Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles

Alzheimer’s disease (AD) is characterized by extracellular amyloid- β (A β ) deposition, which activates microglia, induces neuroinflammation and drives neurodegeneration. Recent evidence indicates that soluble pre-fibrillar A β species, rather than insoluble fibrils, are the most toxic forms of A β...

Full description

Saved in:
Bibliographic Details
Published inCell death and differentiation Vol. 21; no. 4; pp. 582 - 593
Main Authors Joshi, P, Turola, E, Ruiz, A, Bergami, A, Libera, D D, Benussi, L, Giussani, P, Magnani, G, Comi, G, Legname, G, Ghidoni, R, Furlan, R, Matteoli, M, Verderio, C
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alzheimer’s disease (AD) is characterized by extracellular amyloid- β (A β ) deposition, which activates microglia, induces neuroinflammation and drives neurodegeneration. Recent evidence indicates that soluble pre-fibrillar A β species, rather than insoluble fibrils, are the most toxic forms of A β . Preventing soluble A β formation represents, therefore, a major goal in AD. We investigated whether microvesicles (MVs) released extracellularly by reactive microglia may contribute to AD degeneration. We found that production of myeloid MVs, likely of microglial origin, is strikingly high in AD patients and in subjects with mild cognitive impairment and that AD MVs are toxic for cultured neurons. The mechanism responsible for MV neurotoxicity was defined in vitro using MVs produced by primary microglia. We demonstrated that neurotoxicity of MVs results from (i) the capability of MV lipids to promote formation of soluble A β species from extracellular insoluble aggregates and (ii) from the presence of neurotoxic A β forms trafficked to MVs after A β internalization into microglia. MV neurotoxicity was neutralized by the A β -interacting protein PrP and anti-A β antibodies, which prevented binding to neurons of neurotoxic soluble A β species. This study identifies microglia-derived MVs as a novel mechanism by which microglia participate in AD degeneration, and suggest new therapeutic strategies for the treatment of the disease.
AbstractList Alzheimer's disease (AD) is characterized by extracellular amyloid- β (A β ) deposition, which activates microglia, induces neuroinflammation and drives neurodegeneration. Recent evidence indicates that soluble pre-fibrillar A β species, rather than insoluble fibrils, are the most toxic forms of A β . Preventing soluble A β formation represents, therefore, a major goal in AD. We investigated whether microvesicles (MVs) released extracellularly by reactive microglia may contribute to AD degeneration. We found that production of myeloid MVs, likely of microglial origin, is strikingly high in AD patients and in subjects with mild cognitive impairment and that AD MVs are toxic for cultured neurons. The mechanism responsible for MV neurotoxicity was defined in vitro using MVs produced by primary microglia. We demonstrated that neurotoxicity of MVs results from (i) the capability of MV lipids to promote formation of soluble A β species from extracellular insoluble aggregates and (ii) from the presence of neurotoxic A β forms trafficked to MVs after A β internalization into microglia. MV neurotoxicity was neutralized by the A β -interacting protein PrP and anti-A β antibodies, which prevented binding to neurons of neurotoxic soluble A β species. This study identifies microglia-derived MVs as a novel mechanism by which microglia participate in AD degeneration, and suggest new therapeutic strategies for the treatment of the disease.
Alzheimer's disease (AD) is characterized by extracellular amyloid- beta (A beta ) deposition, which activates microglia, induces neuroinflammation and drives neurodegeneration. Recent evidence indicates that soluble pre-fibrillar A beta species, rather than insoluble fibrils, are the most toxic forms of A beta . Preventing soluble A beta formation represents, therefore, a major goal in AD. We investigated whether microvesicles (MVs) released extracellularly by reactive microglia may contribute to AD degeneration. We found that production of myeloid MVs, likely of microglial origin, is strikingly high in AD patients and in subjects with mild cognitive impairment and that AD MVs are toxic for cultured neurons. The mechanism responsible for MV neurotoxicity was defined in vitro using MVs produced by primary microglia. We demonstrated that neurotoxicity of MVs results from (i) the capability of MV lipids to promote formation of soluble A beta species from extracellular insoluble aggregates and (ii) from the presence of neurotoxic A beta forms trafficked to MVs after A beta internalization into microglia. MV neurotoxicity was neutralized by the A beta -interacting protein PrP and anti-A beta antibodies, which prevented binding to neurons of neurotoxic soluble A beta species. This study identifies microglia-derived MVs as a novel mechanism by which microglia participate in AD degeneration, and suggest new therapeutic strategies for the treatment of the disease.
Alzheimer's disease (AD) is characterized by extracellular amyloid-β (Aβ) deposition, which activates microglia, induces neuroinflammation and drives neurodegeneration. Recent evidence indicates that soluble pre-fibrillar Aβ species, rather than insoluble fibrils, are the most toxic forms of Aβ. Preventing soluble Aβ formation represents, therefore, a major goal in AD. We investigated whether microvesicles (MVs) released extracellularly by reactive microglia may contribute to AD degeneration. We found that production of myeloid MVs, likely of microglial origin, is strikingly high in AD patients and in subjects with mild cognitive impairment and that AD MVs are toxic for cultured neurons. The mechanism responsible for MV neurotoxicity was defined in vitro using MVs produced by primary microglia. We demonstrated that neurotoxicity of MVs results from (i) the capability of MV lipids to promote formation of soluble Aβ species from extracellular insoluble aggregates and (ii) from the presence of neurotoxic Aβ forms trafficked to MVs after Aβ internalization into microglia. MV neurotoxicity was neutralized by the Aβ-interacting protein PrP and anti-Aβ antibodies, which prevented binding to neurons of neurotoxic soluble Aβ species. This study identifies microglia-derived MVs as a novel mechanism by which microglia participate in AD degeneration, and suggest new therapeutic strategies for the treatment of the disease.Alzheimer's disease (AD) is characterized by extracellular amyloid-β (Aβ) deposition, which activates microglia, induces neuroinflammation and drives neurodegeneration. Recent evidence indicates that soluble pre-fibrillar Aβ species, rather than insoluble fibrils, are the most toxic forms of Aβ. Preventing soluble Aβ formation represents, therefore, a major goal in AD. We investigated whether microvesicles (MVs) released extracellularly by reactive microglia may contribute to AD degeneration. We found that production of myeloid MVs, likely of microglial origin, is strikingly high in AD patients and in subjects with mild cognitive impairment and that AD MVs are toxic for cultured neurons. The mechanism responsible for MV neurotoxicity was defined in vitro using MVs produced by primary microglia. We demonstrated that neurotoxicity of MVs results from (i) the capability of MV lipids to promote formation of soluble Aβ species from extracellular insoluble aggregates and (ii) from the presence of neurotoxic Aβ forms trafficked to MVs after Aβ internalization into microglia. MV neurotoxicity was neutralized by the Aβ-interacting protein PrP and anti-Aβ antibodies, which prevented binding to neurons of neurotoxic soluble Aβ species. This study identifies microglia-derived MVs as a novel mechanism by which microglia participate in AD degeneration, and suggest new therapeutic strategies for the treatment of the disease.
Alzheimer's disease (AD) is characterized by extracellular amyloid-β (Aβ) deposition, which activates microglia, induces neuroinflammation and drives neurodegeneration. Recent evidence indicates that soluble pre-fibrillar Aβ species, rather than insoluble fibrils, are the most toxic forms of Aβ. Preventing soluble Aβ formation represents, therefore, a major goal in AD. We investigated whether microvesicles (MVs) released extracellularly by reactive microglia may contribute to AD degeneration. We found that production of myeloid MVs, likely of microglial origin, is strikingly high in AD patients and in subjects with mild cognitive impairment and that AD MVs are toxic for cultured neurons. The mechanism responsible for MV neurotoxicity was defined in vitro using MVs produced by primary microglia. We demonstrated that neurotoxicity of MVs results from (i) the capability of MV lipids to promote formation of soluble Aβ species from extracellular insoluble aggregates and (ii) from the presence of neurotoxic Aβ forms trafficked to MVs after Aβ internalization into microglia. MV neurotoxicity was neutralized by the Aβ-interacting protein PrP and anti-Aβ antibodies, which prevented binding to neurons of neurotoxic soluble Aβ species. This study identifies microglia-derived MVs as a novel mechanism by which microglia participate in AD degeneration, and suggest new therapeutic strategies for the treatment of the disease.
Author Magnani, G
Bergami, A
Ghidoni, R
Verderio, C
Libera, D D
Comi, G
Turola, E
Benussi, L
Legname, G
Furlan, R
Matteoli, M
Joshi, P
Ruiz, A
Giussani, P
Author_xml – sequence: 1
  givenname: P
  surname: Joshi
  fullname: Joshi, P
  organization: Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Department of Medicine, CNR Institute of Neuroscience, via Vanvitelli 32
– sequence: 2
  givenname: E
  surname: Turola
  fullname: Turola, E
  organization: Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Department of Medicine, CNR Institute of Neuroscience, via Vanvitelli 32
– sequence: 3
  givenname: A
  surname: Ruiz
  fullname: Ruiz, A
  organization: Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32
– sequence: 4
  givenname: A
  surname: Bergami
  fullname: Bergami, A
  organization: Division of Neuroscience, INSPE, San Raffaele Scientific Institute, via Olgettina 60
– sequence: 5
  givenname: D D
  surname: Libera
  fullname: Libera, D D
  organization: Division of Neuroscience, INSPE, San Raffaele Scientific Institute, via Olgettina 60
– sequence: 6
  givenname: L
  surname: Benussi
  fullname: Benussi, L
  organization: Proteomics Unit, IRCCS Istituto centro San Giovanni di Dio Fatebenefratelli, via Pilastroni
– sequence: 7
  givenname: P
  surname: Giussani
  fullname: Giussani, P
  organization: Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32
– sequence: 8
  givenname: G
  surname: Magnani
  fullname: Magnani, G
  organization: Division of Neuroscience, INSPE, San Raffaele Scientific Institute, via Olgettina 60
– sequence: 9
  givenname: G
  surname: Comi
  fullname: Comi, G
  organization: Division of Neuroscience, INSPE, San Raffaele Scientific Institute, via Olgettina 60
– sequence: 10
  givenname: G
  surname: Legname
  fullname: Legname, G
  organization: Department of Neuroscience, SISSA, Via Bonomea 265
– sequence: 11
  givenname: R
  surname: Ghidoni
  fullname: Ghidoni, R
  organization: Proteomics Unit, IRCCS Istituto centro San Giovanni di Dio Fatebenefratelli, via Pilastroni
– sequence: 12
  givenname: R
  surname: Furlan
  fullname: Furlan, R
  organization: Division of Neuroscience, INSPE, San Raffaele Scientific Institute, via Olgettina 60
– sequence: 13
  givenname: M
  surname: Matteoli
  fullname: Matteoli, M
  email: michela.matteoli@unimi.it
  organization: Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, IRCCS Humanitas,via Manzoni 56
– sequence: 14
  givenname: C
  surname: Verderio
  fullname: Verderio, C
  email: c.verderio@in.cnr.it
  organization: Department of Medicine, CNR Institute of Neuroscience, via Vanvitelli 32, IRCCS Humanitas,via Manzoni 56
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24336048$$D View this record in MEDLINE/PubMed
BookMark eNqFkcuKFDEUhoOMOBfduZYsXVht7qnaCDJ4gxE3ug7p1El1hqpkTFKD81o-iM9k2p4RFcXVCeQ7f37ynaKjmCIg9JiSDSW8f-7GccMI5Rvak3vohAqtOikIP2pnLkk3EKGP0Wkpl4QQpQf1AB0zwbkioj9B7n1wOU1zsNileA25YjtNGSZbYcR2uZlTGLtvX3GINeEIa041fQkO-5SXgusup3XatQm47GAcQ5xw8njZp15DCW6G8hDd93Yu8Oh2nqFPr199PH_bXXx48-785UXnJJO104pTLWy_Bc69Ha3nmmkqlJS6H7YgYOiF0IRTwraDYNYD914OijmrqWeEn6EXh9yrdbvA6CDWbGdzlcNi841JNpjfb2LYmSldGz5IwhltAU9vA3L6vEKpZgnFwTzbCGkthirGFKX6x1v_QSVRgmpJhoY--bXWzz53EhrADkD7s1IyeONCtTWkfcswG0rM3rRpps3etGmm29KzP5bucv-Bdwe8NCxOkM1lWnNsOv7OfweO6Lrz
CitedBy_id crossref_primary_10_1002_glia_23312
crossref_primary_10_1016_j_nbd_2015_09_002
crossref_primary_10_3390_biomedicines11092564
crossref_primary_10_3389_fnmol_2019_00240
crossref_primary_10_3390_ijms18061196
crossref_primary_10_1016_j_tins_2018_03_006
crossref_primary_10_3389_fmolb_2022_854321
crossref_primary_10_3389_fcell_2020_623771
crossref_primary_10_1016_j_arr_2021_101444
crossref_primary_10_3390_ijms21186859
crossref_primary_10_1146_annurev_genet_112618_043515
crossref_primary_10_3390_ijms241713161
crossref_primary_10_3389_fnagi_2019_00233
crossref_primary_10_1016_j_neuint_2016_04_011
crossref_primary_10_3389_fnagi_2020_00265
crossref_primary_10_3390_ijms18040703
crossref_primary_10_1002_bies_201800199
crossref_primary_10_1186_s40478_016_0381_9
crossref_primary_10_1016_j_bcp_2017_12_020
crossref_primary_10_1186_s12974_018_1120_x
crossref_primary_10_1186_s41983_024_00853_5
crossref_primary_10_1007_s00401_018_1868_1
crossref_primary_10_3390_cells12010063
crossref_primary_10_3389_fnmol_2020_00124
crossref_primary_10_3389_fnagi_2022_967231
crossref_primary_10_1038_s41467_021_25855_2
crossref_primary_10_3389_fnagi_2024_1377672
crossref_primary_10_3389_fnmol_2021_630808
crossref_primary_10_1016_j_pneurobio_2017_03_004
crossref_primary_10_1016_j_nbd_2024_106426
crossref_primary_10_3389_fnins_2016_00127
crossref_primary_10_1038_nrn_2015_29
crossref_primary_10_3233_JAD_170953
crossref_primary_10_1016_j_nbd_2024_106663
crossref_primary_10_1186_s40035_023_00375_9
crossref_primary_10_1080_21541248_2016_1215283
crossref_primary_10_1016_j_ymthe_2019_11_017
crossref_primary_10_3390_biomedicines8080272
crossref_primary_10_1007_s00401_017_1803_x
crossref_primary_10_1016_j_arr_2019_101006
crossref_primary_10_15252_embr_201439668
crossref_primary_10_1093_brain_awab122
crossref_primary_10_1039_C4LC00174E
crossref_primary_10_1016_j_jneuroim_2015_09_006
crossref_primary_10_3390_jdb6010001
crossref_primary_10_3390_ijms24043477
crossref_primary_10_3233_JAD_221064
crossref_primary_10_1002_glia_23880
crossref_primary_10_1186_s40478_020_01091_5
crossref_primary_10_3390_md20060362
crossref_primary_10_3390_ijms24065240
crossref_primary_10_1111_jch_14954
crossref_primary_10_1007_s11011_022_01086_2
crossref_primary_10_1111_jnc_15565
crossref_primary_10_3389_fnmol_2017_00276
crossref_primary_10_1016_j_isci_2020_101456
crossref_primary_10_1016_j_ymthe_2020_12_009
crossref_primary_10_1111_jcmm_18554
crossref_primary_10_1002_JLB_MR0818_319R
crossref_primary_10_1016_j_semcdb_2018_12_006
crossref_primary_10_1186_s13024_022_00562_8
crossref_primary_10_1038_s41392_024_01735_1
crossref_primary_10_3390_cells9112485
crossref_primary_10_3389_fncel_2014_00100
crossref_primary_10_1038_s42003_021_02047_8
crossref_primary_10_1038_nrneurol_2016_68
crossref_primary_10_1002_mas_21457
crossref_primary_10_1016_j_nbd_2016_03_014
crossref_primary_10_3389_fncel_2022_984690
crossref_primary_10_3390_cells9102145
crossref_primary_10_2144_000114371
crossref_primary_10_1038_srep13489
crossref_primary_10_3390_biomedicines11051383
crossref_primary_10_1016_j_pneurobio_2022_102313
crossref_primary_10_1002_wsbm_1541
crossref_primary_10_1038_s41421_018_0017_2
crossref_primary_10_1002_adhm_201700489
crossref_primary_10_1155_2024_6640130
crossref_primary_10_3390_ijms23010242
crossref_primary_10_3389_fnagi_2021_765395
crossref_primary_10_1002_jev2_12035
crossref_primary_10_1021_acschemneuro_3c00655
crossref_primary_10_3390_ijms22083933
crossref_primary_10_3389_fphar_2022_878058
crossref_primary_10_1007_s10522_014_9510_7
crossref_primary_10_58708_2074_2088_2024_2_32__15_22
crossref_primary_10_3390_ijms16034800
crossref_primary_10_1111_jnc_15112
crossref_primary_10_1016_j_bj_2023_100665
crossref_primary_10_1186_s40035_024_00453_6
crossref_primary_10_4103_1673_5374_320972
crossref_primary_10_1021_acschemneuro_7b00177
crossref_primary_10_3389_fnins_2024_1426700
crossref_primary_10_1186_s12987_023_00492_7
crossref_primary_10_4103_1673_5374_391329
crossref_primary_10_3389_fnins_2021_744840
crossref_primary_10_1038_s41598_021_00465_6
crossref_primary_10_1186_s40035_024_00418_9
crossref_primary_10_1007_s11064_025_04344_8
crossref_primary_10_1093_brain_awac083
crossref_primary_10_3390_antiox13121440
crossref_primary_10_3390_cells11213421
crossref_primary_10_3390_biom11060770
crossref_primary_10_1515_revneuro_2020_0144
crossref_primary_10_3389_fncel_2019_00041
crossref_primary_10_4103_bc_bc_113_23
crossref_primary_10_1007_s12640_017_9713_1
crossref_primary_10_3389_fncel_2015_00476
crossref_primary_10_1111_jnc_13514
crossref_primary_10_3389_fneur_2020_580030
crossref_primary_10_1002_1873_3468_14336
crossref_primary_10_3390_cells10112866
crossref_primary_10_3390_s18103175
crossref_primary_10_3389_fnagi_2020_610581
crossref_primary_10_1186_s12951_024_02428_1
crossref_primary_10_1038_cddis_2016_336
crossref_primary_10_1016_j_nbd_2019_104512
crossref_primary_10_1515_revneuro_2020_0013
crossref_primary_10_1186_s13024_024_00789_7
crossref_primary_10_3390_ijms17020173
crossref_primary_10_1093_intimm_dxx002
crossref_primary_10_3390_biomedicines10092098
crossref_primary_10_1021_acschemneuro_8b00029
crossref_primary_10_1016_j_neuint_2021_105117
crossref_primary_10_3390_biomedicines12122770
crossref_primary_10_3389_fcell_2021_667369
crossref_primary_10_1016_j_nbd_2024_106700
crossref_primary_10_3390_cells12151963
crossref_primary_10_1098_rstb_2013_0505
crossref_primary_10_4103_REGENMED_REGENMED_D_24_00005
crossref_primary_10_3389_fncel_2024_1426231
crossref_primary_10_1155_2014_756327
crossref_primary_10_1016_j_envres_2021_112316
crossref_primary_10_1096_fj_202000823R
crossref_primary_10_3389_fnagi_2017_00317
crossref_primary_10_1134_S1819712419030085
crossref_primary_10_2147_CIA_S240400
crossref_primary_10_3389_fphar_2021_654023
crossref_primary_10_1038_s41598_018_19699_y
crossref_primary_10_3390_biomedicines8070199
crossref_primary_10_3233_JAD_179935
crossref_primary_10_1155_2015_152926
crossref_primary_10_1098_rstb_2013_0516
crossref_primary_10_3389_fimmu_2020_00456
crossref_primary_10_1007_s40520_016_0637_z
crossref_primary_10_1186_s13024_015_0058_z
crossref_primary_10_3390_ijms24020927
crossref_primary_10_1111_jnc_16011
crossref_primary_10_1186_s40478_020_01069_3
crossref_primary_10_3390_biom8030094
crossref_primary_10_1007_s11011_017_0149_3
crossref_primary_10_3390_cells10051138
crossref_primary_10_3389_fphar_2021_766082
crossref_primary_10_3233_JAD_150882
crossref_primary_10_1093_braincomms_fcad170
crossref_primary_10_3390_biomedicines9050524
crossref_primary_10_1111_tra_12775
crossref_primary_10_3390_cells11030462
crossref_primary_10_1515_nanoph_2022_0057
crossref_primary_10_1177_10738584211070273
crossref_primary_10_1007_s12035_024_04535_4
crossref_primary_10_3233_JAD_160567
crossref_primary_10_3389_fmolb_2023_1156821
crossref_primary_10_1038_srep42370
crossref_primary_10_1016_j_nbd_2015_08_007
crossref_primary_10_1186_s12918_016_0348_2
crossref_primary_10_1089_neu_2017_5049
crossref_primary_10_3389_fnins_2022_936760
crossref_primary_10_1016_j_conb_2020_01_010
crossref_primary_10_1016_j_ymthe_2021_04_020
crossref_primary_10_1111_ejn_15960
crossref_primary_10_1016_j_expneurol_2022_114183
crossref_primary_10_1186_s13287_015_0232_9
crossref_primary_10_1523_JNEUROSCI_1170_24_2024
crossref_primary_10_1016_j_tins_2019_02_007
crossref_primary_10_3389_fphar_2017_00812
crossref_primary_10_1038_s41598_019_43607_7
crossref_primary_10_1007_s11357_023_00746_0
crossref_primary_10_3389_fcell_2021_798054
crossref_primary_10_1016_j_jneuroim_2019_05_003
crossref_primary_10_3389_fncel_2018_00323
crossref_primary_10_3389_fimmu_2016_00017
crossref_primary_10_1038_s41598_020_72355_2
crossref_primary_10_1007_s13770_017_0090_x
crossref_primary_10_3390_ijms24129805
crossref_primary_10_3389_fnagi_2022_834775
crossref_primary_10_1007_s12035_022_03067_z
crossref_primary_10_3389_fnagi_2021_593927
crossref_primary_10_1016_j_arr_2023_102033
crossref_primary_10_3233_JAD_230593
crossref_primary_10_1007_s11011_019_00516_y
crossref_primary_10_3389_fncel_2022_920686
crossref_primary_10_3389_fnins_2017_00026
crossref_primary_10_1002_ana_24235
crossref_primary_10_1016_j_nbd_2020_105146
crossref_primary_10_3390_ijms21155407
crossref_primary_10_3390_biomedicines11020484
crossref_primary_10_1016_j_neuroscience_2018_04_003
crossref_primary_10_1007_s12035_023_03437_1
crossref_primary_10_3389_fncel_2015_00028
crossref_primary_10_1016_j_diff_2018_10_001
crossref_primary_10_1039_C5RA09608A
crossref_primary_10_1007_s12640_021_00425_y
crossref_primary_10_1111_bph_14546
crossref_primary_10_1002_asia_201801007
crossref_primary_10_3389_fnagi_2020_587989
crossref_primary_10_1111_jnc_14674
Cites_doi 10.1111/j.1600-0854.2012.01332.x
10.1038/emboj.2011.489
10.1111/j.1742-4658.2007.05647.x
10.1096/fj.07-9357com
10.1016/j.ajpath.2011.05.047
10.1097/00005072-199655100-00008
10.1097/NEN.0b013e31825e77de
10.1007/s00702-010-0433-4
10.1038/sj.emboj.7601953
10.1016/j.nbd.2006.09.019
10.1038/nrneurol.2010.17
10.1038/nn.2923
10.1371/journal.pone.0006197
10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M
10.1021/bi0612667
10.1074/jbc.M110.149468
10.1038/nature07761
10.3389/fphys.2012.00149
10.1523/JNEUROSCI.16-19-06021.1996
10.1111/j.1471-4159.2006.04426.x
10.1016/j.neurobiolaging.2009.08.013
10.1038/nn.3178
10.3389/fphys.2012.00063
10.1038/nn1503
10.4049/jimmunol.181.6.3877
10.1002/ana.10618
10.1016/S0197-0186(02)00050-5
10.1056/NEJMoa1211851
10.1016/j.nbd.2011.03.007
10.1074/jbc.M111.324616
10.1038/emboj.2009.45
10.1111/j.1471-4159.2007.04826.x
10.1073/pnas.0603838103
10.1007/s00249-007-0246-z
10.1038/sj.emboj.7601930
10.1016/j.neuroscience.2004.11.042
10.3233/JAD-2011-110405
10.1182/blood-2004-03-1095
10.1016/j.neurobiolaging.2011.09.003
10.1006/abbi.2001.2304
10.1016/j.neurobiolaging.2007.02.029
10.1002/psc.573
10.1016/j.nbd.2008.08.001
10.1021/bi300839u
10.1096/fj.08-114637
10.1038/nri2567
10.1016/j.ceca.2009.12.010
10.1212/01.wnl.0000338622.27876.0d
10.1074/jbc.272.46.29390
10.1038/ng.803
10.1002/ana.23627
10.1126/science.1227901
10.1016/j.cell.2010.07.032
10.1371/journal.pone.0005057
10.1038/nn.2511
10.1523/JNEUROSCI.1243-10.2010
10.1038/nchembio.719
10.4049/jimmunol.174.11.7268
10.1002/prca.200900166
10.1074/jbc.M110.208660
10.1038/nn.3028
10.55782/ane-2012-1899
ContentType Journal Article
Copyright Macmillan Publishers Limited 2014
Copyright © 2014 Macmillan Publishers Limited 2014 Macmillan Publishers Limited
Copyright_xml – notice: Macmillan Publishers Limited 2014
– notice: Copyright © 2014 Macmillan Publishers Limited 2014 Macmillan Publishers Limited
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1038/cdd.2013.180
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
Neurosciences Abstracts
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Microglial microvesicles enhance Aβ neurotoxicity
EISSN 1476-5403
EndPage 593
ExternalDocumentID PMC3950321
24336048
10_1038_cdd_2013_180
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-Q-
0R~
29B
2WC
36B
39C
3V.
4.4
406
53G
5GY
70F
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AACDK
AAHBH
AANZL
AASDW
AASML
AATNV
AAYZH
AAZLF
ABAKF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZZP
ACAOD
ACGFS
ACIWK
ACKTT
ACPRK
ACRQY
ACUHS
ACZOJ
ADBBV
ADFRT
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AOIJS
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C1A
CAG
CCPQU
COF
CS3
DIK
DNIVK
DPUIP
DU5
E3Z
EAD
EAP
EBC
EBD
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FDQFY
FEDTE
FERAY
FIGPU
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HVGLF
HYE
HZ~
IWAJR
JSO
JZLTJ
KQ8
L7B
LK8
M0L
M1P
M7P
NAO
NQJWS
OK1
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
ROL
RPM
SNX
SNYQT
SOHCF
SOJ
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TR2
TSG
TUS
UKHRP
~8M
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7X8
7TK
PUEGO
5PM
ID FETCH-LOGICAL-c525t-763174a8be33fadaf372714655789be4e9844703102b942afe3ff5962ca71f203
ISSN 1350-9047
1476-5403
IngestDate Thu Aug 21 18:20:34 EDT 2025
Sun Aug 24 04:07:47 EDT 2025
Thu Jul 10 18:06:01 EDT 2025
Mon Jul 21 06:07:18 EDT 2025
Tue Jul 01 02:35:00 EDT 2025
Thu Apr 24 22:57:13 EDT 2025
Fri Feb 21 02:38:22 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Alzheimer’s disease
microglia
extracellular microvesicles
Abeta 1–42
bioactive lipids
prion protein
Language English
License http://www.springer.com/tdm
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c525t-763174a8be33fadaf372714655789be4e9844703102b942afe3ff5962ca71f203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Joint senior authors.
OpenAccessLink https://www.nature.com/articles/cdd2013180.pdf
PMID 24336048
PQID 1506417509
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3950321
proquest_miscellaneous_1622611720
proquest_miscellaneous_1506417509
pubmed_primary_24336048
crossref_citationtrail_10_1038_cdd_2013_180
crossref_primary_10_1038_cdd_2013_180
springer_journals_10_1038_cdd_2013_180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle Official journal of the ADMC Associazione Differenziamento e Morte Cellulare
PublicationTitle Cell death and differentiation
PublicationTitleAbbrev Cell Death Differ
PublicationTitleAlternate Cell Death Differ
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Ariga, Kobayashi, Hasegawa, Kiso, Ishida, Miyatake (CR54) 2001; 388
Tan, Choi, Chin, Kaur, Ling (CR25) 2012; 4
Schilling, Lauber, Schaupp, Manhart, Scheel, Bohm (CR2) 2006; 45
Serrano-Pozo, Mielke, Muzitansky, Gomez-Isla, Growdon, Bacskai (CR9) 2012; 71
Guerreiro, Wojtas, Bras, Carrasquillo, Rogaeva, Majounie (CR22) 2013; 368
Mielke, Haughey, Bandaru, Weinberg, Darby, Zaidi (CR12) 2011; 27
Albertini, Bruno, Paterlini, Lista, Benussi, Cereda (CR64) 2010; 4
Holtzman (CR39) 2011; 32
Del Conde, Shrimpton, Thiagarajan, Lopez (CR28) 2005; 106
Fukunaga, Ueno, Yamaguchi, Yano, Hoshino, Matsuzaki (CR34) 2012; 51
Lue, Brachova, Civin, Rogers (CR6) 1996; 55
Aguzzi, Barres, Bennett (CR49) 2013; 339
Lee, Landreth (CR52) 2010; 117
Yamamoto, Kiyota, Walsh, Liu, Kipnis, Ikezu (CR48) 2008; 181
Johansson, Garlind, Berglind-Dehlin, Karlsson, Edwards, Gellerfors (CR14) 2007; 274
Verdier, Zarandi, Penke (CR18) 2004; 10
Um, Nygaard, Heiss, Kostylev, Stagi, Vortmeyer (CR17) 2012; 15
Jana, Pahan (CR36) 2010; 30
Herring, Lewejohann, Panzer, Donath, Kroll, Sachser (CR1) 2011; 42
Martins, Kuperstein, Wilkinson, Maes, Vanbrabant, Jonckheere (CR13) 2008; 27
Paluzzi, Alloisio, Zappettini, Milanese, Raiteri, Nobile (CR63) 2007; 103
Walsh, Selkoe (CR10) 2007; 101
Paresce, Chung, Maxfield (CR51) 1997; 272
Snyder, Nong, Almeida, Paul, Moran, Choi (CR15) 2005; 8
Vella, Sharples, Nisbet, Cappai, Hill (CR46) 2008; 37
Lauren, Gimbel, Nygaard, Gilbert, Strittmatter (CR16) 2009; 457
Mattei, Barenco, Tasciotti, Garofalo, Longo, Boller (CR42) 2009; 4
Haass, Mandelkow (CR7) 2010; 142
Alberdi, Sanchez-Gomez, Cavaliere, Perez-Samartin, Zugaza, Trullas (CR37) 2010; 47
Tamboli, Barth, Christian, Siepmann, Kumar, Singh (CR58) 2010; 285
Perry, Nicoll, Holmes (CR33) 2010; 6
Vingtdeux, Hamdane, Begard, Loyens, Delacourte, Beauvillain (CR47) 2007; 25
Prinz, Priller, Sisodia, Ransohoff (CR50) 2011; 14
Turola, Furlan, Bianco, Matteoli, Verderio (CR35) 2012; 3
Giulian, Haverkamp, Yu, Karshin, Tom, Li (CR23) 1996; 16
Bianco, Perrotta, Novellino, Francolini, Riganti, Menna (CR38) 2009; 28
Verderio, Muzio, Turola, Bergami, Novellino, Ruffini (CR30) 2012; 72
Hollingworth, Harold, Sims, Gerrish, Lambert, Carrasquillo (CR21) 2011; 43
Weitz, Town (CR26) 2012; 2012
Han, Fagan, Cheng, Morris, Xiong, Holtzman (CR43) 2003; 54
Sharples, Vella, Nisbet, Naylor, Perez, Barnham (CR57) 2008; 22
Rajendran, Annaert (CR53) 2012; 13
De Felice, Wu, Lambert, Fernandez, Velasco, Lacor (CR61) 2008; 29
Bianco, Pravettoni, Colombo, Schenk, Moller, Matteoli (CR27) 2005; 174
Fuhrmann, Bittner, Jung, Burgold, Page, Mitteregger (CR24) 2010; 13
Colombo, Borgiani, Verderio, Furlan (CR31) 2012; 3
Malnar, Kosicek, Bene, Tarnik, Pavelin, Babic (CR44) 2012; 72
Winklhofer, Tatzelt, Haass (CR4) 2008; 27
Serrano-Pozo, Mielke, Gomez-Isla, Betensky, Growdon, Frosch (CR8) 2011; 179
Kiyota, Yamamoto, Xiong, Lambert, Klein, Gendelman (CR55) 2009; 4
Bieschke, Herbst, Wiglenda, Friedrich, Boeddrich, Schiele (CR3) 2012; 8
Okello, Edison, Archer, Turkheimer, Kennedy, Bullock (CR20) 2009; 72
Ghidoni, Paterlini, Albertini, Glionna, Monti, Schiaffonati (CR45) 2011; 32
Benilova, Karran, De Strooper (CR5) 2012; 15
Thery, Ostrowski, Segura (CR41) 2009; 9
Gonnord, Delarasse, Auger, Benihoud, Prigent, Cuif (CR29) 2009; 23
Klein (CR60) 2002; 41
Edison, Archer, Gerhard, Hinz, Pavese, Turkheimer (CR19) 2008; 32
Yuyama, Sun, Mitsutake, Igarashi (CR40) 2012; 287
Frassoni, Inverardi, Coco, Ortino, Grumelli, Pozzi (CR62) 2005; 131
Rajendran, Honsho, Zahn, Keller, Geiger, Verkade (CR32) 2006; 103
Antonucci, Turola, Riganti, Caleo, Gabrielli, Perrotta (CR59) 2012; 31
McLean, Cherny, Fraser, Fuller, Smith, Beyreuther (CR11) 1999; 46
Shen, Wu, Yang, Gould (CR56) 2011; 286
J Bieschke (BFcdd2013180_CR3) 2012; 8
LF Lue (BFcdd2013180_CR6) 1996; 55
K Yuyama (BFcdd2013180_CR40) 2012; 287
WL Klein (BFcdd2013180_CR60) 2002; 41
A Jana (BFcdd2013180_CR36) 2010; 30
M Prinz (BFcdd2013180_CR50) 2011; 14
S Schilling (BFcdd2013180_CR2) 2006; 45
Y Verdier (BFcdd2013180_CR18) 2004; 10
V Mattei (BFcdd2013180_CR42) 2009; 4
A Herring (BFcdd2013180_CR1) 2011; 42
I Del Conde (BFcdd2013180_CR28) 2005; 106
L Rajendran (BFcdd2013180_CR32) 2006; 103
T Ariga (BFcdd2013180_CR54) 2001; 388
JW Um (BFcdd2013180_CR17) 2012; 15
S Fukunaga (BFcdd2013180_CR34) 2012; 51
DM Holtzman (BFcdd2013180_CR39) 2011; 32
RA Sharples (BFcdd2013180_CR57) 2008; 22
MM Mielke (BFcdd2013180_CR12) 2011; 27
DM Paresce (BFcdd2013180_CR51) 1997; 272
C Frassoni (BFcdd2013180_CR62) 2005; 131
P Hollingworth (BFcdd2013180_CR21) 2011; 43
LJ Vella (BFcdd2013180_CR46) 2008; 37
X Han (BFcdd2013180_CR43) 2003; 54
A Serrano-Pozo (BFcdd2013180_CR8) 2011; 179
FG De Felice (BFcdd2013180_CR61) 2008; 29
M Yamamoto (BFcdd2013180_CR48) 2008; 181
B Tan (BFcdd2013180_CR25) 2012; 4
DM Walsh (BFcdd2013180_CR10) 2007; 101
A Serrano-Pozo (BFcdd2013180_CR9) 2012; 71
L Rajendran (BFcdd2013180_CR53) 2012; 13
I Benilova (BFcdd2013180_CR5) 2012; 15
F Bianco (BFcdd2013180_CR27) 2005; 174
A Aguzzi (BFcdd2013180_CR49) 2013; 339
C Verderio (BFcdd2013180_CR30) 2012; 72
CA McLean (BFcdd2013180_CR11) 1999; 46
VH Perry (BFcdd2013180_CR33) 2010; 6
A Okello (BFcdd2013180_CR20) 2009; 72
AS Johansson (BFcdd2013180_CR14) 2007; 274
V Albertini (BFcdd2013180_CR64) 2010; 4
P Gonnord (BFcdd2013180_CR29) 2009; 23
F Antonucci (BFcdd2013180_CR59) 2012; 31
E Alberdi (BFcdd2013180_CR37) 2010; 47
C Thery (BFcdd2013180_CR41) 2009; 9
M Malnar (BFcdd2013180_CR44) 2012; 72
P Edison (BFcdd2013180_CR19) 2008; 32
F Bianco (BFcdd2013180_CR38) 2009; 28
TM Weitz (BFcdd2013180_CR26) 2012; 2012
E Turola (BFcdd2013180_CR35) 2012; 3
CY Lee (BFcdd2013180_CR52) 2010; 117
EM Snyder (BFcdd2013180_CR15) 2005; 8
E Colombo (BFcdd2013180_CR31) 2012; 3
IY Tamboli (BFcdd2013180_CR58) 2010; 285
B Shen (BFcdd2013180_CR56) 2011; 286
M Fuhrmann (BFcdd2013180_CR24) 2010; 13
S Paluzzi (BFcdd2013180_CR63) 2007; 103
IC Martins (BFcdd2013180_CR13) 2008; 27
D Giulian (BFcdd2013180_CR23) 1996; 16
R Ghidoni (BFcdd2013180_CR45) 2011; 32
J Lauren (BFcdd2013180_CR16) 2009; 457
R Guerreiro (BFcdd2013180_CR22) 2013; 368
KF Winklhofer (BFcdd2013180_CR4) 2008; 27
V Vingtdeux (BFcdd2013180_CR47) 2007; 25
C Haass (BFcdd2013180_CR7) 2010; 142
T Kiyota (BFcdd2013180_CR55) 2009; 4
12838527 - Ann Neurol. 2003 Jul;54(1):115-9
22779026 - Int J Alzheimers Dis. 2012;2012:314185
19337375 - PLoS One. 2009;4(4):e5057
17286590 - J Neurochem. 2007 Jun;101(5):1172-84
12176077 - Neurochem Int. 2002 Nov;41(5):345-52
18786637 - Neurobiol Dis. 2008 Dec;32(3):412-9
20861373 - J Neurosci. 2010 Sep 22;30(38):12676-89
17935604 - J Neurochem. 2007 Nov;103(3):1196-207
15741221 - Blood. 2005 Sep 1;106(5):1604-11
19300439 - EMBO J. 2009 Apr 22;28(8):1043-54
16025111 - Nat Neurosci. 2005 Aug;8(8):1051-8
21777559 - Am J Pathol. 2011 Sep;179(3):1373-84
10589538 - Ann Neurol. 1999 Dec;46(6):860-6
11368158 - Arch Biochem Biophys. 2001 Apr 15;388(2):225-30
16837572 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11172-7
22286176 - Nat Neurosci. 2012 Mar;15(3):349-57
8858005 - J Neuropathol Exp Neurol. 1996 Oct;55(10):1083-8
22078172 - Neurobiol Aging. 2011 Dec;32 Suppl 1:S4-9
18768842 - J Immunol. 2008 Sep 15;181(6):3877-86
19242475 - Nature. 2009 Feb 26;457(7233):1128-32
17029395 - Biochemistry. 2006 Oct 17;45(41):12393-9
17207630 - Neurobiol Dis. 2007 Mar;25(3):686-96
21841258 - J Alzheimers Dis. 2011;27(2):259-69
23109155 - Ann Neurol. 2012 Oct;72(4):610-24
21460840 - Nat Genet. 2011 May;43(5):429-35
23150934 - N Engl J Med. 2013 Jan 10;368(2):117-27
18059472 - EMBO J. 2008 Jan 9;27(1):224-33
22303002 - J Biol Chem. 2012 Mar 30;287(14):10977-89
19122031 - Neurology. 2009 Jan 6;72(1):56-62
22820466 - Nat Neurosci. 2012 Sep;15(9):1227-35
19498381 - Nat Rev Immunol. 2009 Aug;9(8):581-93
23009396 - Biochemistry. 2012 Oct 16;51(41):8125-31
20552234 - J Neural Transm (Vienna). 2010 Aug;117(8):949-60
22269004 - Traffic. 2012 Jun;13(6):759-70
20234358 - Nat Rev Neurol. 2010 Apr;6(4):193-201
15905573 - J Immunol. 2005 Jun 1;174(11):7268-77
22805771 - J Neuropathol Exp Neurol. 2012 Aug;71(8):694-701
22652882 - Front Biosci (Schol Ed). 2012;4:1402-12
20305648 - Nat Neurosci. 2010 Apr;13(4):411-3
18216876 - EMBO J. 2008 Jan 23;27(2):336-49
22479250 - Front Physiol. 2012 Mar 29;3:63
23093013 - Acta Neurobiol Exp (Wars). 2012;72(3):264-71
18971257 - FASEB J. 2009 Mar;23(3):795-805
18064447 - Eur Biophys J. 2008 Mar;37(3):323-32
21406231 - Neurobiol Dis. 2011 Jun;42(3):530-8
20691893 - Cell. 2010 Aug 6;142(3):356-8
17403556 - Neurobiol Aging. 2008 Sep;29(9):1334-47
19593388 - PLoS One. 2009;4(7):e6197
22101602 - Nat Chem Biol. 2012 Jan;8(1):93-101
9361021 - J Biol Chem. 1997 Nov 14;272(46):29390-7
21179888 - Proteomics Clin Appl. 2010 Mar;4(3):352-7
15160835 - J Pept Sci. 2004 May;10(5):229-48
21300796 - J Biol Chem. 2011 Apr 22;286(16):14383-95
21952260 - Nat Neurosci. 2011 Oct;14(10):1227-35
20876579 - J Biol Chem. 2010 Nov 26;285(48):37405-14
22246184 - EMBO J. 2012 Mar 7;31(5):1231-40
20061018 - Cell Calcium. 2010 Mar;47(3):264-72
15749336 - Neuroscience. 2005;131(4):813-23
8815885 - J Neurosci. 1996 Oct 1;16(19):6021-37
17227385 - FEBS J. 2007 Feb;274(4):990-1000
22661954 - Front Physiol. 2012 May 22;3:149
19773092 - Neurobiol Aging. 2011 Aug;32(8):1435-42
18171695 - FASEB J. 2008 May;22(5):1469-78
23307732 - Science. 2013 Jan 11;339(6116):156-61
References_xml – volume: 13
  start-page: 759
  year: 2012
  end-page: 770
  ident: CR53
  article-title: Membrane trafficking pathways in Alzheimer's disease
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2012.01332.x
– volume: 31
  start-page: 1231
  year: 2012
  end-page: 1240
  ident: CR59
  article-title: Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.489
– volume: 274
  start-page: 990
  year: 2007
  end-page: 1000
  ident: CR14
  article-title: Docosahexaenoic acid stabilizes soluble amyloid-beta protofibrils and sustains amyloid-beta-induced neurotoxicity
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2007.05647.x
– volume: 22
  start-page: 1469
  year: 2008
  end-page: 1478
  ident: CR57
  article-title: Inhibition of gamma-secretase causes increased secretion of amyloid precursor protein C-terminal fragments in association with exosomes
  publication-title: FASEB J
  doi: 10.1096/fj.07-9357com
– volume: 179
  start-page: 1373
  year: 2011
  end-page: 1384
  ident: CR8
  article-title: Reactive glia not only associates with plaques but also parallels tangles in Alzheimer's disease
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2011.05.047
– volume: 55
  start-page: 1083
  year: 1996
  end-page: 1088
  ident: CR6
  article-title: Inflammation, A beta deposition, and neurofibrillary tangle formation as correlates of Alzheimer's disease neurodegeneration
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/00005072-199655100-00008
– volume: 71
  start-page: 694
  year: 2012
  end-page: 701
  ident: CR9
  article-title: Stable size distribution of amyloid plaques over the course of Alzheimer disease
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/NEN.0b013e31825e77de
– volume: 117
  start-page: 949
  year: 2010
  end-page: 960
  ident: CR52
  article-title: The role of microglia in amyloid clearance from the AD brain
  publication-title: J Neural Transm
  doi: 10.1007/s00702-010-0433-4
– volume: 27
  start-page: 224
  year: 2008
  end-page: 233
  ident: CR13
  article-title: Lipids revert inert Abeta amyloid fibrils to neurotoxic protofibrils that affect learning in mice
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601953
– volume: 25
  start-page: 686
  year: 2007
  end-page: 696
  ident: CR47
  article-title: Intracellular pH regulates amyloid precursor protein intracellular domain accumulation
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2006.09.019
– volume: 6
  start-page: 193
  year: 2010
  end-page: 201
  ident: CR33
  article-title: Microglia in neurodegenerative disease
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2010.17
– volume: 14
  start-page: 1227
  year: 2011
  end-page: 1235
  ident: CR50
  article-title: Heterogeneity of CNS myeloid cells and their roles in neurodegeneration
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2923
– volume: 4
  start-page: e6197
  year: 2009
  ident: CR55
  article-title: CCL2 accelerates microglia-mediated Abeta oligomer formation and progression of neurocognitive dysfunction
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006197
– volume: 46
  start-page: 860
  year: 1999
  end-page: 866
  ident: CR11
  article-title: Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease
  publication-title: Ann Neurol
  doi: 10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M
– volume: 45
  start-page: 12393
  year: 2006
  end-page: 12399
  ident: CR2
  article-title: On the seeding and oligomerization of pGlu-amyloid peptides ( )
  publication-title: Biochemistry
  doi: 10.1021/bi0612667
– volume: 285
  start-page: 37405
  year: 2010
  end-page: 37414
  ident: CR58
  article-title: Statins promote the degradation of extracellular amyloid {beta}-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.149468
– volume: 457
  start-page: 1128
  year: 2009
  end-page: 1132
  ident: CR16
  article-title: Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers
  publication-title: Nature
  doi: 10.1038/nature07761
– volume: 3
  start-page: 149
  year: 2012
  ident: CR35
  article-title: Microglial microvesicle secretion and intercellular signaling
  publication-title: Front Physiol
  doi: 10.3389/fphys.2012.00149
– volume: 72
  start-page: 264
  year: 2012
  end-page: 271
  ident: CR44
  article-title: Use of cerebrospinal fluid biomarker analysis for improving Alzheimer's disease diagnosis in a non-specialized setting
  publication-title: Acta Neurobiol Exp
– volume: 16
  start-page: 6021
  year: 1996
  end-page: 6037
  ident: CR23
  article-title: Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-19-06021.1996
– volume: 101
  start-page: 1172
  year: 2007
  end-page: 1184
  ident: CR10
  article-title: A beta oligomers—a decade of discovery
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2006.04426.x
– volume: 32
  start-page: 1435
  year: 2011
  end-page: 1442
  ident: CR45
  article-title: Cystatin C is released in association with exosomes: a new tool of neuronal communication which is unbalanced in Alzheimer's disease
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2009.08.013
– volume: 15
  start-page: 1227
  year: 2012
  end-page: 1235
  ident: CR17
  article-title: Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3178
– volume: 3
  start-page: 63
  year: 2012
  ident: CR31
  article-title: Microvesicles: novel biomarkers for neurological disorders
  publication-title: Front Physiol
  doi: 10.3389/fphys.2012.00063
– volume: 8
  start-page: 1051
  year: 2005
  end-page: 1058
  ident: CR15
  article-title: Regulation of NMDA receptor trafficking by amyloid-beta
  publication-title: Nat Neurosci
  doi: 10.1038/nn1503
– volume: 181
  start-page: 3877
  year: 2008
  end-page: 3886
  ident: CR48
  article-title: Cytokine-mediated inhibition of fibrillar amyloid-beta peptide degradation by human mononuclear phagocytes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.6.3877
– volume: 54
  start-page: 115
  year: 2003
  end-page: 119
  ident: CR43
  article-title: Cerebrospinal fluid sulfatide is decreased in subjects with incipient dementia
  publication-title: Ann Neurol
  doi: 10.1002/ana.10618
– volume: 41
  start-page: 345
  year: 2002
  end-page: 352
  ident: CR60
  article-title: Abeta toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine and drug targets
  publication-title: Neurochem Int
  doi: 10.1016/S0197-0186(02)00050-5
– volume: 368
  start-page: 117
  year: 2013
  end-page: 127
  ident: CR22
  article-title: TREM2 variants in Alzheimer's disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1211851
– volume: 2012
  start-page: 314185
  year: 2012
  ident: CR26
  article-title: Microglia in Alzheimer's Disease: it's all about context
  publication-title: Int J Alzheimers Dis
– volume: 42
  start-page: 530
  year: 2011
  end-page: 538
  ident: CR1
  article-title: Preventive and therapeutic types of environmental enrichment counteract beta amyloid pathology by different molecular mechanisms
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2011.03.007
– volume: 287
  start-page: 10977
  year: 2012
  end-page: 10989
  ident: CR40
  article-title: Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.324616
– volume: 28
  start-page: 1043
  year: 2009
  end-page: 1054
  ident: CR38
  article-title: Acid sphingomyelinase activity triggers microparticle release from glial cells
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.45
– volume: 103
  start-page: 1196
  year: 2007
  end-page: 1207
  ident: CR63
  article-title: Adult astroglia is competent for Na+/Ca2+ exchanger-operated exocytotic glutamate release triggered by mild depolarization
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2007.04826.x
– volume: 103
  start-page: 11172
  year: 2006
  end-page: 11177
  ident: CR32
  article-title: Alzheimer's disease beta-amyloid peptides are released in association with exosomes
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0603838103
– volume: 37
  start-page: 323
  year: 2008
  end-page: 332
  ident: CR46
  article-title: The role of exosomes in the processing of proteins associated with neurodegenerative diseases
  publication-title: Eur Biophys J
  doi: 10.1007/s00249-007-0246-z
– volume: 27
  start-page: 336
  year: 2008
  end-page: 349
  ident: CR4
  article-title: The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601930
– volume: 131
  start-page: 813
  year: 2005
  end-page: 823
  ident: CR62
  article-title: Analysis of SNAP-25 immunoreactivity in hippocampal inhibitory neurons during development in culture and
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2004.11.042
– volume: 27
  start-page: 259
  year: 2011
  end-page: 269
  ident: CR12
  article-title: Plasma sphingomyelins are associated with cognitive progression in Alzheimer's disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2011-110405
– volume: 106
  start-page: 1604
  year: 2005
  end-page: 1611
  ident: CR28
  article-title: Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation
  publication-title: Blood
  doi: 10.1182/blood-2004-03-1095
– volume: 32
  start-page: S4
  issue: Suppl 1
  year: 2011
  end-page: S9
  ident: CR39
  article-title: CSF biomarkers for Alzheimer's disease: current utility and potential future use
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2011.09.003
– volume: 388
  start-page: 225
  year: 2001
  end-page: 230
  ident: CR54
  article-title: Characterization of high-affinity binding between gangliosides and amyloid beta-protein
  publication-title: Arch Biochem Biophys
  doi: 10.1006/abbi.2001.2304
– volume: 29
  start-page: 1334
  year: 2008
  end-page: 1347
  ident: CR61
  article-title: Alzheimer's disease-type neuronal tau hyperphosphorylation induced by A beta oligomers
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2007.02.029
– volume: 10
  start-page: 229
  year: 2004
  end-page: 248
  ident: CR18
  article-title: Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease
  publication-title: J Pept Sci
  doi: 10.1002/psc.573
– volume: 32
  start-page: 412
  year: 2008
  end-page: 419
  ident: CR19
  article-title: Microglia, amyloid, and cognition in Alzheimer's disease: An [11C](R)PK11195-PET and [11C]PIB-PET study
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2008.08.001
– volume: 51
  start-page: 8125
  year: 2012
  end-page: 8131
  ident: CR34
  article-title: GM1 cluster mediates formation of toxic Abeta fibrils by providing hydrophobic environments
  publication-title: Biochemistry
  doi: 10.1021/bi300839u
– volume: 23
  start-page: 795
  year: 2009
  end-page: 805
  ident: CR29
  article-title: Palmitoylation of the P2X7 receptor, an ATP-gated channel, controls its expression and association with lipid rafts
  publication-title: FASEB J
  doi: 10.1096/fj.08-114637
– volume: 9
  start-page: 581
  year: 2009
  end-page: 593
  ident: CR41
  article-title: Membrane vesicles as conveyors of immune responses
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2567
– volume: 47
  start-page: 264
  year: 2010
  end-page: 272
  ident: CR37
  article-title: Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2009.12.010
– volume: 72
  start-page: 56
  year: 2009
  end-page: 62
  ident: CR20
  article-title: Microglial activation and amyloid deposition in mild cognitive impairment: a PET study
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000338622.27876.0d
– volume: 272
  start-page: 29390
  year: 1997
  end-page: 29397
  ident: CR51
  article-title: Slow degradation of aggregates of the Alzheimer's disease amyloid beta-protein by microglial cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.46.29390
– volume: 43
  start-page: 429
  year: 2011
  end-page: 435
  ident: CR21
  article-title: Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease
  publication-title: Nat Genet
  doi: 10.1038/ng.803
– volume: 72
  start-page: 610
  year: 2012
  end-page: 624
  ident: CR30
  article-title: Myeloid microvesicles are a marker and therapeutic target for neuroinflammation
  publication-title: Ann Neurol
  doi: 10.1002/ana.23627
– volume: 339
  start-page: 156
  year: 2013
  end-page: 161
  ident: CR49
  article-title: Microglia: scapegoat, saboteur, or something else?
  publication-title: Science
  doi: 10.1126/science.1227901
– volume: 142
  start-page: 356
  year: 2010
  end-page: 358
  ident: CR7
  article-title: Fyn-tau-amyloid: a toxic triad
  publication-title: Cell
  doi: 10.1016/j.cell.2010.07.032
– volume: 4
  start-page: e5057
  year: 2009
  ident: CR42
  article-title: Paracrine diffusion of PrP(C) and propagation of prion infectivity by plasma membrane-derived microvesicles
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005057
– volume: 4
  start-page: 1402
  year: 2012
  end-page: 1412
  ident: CR25
  article-title: Manipulation of microglial activity as a therapy for Alzheimer's disease
  publication-title: Front Biosci
– volume: 13
  start-page: 411
  year: 2010
  end-page: 413
  ident: CR24
  article-title: Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2511
– volume: 30
  start-page: 12676
  year: 2010
  end-page: 12689
  ident: CR36
  article-title: Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer's disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1243-10.2010
– volume: 8
  start-page: 93
  year: 2012
  end-page: 101
  ident: CR3
  article-title: Small-molecule conversion of toxic oligomers to nontoxic beta-sheet-rich amyloid fibrils
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.719
– volume: 174
  start-page: 7268
  year: 2005
  end-page: 7277
  ident: CR27
  article-title: induces vesicle shedding and IL-1 beta release from microglia
  publication-title: J Immunol
  doi: 10.4049/jimmunol.174.11.7268
– volume: 4
  start-page: 352
  year: 2010
  end-page: 357
  ident: CR64
  article-title: Optimization protocol for amyloid-beta peptides detection in human cerebrospinal fluid using SELDI TOF MS
  publication-title: Proteomics Clin Appl
  doi: 10.1002/prca.200900166
– volume: 286
  start-page: 14383
  year: 2011
  end-page: 14395
  ident: CR56
  article-title: Protein targeting to exosomes/microvesicles by plasma membrane anchors
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.208660
– volume: 15
  start-page: 349
  year: 2012
  end-page: 357
  ident: CR5
  article-title: The toxic Abeta oligomer and Alzheimer's disease: an emperor in need of clothes
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3028
– volume: 179
  start-page: 1373
  year: 2011
  ident: BFcdd2013180_CR8
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2011.05.047
– volume: 4
  start-page: e6197
  year: 2009
  ident: BFcdd2013180_CR55
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006197
– volume: 103
  start-page: 11172
  year: 2006
  ident: BFcdd2013180_CR32
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0603838103
– volume: 27
  start-page: 224
  year: 2008
  ident: BFcdd2013180_CR13
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601953
– volume: 8
  start-page: 1051
  year: 2005
  ident: BFcdd2013180_CR15
  publication-title: Nat Neurosci
  doi: 10.1038/nn1503
– volume: 43
  start-page: 429
  year: 2011
  ident: BFcdd2013180_CR21
  publication-title: Nat Genet
  doi: 10.1038/ng.803
– volume: 51
  start-page: 8125
  year: 2012
  ident: BFcdd2013180_CR34
  publication-title: Biochemistry
  doi: 10.1021/bi300839u
– volume: 55
  start-page: 1083
  year: 1996
  ident: BFcdd2013180_CR6
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/00005072-199655100-00008
– volume: 4
  start-page: e5057
  year: 2009
  ident: BFcdd2013180_CR42
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005057
– volume: 103
  start-page: 1196
  year: 2007
  ident: BFcdd2013180_CR63
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2007.04826.x
– volume: 27
  start-page: 336
  year: 2008
  ident: BFcdd2013180_CR4
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601930
– volume: 272
  start-page: 29390
  year: 1997
  ident: BFcdd2013180_CR51
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.46.29390
– volume: 16
  start-page: 6021
  year: 1996
  ident: BFcdd2013180_CR23
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-19-06021.1996
– volume: 31
  start-page: 1231
  year: 2012
  ident: BFcdd2013180_CR59
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.489
– volume: 457
  start-page: 1128
  year: 2009
  ident: BFcdd2013180_CR16
  publication-title: Nature
  doi: 10.1038/nature07761
– volume: 13
  start-page: 759
  year: 2012
  ident: BFcdd2013180_CR53
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2012.01332.x
– volume: 274
  start-page: 990
  year: 2007
  ident: BFcdd2013180_CR14
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2007.05647.x
– volume: 4
  start-page: 1402
  year: 2012
  ident: BFcdd2013180_CR25
  publication-title: Front Biosci
– volume: 47
  start-page: 264
  year: 2010
  ident: BFcdd2013180_CR37
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2009.12.010
– volume: 45
  start-page: 12393
  year: 2006
  ident: BFcdd2013180_CR2
  publication-title: Biochemistry
  doi: 10.1021/bi0612667
– volume: 106
  start-page: 1604
  year: 2005
  ident: BFcdd2013180_CR28
  publication-title: Blood
  doi: 10.1182/blood-2004-03-1095
– volume: 10
  start-page: 229
  year: 2004
  ident: BFcdd2013180_CR18
  publication-title: J Pept Sci
  doi: 10.1002/psc.573
– volume: 46
  start-page: 860
  year: 1999
  ident: BFcdd2013180_CR11
  publication-title: Ann Neurol
  doi: 10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M
– volume: 72
  start-page: 610
  year: 2012
  ident: BFcdd2013180_CR30
  publication-title: Ann Neurol
  doi: 10.1002/ana.23627
– volume: 28
  start-page: 1043
  year: 2009
  ident: BFcdd2013180_CR38
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.45
– volume: 3
  start-page: 149
  year: 2012
  ident: BFcdd2013180_CR35
  publication-title: Front Physiol
  doi: 10.3389/fphys.2012.00149
– volume: 30
  start-page: 12676
  year: 2010
  ident: BFcdd2013180_CR36
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1243-10.2010
– volume: 23
  start-page: 795
  year: 2009
  ident: BFcdd2013180_CR29
  publication-title: FASEB J
  doi: 10.1096/fj.08-114637
– volume: 41
  start-page: 345
  year: 2002
  ident: BFcdd2013180_CR60
  publication-title: Neurochem Int
  doi: 10.1016/S0197-0186(02)00050-5
– volume: 287
  start-page: 10977
  year: 2012
  ident: BFcdd2013180_CR40
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.324616
– volume: 4
  start-page: 352
  year: 2010
  ident: BFcdd2013180_CR64
  publication-title: Proteomics Clin Appl
  doi: 10.1002/prca.200900166
– volume: 9
  start-page: 581
  year: 2009
  ident: BFcdd2013180_CR41
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2567
– volume: 29
  start-page: 1334
  year: 2008
  ident: BFcdd2013180_CR61
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2007.02.029
– volume: 32
  start-page: 1435
  year: 2011
  ident: BFcdd2013180_CR45
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2009.08.013
– volume: 131
  start-page: 813
  year: 2005
  ident: BFcdd2013180_CR62
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2004.11.042
– volume: 15
  start-page: 349
  year: 2012
  ident: BFcdd2013180_CR5
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3028
– volume: 54
  start-page: 115
  year: 2003
  ident: BFcdd2013180_CR43
  publication-title: Ann Neurol
  doi: 10.1002/ana.10618
– volume: 25
  start-page: 686
  year: 2007
  ident: BFcdd2013180_CR47
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2006.09.019
– volume: 14
  start-page: 1227
  year: 2011
  ident: BFcdd2013180_CR50
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2923
– volume: 388
  start-page: 225
  year: 2001
  ident: BFcdd2013180_CR54
  publication-title: Arch Biochem Biophys
  doi: 10.1006/abbi.2001.2304
– volume: 101
  start-page: 1172
  year: 2007
  ident: BFcdd2013180_CR10
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2006.04426.x
– volume: 3
  start-page: 63
  year: 2012
  ident: BFcdd2013180_CR31
  publication-title: Front Physiol
  doi: 10.3389/fphys.2012.00063
– volume: 22
  start-page: 1469
  year: 2008
  ident: BFcdd2013180_CR57
  publication-title: FASEB J
  doi: 10.1096/fj.07-9357com
– volume: 117
  start-page: 949
  year: 2010
  ident: BFcdd2013180_CR52
  publication-title: J Neural Transm
  doi: 10.1007/s00702-010-0433-4
– volume: 15
  start-page: 1227
  year: 2012
  ident: BFcdd2013180_CR17
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3178
– volume: 32
  start-page: 412
  year: 2008
  ident: BFcdd2013180_CR19
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2008.08.001
– volume: 285
  start-page: 37405
  year: 2010
  ident: BFcdd2013180_CR58
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.149468
– volume: 339
  start-page: 156
  year: 2013
  ident: BFcdd2013180_CR49
  publication-title: Science
  doi: 10.1126/science.1227901
– volume: 27
  start-page: 259
  year: 2011
  ident: BFcdd2013180_CR12
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2011-110405
– volume: 72
  start-page: 264
  year: 2012
  ident: BFcdd2013180_CR44
  publication-title: Acta Neurobiol Exp
  doi: 10.55782/ane-2012-1899
– volume: 71
  start-page: 694
  year: 2012
  ident: BFcdd2013180_CR9
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/NEN.0b013e31825e77de
– volume: 8
  start-page: 93
  year: 2012
  ident: BFcdd2013180_CR3
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.719
– volume: 32
  start-page: S4
  issue: Suppl 1
  year: 2011
  ident: BFcdd2013180_CR39
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2011.09.003
– volume: 181
  start-page: 3877
  year: 2008
  ident: BFcdd2013180_CR48
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.6.3877
– volume: 72
  start-page: 56
  year: 2009
  ident: BFcdd2013180_CR20
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000338622.27876.0d
– volume: 13
  start-page: 411
  year: 2010
  ident: BFcdd2013180_CR24
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2511
– volume: 37
  start-page: 323
  year: 2008
  ident: BFcdd2013180_CR46
  publication-title: Eur Biophys J
  doi: 10.1007/s00249-007-0246-z
– volume: 368
  start-page: 117
  year: 2013
  ident: BFcdd2013180_CR22
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1211851
– volume: 174
  start-page: 7268
  year: 2005
  ident: BFcdd2013180_CR27
  publication-title: J Immunol
  doi: 10.4049/jimmunol.174.11.7268
– volume: 6
  start-page: 193
  year: 2010
  ident: BFcdd2013180_CR33
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2010.17
– volume: 286
  start-page: 14383
  year: 2011
  ident: BFcdd2013180_CR56
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.208660
– volume: 142
  start-page: 356
  year: 2010
  ident: BFcdd2013180_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2010.07.032
– volume: 2012
  start-page: 314185
  year: 2012
  ident: BFcdd2013180_CR26
  publication-title: Int J Alzheimers Dis
– volume: 42
  start-page: 530
  year: 2011
  ident: BFcdd2013180_CR1
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2011.03.007
– reference: 20061018 - Cell Calcium. 2010 Mar;47(3):264-72
– reference: 22479250 - Front Physiol. 2012 Mar 29;3:63
– reference: 23150934 - N Engl J Med. 2013 Jan 10;368(2):117-27
– reference: 11368158 - Arch Biochem Biophys. 2001 Apr 15;388(2):225-30
– reference: 18059472 - EMBO J. 2008 Jan 9;27(1):224-33
– reference: 21777559 - Am J Pathol. 2011 Sep;179(3):1373-84
– reference: 9361021 - J Biol Chem. 1997 Nov 14;272(46):29390-7
– reference: 22820466 - Nat Neurosci. 2012 Sep;15(9):1227-35
– reference: 23093013 - Acta Neurobiol Exp (Wars). 2012;72(3):264-71
– reference: 23307732 - Science. 2013 Jan 11;339(6116):156-61
– reference: 20552234 - J Neural Transm (Vienna). 2010 Aug;117(8):949-60
– reference: 17029395 - Biochemistry. 2006 Oct 17;45(41):12393-9
– reference: 15741221 - Blood. 2005 Sep 1;106(5):1604-11
– reference: 17207630 - Neurobiol Dis. 2007 Mar;25(3):686-96
– reference: 18216876 - EMBO J. 2008 Jan 23;27(2):336-49
– reference: 21841258 - J Alzheimers Dis. 2011;27(2):259-69
– reference: 19593388 - PLoS One. 2009;4(7):e6197
– reference: 22661954 - Front Physiol. 2012 May 22;3:149
– reference: 21406231 - Neurobiol Dis. 2011 Jun;42(3):530-8
– reference: 21952260 - Nat Neurosci. 2011 Oct;14(10):1227-35
– reference: 17403556 - Neurobiol Aging. 2008 Sep;29(9):1334-47
– reference: 22805771 - J Neuropathol Exp Neurol. 2012 Aug;71(8):694-701
– reference: 18171695 - FASEB J. 2008 May;22(5):1469-78
– reference: 17935604 - J Neurochem. 2007 Nov;103(3):1196-207
– reference: 12838527 - Ann Neurol. 2003 Jul;54(1):115-9
– reference: 17286590 - J Neurochem. 2007 Jun;101(5):1172-84
– reference: 23009396 - Biochemistry. 2012 Oct 16;51(41):8125-31
– reference: 22286176 - Nat Neurosci. 2012 Mar;15(3):349-57
– reference: 18768842 - J Immunol. 2008 Sep 15;181(6):3877-86
– reference: 16837572 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11172-7
– reference: 21300796 - J Biol Chem. 2011 Apr 22;286(16):14383-95
– reference: 20876579 - J Biol Chem. 2010 Nov 26;285(48):37405-14
– reference: 22652882 - Front Biosci (Schol Ed). 2012;4:1402-12
– reference: 20234358 - Nat Rev Neurol. 2010 Apr;6(4):193-201
– reference: 22779026 - Int J Alzheimers Dis. 2012;2012:314185
– reference: 12176077 - Neurochem Int. 2002 Nov;41(5):345-52
– reference: 18971257 - FASEB J. 2009 Mar;23(3):795-805
– reference: 23109155 - Ann Neurol. 2012 Oct;72(4):610-24
– reference: 19300439 - EMBO J. 2009 Apr 22;28(8):1043-54
– reference: 19498381 - Nat Rev Immunol. 2009 Aug;9(8):581-93
– reference: 20305648 - Nat Neurosci. 2010 Apr;13(4):411-3
– reference: 19773092 - Neurobiol Aging. 2011 Aug;32(8):1435-42
– reference: 17227385 - FEBS J. 2007 Feb;274(4):990-1000
– reference: 8815885 - J Neurosci. 1996 Oct 1;16(19):6021-37
– reference: 18786637 - Neurobiol Dis. 2008 Dec;32(3):412-9
– reference: 8858005 - J Neuropathol Exp Neurol. 1996 Oct;55(10):1083-8
– reference: 22269004 - Traffic. 2012 Jun;13(6):759-70
– reference: 22246184 - EMBO J. 2012 Mar 7;31(5):1231-40
– reference: 21460840 - Nat Genet. 2011 May;43(5):429-35
– reference: 22101602 - Nat Chem Biol. 2012 Jan;8(1):93-101
– reference: 22078172 - Neurobiol Aging. 2011 Dec;32 Suppl 1:S4-9
– reference: 21179888 - Proteomics Clin Appl. 2010 Mar;4(3):352-7
– reference: 15160835 - J Pept Sci. 2004 May;10(5):229-48
– reference: 16025111 - Nat Neurosci. 2005 Aug;8(8):1051-8
– reference: 20861373 - J Neurosci. 2010 Sep 22;30(38):12676-89
– reference: 20691893 - Cell. 2010 Aug 6;142(3):356-8
– reference: 15905573 - J Immunol. 2005 Jun 1;174(11):7268-77
– reference: 18064447 - Eur Biophys J. 2008 Mar;37(3):323-32
– reference: 15749336 - Neuroscience. 2005;131(4):813-23
– reference: 10589538 - Ann Neurol. 1999 Dec;46(6):860-6
– reference: 19122031 - Neurology. 2009 Jan 6;72(1):56-62
– reference: 19337375 - PLoS One. 2009;4(4):e5057
– reference: 22303002 - J Biol Chem. 2012 Mar 30;287(14):10977-89
– reference: 19242475 - Nature. 2009 Feb 26;457(7233):1128-32
SSID ssj0006796
Score 2.5414493
Snippet Alzheimer’s disease (AD) is characterized by extracellular amyloid- β (A β ) deposition, which activates microglia, induces neuroinflammation and drives...
Alzheimer's disease (AD) is characterized by extracellular amyloid-β (Aβ) deposition, which activates microglia, induces neuroinflammation and drives...
Alzheimer's disease (AD) is characterized by extracellular amyloid- beta (A beta ) deposition, which activates microglia, induces neuroinflammation and drives...
Alzheimer's disease (AD) is characterized by extracellular amyloid- β (A β ) deposition, which activates microglia, induces neuroinflammation and drives...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 582
SubjectTerms 631/378/1689/1283
631/378/2596/1953
692/420
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Amyloid beta-Peptides - chemistry
Amyloid beta-Peptides - toxicity
Animals
Apoptosis
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Cycle Analysis
Cell Survival - drug effects
Cells, Cultured
Excitatory Amino Acid Antagonists - pharmacology
Female
Humans
Interleukin-1beta - metabolism
Life Sciences
Male
Microglia - drug effects
Microglia - metabolism
Neurons - cytology
Neurons - drug effects
Neurons - metabolism
Original Paper
Peptide Fragments - chemistry
Peptide Fragments - toxicity
PrPC Proteins - metabolism
Rats
Solubility
Stem Cells
Transport Vesicles - chemistry
Transport Vesicles - metabolism
Tumor Necrosis Factor-alpha - metabolism
Title Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles
URI https://link.springer.com/article/10.1038/cdd.2013.180
https://www.ncbi.nlm.nih.gov/pubmed/24336048
https://www.proquest.com/docview/1506417509
https://www.proquest.com/docview/1622611720
https://pubmed.ncbi.nlm.nih.gov/PMC3950321
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE4gXBONWLpORKC9VRxM7t0dWFU2TOqGpk_oWOY7TRWqbqUkR7GfxQ_hNnOM4t3VDwEtaJa6t9PvinGOf8x1CPsTSCaR0oqETWHLILQslbx1wVewYXiYyiFSC2cjTM_fkgp_OnXmTQqCzS4roSF7fmlfyP6jCOcAVs2T_Adm6UzgB3wFfOALCcPwrjKcYTbdYpqIMHt8UA7EA_xlXxuKBWIEvnsbD_njSP7ZRFyIbaPXKIvueSp21mNdletD8zC9VHJsg6BX2_E3lOmiubcCOca0vRrtRbztU9VWKtLOjf5rlulhwkz02g4GXopP6cL5Nr7urqWqzEKu0OWdWI6x2EIsqZ1DuuRhtwdpTbJkEbajEW_OlU1Ye2pnHS9V2GaOWq8WOrLLaUwvSq5XG1OaMuaNSq_OGbnZ16T7Zt8GFwOoW3rx2xvX6mUmEgME-tYdCgWjz4661suOC7EbS3thO11bK7Al5bNwL-rnkylNyT60PyIOy4OiPA_JwakIpnhFZk4ca8tCGPLQiz6-fFIlDG-JQTRxqiAOfilbEoVlCO8R5Ti6-TGbjk6GpuDGUju0UQ3jZgIcq_EgxlohYJAzMWwsl9jwfHluuAp9zrHgwsqOA2yJRLEmwfpMUnpXYI_aC7K2ztXpFqK-4l8Rg_fiJzd1Y-W7iKSH8BDwA6XlWjwyqfzaURo4eq6IsQx0WwfwQIAkRkhAg6ZF-3fqqlGG5o937CqQQ5knc_BJrlW3zEJU0uYX28R_auOCMWGDSQz8vS2Dr0SpG9IjXgbxugDrt3Svr9FLrtbPAGTEb7vhjRY7QTCL5rTfx-s7B35BHzUP3luwVm616B0ZxER1qdh-S_ePJ2dfz3xG_u2E
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microglia+convert+aggregated+amyloid-%CE%B2+into+neurotoxic+forms+through+the+shedding+of+microvesicles&rft.jtitle=Cell+death+and+differentiation&rft.au=Joshi%2C+P&rft.au=Turola%2C+E&rft.au=Ruiz%2C+A&rft.au=Bergami%2C+A&rft.date=2014-04-01&rft.eissn=1476-5403&rft.volume=21&rft.issue=4&rft.spage=582&rft_id=info:doi/10.1038%2Fcdd.2013.180&rft_id=info%3Apmid%2F24336048&rft.externalDocID=24336048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-9047&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-9047&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-9047&client=summon