon reduces bacterial speck development on tomato leaves. publication-title: Trop. Plant Pathol. doi: 10.1590/S1982-56762013005000021 – volume: 440 start-page: 688 year: 2006 ident: B80 article-title: A silicon transporter in rice. publication-title: Nature doi: 10.1038/nature04590 – volume: 94 start-page: 177 year: 2004 ident: B119 article-title: Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. publication-title: Phytopathology doi: 10.1094/PHYTO.2004.94.2.177 – volume: 31 start-page: 9 year: 2002 ident: B22 article-title: Peas grown in media with elevated plant-available silicon levels have higher activities of chitinase and β-1, 3-glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. publication-title: Australas. Plant Pathol. doi: 10.1071/AP01047 – volume: 64 start-page: 189 year: 2004 ident: B46 article-title: Powdery mildew of Arabidopsis thaliana: a pathosystem for exploring the role of silicon in plant-microbe interactions. publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2004.07.005 – volume: 98 start-page: 1632 year: 2014 ident: B49 article-title: A zoospore inoculation method with Phytophthora sojae to assess the prophylactic role of silicon on soybean cultivars. publication-title: Plant Dis. doi: 10.1094/pdis-01-14-0102-re – volume: 11 start-page: 392 year: 2006 ident: B81 article-title: Silicon uptake and accumulation in higher plants. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2006.06.007 – volume: 106 start-page: 132 year: 2015 ident: B2 article-title: Microscopic aspects of silicon-mediated rice resistance to leaf scald. publication-title: Phytopathology doi: 10.1094/PHYTO-04-15-0109-R – volume: 72 start-page: 137 year: 2006 ident: B63 article-title: Suppressive effect of liquid potassium silicate on powdery mildew of strawberry in soil. publication-title: J.Gen. Plant Pathol. doi: 10.1007/s10327-005-0270-8 – volume: 128 start-page: 39 year: 2010 ident: B138 article-title: Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier. publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-010-9625-x – volume: 9 start-page: 281 year: 2006 ident: B95 article-title: Unraveling the complex network of cuticular structure and function. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2006.03.001 – volume: 8 year: 2016 ident: B70 article-title: Silicon soil amendments for suppressing powdery mildew on pumpkin. publication-title: Sustainability doi: 10.3390/su8040293 – volume: 209 start-page: 217 year: 1999 ident: B74 article-title: Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. publication-title: Plant Soil doi: 10.1023/A:1004526604913 – volume: 131 start-page: 621 year: 2011 ident: B147 article-title: Protective role of silicon in the banana-Cylindrocladium spathiphylli pathosystem. publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-011-9835-x – volume: 54 start-page: 678 ident: B75 article-title: Effects of foliar-and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.2005.01246.x – volume: 119 start-page: 429 year: 2007 ident: B51 article-title: Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-007-9181-1 – volume: 136 start-page: 324 year: 2009 ident: B13 article-title: Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2009.01226.x – volume: 71 start-page: 284 year: 1993 ident: B154 article-title: X-ray microanalysis of frozen-hydrated, freeze-dried, and critical point dried leaf specimens: determination of soluble and insoluble chemical elements of Erysiphe graminis epidermal cell papilla sites in barley isolines containing Ml-O and ml-O alleles. publication-title: Can. J. Bot. doi: 10.1139/b93-029 – volume: 3 start-page: 371 year: 2002 ident: B27 article-title: The phenylpropanoid pathway and plant defence-a genomics perspective. publication-title: Mol. Plant Pathol. doi: 10.1046/j.1364-3703.2002.00131.x – volume: 14 year: 2014 ident: B66 article-title: Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-14-13 – volume: 42 start-page: 1012 year: 2007 ident: B52 article-title: Use of silicon oxide and sodium silicate for controlling Trichothecium roseum postharvest rot in Chinese cantaloupe (Cucumis melo L.). publication-title: Int. J. Food Sci. Techol. doi: 10.1111/j.1365-2621.2006.01464.x – volume: 33 start-page: 187 year: 2009 ident: B77 article-title: Inhabited mechanisms of silicon compounds against Fusarium rot (Fusarium spp.) of postharvest Chinese cantaloupe. publication-title: J. Food Process. Preserv. doi: 10.1111/j.1745-4549.2008.00292.x – volume: 66 start-page: 108 year: 2005 ident: B110 article-title: Silicon induces antifungal compounds in powdery mildew-infected wheat. publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2005.05.006 – volume: 64 start-page: 1085 year: 2015 ident: B19 article-title: Comparison of root and foliar applications of potassium silicate in potentiating post-infection defences of melon against powdery mildew. publication-title: Plant Pathol. doi: 10.1111/ppa.12346 – volume: 249 start-page: 1 year: 2005 ident: B38 article-title: Silicon and plant disease resistance against pathogenic fungi. publication-title: FEMS Microbiol. Lett. doi: 10.1016/j.femsle.2005.06.034 – volume: 50 start-page: 11 year: 2004 ident: B79 article-title: Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2004.10408447 – volume: 39 start-page: 35 year: 2014 ident: B103 article-title: Photosynthetic gas exchange and antioxidative system in common bean plants infected by Colletotrichum lindemuthianum and supplied with silicon. publication-title: Trop. Plant Pathol. doi: 10.1590/S1982-56762014000100005 – volume: 163 start-page: 554 ident: B120 article-title: Photosynthetic gas exchange in common bean submitted to foliar sprays of potassium silicate, sodium molybdate and fungicide and infected with Colletotrichum lindemuthianum. publication-title: J. Phytopathol. doi: 10.1111/jph.12353 – volume: 168 start-page: 111 year: 2016 ident: B140 article-title: Silicon partially preserves the photosynthetic performance of rice plants infected by Monographella albescens. publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12246 – volume: 16 start-page: 811 ident: B146 article-title: Primary metabolism plays a central role in molding silicon-inducible brown spot resistance in rice. publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12236 – volume: 59 start-page: 586 year: 2010 ident: B134 article-title: Biochemical responses of coffee resistance against Meloidogyne exigua mediated by silicon. publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.2009.02228.x – volume: 168 start-page: 269 year: 2005 ident: B151 article-title: Osmotic stress and silicon act additively in enhancing pathogen resistance in barley against barley powdery mildew. publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200420490 – volume: 82 start-page: 119 year: 1992 ident: B97 article-title: Induction of chitinases in tobacco plants systemically protected against blue mold by Peronospora tabacina or tobacco mosaic virus. publication-title: Phytopathology doi: 10.1094/Phyto-82-119 – volume: 84 start-page: 44 year: 2013 ident: B67 article-title: Global gene expression of rhizobacteria-silicon mediated induced systemic resistance in tomato (Solanum lycopersicum) against Ralstonia solanacearum. publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2013.06.004 – volume: 42 start-page: 185 year: 2004 ident: B32 article-title: Systemic acquired resistance. publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.phyto.42.040803.140421 – volume: 74 start-page: 213 year: 2009 ident: B73 article-title: Antifungal activity of sodium silicate on Fusarium sulphureum and its effect on dry rot of potato tubers. publication-title: J. Food Sci. doi: 10.1111/j.1750-3841.2009.01154.x – volume: 16 start-page: 319 year: 2004 ident: B71 article-title: The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. publication-title: Plant Cell doi: 10.1105/tpc.016980 – volume: 91 start-page: 11 year: 1994 ident: B34 article-title: The anomaly of silicon in plant biology. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/Pnas.91.1.11 – year: 2015 ident: B116 publication-title: Silicon and Plant Diseases. doi: 10.1007/978-3-319-22930-0 – volume: 160 start-page: 674 ident: B42 article-title: Silicon suppresses Fusarium wilt development in banana plants. publication-title: J. Phytopathol. doi: 10.1111/jph.12005 – volume: 84 start-page: 871 year: 2000 ident: B128 article-title: Effect of silicon rate and host resistance on blast, scald, and yield of upland rice. publication-title: Plant Dis. doi: 10.1094/PDIS.2000.84.8.871 – volume: 85 start-page: 827 year: 2001 ident: B117 article-title: Effect of silicon and host resistance on sheath blight development in rice. publication-title: Plant Dis. doi: 10.1094/PDIS.2001.85.8.827 – volume: 31 start-page: 2131 year: 2008 ident: B93 article-title: Evaluation of silicon for managing powdery mildew on gerbera daisy. publication-title: J. Plant Nutr. doi: 10.1080/01904160802459641 – volume: 10 start-page: 518 year: 2011 ident: B96 article-title: The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. publication-title: J. Proteome Res. doi: 10.1021/pr100716h – volume: 6 start-page: 365 year: 2003 ident: B130 article-title: The salicylic acid loop in plant defense. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/S1369-5266(03)00058-X – volume: 118 start-page: 219 year: 2016 ident: B150 article-title: Effects of silicon treatment and inoculation with Fusarium oxysporum f. sp. vasinfectum on cellular defences in root tissues of two cotton cultivars. publication-title: Ann. Bot. doi: 10.1093/aob/mcw095 – volume: 46 start-page: 1635 year: 2006 ident: B157 article-title: Evaluation of calcium silicate for brown patch and dollar spot suppression on turfgrasses. publication-title: Crop Sci. doi: 10.2135/cropsci2005.04-0002 – volume: 65 start-page: 807 year: 2015 ident: B87 article-title: Silicon application enhances resistance to xanthomonas wilt disease in banana. publication-title: Plant Pathol. doi: 10.1111/ppa.12468 – volume: 110 start-page: 3631 year: 2013 ident: B152 article-title: Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1305848110 – volume: 96 start-page: 273 year: 2012 ident: B62 article-title: Silicon reduces black sigatoka development in banana. publication-title: Plant Dis. doi: 10.1094/pdis-04-11-0274 – volume: 38 year: 2016 ident: B92 article-title: Occurrence of powdery mildew disease in wheat fertilized with increasing silicon doses: a chemometric analysis of antioxidant response. publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-016-2217-4 – volume: 90 start-page: 279 year: 2006 ident: B4 article-title: Sodium silicate reduces postharvest decay on Hami melons: induced resistance and fungistatic effects. publication-title: Plant Dis. doi: 10.1094/pd-90-0279 – volume: 5 start-page: 308 year: 2009 ident: B99 article-title: Networking by small-molecule hormones in plant immunity. publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.164 – volume: 134 start-page: 98 year: 1989 ident: B33 article-title: Growth enhancement of loblolly pine (Pinus taeda L.) seedlings by silicon. publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(89)80209-3 – volume: 12 start-page: 2175 year: 2000 ident: B15 article-title: Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. publication-title: Plant Cell doi: 10.1105/tpc.12.11.2175 – volume: 37 start-page: 498 year: 2008 ident: B25 article-title: Involvement of silicon in pearl millet resistance to downy mildew disease and its interplay with cell wall proline/hydroxyproline-rich glycoproteins. publication-title: Australas. Plant Pathol. doi: 10.1071/AP08047 – ident: B121 publication-title: Silicon Potentiates Host Defense Mechanisms against Infection by Plant Pathogens. doi: 10.1007/978-3-319-22930-0_5 – volume: 85 start-page: 827 year: 2001 ident: B98 article-title: Effect of silicon and host resistance on sheath blight development in rice. publication-title: Plant Dis. doi: 10.1094/PDIS.2001.85.8.827 – volume: 93 start-page: 535 year: 2003 ident: B114 article-title: Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. publication-title: Phytopathology doi: 10.1094/PHYTO.2003.93.5.535 – volume: 65 start-page: 4747 year: 2014 ident: B78 article-title: Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru220 – volume: 164 start-page: 396 year: 2014 ident: B10 article-title: Effect of foliar-applied potassium silicate on coffee leaf infection by Hemileia vastatrix. publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12109 – volume: 95 start-page: 317 year: 2011 ident: B69 article-title: Effects of silicon applications on soybean rust development under greenhouse and field conditions. publication-title: Plant Dis. doi: 10.1094/pdis-07-10-0500 – volume: 155 start-page: 161 year: 2009 ident: B7 article-title: Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.2009.00347.x – volume: 174 start-page: 164 year: 2014 ident: B16 article-title: Combined effect of yeast and silicon on the control of bacterial fruit blotch in melon. publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2014.05.027 – volume: 65 start-page: 3049 year: 2008 ident: B82 article-title: Functions and transport of silicon in plants. publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-008-7580-x – volume: 7 year: 2016 ident: B112 article-title: Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00744 – volume: 103 start-page: 17554 year: 2006 ident: B37 article-title: The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0606330103 – volume: 132 start-page: 123 year: 2011 ident: B45 article-title: Silicon and increased electrical conductivity reduce downy mildew of soilless grown lettuce. publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-011-9855-6 – volume: 84 start-page: 236 year: 1994 ident: B14 article-title: Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. publication-title: Phytopathology doi: 10.1094/Phyto-84-236 – volume: 37 start-page: 409 year: 2012 ident: B104 article-title: Silicon reduces brown spot severity and grain discoloration on several rice genotypes. publication-title: Trop. Plant Pathol. doi: 10.1590/S1982-56762012000600005 – volume: 65 start-page: 11 year: 2009 ident: B125 article-title: Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2008.07.004 – volume: 161 start-page: 11 year: 2013 ident: B111 article-title: Silicon and fungicide effects on anthracnose in moderately resistant and susceptible sorghum lines. publication-title: J. Phytopathol. doi: 10.1111/jph.12020 – volume: 78 start-page: 24 year: 2012 ident: B68 article-title: Plant-fungus interface: the role of surface structures in plant resistance and susceptibility to pathogenic fungi. publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2012.01.004 – volume: 88 start-page: 396 year: 1998 ident: B39 article-title: Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. publication-title: Phytopathology doi: 10.1094/PHYTO.1998.88.5.396 – volume: 95 start-page: 69 year: 2005 ident: B105 article-title: Enhancement of biocontrol activity of Cryptococcus laurentii by silicon and the possible mechanisms involved. publication-title: Phytopathology doi: 10.1094/PHYTO-95-0069 – volume: 176 start-page: 118 year: 2013 ident: B155 article-title: Stimulation of phenolic metabolism by silicon contributes to rice resistance to sheath blight. publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201200008 – volume: 64 start-page: 1281 year: 2013 ident: B144 article-title: Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers329 – volume: 39 start-page: 403 year: 1991 ident: B90 article-title: The influence of silicon on cytological interactions between Sphaerotheca fuliginea and Cucumis sativus. publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/0885-5765(91)90007-5 – year: 2007 ident: B23 publication-title: Mineral Nutrition and Plant Disease. – volume: 9 start-page: 1 year: 2016 ident: B122 article-title: The role of silicon (Si) in increasing plant resistance against fungal diseases. publication-title: Hell. Plant Protect. J. doi: 10.1515/hppj-2016-0001 – volume: 29 start-page: 71 year: 1983 ident: B91 article-title: Effect of silicon on the growth of solution-cultured cucumber plant. publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.1983.10432407 – volume: 22 start-page: 1323 year: 2009 ident: B11 article-title: A comprehensive transcriptomic analysis of the effect of silicon on wheat plants under control and pathogen stress conditions. publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-22-11-1323 – volume: 105 start-page: 738 year: 2015 ident: B28 article-title: Alterations in gas exchange and oxidative metabolism in rice leaves infected by Pyricularia oryzae are attenuated by silicon. publication-title: Phytopathology doi: 10.1094/PHYTO-10-14-0280-R – volume: 39 start-page: 457 year: 2014 ident: B127 article-title: Silicon potentiates the activities of defense enzymes in the leaf sheaths of rice plants infected by Rhizoctonia solani. publication-title: Trop. Plant Pathol. doi: 10.1590/S1982-56762014000600007 – volume: 16 start-page: 572 year: 2015 ident: B148 article-title: Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12213 – year: 2012 ident: B86 publication-title: Marschner’s Mineral Nutrition of Higher Plants. – volume: 163 start-page: 731 year: 2015 ident: B41 article-title: Defence-related enzymes in soybean resistance to target spot. publication-title: J. Phytopathol. doi: 10.1111/jph.12370 – volume: 88 start-page: 253 year: 2004 ident: B129 article-title: Effects of silicon and fungicides on the control of leaf and neck blast in upland rice. publication-title: Plant Dis. doi: 10.1094/Pdis.2004.88.3.253 – volume: 387 start-page: 425 year: 2014 ident: B12 article-title: Proteomic characterization of silicon-mediated resistance against Ralstonia solanacearum in tomato. publication-title: Plant Soil doi: 10.1007/s11104-014-2293-4 – year: 2001 ident: B36 publication-title: Silicon in Plants: Facts vs Concepts. – volume: 158 start-page: 253 year: 2010 ident: B133 article-title: Wheat resistance to bacterial leaf streak mediated by silicon. publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.2009.01610.x – volume: 7 year: 2016 ident: B17 article-title: The role of silicon in higher plants under salinity and drought stress. publication-title: Front. Plant Sci. doi: 10.3389/Fpls.2016.01072 – volume: 234 start-page: 137 year: 2011 ident: B72 article-title: Effects of postharvest sodium silicate treatment on pink rot disease and oxidative stress-antioxidative system in muskmelon fruit. publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-011-1611-9 – volume: 58 start-page: 151 year: 1997 ident: B124 article-title: Silicon management and sustainable rice production. publication-title: Adv. Agron. doi: 10.1016/S0065-2113(08)60255-2 – volume: 6 start-page: 212 year: 2013 ident: B48 article-title: Exploiting pathogens’ tricks of the trade for engineering of plant disease resistance: challenges and opportunities. publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.12017 – volume: 26 start-page: 135 year: 1997 ident: B132 article-title: Plant proteins that confer resistance to pests and pathogens. publication-title: Adv. Bot. Res. doi: 10.1016/S0065-2296(08)60120-2 – volume: 164 start-page: 768 year: 2016 ident: B141 article-title: Silicon-induced changes in the antioxidant system reduce soybean resistance to frogeye leaf spot. publication-title: J. Phytopathol. doi: 10.1111/jph.12497 – volume: 448 start-page: 209 year: 2007 ident: B83 article-title: An efflux transporter of silicon in rice. publication-title: Nature doi: 10.1038/nature05964 – volume: 58 start-page: 569 year: 2007 ident: B56 article-title: The effect of silicon on the infection by and spread of Pythium aphanidermatum in single roots of tomato and bitter gourd. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl232 – volume: 50 start-page: 641 year: 1999 ident: B35 article-title: Silicon. publication-title: Ann. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.arplant.50.1.641 – volume: 6 start-page: 147 year: 2016 ident: B61 article-title: The mechanisms underlying the Anthracnose disease reduction by rice hull as a silicon source in capsicum (Capsicum annuum L.) grown in simplified hydroponics. publication-title: Procedia Food Sci. doi: 10.1016/j.profoo.2016.02.035 – volume: 117 start-page: 902 year: 1992 ident: B89 article-title: Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. publication-title: J. Am. Soc. Hortic. Sci. doi: 10.21273/JASHS.117.6.902 – volume: 162 start-page: 133 year: 2014 ident: B18 article-title: Soybean resistance to Phakopsora pachyrhizi as affected by acibenzolar-S-methyl, jasmonic acid and silicon. publication-title: J. Phytopathol. doi: 10.1111/jph.12170 – volume: 98 start-page: 1038 year: 2008 ident: B54 article-title: The role of silicon in preventing appressorial penetration by the rice blast fungus. publication-title: Phytopathology doi: 10.1094/PHYTO-98-9-1038 – volume: 148 start-page: 1996 year: 2008 ident: B24 article-title: Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. publication-title: Plant Physiol. doi: 10.1104/pp.108.127878 – volume: 101 start-page: 92 year: 2011 ident: B20 article-title: Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice-Bipolaris oryzae interaction. publication-title: Phytopathology doi: 10.1094/PHYTO-04-10-0105 – volume: 12 year: 2012 ident: B102 article-title: Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-12-190 – volume: 38 start-page: 478 year: 2013 ident: B21 article-title: Silicon improves the emergence and sanity of rice seedlings obtained from seeds infected with Bipolaris oryzae. publication-title: Trop. Plant Pathol. doi: 10.1590/S1982-56762013000600003 – volume: 159 start-page: 546 year: 2011 ident: B57 article-title: Silicon suppresses Fusarium crown and root rot of tomato. publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.2011.01803.x – volume: 92 start-page: 1095 year: 2002 ident: B65 article-title: Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. publication-title: Phytopathology doi: 10.1094/PHYTO.2002.92.10.1095 – volume: 6 year: 2016 ident: B136 article-title: The role of silicon in enhancing resistance to bacterial blight of hydroponic- and soil-cultured rice. publication-title: Sci. Rep. doi: 10.1038/srep24640 – start-page: 195 year: 2010 ident: B88 article-title: Effect of silicon application on Lolium perenne development and Fusarium control. publication-title: Paper presented at the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010) – volume: 66 start-page: 144 year: 2005 ident: B118 article-title: Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2005.06.002 – volume: 99 start-page: 787 year: 2007 ident: B31 article-title: Ubiquitin, hormones and biotic stress in plants. publication-title: Ann. Bot. doi: 10.1093/aob/mcl255 – volume: 30 start-page: 1005 year: 2007 ident: B5 article-title: The influence of silicon on the components of resistance to gray leaf spot in St. Augustinegrass. publication-title: J. Plant Nutr. doi: 10.1080/01904160701394287 – volume: 7 start-page: 411 year: 2002 ident: B126 article-title: Cell polarization, a crucial process in fungal defence. publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(02)02307-5 – volume: 33 start-page: 2082 year: 2010 ident: B115 article-title: Foliar spray of potassium silicate on the control of angular leaf spot on beans. publication-title: J. Plant Nutr. doi: 10.1080/01904167.2010.519082 – volume: 7 start-page: 135 year: 2010 ident: B85 article-title: Silicon in plant tolerance against environmental stressors: towards crop improvement using omics approaches. publication-title: Curr. Proteomics doi: 10.2174/157016410791330507 – volume: 448 start-page: 661 year: 2007 ident: B142 article-title: JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. publication-title: Nature doi: 10.1038/nature05960 – volume: 67 start-page: 151 year: 2015 ident: B94 article-title: Silicon treatment in oil palms confers resistance to basal stem rot disease caused by Ganoderma boninense. publication-title: Crop Prot. doi: 10.1016/j.cropro.2014.10.004 – volume: 61 start-page: 120 year: 2012 ident: B131 article-title: Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa. publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.2011.02493.x – volume: 134 start-page: 324 year: 2008 ident: B9 article-title: Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. publication-title: Physiol. Plant doi: 10.1111/j.1399-3054.2008.01140.x – volume: 30 start-page: 467 year: 2002 ident: B26 article-title: The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens. publication-title: Plant J. doi: 10.1046/j.1365-313X.2002.01300.x – year: 2006 ident: B101 article-title: “The production, deposition, and dissolution of phytoliths,” in publication-title: Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists – volume: 36 start-page: 59 year: 1998 ident: B58 article-title: Current concepts of active defense in plants. publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.phyto.36.1.59 – reference: 19470092 - Physiol Plant. 2009 Jul;136(3):324-35 – reference: 22784251 - Phytopathology. 2012 Oct;102(10):957-66 – reference: 17082308 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17554-9 – reference: 15620739 - Chemosphere. 2005 Jan;58(4):475-83 – reference: 12873532 - Curr Opin Plant Biol. 2003 Aug;6(4):365-71 – reference: 18944917 - Phytopathology. 1998 May;88(5):396-401 – reference: 18943838 - Phytopathology. 2005 Jan;95(1):69-75 – reference: 21696845 - J Plant Physiol. 2011 Oct 15;168(15):1866-9 – reference: 20569344 - Mol Plant Pathol. 2002 Sep 1;3(5):371-90 – reference: 23070523 - Planta. 2013 Jan;237(1):337-49 – reference: 18943742 - Phytopathology. 2008 Sep;98(9):1038-44 – reference: 18560761 - Cell Mol Life Sci. 2008 Oct;65(19):3049-57 – reference: 11607449 - Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):11-7 – reference: 27379104 - Front Plant Sci. 2016 Jun 13;7:744 – reference: 25346281 - Mol Plant Pathol. 2015 Aug;16(6):572-82 – reference: 16580871 - Curr Opin Plant Biol. 2006 Jun;9(3):281-7 – reference: 22559264 - Annu Rev Cell Dev Biol. 2012;28:489-521 – reference: 18943541 - Phytopathology. 2004 Feb;94(2):177-83 – reference: 15604719 - Plant Mol Biol. 2004 Aug;55(6):825-34 – reference: 18944354 - Phytopathology. 2003 Apr;93(4):402-12 – reference: 18944220 - Phytopathology. 2002 Oct;92(10):1095-103 – reference: 27148294 - Front Plant Sci. 2016 Apr 12;7:463 – reference: 18513376 - Physiol Plant. 2008 Oct;134(2):324-33 – reference: 23279915 - Microb Biotechnol. 2013 May;6(3):212-22 – reference: 15012222 - Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:641-664 – reference: 24879770 - J Exp Bot. 2014 Sep;65(17):4747-56 – reference: 12753977 - Curr Opin Plant Biol. 2003 Jun;6(3):268-72 – reference: 19646050 - J Food Sci. 2009 Jun;74(5):M213-8 – reference: 17625566 - Nature. 2007 Jul 12;448(7150):209-12 – reference: 23255278 - J Exp Bot. 2013 Mar;64(5):1281-93 – reference: 19810802 - Mol Plant Microbe Interact. 2009 Nov;22(11):1323-30 – reference: 18945932 - Plant Physiol. 2008 Dec;148(4):1996-2012 – reference: 17637677 - Nature. 2007 Aug 9;448(7154):661-5 – reference: 12234733 - Trends Plant Sci. 2002 Sep;7(9):411-5 – reference: 12028576 - Plant J. 2002 May;30(4):467-80 – reference: 25607719 - Phytopathology. 2015 Jun;105(6):738-47 – reference: 16839801 - Trends Plant Sci. 2006 Aug;11(8):392-7 – reference: 25615017 - New Phytol. 2015 May;206(3):1051-62 – reference: 23057995 - BMC Plant Biol. 2012 Oct 11;12:190 – reference: 26237696 - Phytopathology. 2016 Feb;106(2):132-41 – reference: 20879842 - Phytopathology. 2011 Jan;101(1):92-104 – reference: 21300551 - Plant Physiol Biochem. 2011 Jul;49(7):744-51 – reference: 16572174 - Nature. 2006 Mar 30;440(7084):688-91 – reference: 23628925 - Plant Physiol Biochem. 2013 Jul;68:52-60 – reference: 15012493 - Annu Rev Phytopathol. 1998;36:59-90 – reference: 24003150 - Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3631-9 – reference: 15283665 - Annu Rev Phytopathol. 2004;42:185-209 – reference: 24405887 - BMC Plant Biol. 2014 Jan 09;14:13 – reference: 12244231 - Plant Cell. 1994 Dec;6(12):1703-1712 – reference: 25625327 - New Phytol. 2015 Apr;206(2):761-73 – reference: 18942975 - Phytopathology. 2003 May;93(5):535-46 – reference: 25583155 - Mol Plant Pathol. 2015 Oct;16(8):811-24 – reference: 17158106 - J Exp Bot. 2007;58(3):569-77 – reference: 14742872 - Plant Cell. 2004 Feb;16(2):319-31 – reference: 17220175 - Ann Bot. 2007 May;99(5):787-822 – reference: 16006059 - FEMS Microbiol Lett. 2005 Aug 1;249(1):1-6 – reference: 19377457 - Nat Chem Biol. 2009 May;5(5):308-16 – reference: 27091552 - Sci Rep. 2016 Apr 19;6:24640 – reference: 27288509 - Ann Bot. 2016 Aug;118(2):219-26 – reference: 12943543 - Plant J. 2003 Jan;33(1):87-95 – reference: 21117708 - J Proteome Res. 2011 Feb 4;10(2):518-28 – reference: 25738553 - Phytopathology. 2015 Jun;105(6):748-57 – reference: 11090217 - Plant Cell. 2000 Nov;12(11):2175-90 – reference: 17012402 - Plant Physiol. 2006 Nov;142(3):1202-15 – reference: 27486474 - Front Plant Sci. 2016 Jul 18;7:1072 – reference: 18626020 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9931-5 |
SSID | ssj0000500997 |
Score | 2.5968204 |
SecondaryResourceType | review_article |
Snippet | Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 701 |
SubjectTerms | biochemical defense response molecular physical Plant Science plant–pathogen interactions silicon |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0iLtyIb-uLCi7cVNs0adKliiKCIj7AXUjSBIXSDk5duPMf_EO_xHvbzjAjihuhqzal4Zy099wmOZeQ_ZRxLa00UU59GrHU6QiioI6KDM3fUpNoiruRr66ziwd2-cgfJ0p94Zqwzh64A-6Ixzr20uSxdxCJfGGMYU56aWkmtDUev74Q8yaSqc7VG6WP6Lx8IAvLj_ygRHfuBB0LRV8CZhSGWrf-nyTm95WSE6HnfJEs9JoxPO76ukRmXLVM5k5q0HVvKyS-rUsX1j68ey6B1iqEA0sRNZ_vHzeg72oYImH746_bwzBcJQ_nZ_enF1FfByGynPImktrwuNDUcV1QzRIPkoJxXiSZTV0qjNYCZyc5o5oWVkpQRWnsudW5SdpGa2S2qiu3QUIH6Y2zhfBMaJbFVjrca4vYoksPSwNyOIJF2d4kHGtVlAqSBcRRIY4KcVQtjgE5GN8w6Pwxfm96gjiPm6GxdXsC6FY93eovugOyN2JJwYuAsxu6cvXrUKGyQZvTmAdkvWNt_CgqcT4zEQERU3xO9WX6SvX81JptcwYfPS43_6PzW2Qe4WjXS_JtMtu8vLod0DSN2W2H7xfgPvcR priority: 102 providerName: Directory of Open Access Journals |
Title | Role of Silicon on Plant–Pathogen Interactions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28529517 https://www.proquest.com/docview/1901310905 https://pubmed.ncbi.nlm.nih.gov/PMC5418358 https://doaj.org/article/50a0f8b90fe244fdbbb4e8f8c267acbf |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBYj3cNexrqfXrfgwR72osyWJUt5GKUZy8qgpawN5E1IstQFjJ0lKbT__e5kN1tGBgPjB1u25DvJ952k-46Q9wUXRjll6ZiFgvLCGwpW0NCqRPK3wuaGYTTy2Xl5OuPf5mL-Ox1QL8D1XtcO80nNVvXo9ufdMQz4T-hxgr39GJY1Em_nSEYoMZbrAMySxHQGZz3W74i-EQ3FZCtlySkv2byj-tn3jh0rFcn89yHQvzdS_mGZpk_I4x5SpiddHzgkD3zzlDyctAD77p6R0fe29mkb0stFDVpvUjgwU9GGXgD4a6H_pHFWsAtwWD8ns-mXq8-ntE-SQJ1gYkOVsSKrDPPCVMzwPADe4EJUeekKX0hrjMSlS8GZYZVTCiBTkQXhzNjmsdALMmjaxr8iqQffx7tKBi4NLzOnPAbiZsEzpPDhRUJG90LRrmcQx0QWtQZPAqWoUYoapaijFBPyYfvAsiPP-HfRCUp5WwxZr-OFdnWt-0GkRWayoOwYm8R5qKy13KugHCulcTYk5N29jjSMElz6MI1vb9YaYQ9yoGYiIS87nW2rYgoXO3OZELmjzZ227N5pFj8iE7fg8EcU6vV_1HtEHuHXxr2S4g0ZbFY3_i3gmY0dxnkAOH-d58PYZ38Bptnz8Q |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Silicon+on+Plant-Pathogen+Interactions&rft.jtitle=Frontiers+in+plant+science&rft.au=Wang%2C+Min&rft.au=Gao%2C+Limin&rft.au=Dong%2C+Suyue&rft.au=Sun%2C+Yuming&rft.date=2017-05-05&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=8&rft.spage=701&rft_id=info:doi/10.3389%2Ffpls.2017.00701&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |