Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo
Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 27; pp. 11008 - 11013 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.07.2012
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1 ᴴᴹ) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1 ᴴᴹ hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1 ᴴᴹ epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs. |
---|---|
AbstractList | Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1 ᴴᴹ) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1 ᴴᴹ hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1 ᴴᴹ epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs. Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1 HM ) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1 HM hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1 HM epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs. Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (...) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1HM hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that ... epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs. (ProQuest: ... denotes formulae/symbols omitted.) Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1(HM)) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1(HM) hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1(HM) epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs. Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1HM) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1HM hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1HM epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs. Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1(HM)) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1(HM) hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1(HM) epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs.Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1(HM)) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1(HM) hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1(HM) epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs. |
Author | Zhang, Qunyuan Virgin, Herbert W Wang, Caihong Mendonsa, Graziella R Mysorekar, Indira U Cadwell, Ken Symington, Jane W |
Author_xml | – sequence: 1 fullname: Wang, Caihong – sequence: 2 fullname: Mendonsa, Graziella R – sequence: 3 fullname: Symington, Jane W – sequence: 4 fullname: Zhang, Qunyuan – sequence: 5 fullname: Cadwell, Ken – sequence: 6 fullname: Virgin, Herbert W – sequence: 7 fullname: Mysorekar, Indira U |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22715292$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLeFMycgEpde0o4_YieXSlVVKNJKHKAnDpbXsXe9ytrBTlbqf4-jLFvoAS72YX5v_J5nztCJD94g9BbDJQZBr3qv0iUmQJuKYGheoEU-cclZAydoAUBEWTPCTtFZSlsAaKoaXqFTQgSuSEMW6MfNsMZ8iYvWWKed8fqx0MFbE1PRxzAYPbjgCxvDrhhj6NWwCWvjnS7ukt6Y6PTGqazoXOGyaqadL_ZuH16jl1Z1ybw53Ofo4dPd99v7cvn185fbm2WpK1INZQ2giGp0w7AVTGmLOWd0iiNMxUC0FWegmOUrTDmh2agGYQRbWWFb01J6jq7nvv242plWGz9E1ck-up2KjzIoJ_-ueLeR67CXlDZQ15AbXBwaxPBzNGmQO5e06TrlTRiTxJnBnDFc_R8FQitKOeCMfnyGbsMYff6JmQJOxPT2-z_NH13_HlEGrmZAx5BSNPaIYJDTEshpCeTTEmRF9Uyh3aCmyeT0rvuHrjhYmQpPrzSSCIkxQJ2RdzOyTUOIR4bhHFiQKc2HuW5VkGodXZIP3wjkMmBSN3muvwA7E9Lg |
CitedBy_id | crossref_primary_10_1097_SPV_0000000000001276 crossref_primary_10_1038_s41585_020_0350_8 crossref_primary_10_3389_fcimb_2019_00093 crossref_primary_10_1038_s41385_021_00408_4 crossref_primary_10_1038_s41467_021_22726_8 crossref_primary_10_1002_jcp_30227 crossref_primary_10_1097_MOG_0000000000000121 crossref_primary_10_1038_s41467_024_52454_8 crossref_primary_10_1080_15548627_2016_1160176 crossref_primary_10_1016_j_celrep_2021_109856 crossref_primary_10_1128_IAI_01234_12 crossref_primary_10_1016_j_chom_2014_03_012 crossref_primary_10_1177_1753425915609973 crossref_primary_10_1136_bmjopen_2013_002790 crossref_primary_10_1016_j_fsi_2019_09_004 crossref_primary_10_2337_db19_1176 crossref_primary_10_1080_15548627_2018_1535290 crossref_primary_10_4049_jimmunol_1601293 crossref_primary_10_1038_nrmicro3160 crossref_primary_10_1146_annurev_physiol_030212_183658 crossref_primary_10_1080_15548627_2021_1909406 crossref_primary_10_1038_s41585_021_00477_x crossref_primary_10_1371_journal_pone_0198817 crossref_primary_10_1016_j_placenta_2013_12_007 crossref_primary_10_1097_MIB_0000000000000305 crossref_primary_10_1002_jcp_26954 crossref_primary_10_1111_cmi_12063 crossref_primary_10_3390_cells8010002 crossref_primary_10_1111_cmi_13196 crossref_primary_10_1128_microbiolspec_UTI_0026_2016 crossref_primary_10_1093_burnst_tkz001 crossref_primary_10_3390_pathogens10020110 crossref_primary_10_3389_fimmu_2016_00540 crossref_primary_10_1016_j_immuni_2013_07_017 crossref_primary_10_1097_QCO_0000000000000130 crossref_primary_10_1016_j_mib_2013_05_003 crossref_primary_10_1016_j_ijmm_2017_11_009 crossref_primary_10_1038_mi_2015_7 crossref_primary_10_1016_j_mib_2014_11_020 crossref_primary_10_3389_fmicb_2020_00708 crossref_primary_10_1080_15548627_2015_1040969 crossref_primary_10_1038_s41418_019_0481_8 crossref_primary_10_1111_febs_15833 crossref_primary_10_1093_infdis_jiae063 crossref_primary_10_3390_pathogens5010020 crossref_primary_10_3389_fcimb_2016_00017 crossref_primary_10_1080_19490976_2019_1614395 crossref_primary_10_1016_j_chom_2013_07_013 crossref_primary_10_1016_j_ymeth_2014_12_005 crossref_primary_10_1016_j_ebiom_2021_103347 crossref_primary_10_1038_nrurol_2017_25 crossref_primary_10_1155_2014_154936 crossref_primary_10_1128_microbiolspec_UTI_0013_2012 crossref_primary_10_1016_j_molmed_2016_10_008 crossref_primary_10_1038_nri3565 crossref_primary_10_1038_nrneph_2014_201 crossref_primary_10_1128_iai_00317_23 crossref_primary_10_4161_auto_27196 crossref_primary_10_4196_kjpp_2020_24_1_1 crossref_primary_10_1038_ni_3273 crossref_primary_10_1128_CMR_00036_14 crossref_primary_10_1371_journal_ppat_1005083 crossref_primary_10_1152_ajprenal_00607_2015 crossref_primary_10_1016_j_devcel_2023_11_017 crossref_primary_10_1038_nrurol_2012_140 crossref_primary_10_1038_s41419_018_0786_4 crossref_primary_10_3390_pathogens2020288 crossref_primary_10_1371_journal_pone_0144347 crossref_primary_10_1080_15548627_2016_1252890 crossref_primary_10_3389_fimmu_2018_00788 crossref_primary_10_1172_jci_insight_86654 crossref_primary_10_1016_j_chom_2015_03_001 crossref_primary_10_1111_tid_12081 crossref_primary_10_3390_pathogens5020039 crossref_primary_10_1038_nri3532 crossref_primary_10_3389_fimmu_2017_01483 crossref_primary_10_1016_j_nano_2025_102812 crossref_primary_10_1016_j_celrep_2022_110758 crossref_primary_10_1016_j_mib_2013_01_005 crossref_primary_10_1152_ajprenal_00133_2018 crossref_primary_10_1155_2015_398483 |
Cites_doi | 10.1038/ng.717 10.1152/ajprenal.00327.2009 10.1038/ng1954 10.1038/nature07383 10.1038/nprot.2009.116 10.1016/j.cell.2010.05.009 10.4049/jimmunol.0900441 10.1074/jbc.M110560200 10.1371/journal.pmed.0040329 10.1007/978-1-4615-4737-2_1 10.1016/j.micinf.2010.12.004 10.1016/j.chom.2011.12.002 10.1038/nature09782 10.1128/IAI.01123-06 10.1136/gut.2010.228908 10.1111/j.1600-0854.2009.00950.x 10.1146/annurev.micro.112408.134258 10.1038/nrurol.2010.190 10.1128/IAI.73.7.3999-4006.2005 10.1016/j.ceb.2009.12.009 10.1016/j.chom.2009.04.005 10.1038/cdd.2008.139 10.1016/j.chom.2010.01.007 10.1242/jcs.114.22.4095 10.1038/ni.1726 10.1073/pnas.0736473100 10.1016/j.chom.2007.05.007 10.1016/j.mcna.2010.08.023 10.1038/nrurol.2011.100 10.1038/nm1572 10.1128/AAC.00014-10 10.1016/0092-8674(92)90030-G 10.1111/j.1749-6632.2008.04004.x 10.4161/auto.4450 10.1073/pnas.0602136103 10.1074/jbc.M111.280065 10.1093/intimm/dxp088 10.1016/j.chom.2008.10.003 10.1371/journal.ppat.1001042 10.1038/cdd.2008.130 10.1038/nature07416 10.1126/science.1084550 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jul 3, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jul 3, 2012 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1203952109 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Atg16L1 and pathogenesis of UTIs |
EISSN | 1091-6490 |
EndPage | 11013 |
ExternalDocumentID | PMC3390880 2703870541 22715292 10_1073_pnas_1203952109 109_27_11008 41601720 US201600128964 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI084887 – fundername: NIDDK NIH HHS grantid: R01 DK100644 – fundername: NIDDK NIH HHS grantid: K99/R00 DK080643 – fundername: NIDDK NIH HHS grantid: K99 DK080643 – fundername: NIAID NIH HHS grantid: U54AI057160 – fundername: NIDDK NIH HHS grantid: R00 DK080643 – fundername: PHS HHS grantid: T32-54560 – fundername: NIAID NIH HHS grantid: U54 AI057160 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c525t-800a2a9c941f74acf1664321097e5407d5640a4f6b13623defc07e74bf7fded33 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:12:36 EDT 2025 Fri Jul 11 12:25:30 EDT 2025 Fri Jul 11 02:00:59 EDT 2025 Mon Jun 30 08:02:14 EDT 2025 Thu Apr 03 07:02:24 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Tue Jul 01 03:39:20 EDT 2025 Wed Nov 11 00:30:11 EST 2020 Thu May 29 08:40:47 EDT 2025 Thu Apr 03 09:43:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c525t-800a2a9c941f74acf1664321097e5407d5640a4f6b13623defc07e74bf7fded33 |
Notes | http://dx.doi.org/10.1073/pnas.1203952109 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: C.W., G.R.M., J.W.S., and I.U.M. designed research; C.W., G.R.M., and J.W.S. performed research; C.W., G.R.M., J.W.S., and Q.Z. analyzed data; and C.W., G.R.M., J.W.S., K.C., H.W.V., and I.U.M. wrote the paper. Edited* by Roy Curtiss III, Arizona State University, Tempe, AZ, and approved May 22, 2012 (received for review March 7, 2012) 1C.W., G.R.M., and J.W.S. contributed equally to this work. 2Present address: Skirball Institute of Biomolecular Medicine, Department of Microbiology, New York University School of Medicine, New York, NY 10016. |
OpenAccessLink | https://www.pnas.org/content/pnas/109/27/11008.full.pdf |
PMID | 22715292 |
PQID | 1023506270 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3390880 pnas_primary_109_27_11008 pubmed_primary_22715292 proquest_miscellaneous_1023533601 crossref_citationtrail_10_1073_pnas_1203952109 proquest_miscellaneous_1803164415 crossref_primary_10_1073_pnas_1203952109 jstor_primary_41601720 proquest_journals_1023506270 fao_agris_US201600128964 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-03 |
PublicationDateYYYYMMDD | 2012-07-03 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 Deretic V (e_1_3_3_3_2) 2009; 335 Campoy E (e_1_3_3_8_2) 2009; 335 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_21_2 e_1_3_3_42_2 11739641 - J Cell Sci. 2001 Nov;114(Pt 22):4095-103 17200669 - Nat Genet. 2007 Feb;39(2):207-11 21182979 - Microbes Infect. 2011 May;13(5):426-37 12655047 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4203-8 19454350 - Cell Host Microbe. 2009 May 8;5(5):463-75 22167182 - J Biol Chem. 2012 Feb 3;287(6):4033-40 17710226 - Cell Host Microbe. 2007 Jun 14;1(4):287-98 10599409 - Adv Exp Med Biol. 1999;462:7-18; discussion 103-14 19161373 - Ann N Y Acad Sci. 2009 Jan;1152:18-29 20159618 - Cell Host Microbe. 2010 Feb 18;7(2):115-27 20811584 - PLoS Pathog. 2010;6(8):e1001042 20602997 - Cell. 2010 Jun 25;141(7):1135-45 19381141 - Nat Immunol. 2009 May;10(5):461-70 20116986 - Curr Opin Cell Biol. 2010 Apr;22(2):252-62 22264511 - Cell Host Microbe. 2012 Jan 19;11(1):33-45 1547488 - Cell. 1992 Mar 6;68(5):869-77 21095409 - Med Clin North Am. 2011 Jan;95(1):27-41 18772897 - Cell Death Differ. 2009 Jan;16(1):57-69 22777289 - Nat Rev Urol. 2012 Aug;9(8):410 12843396 - Science. 2003 Jul 4;301(5629):105-7 18996346 - Cell Host Microbe. 2008 Nov 13;4(5):458-69 19644462 - Nat Protoc. 2009;4(8):1230-43 21139641 - Nat Rev Urol. 2010 Dec;7(12):653-60 18849965 - Nature. 2008 Nov 13;456(7219):264-8 11744708 - J Biol Chem. 2002 Mar 1;277(9):7412-9 16968784 - Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14170-5 21406388 - Gut. 2011 Sep;60(9):1229-35 17074856 - Infect Immun. 2007 Jan;75(1):52-60 19802568 - Curr Top Microbiol Immunol. 2009;335:227-50 19566896 - Traffic. 2009 Sep;10(9):1350-61 19802565 - Curr Top Microbiol Immunol. 2009;335:169-88 17417648 - Nat Med. 2007 May;13(5):625-30 21248839 - Nature. 2011 Jan 20;469(7330):323-35 18849966 - Nature. 2008 Nov 13;456(7219):259-63 15972487 - Infect Immun. 2005 Jul;73(7):3999-4006 19587142 - Am J Physiol Renal Physiol. 2009 Dec;297(6):F1477-501 21750501 - Nat Rev Urol. 2011 Aug;8(8):449-68 19737785 - Int Immunol. 2009 Nov;21(11):1199-204 17568179 - Autophagy. 2007 Sep-Oct;3(5):442-51 21102463 - Nat Genet. 2010 Dec;42(12):1118-25 18092884 - PLoS Med. 2007 Dec;4(12):e329 19079285 - Cell Death Differ. 2009 Jan;16(1):1-2 20231390 - Antimicrob Agents Chemother. 2010 May;54(5):1855-63 19812211 - J Immunol. 2009 Nov 1;183(9):5909-16 20825346 - Annu Rev Microbiol. 2010;64:203-21 |
References_xml | – ident: e_1_3_3_15_2 doi: 10.1038/ng.717 – ident: e_1_3_3_31_2 doi: 10.1152/ajprenal.00327.2009 – ident: e_1_3_3_16_2 doi: 10.1038/ng1954 – ident: e_1_3_3_5_2 doi: 10.1038/nature07383 – ident: e_1_3_3_36_2 doi: 10.1038/nprot.2009.116 – volume: 335 start-page: 227 year: 2009 ident: e_1_3_3_8_2 article-title: Autophagy subversion by bacteria publication-title: Curr Top Microbiol Immunol – ident: e_1_3_3_12_2 doi: 10.1016/j.cell.2010.05.009 – ident: e_1_3_3_35_2 doi: 10.4049/jimmunol.0900441 – ident: e_1_3_3_41_2 doi: 10.1074/jbc.M110560200 – ident: e_1_3_3_22_2 doi: 10.1371/journal.pmed.0040329 – ident: e_1_3_3_33_2 doi: 10.1007/978-1-4615-4737-2_1 – ident: e_1_3_3_40_2 doi: 10.1016/j.micinf.2010.12.004 – ident: e_1_3_3_42_2 doi: 10.1016/j.chom.2011.12.002 – ident: e_1_3_3_1_2 doi: 10.1038/nature09782 – ident: e_1_3_3_21_2 doi: 10.1128/IAI.01123-06 – volume: 335 start-page: 169 year: 2009 ident: e_1_3_3_3_2 article-title: Autophagy in immunity against mycobacterium tuberculosis: A model system to dissect immunological roles of autophagy publication-title: Curr Top Microbiol Immunol – ident: e_1_3_3_13_2 doi: 10.1136/gut.2010.228908 – ident: e_1_3_3_30_2 doi: 10.1111/j.1600-0854.2009.00950.x – ident: e_1_3_3_26_2 doi: 10.1146/annurev.micro.112408.134258 – ident: e_1_3_3_18_2 doi: 10.1038/nrurol.2010.190 – ident: e_1_3_3_23_2 doi: 10.1128/IAI.73.7.3999-4006.2005 – ident: e_1_3_3_9_2 doi: 10.1016/j.ceb.2009.12.009 – ident: e_1_3_3_37_2 doi: 10.1016/j.chom.2009.04.005 – ident: e_1_3_3_4_2 doi: 10.1038/cdd.2008.139 – ident: e_1_3_3_7_2 doi: 10.1016/j.chom.2010.01.007 – ident: e_1_3_3_20_2 doi: 10.1242/jcs.114.22.4095 – ident: e_1_3_3_2_2 doi: 10.1038/ni.1726 – ident: e_1_3_3_24_2 doi: 10.1073/pnas.0736473100 – ident: e_1_3_3_29_2 doi: 10.1016/j.chom.2007.05.007 – ident: e_1_3_3_17_2 doi: 10.1016/j.mcna.2010.08.023 – ident: e_1_3_3_25_2 doi: 10.1038/nrurol.2011.100 – ident: e_1_3_3_28_2 doi: 10.1038/nm1572 – ident: e_1_3_3_43_2 doi: 10.1128/AAC.00014-10 – ident: e_1_3_3_38_2 doi: 10.1016/0092-8674(92)90030-G – ident: e_1_3_3_32_2 doi: 10.1111/j.1749-6632.2008.04004.x – ident: e_1_3_3_34_2 doi: 10.4161/auto.4450 – ident: e_1_3_3_27_2 doi: 10.1073/pnas.0602136103 – ident: e_1_3_3_14_2 doi: 10.1074/jbc.M111.280065 – ident: e_1_3_3_10_2 doi: 10.1093/intimm/dxp088 – ident: e_1_3_3_39_2 doi: 10.1016/j.chom.2008.10.003 – ident: e_1_3_3_44_2 doi: 10.1371/journal.ppat.1001042 – ident: e_1_3_3_6_2 doi: 10.1038/cdd.2008.130 – ident: e_1_3_3_11_2 doi: 10.1038/nature07416 – ident: e_1_3_3_19_2 doi: 10.1126/science.1084550 – reference: 20825346 - Annu Rev Microbiol. 2010;64:203-21 – reference: 18092884 - PLoS Med. 2007 Dec;4(12):e329 – reference: 18849966 - Nature. 2008 Nov 13;456(7219):259-63 – reference: 19454350 - Cell Host Microbe. 2009 May 8;5(5):463-75 – reference: 17568179 - Autophagy. 2007 Sep-Oct;3(5):442-51 – reference: 19802568 - Curr Top Microbiol Immunol. 2009;335:227-50 – reference: 18996346 - Cell Host Microbe. 2008 Nov 13;4(5):458-69 – reference: 16968784 - Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14170-5 – reference: 21139641 - Nat Rev Urol. 2010 Dec;7(12):653-60 – reference: 1547488 - Cell. 1992 Mar 6;68(5):869-77 – reference: 17710226 - Cell Host Microbe. 2007 Jun 14;1(4):287-98 – reference: 19812211 - J Immunol. 2009 Nov 1;183(9):5909-16 – reference: 11744708 - J Biol Chem. 2002 Mar 1;277(9):7412-9 – reference: 17417648 - Nat Med. 2007 May;13(5):625-30 – reference: 19079285 - Cell Death Differ. 2009 Jan;16(1):1-2 – reference: 19737785 - Int Immunol. 2009 Nov;21(11):1199-204 – reference: 20159618 - Cell Host Microbe. 2010 Feb 18;7(2):115-27 – reference: 20602997 - Cell. 2010 Jun 25;141(7):1135-45 – reference: 21406388 - Gut. 2011 Sep;60(9):1229-35 – reference: 21095409 - Med Clin North Am. 2011 Jan;95(1):27-41 – reference: 19802565 - Curr Top Microbiol Immunol. 2009;335:169-88 – reference: 22777289 - Nat Rev Urol. 2012 Aug;9(8):410 – reference: 21182979 - Microbes Infect. 2011 May;13(5):426-37 – reference: 12655047 - Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4203-8 – reference: 12843396 - Science. 2003 Jul 4;301(5629):105-7 – reference: 17074856 - Infect Immun. 2007 Jan;75(1):52-60 – reference: 19587142 - Am J Physiol Renal Physiol. 2009 Dec;297(6):F1477-501 – reference: 20811584 - PLoS Pathog. 2010;6(8):e1001042 – reference: 22167182 - J Biol Chem. 2012 Feb 3;287(6):4033-40 – reference: 19566896 - Traffic. 2009 Sep;10(9):1350-61 – reference: 18772897 - Cell Death Differ. 2009 Jan;16(1):57-69 – reference: 20231390 - Antimicrob Agents Chemother. 2010 May;54(5):1855-63 – reference: 18849965 - Nature. 2008 Nov 13;456(7219):264-8 – reference: 20116986 - Curr Opin Cell Biol. 2010 Apr;22(2):252-62 – reference: 21248839 - Nature. 2011 Jan 20;469(7330):323-35 – reference: 19161373 - Ann N Y Acad Sci. 2009 Jan;1152:18-29 – reference: 17200669 - Nat Genet. 2007 Feb;39(2):207-11 – reference: 21102463 - Nat Genet. 2010 Dec;42(12):1118-25 – reference: 19381141 - Nat Immunol. 2009 May;10(5):461-70 – reference: 22264511 - Cell Host Microbe. 2012 Jan 19;11(1):33-45 – reference: 11739641 - J Cell Sci. 2001 Nov;114(Pt 22):4095-103 – reference: 21750501 - Nat Rev Urol. 2011 Aug;8(8):449-68 – reference: 10599409 - Adv Exp Med Biol. 1999;462:7-18; discussion 103-14 – reference: 19644462 - Nat Protoc. 2009;4(8):1230-43 – reference: 15972487 - Infect Immun. 2005 Jul;73(7):3999-4006 |
SSID | ssj0009580 |
Score | 2.3785417 |
Snippet | Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute... Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11008 |
SubjectTerms | Acute Disease Animal models Animals Autophagy Autophagy - immunology Bacteria Bacteriuria Bacteriuria - immunology Bacteriuria - pathology biofilm Biofilms Biological Sciences Bone marrow Bone Marrow Transplantation Carrier Proteins - genetics Carrier Proteins - immunology Cell Division - immunology Cells chimerism Cytokines Disease Models, Animal E coli Epithelial cells Escherichia coli Infections - immunology Escherichia coli Infections - pathology etiology Female Gene expression genes hematopoietic stem cells Homeodomain Proteins - genetics Humans Infections intestines lysosomes Mice Mice, Mutant Strains monocytes Monocytes - immunology mutation Neutrophils Neutrophils - immunology Proteins Rodents Transplantation Chimera Urinary bladder Urinary Bladder - immunology Urinary Bladder - microbiology Urinary Bladder - pathology urinary tract diseases Urinary tract infections Urinary Tract Infections - immunology Urinary Tract Infections - pathology Urine uropathogenic Escherichia coli Uropathogenic Escherichia coli - immunology women |
Title | Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo |
URI | https://www.jstor.org/stable/41601720 http://www.pnas.org/content/109/27/11008.abstract https://www.ncbi.nlm.nih.gov/pubmed/22715292 https://www.proquest.com/docview/1023506270 https://www.proquest.com/docview/1023533601 https://www.proquest.com/docview/1803164415 https://pubmed.ncbi.nlm.nih.gov/PMC3390880 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5RAEN609cUXY9VatJo18aGG3AnswrKPl6bm0uilai9t4gPhZ0tSwchdk_Y_879zZlkW7mxN9YVwsAx7zMfM7DLzLSFvIaRlTh7ASLXI8hFPnHCUYDINC4sikcKXmSqk_TQLpnN-dOafbWz8GmQtLRfJOL25ta7kf7QKx0CvWCX7D5o1QuEA7IN-YQsahu29dDxZnLvBR9fOcuSBUEWUqarga2zNv6ASCbGCBCfdIdirQVaZ2ocN6qrEPGe44rI0OVkq7_GqvKqHQeuxcXJNl1Iw6-YQJ31FijYTjT2yj2f9-sanekb6IC4vau0nFeMvriPSxG2hTHxTYhqW_WVspnyuv_fJ_UcxxMKn5pyZ5f68rK6XGt966sJt01zZ0Bx74CJ5W0Q9zlsLDAHMKODtGqLGRDtygMWWTEBbXKS8CwfuG363xa1_-AYwZrigcRU3Y9dzmITARYtdYeFe844mZ1F9rRcsQgFRL2CTPPBghKJySqdDvuewrX7S_7BjlRLs_VoPVgKizSKuu8xYpNuFprcNfdYzeAch0clj8kiPZeikBeY22cirJ2S7gwHd15Tm756SbxqptEcq1UilPVIpIpWuIJUOkEoRqdQgFfYoIvUZmX84PDmYjvSyHqPU9_wFxERO7MUyldwtBI_Twg0gLMZHIXKkg8z8gDsxL4LEheiKQcdSR-SCJ4UAe5IxtkO2qrrKdwmF4ULGucyClPk8YX4oEhkkXCYhxBNumltk3D3bKNWc97j0ymV0hzYtsm8u-NHSvdzddBeUFcXn4Iyj-VcPqRox2pMBt8iO0qARAaMenGtxLGIpKb1oGXkiUhi2yF6n50jbGLgd0lEhkzhc-sacBg-An_Xg1auXug1jcIe_tAnBeePQx7fI8xY6phOeJyCIl55FxAqoTANkoF89U5UXiomeMUyTdF7c_6m9JA97S7BHthY_l_krCOsXyWv1Av0GuLbzNA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atg16L1+deficiency+confers+protection+from+uropathogenic+Escherichia+coli+infection+in+vivo&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Caihong&rft.au=Mendonsa%2C+Graziella+R.&rft.au=Symington%2C+Jane+W.&rft.au=Zhang%2C+Qunyuan&rft.date=2012-07-03&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=27&rft.spage=11008&rft.epage=11013&rft_id=info:doi/10.1073%2Fpnas.1203952109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1203952109 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F27.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F27.cover.gif |