Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo

Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 27; pp. 11008 - 11013
Main Authors Wang, Caihong, Mendonsa, Graziella R, Symington, Jane W, Zhang, Qunyuan, Cadwell, Ken, Virgin, Herbert W, Mysorekar, Indira U
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.07.2012
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1 ᴴᴹ) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1 ᴴᴹ hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1 ᴴᴹ epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs.
AbstractList Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1 ᴴᴹ) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1 ᴴᴹ hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1 ᴴᴹ epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs.
Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1 HM ) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1 HM hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1 HM epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs.
Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (...) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1HM hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that ... epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs. (ProQuest: ... denotes formulae/symbols omitted.)
Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1(HM)) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1(HM) hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1(HM) epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs.
Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1HM) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1HM hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1HM epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs.
Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1(HM)) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1(HM) hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1(HM) epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs.Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1(HM)) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1(HM) hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1(HM) epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs.
Author Zhang, Qunyuan
Virgin, Herbert W
Wang, Caihong
Mendonsa, Graziella R
Mysorekar, Indira U
Cadwell, Ken
Symington, Jane W
Author_xml – sequence: 1
  fullname: Wang, Caihong
– sequence: 2
  fullname: Mendonsa, Graziella R
– sequence: 3
  fullname: Symington, Jane W
– sequence: 4
  fullname: Zhang, Qunyuan
– sequence: 5
  fullname: Cadwell, Ken
– sequence: 6
  fullname: Virgin, Herbert W
– sequence: 7
  fullname: Mysorekar, Indira U
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22715292$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLeFMycgEpde0o4_YieXSlVVKNJKHKAnDpbXsXe9ytrBTlbqf4-jLFvoAS72YX5v_J5nztCJD94g9BbDJQZBr3qv0iUmQJuKYGheoEU-cclZAydoAUBEWTPCTtFZSlsAaKoaXqFTQgSuSEMW6MfNsMZ8iYvWWKed8fqx0MFbE1PRxzAYPbjgCxvDrhhj6NWwCWvjnS7ukt6Y6PTGqazoXOGyaqadL_ZuH16jl1Z1ybw53Ofo4dPd99v7cvn185fbm2WpK1INZQ2giGp0w7AVTGmLOWd0iiNMxUC0FWegmOUrTDmh2agGYQRbWWFb01J6jq7nvv242plWGz9E1ck-up2KjzIoJ_-ueLeR67CXlDZQ15AbXBwaxPBzNGmQO5e06TrlTRiTxJnBnDFc_R8FQitKOeCMfnyGbsMYff6JmQJOxPT2-z_NH13_HlEGrmZAx5BSNPaIYJDTEshpCeTTEmRF9Uyh3aCmyeT0rvuHrjhYmQpPrzSSCIkxQJ2RdzOyTUOIR4bhHFiQKc2HuW5VkGodXZIP3wjkMmBSN3muvwA7E9Lg
CitedBy_id crossref_primary_10_1097_SPV_0000000000001276
crossref_primary_10_1038_s41585_020_0350_8
crossref_primary_10_3389_fcimb_2019_00093
crossref_primary_10_1038_s41385_021_00408_4
crossref_primary_10_1038_s41467_021_22726_8
crossref_primary_10_1002_jcp_30227
crossref_primary_10_1097_MOG_0000000000000121
crossref_primary_10_1038_s41467_024_52454_8
crossref_primary_10_1080_15548627_2016_1160176
crossref_primary_10_1016_j_celrep_2021_109856
crossref_primary_10_1128_IAI_01234_12
crossref_primary_10_1016_j_chom_2014_03_012
crossref_primary_10_1177_1753425915609973
crossref_primary_10_1136_bmjopen_2013_002790
crossref_primary_10_1016_j_fsi_2019_09_004
crossref_primary_10_2337_db19_1176
crossref_primary_10_1080_15548627_2018_1535290
crossref_primary_10_4049_jimmunol_1601293
crossref_primary_10_1038_nrmicro3160
crossref_primary_10_1146_annurev_physiol_030212_183658
crossref_primary_10_1080_15548627_2021_1909406
crossref_primary_10_1038_s41585_021_00477_x
crossref_primary_10_1371_journal_pone_0198817
crossref_primary_10_1016_j_placenta_2013_12_007
crossref_primary_10_1097_MIB_0000000000000305
crossref_primary_10_1002_jcp_26954
crossref_primary_10_1111_cmi_12063
crossref_primary_10_3390_cells8010002
crossref_primary_10_1111_cmi_13196
crossref_primary_10_1128_microbiolspec_UTI_0026_2016
crossref_primary_10_1093_burnst_tkz001
crossref_primary_10_3390_pathogens10020110
crossref_primary_10_3389_fimmu_2016_00540
crossref_primary_10_1016_j_immuni_2013_07_017
crossref_primary_10_1097_QCO_0000000000000130
crossref_primary_10_1016_j_mib_2013_05_003
crossref_primary_10_1016_j_ijmm_2017_11_009
crossref_primary_10_1038_mi_2015_7
crossref_primary_10_1016_j_mib_2014_11_020
crossref_primary_10_3389_fmicb_2020_00708
crossref_primary_10_1080_15548627_2015_1040969
crossref_primary_10_1038_s41418_019_0481_8
crossref_primary_10_1111_febs_15833
crossref_primary_10_1093_infdis_jiae063
crossref_primary_10_3390_pathogens5010020
crossref_primary_10_3389_fcimb_2016_00017
crossref_primary_10_1080_19490976_2019_1614395
crossref_primary_10_1016_j_chom_2013_07_013
crossref_primary_10_1016_j_ymeth_2014_12_005
crossref_primary_10_1016_j_ebiom_2021_103347
crossref_primary_10_1038_nrurol_2017_25
crossref_primary_10_1155_2014_154936
crossref_primary_10_1128_microbiolspec_UTI_0013_2012
crossref_primary_10_1016_j_molmed_2016_10_008
crossref_primary_10_1038_nri3565
crossref_primary_10_1038_nrneph_2014_201
crossref_primary_10_1128_iai_00317_23
crossref_primary_10_4161_auto_27196
crossref_primary_10_4196_kjpp_2020_24_1_1
crossref_primary_10_1038_ni_3273
crossref_primary_10_1128_CMR_00036_14
crossref_primary_10_1371_journal_ppat_1005083
crossref_primary_10_1152_ajprenal_00607_2015
crossref_primary_10_1016_j_devcel_2023_11_017
crossref_primary_10_1038_nrurol_2012_140
crossref_primary_10_1038_s41419_018_0786_4
crossref_primary_10_3390_pathogens2020288
crossref_primary_10_1371_journal_pone_0144347
crossref_primary_10_1080_15548627_2016_1252890
crossref_primary_10_3389_fimmu_2018_00788
crossref_primary_10_1172_jci_insight_86654
crossref_primary_10_1016_j_chom_2015_03_001
crossref_primary_10_1111_tid_12081
crossref_primary_10_3390_pathogens5020039
crossref_primary_10_1038_nri3532
crossref_primary_10_3389_fimmu_2017_01483
crossref_primary_10_1016_j_nano_2025_102812
crossref_primary_10_1016_j_celrep_2022_110758
crossref_primary_10_1016_j_mib_2013_01_005
crossref_primary_10_1152_ajprenal_00133_2018
crossref_primary_10_1155_2015_398483
Cites_doi 10.1038/ng.717
10.1152/ajprenal.00327.2009
10.1038/ng1954
10.1038/nature07383
10.1038/nprot.2009.116
10.1016/j.cell.2010.05.009
10.4049/jimmunol.0900441
10.1074/jbc.M110560200
10.1371/journal.pmed.0040329
10.1007/978-1-4615-4737-2_1
10.1016/j.micinf.2010.12.004
10.1016/j.chom.2011.12.002
10.1038/nature09782
10.1128/IAI.01123-06
10.1136/gut.2010.228908
10.1111/j.1600-0854.2009.00950.x
10.1146/annurev.micro.112408.134258
10.1038/nrurol.2010.190
10.1128/IAI.73.7.3999-4006.2005
10.1016/j.ceb.2009.12.009
10.1016/j.chom.2009.04.005
10.1038/cdd.2008.139
10.1016/j.chom.2010.01.007
10.1242/jcs.114.22.4095
10.1038/ni.1726
10.1073/pnas.0736473100
10.1016/j.chom.2007.05.007
10.1016/j.mcna.2010.08.023
10.1038/nrurol.2011.100
10.1038/nm1572
10.1128/AAC.00014-10
10.1016/0092-8674(92)90030-G
10.1111/j.1749-6632.2008.04004.x
10.4161/auto.4450
10.1073/pnas.0602136103
10.1074/jbc.M111.280065
10.1093/intimm/dxp088
10.1016/j.chom.2008.10.003
10.1371/journal.ppat.1001042
10.1038/cdd.2008.130
10.1038/nature07416
10.1126/science.1084550
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jul 3, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jul 3, 2012
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1203952109
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Virology and AIDS Abstracts
MEDLINE




MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Atg16L1 and pathogenesis of UTIs
EISSN 1091-6490
EndPage 11013
ExternalDocumentID PMC3390880
2703870541
22715292
10_1073_pnas_1203952109
109_27_11008
41601720
US201600128964
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI084887
– fundername: NIDDK NIH HHS
  grantid: R01 DK100644
– fundername: NIDDK NIH HHS
  grantid: K99/R00 DK080643
– fundername: NIDDK NIH HHS
  grantid: K99 DK080643
– fundername: NIAID NIH HHS
  grantid: U54AI057160
– fundername: NIDDK NIH HHS
  grantid: R00 DK080643
– fundername: PHS HHS
  grantid: T32-54560
– fundername: NIAID NIH HHS
  grantid: U54 AI057160
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c525t-800a2a9c941f74acf1664321097e5407d5640a4f6b13623defc07e74bf7fded33
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:12:36 EDT 2025
Fri Jul 11 12:25:30 EDT 2025
Fri Jul 11 02:00:59 EDT 2025
Mon Jun 30 08:02:14 EDT 2025
Thu Apr 03 07:02:24 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Tue Jul 01 03:39:20 EDT 2025
Wed Nov 11 00:30:11 EST 2020
Thu May 29 08:40:47 EDT 2025
Thu Apr 03 09:43:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c525t-800a2a9c941f74acf1664321097e5407d5640a4f6b13623defc07e74bf7fded33
Notes http://dx.doi.org/10.1073/pnas.1203952109
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: C.W., G.R.M., J.W.S., and I.U.M. designed research; C.W., G.R.M., and J.W.S. performed research; C.W., G.R.M., J.W.S., and Q.Z. analyzed data; and C.W., G.R.M., J.W.S., K.C., H.W.V., and I.U.M. wrote the paper.
Edited* by Roy Curtiss III, Arizona State University, Tempe, AZ, and approved May 22, 2012 (received for review March 7, 2012)
1C.W., G.R.M., and J.W.S. contributed equally to this work.
2Present address: Skirball Institute of Biomolecular Medicine, Department of Microbiology, New York University School of Medicine, New York, NY 10016.
OpenAccessLink https://www.pnas.org/content/pnas/109/27/11008.full.pdf
PMID 22715292
PQID 1023506270
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3390880
pnas_primary_109_27_11008
pubmed_primary_22715292
proquest_miscellaneous_1023533601
crossref_citationtrail_10_1073_pnas_1203952109
proquest_miscellaneous_1803164415
crossref_primary_10_1073_pnas_1203952109
jstor_primary_41601720
proquest_journals_1023506270
fao_agris_US201600128964
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-03
PublicationDateYYYYMMDD 2012-07-03
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
Deretic V (e_1_3_3_3_2) 2009; 335
Campoy E (e_1_3_3_8_2) 2009; 335
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_21_2
e_1_3_3_42_2
11739641 - J Cell Sci. 2001 Nov;114(Pt 22):4095-103
17200669 - Nat Genet. 2007 Feb;39(2):207-11
21182979 - Microbes Infect. 2011 May;13(5):426-37
12655047 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4203-8
19454350 - Cell Host Microbe. 2009 May 8;5(5):463-75
22167182 - J Biol Chem. 2012 Feb 3;287(6):4033-40
17710226 - Cell Host Microbe. 2007 Jun 14;1(4):287-98
10599409 - Adv Exp Med Biol. 1999;462:7-18; discussion 103-14
19161373 - Ann N Y Acad Sci. 2009 Jan;1152:18-29
20159618 - Cell Host Microbe. 2010 Feb 18;7(2):115-27
20811584 - PLoS Pathog. 2010;6(8):e1001042
20602997 - Cell. 2010 Jun 25;141(7):1135-45
19381141 - Nat Immunol. 2009 May;10(5):461-70
20116986 - Curr Opin Cell Biol. 2010 Apr;22(2):252-62
22264511 - Cell Host Microbe. 2012 Jan 19;11(1):33-45
1547488 - Cell. 1992 Mar 6;68(5):869-77
21095409 - Med Clin North Am. 2011 Jan;95(1):27-41
18772897 - Cell Death Differ. 2009 Jan;16(1):57-69
22777289 - Nat Rev Urol. 2012 Aug;9(8):410
12843396 - Science. 2003 Jul 4;301(5629):105-7
18996346 - Cell Host Microbe. 2008 Nov 13;4(5):458-69
19644462 - Nat Protoc. 2009;4(8):1230-43
21139641 - Nat Rev Urol. 2010 Dec;7(12):653-60
18849965 - Nature. 2008 Nov 13;456(7219):264-8
11744708 - J Biol Chem. 2002 Mar 1;277(9):7412-9
16968784 - Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14170-5
21406388 - Gut. 2011 Sep;60(9):1229-35
17074856 - Infect Immun. 2007 Jan;75(1):52-60
19802568 - Curr Top Microbiol Immunol. 2009;335:227-50
19566896 - Traffic. 2009 Sep;10(9):1350-61
19802565 - Curr Top Microbiol Immunol. 2009;335:169-88
17417648 - Nat Med. 2007 May;13(5):625-30
21248839 - Nature. 2011 Jan 20;469(7330):323-35
18849966 - Nature. 2008 Nov 13;456(7219):259-63
15972487 - Infect Immun. 2005 Jul;73(7):3999-4006
19587142 - Am J Physiol Renal Physiol. 2009 Dec;297(6):F1477-501
21750501 - Nat Rev Urol. 2011 Aug;8(8):449-68
19737785 - Int Immunol. 2009 Nov;21(11):1199-204
17568179 - Autophagy. 2007 Sep-Oct;3(5):442-51
21102463 - Nat Genet. 2010 Dec;42(12):1118-25
18092884 - PLoS Med. 2007 Dec;4(12):e329
19079285 - Cell Death Differ. 2009 Jan;16(1):1-2
20231390 - Antimicrob Agents Chemother. 2010 May;54(5):1855-63
19812211 - J Immunol. 2009 Nov 1;183(9):5909-16
20825346 - Annu Rev Microbiol. 2010;64:203-21
References_xml – ident: e_1_3_3_15_2
  doi: 10.1038/ng.717
– ident: e_1_3_3_31_2
  doi: 10.1152/ajprenal.00327.2009
– ident: e_1_3_3_16_2
  doi: 10.1038/ng1954
– ident: e_1_3_3_5_2
  doi: 10.1038/nature07383
– ident: e_1_3_3_36_2
  doi: 10.1038/nprot.2009.116
– volume: 335
  start-page: 227
  year: 2009
  ident: e_1_3_3_8_2
  article-title: Autophagy subversion by bacteria
  publication-title: Curr Top Microbiol Immunol
– ident: e_1_3_3_12_2
  doi: 10.1016/j.cell.2010.05.009
– ident: e_1_3_3_35_2
  doi: 10.4049/jimmunol.0900441
– ident: e_1_3_3_41_2
  doi: 10.1074/jbc.M110560200
– ident: e_1_3_3_22_2
  doi: 10.1371/journal.pmed.0040329
– ident: e_1_3_3_33_2
  doi: 10.1007/978-1-4615-4737-2_1
– ident: e_1_3_3_40_2
  doi: 10.1016/j.micinf.2010.12.004
– ident: e_1_3_3_42_2
  doi: 10.1016/j.chom.2011.12.002
– ident: e_1_3_3_1_2
  doi: 10.1038/nature09782
– ident: e_1_3_3_21_2
  doi: 10.1128/IAI.01123-06
– volume: 335
  start-page: 169
  year: 2009
  ident: e_1_3_3_3_2
  article-title: Autophagy in immunity against mycobacterium tuberculosis: A model system to dissect immunological roles of autophagy
  publication-title: Curr Top Microbiol Immunol
– ident: e_1_3_3_13_2
  doi: 10.1136/gut.2010.228908
– ident: e_1_3_3_30_2
  doi: 10.1111/j.1600-0854.2009.00950.x
– ident: e_1_3_3_26_2
  doi: 10.1146/annurev.micro.112408.134258
– ident: e_1_3_3_18_2
  doi: 10.1038/nrurol.2010.190
– ident: e_1_3_3_23_2
  doi: 10.1128/IAI.73.7.3999-4006.2005
– ident: e_1_3_3_9_2
  doi: 10.1016/j.ceb.2009.12.009
– ident: e_1_3_3_37_2
  doi: 10.1016/j.chom.2009.04.005
– ident: e_1_3_3_4_2
  doi: 10.1038/cdd.2008.139
– ident: e_1_3_3_7_2
  doi: 10.1016/j.chom.2010.01.007
– ident: e_1_3_3_20_2
  doi: 10.1242/jcs.114.22.4095
– ident: e_1_3_3_2_2
  doi: 10.1038/ni.1726
– ident: e_1_3_3_24_2
  doi: 10.1073/pnas.0736473100
– ident: e_1_3_3_29_2
  doi: 10.1016/j.chom.2007.05.007
– ident: e_1_3_3_17_2
  doi: 10.1016/j.mcna.2010.08.023
– ident: e_1_3_3_25_2
  doi: 10.1038/nrurol.2011.100
– ident: e_1_3_3_28_2
  doi: 10.1038/nm1572
– ident: e_1_3_3_43_2
  doi: 10.1128/AAC.00014-10
– ident: e_1_3_3_38_2
  doi: 10.1016/0092-8674(92)90030-G
– ident: e_1_3_3_32_2
  doi: 10.1111/j.1749-6632.2008.04004.x
– ident: e_1_3_3_34_2
  doi: 10.4161/auto.4450
– ident: e_1_3_3_27_2
  doi: 10.1073/pnas.0602136103
– ident: e_1_3_3_14_2
  doi: 10.1074/jbc.M111.280065
– ident: e_1_3_3_10_2
  doi: 10.1093/intimm/dxp088
– ident: e_1_3_3_39_2
  doi: 10.1016/j.chom.2008.10.003
– ident: e_1_3_3_44_2
  doi: 10.1371/journal.ppat.1001042
– ident: e_1_3_3_6_2
  doi: 10.1038/cdd.2008.130
– ident: e_1_3_3_11_2
  doi: 10.1038/nature07416
– ident: e_1_3_3_19_2
  doi: 10.1126/science.1084550
– reference: 20825346 - Annu Rev Microbiol. 2010;64:203-21
– reference: 18092884 - PLoS Med. 2007 Dec;4(12):e329
– reference: 18849966 - Nature. 2008 Nov 13;456(7219):259-63
– reference: 19454350 - Cell Host Microbe. 2009 May 8;5(5):463-75
– reference: 17568179 - Autophagy. 2007 Sep-Oct;3(5):442-51
– reference: 19802568 - Curr Top Microbiol Immunol. 2009;335:227-50
– reference: 18996346 - Cell Host Microbe. 2008 Nov 13;4(5):458-69
– reference: 16968784 - Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14170-5
– reference: 21139641 - Nat Rev Urol. 2010 Dec;7(12):653-60
– reference: 1547488 - Cell. 1992 Mar 6;68(5):869-77
– reference: 17710226 - Cell Host Microbe. 2007 Jun 14;1(4):287-98
– reference: 19812211 - J Immunol. 2009 Nov 1;183(9):5909-16
– reference: 11744708 - J Biol Chem. 2002 Mar 1;277(9):7412-9
– reference: 17417648 - Nat Med. 2007 May;13(5):625-30
– reference: 19079285 - Cell Death Differ. 2009 Jan;16(1):1-2
– reference: 19737785 - Int Immunol. 2009 Nov;21(11):1199-204
– reference: 20159618 - Cell Host Microbe. 2010 Feb 18;7(2):115-27
– reference: 20602997 - Cell. 2010 Jun 25;141(7):1135-45
– reference: 21406388 - Gut. 2011 Sep;60(9):1229-35
– reference: 21095409 - Med Clin North Am. 2011 Jan;95(1):27-41
– reference: 19802565 - Curr Top Microbiol Immunol. 2009;335:169-88
– reference: 22777289 - Nat Rev Urol. 2012 Aug;9(8):410
– reference: 21182979 - Microbes Infect. 2011 May;13(5):426-37
– reference: 12655047 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4203-8
– reference: 12843396 - Science. 2003 Jul 4;301(5629):105-7
– reference: 17074856 - Infect Immun. 2007 Jan;75(1):52-60
– reference: 19587142 - Am J Physiol Renal Physiol. 2009 Dec;297(6):F1477-501
– reference: 20811584 - PLoS Pathog. 2010;6(8):e1001042
– reference: 22167182 - J Biol Chem. 2012 Feb 3;287(6):4033-40
– reference: 19566896 - Traffic. 2009 Sep;10(9):1350-61
– reference: 18772897 - Cell Death Differ. 2009 Jan;16(1):57-69
– reference: 20231390 - Antimicrob Agents Chemother. 2010 May;54(5):1855-63
– reference: 18849965 - Nature. 2008 Nov 13;456(7219):264-8
– reference: 20116986 - Curr Opin Cell Biol. 2010 Apr;22(2):252-62
– reference: 21248839 - Nature. 2011 Jan 20;469(7330):323-35
– reference: 19161373 - Ann N Y Acad Sci. 2009 Jan;1152:18-29
– reference: 17200669 - Nat Genet. 2007 Feb;39(2):207-11
– reference: 21102463 - Nat Genet. 2010 Dec;42(12):1118-25
– reference: 19381141 - Nat Immunol. 2009 May;10(5):461-70
– reference: 22264511 - Cell Host Microbe. 2012 Jan 19;11(1):33-45
– reference: 11739641 - J Cell Sci. 2001 Nov;114(Pt 22):4095-103
– reference: 21750501 - Nat Rev Urol. 2011 Aug;8(8):449-68
– reference: 10599409 - Adv Exp Med Biol. 1999;462:7-18; discussion 103-14
– reference: 19644462 - Nat Protoc. 2009;4(8):1230-43
– reference: 15972487 - Infect Immun. 2005 Jul;73(7):3999-4006
SSID ssj0009580
Score 2.3785417
Snippet Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute...
Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11008
SubjectTerms Acute Disease
Animal models
Animals
Autophagy
Autophagy - immunology
Bacteria
Bacteriuria
Bacteriuria - immunology
Bacteriuria - pathology
biofilm
Biofilms
Biological Sciences
Bone marrow
Bone Marrow Transplantation
Carrier Proteins - genetics
Carrier Proteins - immunology
Cell Division - immunology
Cells
chimerism
Cytokines
Disease Models, Animal
E coli
Epithelial cells
Escherichia coli Infections - immunology
Escherichia coli Infections - pathology
etiology
Female
Gene expression
genes
hematopoietic stem cells
Homeodomain Proteins - genetics
Humans
Infections
intestines
lysosomes
Mice
Mice, Mutant Strains
monocytes
Monocytes - immunology
mutation
Neutrophils
Neutrophils - immunology
Proteins
Rodents
Transplantation Chimera
Urinary bladder
Urinary Bladder - immunology
Urinary Bladder - microbiology
Urinary Bladder - pathology
urinary tract diseases
Urinary tract infections
Urinary Tract Infections - immunology
Urinary Tract Infections - pathology
Urine
uropathogenic Escherichia coli
Uropathogenic Escherichia coli - immunology
women
Title Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo
URI https://www.jstor.org/stable/41601720
http://www.pnas.org/content/109/27/11008.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22715292
https://www.proquest.com/docview/1023506270
https://www.proquest.com/docview/1023533601
https://www.proquest.com/docview/1803164415
https://pubmed.ncbi.nlm.nih.gov/PMC3390880
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5RAEN609cUXY9VatJo18aGG3AnswrKPl6bm0uilai9t4gPhZ0tSwchdk_Y_879zZlkW7mxN9YVwsAx7zMfM7DLzLSFvIaRlTh7ASLXI8hFPnHCUYDINC4sikcKXmSqk_TQLpnN-dOafbWz8GmQtLRfJOL25ta7kf7QKx0CvWCX7D5o1QuEA7IN-YQsahu29dDxZnLvBR9fOcuSBUEWUqarga2zNv6ASCbGCBCfdIdirQVaZ2ocN6qrEPGe44rI0OVkq7_GqvKqHQeuxcXJNl1Iw6-YQJ31FijYTjT2yj2f9-sanekb6IC4vau0nFeMvriPSxG2hTHxTYhqW_WVspnyuv_fJ_UcxxMKn5pyZ5f68rK6XGt966sJt01zZ0Bx74CJ5W0Q9zlsLDAHMKODtGqLGRDtygMWWTEBbXKS8CwfuG363xa1_-AYwZrigcRU3Y9dzmITARYtdYeFe844mZ1F9rRcsQgFRL2CTPPBghKJySqdDvuewrX7S_7BjlRLs_VoPVgKizSKuu8xYpNuFprcNfdYzeAch0clj8kiPZeikBeY22cirJ2S7gwHd15Tm756SbxqptEcq1UilPVIpIpWuIJUOkEoRqdQgFfYoIvUZmX84PDmYjvSyHqPU9_wFxERO7MUyldwtBI_Twg0gLMZHIXKkg8z8gDsxL4LEheiKQcdSR-SCJ4UAe5IxtkO2qrrKdwmF4ULGucyClPk8YX4oEhkkXCYhxBNumltk3D3bKNWc97j0ymV0hzYtsm8u-NHSvdzddBeUFcXn4Iyj-VcPqRox2pMBt8iO0qARAaMenGtxLGIpKb1oGXkiUhi2yF6n50jbGLgd0lEhkzhc-sacBg-An_Xg1auXug1jcIe_tAnBeePQx7fI8xY6phOeJyCIl55FxAqoTANkoF89U5UXiomeMUyTdF7c_6m9JA97S7BHthY_l_krCOsXyWv1Av0GuLbzNA
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atg16L1+deficiency+confers+protection+from+uropathogenic+Escherichia+coli+infection+in+vivo&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Caihong&rft.au=Mendonsa%2C+Graziella+R.&rft.au=Symington%2C+Jane+W.&rft.au=Zhang%2C+Qunyuan&rft.date=2012-07-03&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=27&rft.spage=11008&rft.epage=11013&rft_id=info:doi/10.1073%2Fpnas.1203952109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1203952109
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F27.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F27.cover.gif